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The OMICAS alliance is part of the Colombian government’s Scientific

Ecosystem, established between 2017-2018 to promote world-class

research, technological advancement and improved competency of higher

education across the nation. Since the program’s kick-off, OMICAS has focused

on consolidating and validating a multi-scale, multi-institutional, multi-

disciplinary strategy and infrastructure to advance discoveries in plant

science and the development of new technological solutions for improving

agricultural productivity and sustainability. The strategy andmethods described

in this article, involve the characterization of different crop models, using high-

throughput, real-time phenotyping technologies as well as experimental tissue

characterization at different levels of the omics hierarchy and under contrasting

conditions, to elucidate epigenome-, genome-, proteome- and metabolome-

phenome relationships. The massive data sets are used to derive in-silico

models, methods and tools to discover complex underlying structure-
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function associations, which are then carried over to the production of new

germplasm with improved agricultural traits. Here, we describe OMICAS’ R&D

trans-disciplinary multi-project architecture, explain the overall strategy and

methods for crop-breeding, recent progress and results, and the overarching

challenges that lay ahead in the field.
KEYWORDS

Multi-omics, crops breeding, foodomics, nanotechnology, rice and sugarcane,
in-silico optimization
1 Introduction

According to the United Nations (UN, 2019), global

population will continue to grow throughout the 21st century,

to an estimated 10.9 billion by 2100. As a result, food production

rates will have to double, which require an unprecedented

increase in agricultural productivity, at a rate that has not

been seen over the past five decades. Figure 1 illustrates the

scenario for the case of grains, which constitutes more than 40%

of the daily protein intake and diet of the global population.

Both biotic and abiotic stresses have altered the production

of sustainable crops, in some cases critically. Global food security

is permanently challenged by different phenomena including

climate change, population growth, human conflict, the
02
reduction of the arable land, and the increased livestock area

requirements among several others. From this perspective, it is

mandatory for plant breeders worldwide to develop new

strategies to deliver crop varieties at a faster rate, i.e., increase

the genetic gain for each crop.

Here, we describe the OMICAS alliance and its commitment

to the design, development, validation and deployment of an

interdisciplinary panomics strategy and tool set to address the

sustainability of productive agricultural systems and global food

security. OMICAS was selected in 2018, as the sole program in

the Food category of the Scientific Colombia ecosystem. Its

name, was inspired from the Spanish acronym for

Optimizacioń Multiescala In-Silico de Cultivos Agrıćolas

Sostenibles that translates into English as In-Silico Driven
FIGURE 1

Observed area-weighted global yield 1961–2008 shown using closed circles and projections to 2050 using solid lines for maize, rice, wheat,
and soybean. Shading shows the 90% confidence region derived from 99 bootstrapped samples. The dashed line shows the yield trend from
2008 needs to double production, on average, for these crops by 2050, without bringing additional land under cultivation starting in the base
year of 2008. The dotted lines from 2020 to 2050 show the yield trend needs to increase by more than 2.3 times with respect to 2008.
Adapted from (Ray et al., 2013).
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Multiscale Optimization of Sustainable Agricultural Crops, also

corresponds to the suffix ‘omics’ in spanish.

A review from different sources, including the United

Nations Development Program (UNDP) (UNDP, 2012), the

Food and Agriculture Organization of the United Nations

(FAO, 2013), and the Organization for Economic Cooperation

and Development (OECD) (OECD, 2015), reveals that over the

years Colombia’s agricultural sector has evolved with critical

limitations in terms of production, innovation, and technology

implementation. In Colombia, agriculture is the primary

economic activity of rural territories, and it has experienced

multiple structural crisis, which have resulted in a significant

reduction of its contribution to the Gross National Product

(GNP) from 27% to 5.4% between 1965 and 2013 (Figure 2.

After hitting an inflection minima in 2013, the sector has shown

a recovery in GNP participation up until 2020, when the COVID

pandemic hit the world.

In 2017, the Colombian Strategic Plan for Science,

Technology, and Innovation of the Agricultural Sector (in

Spanish PECTIA) (PEC, 2016) was set in motion in an

attempt to consolidate the country’s National System for

Agricultural Innovation (SNIA), in Colombia’s post-conflict

era. The PECTIA takes into consideration the 3866 Productive

Development policy documents from the CONPES (Consejo

Nacional de Polıt́ica Económica y Social, or National Council for

Economic and Social Policy) approved in late 2016 (CON, 2015),

the recommendations from the Colombian Mission for Rural
Frontiers in Plant Science 03
Transformations, and general orientations provided by the

OECD prior to country’s admission as a member in 2018. The

PECTIA addresses current societal challenges associated to

‘best-practices’ in agriculture through governance and policy

making investment in infrastructure and human resources, as

well as financing, planning, tracking, and evaluating strategic

projects needed to promote increased productivity and a value-

added economy capable of competing in a global market.

The same year PECTIA was unveiled, the Colombian

government, through its Ministries of Education, Industry and

Tourism, the Colombian Institute of Educational Credit and

Technical Studies Abroad (ICETEX), and the Colombian

Administrative Department of Science, Technology and

Innovation (Colciencias) – now morphed into the Ministry of

Science, Technology and Innovation (Minciencias) – created the

Colombian Scientific Ecosystem as a two-pronged effort to: 1)

promote scientific research and technological development

(under the Scientific Colombia program); and 2) graduate-

level education abroad (Passport to Science program). Both

programs were conceived to prioritize five strategic

development areas: Food (Agriculture), Renewable Energy,

Health, Society, and Bio-economy, out of which eight

international, multi-institutional R&D programs were

competitively established. These programs were leveraged by

the World Bank through the “Access and Quality in Higher

Education Project” (or PACES) program, and anchored at top

accredited Colombian Universities.
FIGURE 2

Agricultural sector contribution to Colombia’s and World’s GNP shows a steady decline (faster for the former) in percent contribution since
1965. Includes forestry, hunting and fishing, in addition to growing crops and raising animals. Value added is the net production of the sector,
after adding all the products and subtracting the intermediate inputs. It is calculated without making deductions for depreciation of
manufactured goods or for depletion and degradation of natural resources. For the countries that count on a value added basis, including
Colombia, the gross value added at factor cost is used as the denominator. Source: World Bank National Accounts Data and OECD National
Accounts Data Files.
frontiersin.org

https://doi.org/10.3389/fpls.2022.992663
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jaramillo-Botero et al. 10.3389/fpls.2022.992663
The application of omics technologies for the improvement

of plant traits has enabled significant advances in recent years, as

summarized in different reviews; (Großkinsky et al., 2017;

Zander et al., 2020; Jamil et al., 2020; Yang et al., 2021) which

describe, for the most part, partial integrative approaches, the

application of different omics levels to address specific plant

models and traits (Rasheed et al., 2013; Singh et al., 2020; Yadav

et al., 2022), or the use of modeling and simulation to drive

discovery and optimization (Matthews and Marshall-Colón,

2021; Marshall-Colon, 2022). The creation of global networks,

such as the International Plant Phenotyping Network (IPPN),

(IPPN, 2022) is also contributing to the visibility, information

sharing, and application of omics science and technology

in agriculture.

OMICAS contributes a unique panomics strategy that

couples quantifiable parameters and data, from genome to

crop, into functional models for multi-objective optimization

of agronomic traits . It not only leverages existing

characterization resources, but the development of new sensor

and phenotyping technologies for real-time non-invasive

characterization of analytes in plants, soils, and atmospheres,

and of novel computational methods to elucidate complex inter-

omics correlations that become the control knobs to reduce the

time and costs in plant breeding. It is a holistic approach, being

validated on rice and sugarcane models, whilst extensible to any

other crop.

