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Kinetics of monocyte
subpopulations during
experimental cerebral malaria
and its resolution in a model
of late chloroquine treatment
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Cerebral malaria (CM) is one of the most severe forms of malaria and is a

neuropathology that can lead to death. Monocytes have been shown to

accumulate in the brain microvasculature at the onset of neurological

symptoms during CM. Monocytes have a remarkable ability to adapt their

function to their microenvironment from pro-inflammatory to resolving

activities. This study aimed to describe the behavior of monocyte

subpopulations during infection and its resolution. C57BL/6 mice were

infected with the Plasmodium berghei ANKA strain and treated or not with

chloroquine (CQ) on the first day of the onset of neurological symptoms (day 6)

for 4 days and followed until day 12 to mimic neuroinflammation and its

resolution during experimental CM. Ly6C monocyte subpopulations were

identified by flow cytometry of cells from the spleen, peripheral blood, and

brain and then quantified and characterized at different time points. In the brain,

the Ly6Cint and Ly6Clow monocytes were associated with neuroinflammation,

while Ly6Chi and Ly6Cint were mobilized from the peripheral blood to the brain

for resolution. During neuroinflammation, CD36 and CD163 were both involved

via splenic monocytes, whereas our results suggest that the low CD36

expression in the brain during the neuroinflammation phase was due to

degradation. The resolution phase was characterized by increased expressions

of CD36 andCD163 in blood Ly6Clowmonocytes, a higher expression of CD36 in

the microglia, and restored high expression levels of CD163 in Ly6Chi monocytes

localized in the brain. Thus, our results suggest that increasing the expressions of

CD36 and CD163 specifically in the brain during the neuroinflammatory phase

contributes to its resolution.
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Introduction

Malaria remains the deadliest parasitic disease worldwide,

with 627,000 deaths reported in 2020 (WHO, 2021). Cerebral

malaria (CM) is one of the most severe states of malaria and is a

neuropathology that may lead to death or neurological sequelae.

Despite a decline in malaria mortality since the use of

artemisinin derivatives, the case fatality rates related to CM in

African children remain in the range of 10%–40% (Dondorp

et al., 2010; Royo et al., 2019; Conroy et al., 2021). The

mechanisms involved in the pathophysiology of CM are still

incompletely understood, although three mechanisms are

thought to be crucial. Firstly, the sequestration of Plasmodium

falciparum-infected red blood cells (iRBCs) in the cerebral

microvasculature, demonstrated through postmortem studies

(Pongponratn et al., 2003; Taylor et al., 2004; Milner et al.,

2015), causes microvascular obstruction, ischemia, and hypoxia

(Dondorp et al., 2004; Penet et al., 2005). Secondly, the

anticoagulant and cytoprotective functions of the protein C-

containing system are dysregulated due to the specific

interaction between the parasite protein PfEMP1 and the

endothelial receptor EPCR (Petersen et al., 2015). Thirdly,

systemic inflammation due to malaria infection combined with

activation of the brain’s vascular endothelium leads to increased

circulating levels of pro-inflammatory cytokines and

chemokines, increased adhesion receptor expression on the

endothelium, increased iRBC sequestration, and increased

recruitment of leukocytes (Medana and Turner, 2006; Wykes

and Good, 2009; Keswani et al., 2016; Gowda and Wu, 2018).

These phenomena create a local inflammatory and oxidative

environment that ultimately leads to blood−brain barrier (BBB)

disruption and central nervous system damage (Becker et al.,

2004; Pais and Penha-Gonçalves, 2018).

The experimental murine model of cerebral malaria (ECM)

has highlighted the central role of CD8 T cells in ECM

development through their implication in endothelial cell

apoptosis (Nitcheu et al., 2003; Howland et al., 2015). The

implication of monocytes/macrophages in the pathophysiology

of CM has also been evidenced both in humans (Pongponratn

et al., 2003; Stanisic et al., 2014) and in a murine model, where

these cells have been shown to accumulate in the brain

microvasculature at the onset of neurological symptoms

(Niewold et al . , 2018; Sierro and Grau, 2019). As

demonstrated in ECM, monocytes are primarily associated

with pathogenesis, are a major source of pro-inflammatory

cytokines during CM (Grau et al., 1987), and are implicated in

CD8 T-lymphocyte accumulation in the brain through

chemokine production. Indeed, the depletion of monocytes/

macrophages with clodronate liposome injection 5 days post-

infection was shown to result in the recruitment of natural killer

(NK) cells and CD4+ and CD8+ T cells to the brain (Pai et al.,

2014). However, monocytes are known for their capacity to

rapidly mobilize to the inflammation sites and for their wide
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range of functions from pro-inflammatory to resolving activities

(Guilliams et al., 2018).