The program brings together leading experts from 17

institutions across the globe, including from four world-class

foreign universities (California Institute of Technology,

University of Illinois at Urbana Champaign, Ghent University,

and Tokyo University), 3 world-class agricultural research

institutions (NIAB in Cambridge, UK, the International

Center of Tropical Agriculture - CIAT [member of the CGIAR

global partnership that unites international organizations

engaged in research about food security, located in Colombia],

and the Colombian Sugar Cane Research Center - Cenicaña],

five major private and public Colombian Universities (Pontificia

Universidad Javeriana, Universidad de los Andes, Universidad

ICESI, Universidad de Ibague, Universidad del Quindio, and

Universidad de los Llanos), and three industrial partners (the

Federation of Rice Growers - Fedearroz, Intelecto, and Hi-Tech

Automation). The team includes professors, scientific

researchers, students and technical staff from a variety of

disciplines, including molecular and nano-scale science,

‘omics ’ sciences (primarily epigenomics, genomics,

transcriptomics, metabolomics, proteomics and phenomics),

biology and biotechnology, chemistry, physics, nutrition,

computer science, and others, to address the trans-disciplinary

challenges associated with sustainable agricultural productivity

and food security. This paper presents an outline of OMICAS’

multiscale plant breeding optimization strategy, and describes

early results and achievements from the alliance members,

primarily validated on two crop models - rice and sugarcane
Frontiers in Plant Science 04
(albeit the strategy, methods and tools are extensible to any other

crops). Rice was chosen because it is a major global food source,

because it the largest cultivated cereal by surface area in

Colombia, and because it has an extensively studied genome.

On the other hand, we chose sugarcane, because it is third most

cultivated crop by surface area in Colombia, after coffee and oil

palm, because it is one of the most efficient plants for

photosynthesis, and because it has one of the most complex

genomes in crop plants due to the extreme level of polyploidy.
2 ÓMICAS R&D architecture

The alliance’s multi-disciplinary research plan involves basic

science, as well as the design, implementation, validation, and

knowledge transfer in the form of technological solutions aimed

at contributing to sustainable agricultural productivity and food

security. The main thrusts focus on the omics-level

characterization of our two model crops to: establish new

breeding strategies, methods, and tools; produce plant varieties

with increased tolerance to biotic and abiotic stresses, and with

improved resource use efficiency; and reduce the overall

environmental footprint of agriculture through updated

agronomic practices (specifically greenhouse gas emissions).

OMICAS is composed of seven interrelated macro projects,

identified in Figure 3 as P1 through P7 and coupled as shown in

Figure 4. These projects contribute to the overarching goals of

the program, as follows:
1. Development and implementation of an experimental

and computational platform for genomic, transcriptomic,

and epigenomic plant processing and analysis, and of

bioinformatic tools for the analysis and integration of

molecular scale data associated with crop productivity,

2. Design, characterization, and fabrication of prototype

nanodevices for the detection and measurement of ultra

low-concentrations of tissue biomarkers (specifically,

primary and secondary metabolites, and aluminum

metal Al3+ ions in soils), in order to enable early, fast,

and high-resolution identification of plant response to

stress,

3. Profiling of metabolic pathways for simple sugars,

organic acids, phenolics, flavonoids, and dextrans in

crops, using targeted and non-targeted metabolomic

methods and the high-resolution phenotyping

technologies derived from P1, and elucidation of key

cell signaling mechanisms from plant cell-membrane

receptors, specifically GCR1, to establish their role in

stress response,

4. Development and implementation of an integrated low-

cost, high-throughput, geographically-distributed

multimodal phenotyping platform (fixed, mobile and

aerial) that integrates soil-plant-atmosphere variables
frontiersin.org
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during meristematic, elongation, and maturation phases

of plant growth,

5. Development of computational models and data

visualization tools for in-si l ico analysis and

optimization of crops, based on graph theory and big
tiers in Plant Science 05
data analytics algorithms, aimed at gene annotation,

identification of gene and metabolic circuits associated

with productivity and tolerance to stress conditions.

6. Applying the methods and tools developed by P1-P5 to

the identification and annotation of genes, the
FIGURE 3

The OMICAS program consists of seven highly-coupled projects, each identified in the figure with a number, the first four build the omics
characterization layer of the program, the fifth integrates the characterization data through in-silico models for systematic big data analysis, and
projects six and seven use the structure-function relationships obtained from the rest of the projects to develop new varieties with improved
traits (validated on rice and sugar-cane models).
FIGURE 4

OMICAS program architecture, its macroprojects and their parameter-driven couplings. This figure depicts a sub-set of the basic data couplings
in the OMICAS strategy. For example, P1 receives plant tissues from P6 and P7, and outputs DNA/RNA sequences for the modeling efforts in P5;
P2 validates sensor technologies on metabolomics and ionomics characterized in P3; P3, in turn, contributes metabolomic and ionomic data for
the high-throughput phenotyping effort in P4, and for the development of predictive models in P5; P4 uses molecular and elemental
information from P2 and P3, and produces continuum-level phenotypic data for the models and codes developed in P5; while P5, integrates the
experimental (physical and computational) multi-omics characterizations from P1-P4 into complex models derived from graph- and network
theory, machine learning, and other mathematical and computer science methods to produce predictive tools for in-silico analysis and breeding
optimization; P6 and P7 contribute breeding of new plant varieties with improved agronomic traits, based on the in-silico results from P5, and
feeds tissues, soil and other environmental samples into the characterization and modeling that occur within P1-P5.
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development and selection of promising germplasm,

and the design of new plant varieties with greater

performance in productivity and stability in the

presence of diseases (e.g. rice hoja blanca virus),

climate changes (i.e. low or high temperatures and

radiation), heavy metal soil toxicity (e.g. Al3+), and

optimal resource use efficiency (e.g. non-structural

carbohydrates).

7. Applying the methods and tools developed by P1-P5 to

identify and select plant varieties with reduced

greenhouse gas emissions (specifically N2O and CH4)

that favor soil conservation and minimal environmental

footprint.
This alliance is committed to contributing basic, measurable,

and transferable solutions to these problems, including but not

limited to: new omics characterization and analysis techniques

and tools, candidate genome sequences, candidate quantitative

trait locus (QTLs) and genes, and optimized germplasm. A key

element in OMICAS is the integration of an in-silico and

physical experimental optimization cycle, based on

epigenomic, genomic, metabolomic, and proteomic data and

its correlation with phenomic expression to enable elucidation of

complex genotype-phenotype relationships. The in-silico

components are meant to improve breeding throughput, and

to reduce the cost and time involved in traditional methods. The

‘omic’ characterization layer allows for multiobjective

optimization of agricultural traits, such as, resource use

efficiency, nutrient sink-source translocation efficiency,

resistance to different biotic and abiotic stresses, and

minimization of the environmental footprint. This multiscale

characterization approach is essential to elucidate molecular-

level structure-function relationships that affect gene expression,

metabolic regulation, and an organism’s response to

its environment.
3 Results and discussion

The use of whole-genome data, derived from high-

throughput sequencing technologies, in association with

accurate crop phenotyping, has allowed the discovery of

genetic traits that control phenotypic variations in crops.
3.1 Epigenetic and genetic
characterization of crops

In P1, we have advanced in the implementation of an

experimental and computational platform for storage,

processing, analysis, and biological interpretation of epigenetic

(methylation profiles) and genetic crop data. We have

established an epigenomic analysis strategy supported by
tiers in Plant Science 06
computational models and experimental methods to

characterize yield and differential responses to biotic and

abiotic factors in the target crops of rice and sugar-cane.

Furthermore, we are developing and validating novel

bioinformatics strategies and flows for analysis and

visualization of structural and functional genomics.

The focus is placed on the dynamic epigenetic processes that

modulate access to DNA in response to upstream signals

including DNA methylation, covalent modification of histones,

nucleosome remodeling, chromatin interaction with regulatory

long noncoding RNAs. These are critical to ultimately

understand gene expression.

P1 has established an experimental platform supported by

the implementation of computational tools for the analysis of

massive omics characterization data. The project integrates a

physical layer for handling and processing experimental tissue

samples, and a complementary computational high-

performance computing (HPC) infrastructure (a GPGPU

cluster set up at the alliance’s anchor institution) for the

storage and analysis of omics data generated. This data will be

released to the public domain as the infrastructure grows. Three

major computational-experimental efforts are under way

between P1 and other projects in OMICAS, one (with P6)

meant to identify epigenetic cues associated to reducing the

effect of abiotic stresses (specific case of Al3+ toxicity from acid

soils), a second (again with P6) meant to uncover the genotypic

and phenotypic variations underlying sucrose production, and a

third (with P5) meant to systematically annotate genes from

genome-phenome data using machine learning methods.

For the first case, we are progressing in an epigenomic study

to characterize the methylation patterns in four commercial rice

cultivars (Oryza sativa L. and two accessions of wild rice (Oryza

glumaepatula Steud , through whole genome bisulfite

sequencing. Differential epigenetic marks will be evaluated

between rice genotypes with a contrasting response to

aluminum stress under controlled conditions. By using this

strategy, epigenetic changes will be considered as fixed

epigenetic marks. Likewise, the changes in the methylation

patterns between the aluminum tolerant and susceptible rice

genotypes will be evaluated after being subjected to Al3+ toxicity

conditions, and the epigenetic changes identified will be

considered rapid epigenetic marks in response to aluminum

stress. Once the specific differential methylation patterns have

been identified, expression levels of genes that had been found to

be differentially methylated, between tolerant and susceptible

genotypes, will be evaluated by qPCR. With all the epigenetic

and transcriptional information, functional enrichment analyzes

will be carried and a functional response model to aluminum

stress will be developed. This will represent a significant advance

in understanding the epigenetic mechanisms in the response to

abiotic stresses in plants, in particular to understand the key

mechanism in the regulatory response of rice crops to aluminum

toxicity. This information will be transferred to different
frontiersin.org
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breeding programs worldwide. Our early findings, based on

methylation analysis from Nipponbare cultivar (highly tolerant

to Al toxicity) and IR64 and Pokkali varieties (susceptible to Al

toxicity) indicate that Nipponbare exhibited more methylated

sites than the other two varieties (p≤0.01 in an FDR analysis),

while IR64 and Pokkali did not show differences in methylation -

see Figure 5. These results are particularly interesting, given

Nipponbare has been extensively reported as a highly tolerant

cultivar to aluminum (Gallo-Franco et al., 2020).

For the second case there were two approaches implemented

to identify variations underlying sucrose production. The first

one consists of performing the identification of molecular DNA

markers throughout the implementation of a genome-wide

association analysis (GWAS). To do so, a core collection of

220 sugarcane genotypes, which covers the genetic and

commercial diversity from Cenicaña’s germplasm bank, were

phenotyped during two crop cycles at a field representative from

the humid environment of the valle del rıó Cauca, Colombia.

Similarly, each one of the 220 genotypes were sequenced with a

high-throughput whole genome sequencing strategy, in order to

massively identify Single Nucleotide Polymorphisms (SNPs).

Finally, both phenotypic and genotypic information were

combined through the QK-mixed linear model (Yu et al.,

2006) to find SNPs associated with sucrose production.

Preliminary findings indicates the presence of 28 SNPs

associated with sucrose content at 13 months after planting,

from which only 4 explains between 5 and 10% (R2>5%) of the

total phenotypic variation observed in the 220 genotypes. These

results suggest that sucruse production is a quatitative trait that

is highly influenced by environmental effects, with several minor

QTLs that control its production. To validate the association of
Frontiers in Plant Science 07
each one of the 28 SNPs, we planted a population of 150

sugarcane genotypes, with sucrose production between 5 and

18% in a humid environment. This population will be

phenotyped for sucrose production and, at the same time,

sequenced with targeted sequencing technologies to look for

the allele dossage for each SNP and to confirm the overall impact

on sucrose production. The second approach, consists of the

quantitative evaluation of the analyzed genotypes by means of

the multiscale phenotyping strategy in OMICAS. This involved

identifying a set of 4 genotypes with more than 16% sucrose-

producing accessions, as high-producing, and with less than 7%,

as low-producing. These genotypes were planted in fields from a

sugarcane mill in the Valle del Cauca, in Colombia. We will now

perform an epigenetic study aimed at finding epi-alleles that

could assist the breeding scheme at Cenicaña. Therefore, at

harvest time (around 13 months after planting), tissue from the

low and high-sucrose-producing genotypes will be collected and

sequenced through whole genome bisulfite sequencing. Finally,

differentially expressed markers will be evaluated against sucrose

production and considered as fixed epigenetic marks or epi-

alleles. In this way, not only the genome structural variation will

be taken into account to establish direct genotype-phenotype

associations with evaluated traits, but also, significant differential

epigenetic marks will corroborate and help us elucidate those

defined associations.

A major challenge in agriculture is incorporating genomic

information into functional plant breeding. A holistic approach

is mandatory to directly apply genomics-derived knowledge into

agronomy, both at the molecular (genomic through

metabolomic) and macroscopic (phenotypic) levels, and for

deriving a plant’s response under contrasting conditions (i.e.
FIGURE 5

Boxplots showing methylated cytosine frequency in three sequence contexts: CG (blue), CHG (red), and CHH (green) among three different rice
varieties with contrast responses to aluminum exposure: Nipponbare (Tolerant), Pokkali, and IR64 (Susceptible). The results are discriminated
according to the location of the epigenetic mark, either inside the gene body region (GB), the promoter (PR), or both the promoter and inside
the gene body region of analyzed genes (PR + GB). From (Gallo-Franco et al., 2020).
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normal and stressed). With this goal in mind, we are performing

specific phenotype-genotype associations for different

agronomic traits, and have developed strategies for the analysis

and integration of complex data using comparative genomics

approaches, bioinformatics and big data analysis tools. This will

generate new pipelines for our model crops and for others. For

example, we have now developed a new method for in-silico

prediction of functional gene annotations in rice. This approach

uses gene annotations from existing knowledge of a given

genome in combination with topological properties of its gene

co-expression network, to train a supervised machine learning

model that is designed to discover unknown annotations. The

approach was validated to functionally annotate the Oryza Sativa
Frontiers in Plant Science 08
Japonica genome. It uses any existing body of knowledge about

gene annotations for a given genome, and the topological

properties of its gene co-expression network, to train a

supervised machine learning model that is designed to

discover unknown annotations. These results, sumarized in

Table 1, revealed that the topological properties derived from

co-expression networks improve our predictions for annotating

genes (Romero et al., 2020).