Monocytes are a heterogeneous population comprising three

subpopulations according to their expression levels of CD14 [a

lipopolysaccharide (LPS) co-receptor] and CD16 (low-affinity

Fcg receptor III) in humans and according to their Ly6C

expression in mice. Although the distribution of these three

subsets among mononuclear cells is very different between

humans and mice (classical CD14+CD16− , 80%–95%;

intermediate CD14+CD16+, 2%–11%; and non-classical

CD14lowCD16+, 2%–8% versus Ly6Chigh, 40%–45%; Ly6Cint,

5%–32%; and Ly6Clow, 26%–50%, respectively), their general

functions are similar (Yang et al., 2014). While all three

subpopulations are capable of phagocytosis, CD14+CD16−/

Ly6Chi and CD14+CD16+/Ly6Cint monocytes are described as

pro-inflammatory and reactive oxygen species (ROS)-

producing, CD14+CD16+/Ly6Cint monocytes are known for

their antigen-presenting ability, and CD14lowCD16+/Ly6Clow

monocytes are characterized by their tissue repair activity and

their role in the surveillance of BBB integrity (Ginhoux and Jung,

2014). However, depending on the pathological context, the role

of the subpopulations may be considered favorable or

deleterious. For example, during experimental autoimmune

encephalomyelitis and dextran sulfate sodium (DSS)-induced

colitis, the infiltration of Ly6Chi monocytes is thought to be

responsible for the subsequent pathology through their pro-

inflammatory activity (Ajami et al., 2011; Zigmond et al., 2012).

Conversely, the ability of Ly6Cint to produce nitric oxide (NO)

and tumor necrosis factor (TNF) has been identified as necessary

for the elimination of several pathogens (Toxoplasma gondii,

Trypanosoma brucei, Leishmania major, and Listeria

monocytogenes) (reviewed in Guilliams et al., 2018).

With respect to CM, a few studies have focused on the role of

monocyte subpopulations in pathology. In Beninese children

presenting with CM, we previously demonstrated an increased

risk of death in children displaying a lower percentage of

CD14lowCD16+ monocytes, suggesting a role of this

subpopulation in achieving better clinical outcomes (Royo

et al., 2019). Pai et al., using Plasmodium berghei ANKA

(PbA)-infected C57BL/6 mice, found that Ly6Chi monocytes

were the main brain-sequestered leukocyte population, with

CD8 T cells appearing at the stage of neurological symptoms

and interacting with the vascular endothelium. At the same time,

in blood circulation, they noticed the disappearance of Ly6Clow

monocytes (Pai et al., 2014). Using a specific t-distributed

stochastic neighbor embedding analysis of their flow

cytometry data, Niewold et al. demonstrated the accumulation

of Ly6Clow monocytes in the brain on day 8 (D8) post-infection

in PbA-infected CBAJ mice. Early administration of immune-

modifying particles specifically targeting Ly6Clow monocytes

improved survival by 50%, suggesting a detrimental role of

this subpopulation during ECM (Niewold et al., 2018). Taken

together, these results prompted us to explore the precise
frontiersin.org

https://doi.org/10.3389/fcimb.2022.952993
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Royo et al. 10.3389/fcimb.2022.952993
kinetics of monocyte subpopulations during ECM in the spleen,

blood, and brain and their modulation through the expression of

membrane receptors.
Materials and methods

Experimental animals and
ethical considerations

Six-week-old male and female C57BL/6 mice weighing 19–

22 g were obtained from Janvier Laboratory (Toulouse, France).

Mice were maintained under standard and constant laboratory

conditions (unlimited access to food and tap water, adapted

enrichment, 23°C–25°C, relative humidity of approximately

60%, and 12/12-h light/dark cycles). All animal experiments

were conducted with respect to animal welfare and were

approved by the Midi-Pyrénées Ethics Committee for animal

experiments in Toulouse (France) under permit number

APAFIS#5921-2016070118008477v3.
Experimental model of the study

The rodent malaria parasite P. berghei strain ANKA (kindly

given by A. Berry, INFINITY Research Unit, Toulouse, France)

was used throughout the study. Figure 1A shows the

experimental model used in this study. Mice were

intraperitoneally infected with 1.106 P. berghei ANKA

parasites suspended in 200 µl of 0.9% NaCl on D0 and divided

into two groups: treated and untreated. In the untreated group,

mice were followed during the course of infection, and groups of

three to five mice were sequentially sacrificed on D0, D3, D5, and

D7. The second group was treated with chloroquine (CQ) on D6,

D7, D8, and D9 (intraperitoneal injection of 25 mg/kg of CQ per

day per mouse in 400 µl of 0.9% NaCl) and subsequently

sacrificed on D7 (called D7T), D8 (D8T), and D12 (D12T).