We expect that the combined use of traditional genomic and

epigenomic characterization strategies, coupled with the use of

novel techniques based on holistic analysis, will lead the

identification of novel gene/molecular mechanisms aimed at

reducing the times to develop agronomically improved varieties.
TABLE 1 Number of genes most frequently annotated as false positives for the 32 annotations by our model, trained from topological metrics
extracted from an Oryza Sativa Japonica genome.

ID Biological process # Genes Max FP # FP

0006807 Nitrogen compound metabolic process 15 41 1

0006289 Nucleotide-excision repair 20 46 1

0006397 mRNA processing 17 48 1

0007017 Microtubule-based process 18 49 1

0070588 Calcium ion transmembrane transport 10 36 1

0006184 GTP catabolic process 49 47 1

0044267 Cellular protein metabolic process 25 49 1

0007186 G-protein coupled receptor protein signaling 11 50 1

0006281 DNA repair 62 50 2

0006754 ATP biosynthetic process 24 49 3

0006904 Vesicle docking involved in exocytosis 11 50 4

0055114 Oxidation-reduction process 870 47 5

0006886 Intracellular protein transport 135 50 19

0006855 Drug transmembrane transport 32 50 21

0006662 Glycerol ether metabolic process 28 50 27

0006888 ER to Golgi vesicle-mediated transport 16 50 29

0006259 DNA metabolic process 15 50 32

0007067 Mitosis 11 48 33

0008652 Cellular amino acid biosynthetic process 18 50 52

0030244 Cellulose biosynthetic process 23 50 64

0034968 Histone lysine methylation 11 50 93

0006812 Cation transport 62 50 96

0045454 Cell redox homeostasis 83 49 103

0006506 GPI anchor biosynthetic process 12 50 284

0007165 Signal transduction 104 50 370

0071805 Potassium ion transmembrane transport 24 50 570

0006357 Regulation of transcription from RNA polymera 12 50 1199

0006396 RNA processing 58 50 1212

0044237 Cellular metabolic process 75 50 1318

0006457 Protein folding 162 50 2358

0006952 Defense response 133 50 2679

0006096 Glycolysis 50 50 2875
frontiers
The ‘Max FP’ column summarizes the number of times (out of a total of 50) such an annotation is suggested for a gene, while the ‘FP’ column identifies the number of genes that are
consistently given such an annotation. From (Romero et al., 2020).
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3.2 Characterization of plant biomarkers

In P2 we are developing nanoscale sensors for the detection

and measurement of bio-markers (primary and secondary

metabolites, including non-structural carbohydrates and

organic acids) in plants and toxins in soils (Al3+). A plant’s

response to biotic and abiotic stresses has an early molecular-

level expression in the organism’s metabolome, which is prior to

any phenotypic variations, that can signal proliferation of

diseases, compromised productivity, etc. Metabolites provide a

direct window into the phenotype, to the physiological state of

the plant. These fuel cell signaling and regulate metabolic activity

in the plant, so characterizing and associating their

concentrations in time with cellular processes, can further our

understanding of genome-phenome relationships.

Identifying metabolite-mediated signaling pathways, in real-

time, in-vivo, selectively (targeted metabolomics), at ultra-low

concentrations (pico Moles, pM, or lower), cheaply and without

harming the host organism is not only of fundamental

importance, but a practical necessity for agriculture.

Unfortunately, current technologies for measuring metabolites,

such as nuclear magnetic resonance spectroscopy (NMR), high-

performance liquid chromatography (HPLC), alone or in

tandem with mass spectrometry (HPLC-MS), inductively

coupled plasma mass spectrometry (ICP-MS), and enzyme-

based methods, fall short of meeting these needs. These lack

portability, and tend to be expensive to acquire and operate.

Phenotypic changes in response to biotic and abiotic stresses

are reflected early on in an organism’s metabolome, hence the

need to measure key metabolites for improving early detection of

stresses and breeding stress-tolerant species. In our design

process, we include both first-principles based in silico

screening and experimental prototyping. Our focus is placed

on three different sensing platforms:
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• Electronic field effect devices (FED): Back-gated

transistor devices that translate electronic field effect

variations proportional to an analyte’s concentration

on a functionalized semiconducting channel’s surface

into changes in transconductance/voltage/current across

two or more terminals,

• Colorimetric/optical devices or assays (OD):

Functionalized metal nanoparticle systems that

fluoresce under UV excitation to produce an intensity

signal response proportional, or inversely proportional,

to an analyte’s concentration in solution, and

• Electrochemical devices (ECD): Functionalized nano-

structured electrodes that produce distinguishable

voltammetric, impedanciometric or amperometric

signals as a function of an analyte’s concentration on

the electrode’s surface (electrochemical sensors).
In our FED designs, the semiconducting channel surface is

modified with molecular receptors that are selective to the

analyte of interest. The attachment of target analytes to the

receptors, result in the depletion or accumulation of charge

carriers in the semiconducting channel, analogous to the effect of

a transistor base/gate terminal. In (Jaramillo-Botero and

Marmolejo-Tejada, 2019), Jaramillo-Botero and Marmolejo

demonstrated a low-voltage solution- and back–gated

graphene nanoribbon (GNR) field–effect transistor (GFET)

sensor design, for the detection and measurement of low-

concentration (pM) uridine diphosphate glucose (UDP-

glucose), a precursor to sucrose synthesis in a plant cell’s

cytoplasm and an extracellular signaling molecule capable of

activating downstream defense mechanisms, see Figure 6. A self-

assembled monolayer (SAM) of 1-pyrenebutyric acid (PyBA)

was used to noncovalently functionalize the graphene surface on

one end, and to covalently ligate UDP-glucose on its open end,
FIGURE 6

(Left) Isometric view of graphene-based FED sensor with solvent box, 3 PyBA SAM molecules, and 1 bound UDP-glucose molecule. A metallic
back-gate, with an 8 nm thick separating region with relative dielectric constant of 3.9 (i.e. SiO2), lay under the semiconducting junction; (right)
Transconductance shows p-doping effect of increasing UDP-glucose concentration (at VDS=0.1 V). Figures from (Jaramillo-Botero and
Marmolejo-Tejada, 2019).
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whilst providing mechanical, chemical and electronic signal

sensing stability. The device has a predicted limit of detection

(LOD) of 0.997/n mM/L (where n is the number of sensor units

in an array configuration), with high transconductance

sensitivity, 0.75-1.5 mS for 1-3 UDP-glucose molecules, at low

input (VG=0.9V) and output voltages VDS=0.1V. Thus, a

1000x1000 nanoarray sensor would yield a LOD of 0.997 nM/

L. See Figure 6. This low-power, all-armchair g-FET sensor with

SAM ligands that may be chosen to bind different biomarkers,

provides a unique opportunity for high throughput, real-time,

low-cost, high-mobility, and minimal-calibration sensing

applications for in-field phenotyping.

Nanoparticle-based fluorescent probes offer an alternative

solution to quantify plant analytes directly from exudates or by

direct absorption into the tissues. Nanoparticles (NPs) with the

proper size (<100nm), composition and surface modifications

can be absorbed onto the cell membrane and subsequently

internalized into the cytoplasm. Detailed information about

the analyte’s concentration can be retrieved wirelessly, by

modifying the NP’s surface with analyte-selective moieties and

small molecular weight fluorophores/chromophores to signal

the presence or absence of targeted analytes on these sites. The

use of NPs has the added benefit of increasing the total surface

area available for binding analytes, when compared to a flat

electrode surface. We demonstrated a fluorophore-

functionalized gold nanoparticles (AuNP) systems for

colorimetric detection and quantification of sucrose and other

plant analytes as described in (Jaramillo-Botero et al., 2019).

Absorption of radiation (typically in the UV spectrum, i.e.

relatively high hv) promotes an electron from its electronic

ground state to an excited state. During the lifetime of the

excited electronic state, part of the energy is lost through internal

molecular vibration, leading to a longer wavelength of the

released/emitted light (Stokes shift). When the fluorophores

emit part of this light as radiation, the AuNPs act as a

collisional quenchers of the excited state thereby reducing the

fluorescence intensity. The fluorophore then returns to the

ground state without light emission. The fluorescence

wavelength and distribution of the emitting fluorophore is

chosen to overlap the absorption spectra of the AuNP, and the

length (R1) of the mercapto-oligomers that connect the

fluorophore to the AuNP is chosen to maximize quenching at

such a distance. The analyte concentration is therefore inversely

proportional to a differential fluorescent signal, with respect to

the amount of fluorophores content.

Last, but not least, we have developed disposable carbon-

based electrochemical sensors for the detection and

quantification of different metabolites in plants, metals in soils,

and greenhouse gases. These can be used in the field with a

portable instrument or as part of a phenotyping platform, in

real-time, and with minimal cost. We are now able to selectively

quantify the presence of Al3+ ions in dry and acidic soils, as an

indicator of its bioavailability. We expect to use the same
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technology to quantify it in different tissues, in order to study

and understand its effect on plant metabolism. Aluminum ion

uptake impairs synthesis, cell expansion, and nutrient transfer

from plant roots to main stems, affecting their overall

metabolism (Barceló and Poschenrieder, 1990). In Camila

Ayala et al. (2022), we demonstrate and validated a glassy

carbon electrode modified by the electrochemical reduction of

bismuth in an acetate buffer, for the detection of Al3+ in a

cupferron solution, using double-potential pulse chrono-

amperometry. The sensor has a linear response in the

concentration range of 1.85x1010 to 3.70x106 mol/L and a

detection limit of 0.025ppb. Our current technology, uses

laser-scribed graphene electrodes, which enable scaling

production and tuning the sensor’s sensitivity range.

In general, nanostructured electrodes or assays can provide

the resolution and accuracy required for detecting and

quantifying ultra-low analyte concentrations, from samples

captured via iontophoresis, natural exudation or gutation

processes directly from a plant’s leaf, stem or root. Sensors can

be tattooed onto the plant surface of interest, in a ‘wearable’

device configuration, or they can be embedded into other fixed

or mobile instruments. These technologies are amenable to

industrial scaling and production and are key to improving

agroindustrial productivity and safety.
3.3 Characterizing stress signaling
through membrane protein complexes

In P3 we are studying G-protein signaling in plants, using a

combination of first-principles based membrane protein-

structure prediction and experiments on mutants. Stress

signalling across the cell membrane remains a fundamental

biological question in plant science. Although G protein-

coupled receptor (GPCR) analogs in plants have not yet been

conclusively determined, we believe G proteins transmit signals

by atypical mechanisms in plants (when compared to humans

and animals) while effector proteins control growth, cell

proliferation, defense, stomatal movements, channel

regulation, sugar sensing and some hormone-mediated

responses, as shown by Murano et al (Urano et al., 2013)

using Arabidopsis thaliana and rice (Oryza sativa) models.

Genome analysis identified 56 putative GPCRs, including G

protein-coupled receptor1 (GCR1), which is reportedly a remote

homologue to human class A, B, and E GPCRs (Taddese et al.,

2014). Taddesse et al (Taddese et al., 2014). addressed the

disparity between genome analysis and biological evidence

through a structural bioinformatics study, involving fold

recognition methods, from which only GCR1 emerged as a

strong candidate. The activation of GPCR analogs in plants

defines their function, and it involves multiple distinct

conformations that do not follow in step with animal G

signalling, as described by Apone et al (Apone et al., 2003).
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Moreover, since some G protein components are capable of

activating more than one intracellular (IC) signaling pathway, it

is essential to identify the multiple active conformations that

may be involved with different functions.

To understand the GCR1 activation mechanisms using

modeling, accurate three-dimensional (3D) structures are

required. However, these are not currently available from

crystallographic or NMR experiments, therefore we are

leveraging on the first-principles based approach from

Goddard et al (Vaidehi et al., 2002; Goddard et al., 2010) to

predict and validate the tertiary GCR1 structure from its primary

sequence. The predicted structure (see Figure 7 are used in nano-

to-micro second molecular dynamics (MD) simulations to

determine the potential activation mechanisms and signalling

pathways. We are currently supplementing Simulation results

using stress-response characterization of Arabidopsis thaliana

ecotypes and knock-out mutants, and performing gene

annotation and analysis to determine stress responses, before

moving to a functional validation of a high-performing rice

haploid (haplotypes) for particular agronomical traits of interest.

As depicted in Figure 4, P3 is also focused on the

characterization of non-structural carbohydrates (NSC),

secondary metabolites (e.g. flavonoids), and Al3+ ions in acid

soils. One major objective was to identify the role of NSC

(specifically, sucrose and starch) and secondary metabolites

(i.e., phenols and flavonoids) as signaling elements that
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regulate a plant’s performance under biotic and abiotic

stresses. On the other hand, toxicity from Al3+ affects the

absorption ofessential nutrients (such as Ca2+) and restricts

the normal growth of its roots. This alters essential

physiological processes of a plant, and quenches plant

productivity. The phytotoxic effects of aluminium are highly-

dependent on the concentration of Al3+ and the plant’s genotype

ability to translocate the metal from source to sink. With P2, we

have now demonstrated a rapid, real-time electrochemical

sensor for measuring ppm-levels of Al3+ in soils; a tool that

will undoubtedly contribute to the development of plant

varieties with improved tolerance to metal toxicity, accurate

selection of crops for acid soils, and to soil remediation strategies

(Ayala et al., 2022).
3.4 Phenotypic characterization of crops

Increased productivity in agriculture will lead to greater

availability and lower costs for both food and non-food

products derived from agronomic practices. The efficiency of

resource allocation among farmers needs to be characterized

through sustainable agriculture. High-performance phenotyping

(HTP) strategies and platforms are necessary to optimize the

acquisition of data from individual plants and large crop plots.

These techniques allow farmers and breeders to access real time

data on the status of their crops, improved crop management,

and proper selection and optimization of species as a function of

microclimate and soil conditions. This involves new sensing

technologies capable of resolutions beyond the continuous

variables at the macroscopic scale, down to the level of

molecules, integrated within low-cost, low-power, massively

distributed HTP and new ontologies to facilitate data

integration and analysis.

In P4 we are developing a new HTP platform capable of

measuring in real-time, among other variables: (i) soil nutrients

(K+, NO3-) and gases (CO2, N2O), (ii) vegetative indices from

individual plant architecture models, and (iii) above-ground

biomass (AGB) and leaf nitrogen (N) estimation at crop

canopy level (See Figure 8. At the ground-level, a central unit

called PhenoAgro, integrates communication through a peer-to-

peer wireless LoRa network, wifi communications to data-

collecting and processing servers in a cloud configuration, and

custom-designed sensors to determine the spatio-temporal

evolution of ground, plant, and atmospheric variables.

Furthermore, we have own developed our own image-

processing and trajectory-control algorithms for commercial

unmanned aerial vehicles (UAV), to estimate AGB and N

content from canopy-level multispectral imagery.