Weight, parasitemia, and neurological symptoms were

monitored daily, while survival was monitored twice daily.

Parasitemia was monitored from D3 by microscopic counting

of May–Grünwald–Giemsa-stained blood smears (RAL 555 kit,

RAL Diagnostics, Martillac, France) and determined as

f o l l o w s : [ ( n umb e r o f i R BC ) / ( t o t a l n umb e r o f

RBC counted)] × 100.
Rapid murine coma and behavioral tests

To evaluate brain damage, the rapid murine cerebral

behavior scale (RMCBS) was employed daily according to a

previously described methodology (Carroll et al., 2010). Ten

parameters were evaluated: gait, balance, exploratory behavior,

grooming, body position, tactile escape reflex, ear pavilion reflex,
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limb strength, toe reflex, and aggressiveness. Each parameter was

scored from 0 to 2, with a score of 2 indicating the

highest function.
Collection of spleen, brain, and
peripheral blood from mice

The spleens and brains were collected immediately after

death at the different time points, mechanically homogenized in

7 ml of phosphate-buffered saline (PBS) and filtered through a

100- or 40-µm nylon cell strainer. The remaining brain and

spleen pellets were centrifuged (400 × g, 10 min). For the brain,

the mononuclear cells were separated from the digested tissue

using density gradient centrifugation (800 × g, 20 min)

(Percoll®, Sigma, St. Louis, MO, USA) and then washed and

resuspended in PBS. For the spleen, RBCs in the cell pellet were

lysed by adding 1 ml of ammonium–chloride–potassium (ACK)

buffer and centrifuged (400 × g, 10 min). The cell pellets were

finally suspended in 1 ml of PBS. Peripheral blood was obtained

by cardiac puncture in heparinized syringes and centrifuged

(400 × g, 5 min) to separate plasma. Peripheral blood

mononuclear cells (PBMCs) were isolated from the pellet by

density gradient centrifugation (Lymphoprep, STEMCELL

Technologies, Saint-Egrève, France) and washed in PBS.
Flow cytometry

Mononuclear cells from the brain, splenocytes, and PBMCs

were stained with fluorescein-labeled monoclonal antibodies

(mAbs) specific for cell surface markers, as follows: F4/80-

PeVio615, CD45-PeVio770, CD11b-FITC, Ly6C-VioBlue451,

Ly6G-APC, MHC-II-PerCP-Vio700 (Miltenyi Biotech,

Bergisch Gladbach, Germany), CD36-PE (Santa Cruz

Biotechnology, Santa Cruz, CA, USA), and CD163-AF680

(www.antibodies-online.com). A Zombie Aqua Fixable

Viability Kit (BioLegend, San Diego, CA, USA) was used to

exclude dead cells. The labeling protocol was performed

following the manufacturer’s guidelines. Unlabeled cells, bead

and cell monolayers, and isotype controls were also used as

controls. Acquisition was performed on an LSR Fortessa

cytometer (BD Biosciences, Franklin Lakes, NJ, USA), and

data were analyzed using FlowJo™ software.
Statistical analysis

All data are expressed as the mean ± standard deviation (SD)

and were analyzed using GraphPad Prism software (version

9.3.0). Parasitemia, survival, the neurological scores, and weight

were compared between treated and untreated mice using the

Mann−Whitney U test. For analyses of the population
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percentages and the mean fluorescence intensity (MFI), a one-

way ANOVA was performed before two-by-two comparisons

using unpaired two-tailed Student’s t-test. Significant differences

were defined as p < 0.05.
Results

Treatment with chloroquine from D6 to
D9 prevents neurological damage
and death

To mimic human CM and its resolution, C57BL/6 mice were

infected with the P. berghei ANKA strain and treated with or

without CQ from D6 to D9 (Figure 1A). As shown in Figure 1B,

untreated mice died between D7 and D9. Before treatment at

D6, the mean parasitemia was approximately 3.4% (Figure 1C),

and parasitemia increased to 5.3% in untreated mice. In the

treated group, CQ treatment resulted in a rapid decrease in

parasitemia and an increase in mouse survival (Figures 1B, C).