We have demostrated the UAV platform in spatio-temporal

characterization of different morphological and physiological

variables in rice crops, specifically leaf nitrogen (N) and biomass

production, both of which are good predictors of crop yield and
FIGURE 7

Predicted GCR1 3D atomic structure and composition
embedded in a bi-lipid cell membrane and in explicit water. The
structure was obtained from the primary of Arabidopsis Thaliana
using a hybrid approach based on homology and our first-
principles methods (Hernandez et al. (2022).
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plant health. Our above-ground methods to capture canopy

traits, overcome the limitations of traditional destructive

methods for biomass sampling, or the use of time-demanding

soil plant analysis development chlorophyll meters (SPAD) for

the estimation of leaf N. Most of the existing body of work uses

multispectral aerial images for the calculation of canopy light

reflectances at different wavelengths (Mishra et al., 2017; Yue

et al., 2019; Maimaitijiang et al., 2019; Zhang et al., 2019b).

Several features can be extracted from the aerial imagery to

calculate vegetation index (VI) formulas, by associating specific

reflectance bandwidths that are highly related to variations in

leaf chemical components, leading to a proper estimation of

biomass dynamics (Liu et al., 2017; Zhang et al., 2019a) and leaf

N (Sun et al., 2017; Nigon et al., 2020).

Our UAV systems are equipped with a multispectral sensors

(depicted in Figure 8 to capture canopy imagery in the red,

green, near-infrared (NIR) and red-edge bands. Images are

collected through the entire phenological cycle of the crop,

specifically during the vegetative, reproductive, and ripening

stages of plant growth. In previous work (Correa et al., 2020), we

presented a novel multispectral image segmentation method

called GFKuts. The acquired aerial imagery is segmented by

optimizing an energy fitness function that enables the proper

labeling of texture in the red, green, and near-infrared space

(RGN). The resultant RGN image-mask only includes pixel

information that accurately represents the vegetation canopy,

allowing for the proper extraction of VI-based features.

Several VIs have been proposed to associate specific spectral

wavelengths with different crop variables (Lu et al., 2020).

Nonetheless, no single set of VIs had been demonstrated

across all crop stages and plant varieties, until our recent work
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(Devia et al., 2019), which identified and characterized a set of

VIs suitable for the estimation of both AGB and leaf N, namely:
• Normalized Difference Vegetation Index (Kanke et al.,

2016)

• Green Normalized Difference Vegetation Index

(Prabhakara et al., 2015)

• Difference Vegetation Index (Naito et al., 2017)

• Corrected Transformed Vegetation Index (Naito et al.,

2017)

• Soil-Adjusted Vegetation Index (Arroyo et al., 2017)

• Modified SAVI (Gnyp et al., 2014)

• Simple Ratio (Kanke et al., 2016)
The selected VIs exhibit a strong dependence on the NIR

reflectance due to leaf chlorophyll absorption, providing an

accurate approach for training machine learning models to

estimate the accumulated canopy biomass and leaf nitrogen at

each crop stage. Figure 8 shows estimation results reported in

(Colorado et al., 2020a; Colorado et al., 2020b). Artificial Neural

Networks (ANN) are trained with the selected VIs to predict both

AGB dynamics and N-to-SPAD correlations during the entire

crop phenological stages. Correlations are obtained by comparing

the estimations against an assembled ground-truth dataset with

biomass and SPAD readings directly measured at ground-level.

On average, we have obtained biomass correlations of r=0.9568

with R2=0.9154, whereas r=0.986 with R2=0.97 for leaf nitrogen.

These are promising results towards the autonomous estimation

of rice canopy AGB and N, with the aim of enabling high-

resolution genome trait mapping for genomic selection models

for plant improvement against abiotic stresses.
FIGURE 8

The OMICAS alliance has developed, validated and is currently deploying three High-Throughput Phenotyping (HTP) strategies and integrated
platforms: aereal, terrestrial-fixed and terrestrial-mobile. From the aereal, drone-based, multispectral imaging platform we are now able to
predict leaf-N, NDVI, and other crop data; from the fixed ground-based systems we obtain soil-based nutrients, plant indices (including
metabolite profiles) and atmospheric state variables (including greenhouse gas footprints from crops, primarily N2O and CH4).
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3.5 In-silico strategies for improved
crop breeding

Plant breeding efforts generally require intensive labor as

well as long optimization cycles that can last up to 12 years.

Figure 9 illustrates how the in-silico approach strategy in the

OMICAS program accelerates traditional approaches, by

narrowing down potential candidate species from a large set,

based on fitness functions associated to one or more agronomic

trait. This reduces the time and cost of experimental breeding

and selection. Different components that may complement

traditional approaches to plant breeding are grouped together

inside the blue box in Figure 9. They take into account omic data

representations, mathematical models and optimization

algorithms to facilitate the identification of critical features

that are present in populations with one (or more) desirable

traits. Our goal in OMICAS has been to apply big data and

machine learning algorithms on omics data characterized over

multiple scales, in order to explore and ultimately uncover the

key variables that intervene in stress-response and productivity.

For example, an in silico approach may implement a

computational environment to simulate critical optimization

routes and explore a more ample and complete state/search

space at a fraction of the time and cost. In P5, genetic, metabolic,

protein, and cellular networks are used to supplement

phenotypic traits associated to stress response, and to

understand complex interactions and correlations upon which

predictions can be based.

Our in-silico approach in OMICAS builds on epigenetic,

genetic, metabolic and cellular regulation network models,

characterized via results from P1-P4 to elucidate some of these
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complex interactions and correlations. Data analytics algorithms

are used to identify and annotate genes associated to phenotypic

traits. This in silico optimization cycle reduces the time and costs

to breeding optimized agricultural plant varieties. It offers a

significant advantages over the traditional labor-intensive

scheme, among them:
• Discovering hidden relationships in large collections of

data associated with crop productivity traits,

• Understanding the processes underlying the formation

of these patterns,

• Quantifying productivity gain traits and their

determinants, and

• Minimizing the genetic mutation and crossover space to

optimize traits.
One particular path we have taken, addresses a common

challenge in deploying new crop varieties, namely gene

annotations and correlations. A variety of approaches to

identify gene function/s have been proposed over the past

years, including Weighted Gene Co-expression Network

Analysis (WGCNA) (Langfelder and Horvath, 2008; Wang

et al., 2020; Riccio et al., 2020). In (Riccio et al., 2020), for

example, we proposed both a generalization and an extension of

the original WGCNA, which is applied to rice (Oryza sativa. The

proposed in silico approach identifies a group of 19 genes which

are relevant in the response to salt stress. Such genes are

considered target genes for experimental efforts to improve

salinity tolerance in rice.

To identify the target genes, the approach relies on the idea

of defining specific overlapping network ‘communities’ of
FIGURE 9

In-silico characterization strategy in OMICAS.
frontiersin.org

https://doi.org/10.3389/fpls.2022.992663
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jaramillo-Botero et al. 10.3389/fpls.2022.992663
genes, which are assumed to underlie the co-expression gene

network. In other words, a key hypothesis of the proposed

approach is that the overlapping nature of the systems’

regulatory domains that generate co-expression can be

identified by applying an algorithm that detects modules of

overlapping network communities. More specifically, module

detection is achieved by using machine learning techniques of

hierarchical link clustering. To analyze the phenotypic

responses of each gene modules to salt stress, statistical

regression analysis based on least absolute shrinkage and

selection operator (LASSO) is employed. It is interesting to

note that the identified target group is distributed across six

classes: three that group together three genes associated to

shoot K content; two that group three genes associated to shoot

biomass; and finally, there one that groups four genes

associated to root biomass. The proposed approach offers a

framework to reduce the search-space for target genes that

respond to salt stress. It facilitates experimental validation by

reducing the number of relevant genes.