With respect to the neurological score (RMCBS) assessed using

10 behavioral parameters, a maximum score of 20 was obtained

in all mice until D6, suggesting little or no visible neurological

symptoms (Figure 1D). In contrast, the CQ-treated mice

maintained a stable neurological score, with the score

decreasing by half and becoming less than 10 in untreated

mice by D7, highlighting significant neurological damage at

this stage of infection and validating the CQ administration

protocol from D6 (Figure 1D). The weight of the infected mice

did not change during malaria infection or after treatment

(mean weight in grams ± SD for all weights from D0 to D12:

21.0 ± 0.162 and 21.1 ± 0.217 in treated and untreated mice,

respectively) (Figure 1E). Here, we postulate that this model

mimics neuroinflammation on D7 in untreated mice, but

mimics the resolution of inflammation by D12. In treated

mice, D7 and D8 reflected the effect of CQ treatment. Indeed,

the reported half elimination time for CQ was 1.5 h in Swiss

mice infected with Plasmodium chabaudi at 3.5% parasitemia

treated with 5 mg/kg CQ (Cambie et al., 1994). Thus, the half

elimination time of CQ in mice presenting a similar parasitemia

and treated with 25 mg/kg CQ may be 7.5 h.
Ly6Cint and Ly6Clow monocytes are
associated with neuroinflammation in
the blood and brain, while Ly6Chi and
Ly6Cint are mobilized from peripheral
blood to the brain for resolution

To better understand the involvement of monocyte

subpopulations during CM and its resolution, the spleen,

blood, and brain of P. berghei ANKA-infected mice were
Frontiers in Cellular and Infection Microbiology 04
collected at different time points after malaria infection and

resolution (D0, D3, D5, D7, D8, and D12). The brains of non-

perfused mice were collected to evaluate the complete kinetics of

the monocytes present in the brain, including those adherent to

the vascular endothelium. Monocyte kinetics and the levels of

expression of surface markers were compared between

all compartments.

Monocyte subpopulations and the microglia were analyzed

using flow cytometry (see the gating strategy in Supplementary

Figure S1). Figure 2 shows the kinetics of the monocyte

subpopulations among live cells present in the spleen,

peripheral blood, and brain of infected mice. In the spleen, the

percentage of Ly6Chi monocytes increased from D0 to D7 with

or without treatment (Figure 2A). Ly6Clow monocytes increased

from D5 to D7, and CQ treatment exacerbated this increase

(Figure 2A). From D7 until D12, the percentages of both Ly6Chi

and Ly6Clow monocytes remained high in treated mice

compared to those at D0. For the monocytes present in

peripheral blood and in the brain, we observed relatively

similar kinetics for Ly6Chi, Ly6Cint, and Ly6Clow, except at

D12, the time of CM resolution (Figure 2B). In both

compartments, the percentages of Ly6Cint and Ly6Clow

monocytes increased between D0 and D7 in untreated mice

(F igure 2B) , impl i ca t ing both subpopula t ions in

neuroinflammation. In the brain, levels of the microglia

decreased from D5 to D7 and D8 upon CQ treatment,

followed by a slight increase on D12 (Figure 2C). On D12, the

percentages of all three monocyte subpopulations in the blood

were low (Figure 2B), whereas Ly6Chi and Ly6Cint monocytes in

the brain increased to levels above those at baseline (Figure 2C),

suggesting the mobilization of these cell populations for

inflammatory resolution from the peripheral blood to the

brain. With respect to Ly6Clow monocytes present in the brain,

basal percentages were restored on D12 (Figure 2C).

Interestingly, we observed that the effect of treatment by D7

was different among the three compartments: in the spleen and

the brain, the treatment resulted in increased Ly6Clow

subpopulations (compared to those on D7 and D5 in

untreated mice) (Figures 2A, C). For the microglia and Ly6Cint

monocytes present in the blood and brain, we observed a

decrease in these subpopulations after treatment (Figures 2B,

C). In the peripheral blood, no treatment effect was observed in

the Ly6Chi or the Ly6Clow subpopulation (Figure 2B).

Supplementary Figure S2 shows the percentages of the

subpopulations among monocytes. In Supplementary Figures

S2A, B, it is obvious that, in the spleen and the peripheral blood,

the percentages of Ly6Chi and Ly6Clow monocytes were inversely

correlated, which reinforces the idea that Ly6Clow monocytes are

derived from Ly6Chi monocytes (Niewold et al., 2018).

Interestingly, Ly6Clow monocytes replaced Ly6Chi in the spleen

from D5 (Supplementary Figure S2A) and in the blood from D3

(Supplementary Figure S2B). In the brain, this observation
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applied to Ly6Chi and Ly6Cint monocytes from D5

(Supplementary Figure S2C).
CD36 and CD163 are involved in
neuroinflammation via splenic
monocytes and via the microglia and
Ly6Chi monocytes in the brain during the
resolution phase

To characterize the monocyte subpopulations during the

course of malaria infection and treatment, the expression levels

of CD36 and CD163 receptors were assessed using flow cytometry

(Figure 3 and Supplementary Figure S3). Figure 3 displays the

ratios of the highest value of the three, or four for the brain,

subpopulations calculated to avoid strong differences in the
Frontiers in Cellular and Infection Microbiology 05
expression levels between organs that do not allow visualization

of marker expression differences during kinetics. Supplementary

Figure S3 presents the true values of marker expression and their

significant differences. CD36 and CD163 are two scavenger

receptors involved in the elimination of iRBCs through direct

phagocytosis and hemoglobin/haptoglobin complexes,

respectively (Tenhunen et al., 1968; McGilvray et al., 2000).

CD163 contributes to the anti-inflammatory response and is

associated with M2 macrophage polarization, whereas CD36 is

implicated in glycosylphosphatidylinositol (GPI) recognition by

monocytes through its role as a co-receptor of TLR2, resulting in

TNF production (Erdman et al., 2009).

Interestingly, receptor expressions varied among

compartments. For CD36, we noted much lower expression

levels by monocytes found in the peripheral blood than by

monocytes isolated from the spleen and brain (Supplementary
A

B

D E

C

FIGURE 1

Late treatment with chloroquine (CQ) prolongs survival and limits parasitemia and neurological damage. (A) Plasmodium berghei ANKA-infected
C57BL/6 mice treated intraperitoneally from day 6 (D6) to D9 post-infection with 25 mg kg−1 day−1 CQ and followed by clinical and
parasitological examination, organ sampling, and flow cytometry analysis. (B) Survival curve in treated and untreated mice. (C) Course of
parasitemia in treated and untreated mice. (D) Rapid murine cerebral behavior scale (RMCBS) scores during the course of infection in treated
and untreated mice. (E) Weight of treated and untreated mice. Treated and untreated mice were compared for all parameters on D7, D8, and
D9 using the Mann–Whitney U test. *p < 0.05, ***p < 0.0005.
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Figures S3A, C, E). Increased expression of CD36 was observed

in the spleen on D7 before treatment at the peak of infection and

inflammation, whereas in the brain, high expression levels were

observed in monocyte subpopulations after treatment on D7

(Figure 3A and Supplementary Figures S3A, E). In the blood,

CD36 was more strongly expressed by Ly6Chi monocytes on D5

and by Ly6Clow monocytes on D0 and D12 (Figure 3A and

Supplementary Figure S3C). These results suggest the

involvement of CD36 expressed by Ly6Chi and Ly6Clow

monocytes of the spleen and Ly6Chi monocytes of the blood in

GPI recognition and/or the elimination of iRBCs through

phagocytosis on D7 and D5, respectively. In the brain, on D7,

we observed strikingly higher expression levels of CD36 in

treated mice compared to untreated mice in all subpopulations

(Figure 3A and Supplementary Figure S3E). This difference may

be attributed to CQ treatment (Liang et al., 2004). However, the

lack of difference between the treated and untreated groups on

D7 in the other two compartments may not support this

hypothesis or may suggest a brain-specific mechanism. In

addition, in the brain, an increased expression of CD36 by the
Frontiers in Cellular and Infection Microbiology 06
microglia and by Ly6Cint and Ly6Clow monocytes was observed

before treatment on D3 (Figure 3A and Supplementary Figure

S3E), which may reflect the activity of non-opsonic phagocytosis

of these populations at this stage of infection or their implication

in GPI signaling and the pro-inflammatory response. The latter

hypothesis is more likely, as parasitemia on D3 was still close to

zero (Figure 1B). Finally, we observed a significant increase in

the expression of CD36 by the microglia on D12 compared to D8

(p = 0.036) and D0 (p = 0.0095) in treated mice (Figure 3A and

Supplementary Figure S3E). This result suggests a role of this

receptor in inflammatory resolution through the microglia.