Leveraging on the tools, methods and technologies

developed in P1 through P5, P6 focuses on optimizing crops

through accurate and high-throughput phenotyping, gene and

quantitative trait loci (QTL) discovery, molecular marker-

assisted elite lines construction via, genomic selection (GS)

and QTL-based marker-aided selection (MAS). P6 focuses on

traits of high importance for the Colombian agricultural sector,

and validates these on rice and sugarcane models. The traits are:

(1) a biotic stress: Rice hoja blanca virus (RHBV) resistance, (2)

three abiotic stresses: low radiation, high night temperatures

and aluminum toxicity in rice, and (3) two physiological traits:

sugar accumulation and nitrogen efficiency in sugarcane. These

traits are highly relevant to crops in the region (e.g. RHBV

resistance) and to crops worldwide (i.e. abiotic stresses and

physiological traits).
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3.6 Tolerance to Rice Hoja Blanca virus

The rice hoja blanca (RHB) disease is due to the Rice hoja

blanca virus (RHBV), which is transmitted by a planthopper

insect (see Figure 10, Tagasodes oryzicolus. RHB is among the

most severe impediments to rice productivity in tropical

Americas and the Caribbean Islands (Morales and Jennings,

2010). In Colombia it is the second threat for rice production

after rice blast. There is no chemical or biological treatment

available to fight the RHB disease, apart from devastating

insecticides against its vector. Thus, tapping into diversity of

genetic resistance to RHBV is key for a durable, successful,

environment- and consumers health-friendly, integrated crop

management. In P6 we take advantage of an extensive screening

of rice germplasm to map QTLs that control the incidence and

the severity of the disease in four diverse resistance donors

selected amongst the best performers against the disease (Cruz-

Gallego et al., 2018). We also search for possible interactions

(epistasis) between the QTLs. And finally we identify candidate

genes underlying the QTLs and attempt to validate them using a

CRISPR-Cas9-based knock-out approach. The knowledge

produced on genes and QTL represents the basis for a modern

approach of marker-aided breeding of elite rice lines resistant

to RHBV.

Our main result so far is the discovery of a major QTL for

resistance to the virus in two Colombian cultivars, FD 50 and FD

2000, as well as two QTLs that control the damages caused by the

insect vector (Romero et al., 2014). This QTL for RHBV

resistance, renamed as qHBV4.1, controls RHBV incidence,

which is simply the percentage of plants that show symptoms

of viral infection, no matter the extent or severity of the

symptoms. A local ancestry analysis in the qHBV4.1 region

showed that both resistant cultivars share the same temperate

Japonica origin, although FD 50 and FD 2000 are mostly Indica
FIGURE 10

(left) Infected rice panicle showing planthopper insect and larvae, which transmits RHBV, and (right) physically damaged rice leaves.
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germplasm. Thus, there is a high risk of resistance breakdown by

a mutation in the virus RNA, due to a very poor diversity in

resistant alleles in the cultivated germplasm. Recent observations

of RHBV outbreaks even in the resistant FD 2000 near Cúcuta

(Colombia) in FEDEARROZ plots tend to confirm the

imminence of the threat. Other QTLs have been discovered by

Genome-Wide Association Study (GWAS) but still need to be

confirmed by bi-parental mapping (Cruz-Gallego et al., 2018).

Incidence is the primary parameter to look at for the epidemics

of a disease. Yet, its severity is certainly as important as

incidence: if severity is low, a high incidence might have no

significant impact on plant viability, panicle development, or

grain yield. Additional to RHBV incidence, we thus designed

new experiments to decipher the genetic control of RHBV

resistance seen as symptoms severity. Through meta-QTL

analysis using MapDisto v2 (Lorieux 2012; Heffelfinger et al.,

2017) we found a new QTL, qHBV11.1, that controls HBV

severity in three of the four crosses analyzed. Looking at the rice

genome annotation (RAP-DB IRGSP v1) we also found an

interesting candidate gene in the QTL region. This gene,

STV11, was found to bring resistance to a cousin virus, the

Rice stripe virus (Wang et al., 2014). We are currently

investigating if STV11 in underlying the qHBV11.1 QTL using

stv11 mutants created by CRISPR-Cas9 knock-out.

Using joint- and meta-QTL approaches, we could refine the

qHBV4.1 position. In the narrowed region of qHBV4.1 we found

a putative gene that encodes for the AGO-4 Argonaute protein

(LOC-Os04g06770). Argonaute proteins, in addition to

participating in the regulation of endogenous gene expression,

also play a critical role in the defense against viruses through

small interference RNA of viral origin which bind to Argonaute

and serve as a guide for it to cut new viral RNA particles

(Mallory and Vaucheret, 2010). This system is a common

defense mechanism against pathogens, so AGO-4 may also be

associated with resistance to RHBV. We investigated the action

of qHBV4.1 using stv11 mutants created by CRISPR-Cas9

knock-out in the resistant genetic background FD-2000. We

found a mutant that showed higher RHB incidence than the wild

FD-2000, indicating that AGO-4 is a major factor of resistance

to RHBV.
3.7 Low radiation and high noctural
temperature tolerance in rice crops

Studies on climate variability impact on rice yield showed

that low radiation is an important yield limiting factor (Sheehy

et al., 2006; Yang et al., 2014). Low radiation constrained yield

with about 40 to 50% yield loss in rice grown in India and south

east asia countries (Viji et al., 1997; Sekhar et al., 2019) and

Colombia (Delerce et al., 2016). Furthermore, the lack of optimal

windows for farmers to sow either due to climatic or

management constrains increases the probability of rice crops
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to find low radiation conditions at the end of the cycle. Plant

traits related to source: sink interaction as carbon partition to

grains rather than plant traits related to source activity

(photosynthesis) are related to rice plant tolerance to low

radiation during grain filling conditions (Shao et al., 2019;

Shao et al., 2021). Our project, will look for traits and genes

that allow to discriminate low radiation tolerant plants. Field

phenotyping in two sites in Colombia of two populations

(MAGIC indica and Diversity indica panel) and GBS

genotyping will allow us to find out stable QTLs confering

tolerance to low radiation to rice.

Despite being a mainly tropical crop, rice is heat sensitive but

avoids daytime heat stress via transpirational cooling. This

works less well at night, resulting in yield reductions through

reduced grain filling rates and duration, smaller endosperm cell

number and loosely stacked starch. The latter causes chalkiness,

an important parameter for grain quality. These High Night

Temperature (HNT) effects result from impeded grain

development (sink formation) and ‘starvation’ (source

limitation). Possibly, massive increases in panicle respiration

are insufficiently offset by increased photosynthesis and reserve

mobilization. Evidence is building that HNT causes significant

yield reductions in some tropical environments, and this is

expected to be aggravated by global warming: Night

temperatures rise faster than day temperatures (Davy et al.,

2017). Late-season HNT caused 40% yield loss locally in LA and

the Caribbean (Delerce et al., 2016) and Asia (Welch et al.,

2010). Tolerance to HNT is uncommon among high-yielding

rices and has not been explicitly bred for. New phenotyping

platforms and the search for traits, tolerant genotypes and

favorable alleles in heat stress responsive genes during

OMICAS will provide opportunities to develop cultivars

tolerant to heat. Tolerant varieties as N22, the most heat

tolerant genotype known (Jagadish et al., 2015), is a poor trait

donor due to undesirable agronomic traits and genetic distance

to the genetic background of high-yielding cultivars. New

sources of tolerance are needed. Donors for HNT tolerance

may also be sought in distant genomes. A major QTL for

thermotolerance was identified and cloned in African rice

(Oryza glaberrima). Thermo-tolerance 1 (TT1) encodes an a2
subunit of the 26S proteasome involved in the degradation of

ubiquitinated proteins. The OgTT1 allele of heat-tolerant cv.