Concerning CD163, an increase in its expression was

observed on D5 compared to D3 in both monocyte

subpopulations found in the spleen (Figure 3B and

Supplementary Figure S3B), suggesting increased removal of

hemoglobin/haptoglobin complexes at this point during

infection. In the peripheral blood, Ly6Chi monocytes highly

expressed this receptor until D7 in both treated and untreated

mice, with the expression levels subsequently decreasing by half

from D8 in treated mice (Supplementary Figure S3D). Ly6Cint and
A B

D E

F G IH

C

FIGURE 2

Monocyte subpopulations evolve differently in the spleen, peripheral blood, and brain during infection and resolution in response to chloroquine
(CQ) treatment. The spleen, blood, and the brain were sampled at different time points of infection with the Plasmodium berghei ANKA strain in
CQ-treated and untreated mice. Monocyte subpopulations, as well as the microglia, were identified and quantified from live cells by flow
cytometry using FlowJo. (A, B) Percentages of Ly6Chi (A) and Ly6Clow (B) monocytes in the spleen in treated and untreated mice. (C–H) Three
percentages of the monocyte subpopulations in the peripheral blood (C–E) and in the brain (F–H) during kinetics in treated and untreated mice.
(I) Percentage of the microglia during kinetics. The results are presented as curves and bars for better visualization of the kinetics and the
significant differences. For each subpopulation, one-way ANOVA first confirmed that the means were not equal before two-by-two
comparisons using an unpaired two-tailed Students t-test. Significant differences between consecutive time points are shown with an asterisk,
while differences from day 0 (D0) are shown with a section symbol. One symbol denotes p < 0.05, two symbols p < 0.005, and three symbols
p < 0.0005.
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Ly6Clow monocytes expressed CD163 much more weakly than did

Ly6Chi monocytes in the peripheral blood, but there was an increase

inCD163 expressionby these two subpopulations onD12 (Figure 3B

and Supplementary Figure S3D), suggesting a contribution of both

monocyte subpopulations to resolutionvia this receptor. In thebrain,

CD163was almost uniformly expressedby themicroglia andLy6Cint

during infection, with a decrease from D7 posttreatment, while

Ly6Clow monocytes exhibited very low expression levels of this

receptor (Figure 3B and Supplementary Figure S3F). Interestingly,

CD163 was strongly expressed by Ly6Chi monocytes in the brain

before infection and until D3, repressed between D5 and in treated

mice until D8, and finally restored on D12 (Figure 3B and

Supplementary Figure S3F). This result suggests strong

polarization of this cell population into inflammatory monocytes

from D5 to D7 and until D8 in treated mice, followed by M2

polarization by D12 during inflammatory resolution.

Figure 4 summarizes the main results obtained for the

evolution of the percentages of monocyte subpopulations in the

three compartments examined (the spleen, blood, and brain) and

their CD36 andCD163 receptor expression phenotypes during the

two major phases of infection kinetics, neuroinflammation and

its resolution.
Discussion

CM is a particularly problematic disease in sub-Saharan

Africa. Despite the administration of effective antimalarial drugs,

it unfortunately leads to very high mortality rates of

approximately 30%, as reported in our last study conducted in
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Benin (Brisset et al., 2022). This pathology is also associated with

neurological sequelae in patients who survive (WHO, 2014).

Although the late management of these cases likely contributes

to the severity of the disease, it appears that impairment of the

cellular immune response also contributes to fatal outcomes

and/or neurological sequelae due to BBB damage (Ghazanfari

et al., 2018). Because monocytes are key cells in the modulation

of immunity and their role during CM is still controversial, we

focused our study on monocyte behavior in a murine model of

ECM and its resolution.

Our data suggest that Ly6Clow monocytes are derived from

Ly6Chi monocytes, especially in the spleen and blood, where the

percentages of these subpopulations changed in inverse

proportions. In the brain, our results indicate that Ly6Chi

monocytes differentiate mainly into Ly6Cint monocytes.

Monocytes originate from the bone marrow and enter the

bloodstream as Ly6Chi CCR2+ monocytes, where they can

differentiate into Ly6Clow monocytes (Yona et al., 2013;

Ginhoux and Jung, 2014; Yang et al., 2014). Ly6Cint, or

Ly6Cmiddle, are thought to be an intermediate population

between Ly6Chi and Ly6Clow, so this subpopulation is less

documented. However, in humans, their CD14+ CD16+ cell

counterpart has been reported to increase in many

noninfectious diseases, such as coronary arterial disease

(Kashiwagi et al., 2010), atherosclerosis (Wildgruber et al.,

2009), hemophagocytic syndrome (Takeyama et al., 2007), and

cancer (Tanaka et al., 1999). In our study, the Ly6Cint and

Ly6Clow monocytes detected in the blood and the brain were also

increased at the peak of inflammation compared to those on D0.

Ly6Cint monocytes are inflammatory cells that exhibit similar
FIGURE 3

CD36 and CD163 receptors are differentially expressed in terms of expression level and evolution during the kinetics of infection and its
resolution by the monocyte subpopulations from one compartment to another. (A, B) Mean fluorescence intensity (MFI) of CD36 (A) and CD163
(B) by the different Ly6C monocyte subpopulations and the microglia characterized in the spleen, blood, and brain were analyzed using FlowJo
during Plasmodium berghei ANKA infection in chloroquine (CQ)-treated and untreated mice. To obtain comparable data during kinetics
between the different subpopulations of each compartment studied (i.e., the spleen, blood, brain), the heatmap presents the data as a ratio to
the highest MFI value obtained during the kinetics ×100 for each compartment.
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properties to Ly6Chi monocytes, known for their quick

recruitment to inflammatory sites, their high phagocytic

capacity, and their ability to secrete ROS and inflammatory

cytokines (Yang et al., 2014). Conversely, Ly6Clow monocytes are

described as anti-inflammatory, promoting M2 polarization and

IL-10 production, patrolling the endothelial surface of blood

vessels to coordinate its repair if necessary (Auffray et al., 2007).

Interestingly, CD36 and CD163, the two membrane

receptors studied here, were expressed very differently in terms

of level and evolution during kinetics by the subpopulations

from one compartment to another, suggesting a specific

phenotype associated with the localization of each monocyte

subpopulation. On D7, the Ly6Chi and Ly6Clow cell

subpopulations were characterized by low expressions of CD36

in the blood and brain compared to the levels observed in the

brains of treated mice at this point of infection. The expression

of CD36 was indeed elevated to similar levels in the three

monocyte subpopulations in the brain on D7 in treated mice.

CQ has been shown to severely affect endolysosomal system

degradation (Mauthe et al., 2018) and was previously shown to

increase the protein expression of CD36 in macrophages (Liang

et al., 2004), suggesting that CD36 is undergoing degradation in

the brain of the untreated mice in our study. Interestingly, CD36

was overexpressed by the microglia on D12, the time of

resolution in this model, compared to D8 in treated mice, at a

much higher level than that on D0. CD36 was also highly

expressed on D12 by Ly6Clow monocytes from the peripheral

blood (Figure 4). These results suggest that increasing the
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expression of CD36 in the brain would be beneficial, as

already proposed by others (Patel et al., 2007; Olagnier et al.,

2011; Ren, 2012). Interestingly, the role of CD36 in the

resolution of neuroinflammation in different noninfectious

models has been previously reported, such as in Alzheimer’s

disease, stroke, ischemic brain due to middle cerebral artery

occlusion, brain hematoma, or germinal matrix hemorrhage

(Ballesteros et al., 2014; Woo et al., 2016; Zhang et al., 2018;

Zhao et al., 2020; Davaanyam et al., 2021; Dobri et al., 2021). In a

murine model of Alzheimer’s disease, the microglial expression

of CD36 was downregulated, while the pharmacological

activation of CD36 was associated with increased Ab clearance

(Dobri et al., 2021). In stroke and ischemia models, increased

expressions of CD36 were demonstrated mainly by microglial

cells in a PPARg-dependent manner, which was associated with

the resolution of neuroinflammation through phagocytosis

(Ballesteros et al., 2014; Zhao et al., 2020). In our study, the

observed overexpression may be associated with the removal of

blood cell debris and the clearance of parasites. However, Woo

et al. concluded that the cell surface CD36 expressed in the post-

ischemic brain originates from the peripheral blood rather than

from the microglia. This was not the case in this ECMmodel, for

which the increased CD36 expression by the microglia was

observed on D12. In the brain, the effect of CQ in this model

was striking, showing a specific effect on the brain compared to

the other two compartments studied, the peripheral blood and

the sp l e en (F i gu r e 4 ) . Thu s , t h e b r a i n - sp e c ifi c

immunomodulatory properties of CQ, and in particular its
FIGURE 4

Schematic illustration of the main results obtained for the evolution of the percentages of the monocyte subpopulations in the three
compartments (i.e., the spleen, blood and brain) and their CD36 and CD163 receptor expression phenotypes during the two major phases of the
infection kinetics (neuroinflammation and its resolution) in a model of experimental cerebral malaria.
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ability to inhibit the degradation of CD36, constitute an avenue

to explore in the context of CM.

At the peak of neuroinflammation, splenic Ly6Chi and

Ly6Clow monocytes also highly expressed CD36 and CD163 in

untreated mice (Figure 4). The spleen constitutes a key organ for

iRBC elimination through highly phagocytic red pulp

macrophages and antigen-presenting dendritic cells (Del

Portillo et al., 2012). These cells originate from CCR2+ Ly6Chi

monocytes produced and egressed from the bone marrow to the

peripheral blood before invading the tissues via the bloodstream

(Sponaas et al., 2009; Ginhoux and Jung, 2014). Splenic Ly6Chi

monocytes have been shown to display phagocytic properties

and the capacity for ROS production, twomechanisms suggested

to explain their ability to control parasite development in P.

chabaudi-infected mice (Sponaas et al., 2009). In our study, the

high expression of CD36 by this subpopulation is in line with the

high phagocytic activity in the spleen, although this activity was

not sufficient to control the infection in untreated mice.

Somewhat surprisingly, Ly6Clow monocytes also expressed

CD36 at high levels similar to those of Ly6Chi. In humans,

CD14low CD16+ cells, the Ly6Clow monocyte counterpart, have

been reported to be poor phagocytic cells with a low CD36

expression (Wong et al., 2011; Aubouy et al., 2015; Royo et al.,

2019). However, during chronic infection with T. gondii,

Ly6Clow monocytes have been shown to highly express CD36,

similar to Ly6Chi monocytes, combined with the increased

phagocytic capacity of b-amyloid (Möhle et al., 2016),

suggesting that this subpopulation may display phagocytic

activity during infection settings.

Both cellular subpopulations also highly expressed CD163 on

D5 in the spleen, which is when parasitemia increases (Figure 4).

CD163 is known for its capacity to clear free hemoglobin under

conditions of high hemoglobin release resulting from hemolysis,

an important step to restoring homeostasis. This hemoglobin

uptake activates HO-1, which catabolizes hemoglobin to control

the release of heme through hemoglobin degradation to Fe(II),

carbon monoxide (CO), and biliverbin (Abraham and

Drummond, 2006). In our study, the high expression of CD163

by splenic monocytes was likely a counterregulatory mechanism

against the inflammation resulting from heme release related to

high parasite multiplication. In contrast, our data also revealed a

drastic decrease in CD163 expression by the Ly6Chi monocytes

present in the brain from D3 to D5 and D7 in untreated mice,

with restoration of the expression levels on D12 in treated mice

(Figure 4). This lower expression in the brain reflects an M1

phenotype associated with the critical neuroinflammatory phase

of the infection. It was previously demonstrated that the

neuroinflammation observed during ECM could be resolved by

the pharmacological induction of HO-1 or treatment with CO in

mice (Pamplona et al., 2007). Our results suggest that CD163, the

starting point of the CD163/HO-1 axis, could also constitute a

pharmacological target in the brain at the peak of

neuroinflammation to help its resolution. To test this
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hypothesis, the protective role of Ly6Chi CD163+ monocytes

could be evaluated by transferring these cells into untreated

mice before neuroinflammation.
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Department, Calavi Hospital, Calavi, Benin; Anaïs Labrunie
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SUPPLEMENTARY FIGURE 1

Gating strategy for monocyte subpopulations in the spleen, blood and
brain. The cells of interest were first identified by the SSC and FSC criteria

before exclusion of doublets and dead cells using Live Dead labelling (see

methods for details). (A) For the spleen, CD45+ cells were selected for the
identification of Ly6Chi and Ly6Clow monocyte subpopulations among

Ly6C+ CD11b+ cells. (B) For blood, the three Ly6C monocyte
subpopulations were identified among Ly6C+ CD11b+ cells. (C) For the
brain, F4/80+ cells were first selected to identify microglia and myeloid
cells in CD45+ CD11b+ cells and monocyte subpopulations among

myeloid cells via Ly6C labelling.

SUPPLEMENTARY FIGURE 2

Evolution of the percentages of Ly6C monocyte subpopulations among
monocytes in three compartments (spleen, blood, brain) in P. berghei

ANKA-infected mice treated or not treated with chloroquine (CQ). The
spleen, blood and brain were sampled at different time points of P.

berghei ANKA infection in CQ-treated and untreated mice, and

monocyte subpopulations were identified and quantified among
monocytes by flow cytometry on FlowJo. (A) Percentages of Ly6Chi and

Ly6Clow monocytes in the spleen. Percentages of Ly6Chi, Ly6Cint

and Ly6Clow monocytes in blood (B) and in the brain (C) in treated and

untreated mice.

SUPPLEMENTARY FIGURE 3

Expression of CD36 and CD163 in Ly6C monocyte subpopulations and in
microglia evolved significantly in the spleen, blood and brain during the

kinetics of P. berghei ANKA infection and its resolution in chloroquine-
treated and untreated mice. Mean fluorescence intensity (MFI) of CD36

and CD163 by the different Ly6C monocyte subpopulations and by
microglia characterized in the spleen, blood and brain were analyzed in

FlowJo. Data are presented as raw MFI values. For each subpopulation, a

one-way ANOVA first confirmed that means were not equal before two-
by-two comparisons using an unpaired two-tailed t test. (A) CD36 and (B)
CD163 MFI values of Ly6C monocyte subpopulations present in the
spleen. (C) CD36 and (D) CD163 MFI values of Ly6C monocyte

subpopulations present in the peripheral blood. (E) CD36 and (F) CD163
MFI values of Ly6Cmonocyte subpopulations andmicroglia present in the

brain. Significant differences between consecutive time points are shown

with *, while differences to D0 are shown with
§
. One symbol means P <

0.05, two symbols P < 0.005 and 3 symbols P < 0.0005.
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