CG14, expressed in a sensitive cultivar, eliminated cytotoxic

denatured proteins. Overexpression of OgTT1 was associated

with enhanced thermotolerance in rice, A. thaliana and Festuca

(Li et al., 2015), although effects on grain quality remain

unknown. Some genetic variation for HNT tolerance exists

within sativa rice. Some QTLs and genes associated with HNT

tolerance were characterized but have not yet been field-

validated and introduced to breeding (Janni et al., 2020). More

multidisciplinary translational research is needed to develop

high-yielding varieties adapted to HNT tolerance and climate

change. The grain filling stage in rice is the most sensitive stage
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to a reduction in radiation. From a physiological angle low

radiation can reduce the source of carbon (Wang et al., 2015) but

can also affect sink number and activity (Cantagallo et al., 2004).

The impact on sink, has not been demonstrated in rice and

deserves further studies. The difficulty to find a relevant trait

related to low radiation tolerance during grain filling in previous

studies generates also on the lack of genetic diversity studied and

the difficulty to phenotype large and diverse panels for a stress

during a specific phonological phase (Wang et al., 2015).

For low radiation tolerance during grain filling, we carried

out phenotype-genotype evaluation on a rice diversity panel

using whole genome association studies (GWAS). An Indica

panel (300 accessions) was evaluated in the field, during two

consecutive years. Grain yield, fertility, 1000 Grain weight, stem-

leaf ratio, source:sink relation (SSR) and the number of filled

grains per panicle were significantly reduced by low radiation

and significantly different across genotypes. A total of 108 QTLs

(Quantitative trait loci) with a log 10-4 significance, were

associated with 20 variables evaluated in the high and low

radiation treatments. For low radiation conditions, two

common QTLs were found. The OSGRAS19 gene associated

in previous studies with grain size (Sink size) and light

interception (Source activity) was identified in the LD region

of the QTL associated for a proxy trait measured in plants as an

indicator of the ability of the plant source organs to fill the

grains. A validation of the candidate gene in a MAGIC indica

population and the introgration into elite breeding material is

ongoing. Concurrently, we will perform a functional analysis of

the QTL using tools from P1. During the first two years of the

project we have evaluated a set of 30 heat temperature genotypes

in a hot spot for hight temperatures in Colombia (Saldaña).

However, due to la Niña, we only got one year with real HNT.

Hot spot sites are relevant to screen materials, however the

stresses are difficult to control and need multi-year trials to find

out trend similarities. In order to impose HNT treatment at key

developmental stages, we installed controlled heat tents at CIAT

to maintain an elevated temperature only through the night.

Currently, we are evaluating 140 genotypes (with the 30

genotypes evaluated at Saldaña). This evaluation will allow us

to validate the platform for HNT and to suggest candidate

parental lines to the breeding program. Along with P4, we are

adapting phenotypic tools to continuously sense plants

temperature at night within this platform.
3.8 Al3+ plant toxicity in acid soils

High concentrations of free aluminum (Al3+) and drought

are the main constraints to rice productivity in the Llanos

Orientales of Colombia, the most important rice-producing

area in the country, in terms of extension. The genetic

improvement of drought and aluminum toxicity tolerance has

been intensively studied worldwide, with major advances in
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identifying the genes that regulate these responses and even

with the release of rice varieties with high tolerance to these

stresses. However, few studies address the impact of the

simultaneous occurrence of drought and aluminum toxicity on

rice yield, and even fewer focus on identifying the best gene/

allele combinations to increase tolerance to these stresses. In the

Omicas program, we study these stresses by focusing on: 1)

identifying genes/alleles associated with increased cross-

tolerance, 2) establishing the regulatory mechanisms, including

epigenetics, that determine the difference in tolerance between

rice genotypes, and 3) supporting the release of rice varieties

adapted to the conditions of the Llanos Orientales of Colombia.

For the discovery of genes and allelic variants, we are exploiting

the robustness of a synthetic population developed by CIRAD

and CIAT for the upland rice-breeding program for Latin

America and the Caribbean. Gene discovery is based on GBS-

GWAS over the entire synthetic population (some 300 lines). To

accelerate the release of tolerant rice varieties, we have selected

advanced lines from this synthetic population, which have

already been evaluated under the environmental conditions

prevailing in the Llanos Orientales and exhibited variability in

grain yield and root system characteristics. These advanced lines

will be used to identify allelic variants through targeted

sequencing of genes with a major influence on the response to

aluminum and drought (Nrat1, STAR1, STAR2, FRDL4, ARS5,

ART1, Dro1, qQTY 2.2, 4.1). If stable favorable haplotypes are

identified through these approaches, molecular markers will be

developed for use in marker-assisted selection (MAS) and

introgression into elite varieties via marker-assisted

backcrossing (MABC). Epigenetic regulation will be evaluated

by sequencing the methylomes of genotypes with contrasting

tolerance levels.
3.9 Greenhouse gas emissions from
agricultural crops

Nitrogen comprises 78% of the earth’s atmosphere and its

oxides (nitrous and nitric oxide, N20 and NO, respectively) play

an important role in the biogeochemical cycle of N but its

emission from the ground also has a great environmental

impact. Nitrous oxide is not only a powerful greenhouse gas, it

is the most depleting substance in stratospheric ozone.

According to the Fif th Assessment Report of the

Intergovernmental Panel on Climate Change (IPCC, 2013),

cultivated soils and natural vegetation contribute 5.0–13.8 Tg

N2O-N annually (Yao et al, 2020). In soils, N2O emissions are

closely linked to the microbial processes of nitrification and

denitrification, but nitrification rarely produces more than 1% of

the N2O emission from agricultural soils, leaving denitrification,

especially in soils with high moisture content, as the major

source of N2O in agricultural soils (SYL, 1999). The knowledge

of the emission rate from different agricultural production
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systems will allow to fine-tune their management in order to

minimize the emission of N2O.

Brazil, followed by Australia, are the countries where the

largest number of studies have been carried out to evaluate the

emission of N2O from sugarcane. In other countries of Central

and South America, including Colombia, these studies have been

very scarce (Valencia et al, in preparation). In recent years,

according to the Third National Communication on Climate

Change, Colombia went from emitting 0.37% of global emissions

to 0.46% (11 metric tons of CO2), ranking 5th out of32 countries

in Latin America and the Caribbean. Sugarcane is one of the

most important agro-industrial crops in Colombia, but

unfortunately there is not enough information about the

emission of GHG from this production system, so our work in

the Omicas program will provide a first quantitative view of N2O

emissions from this crop under agroindustrial production

conditions in the Cauca river valley.

In P7, we implemented a study to quantify the emission of

N2O in fields of commercial sugarcane production in two

contrasting environments in terms of soil moisture, humid

environment, where evapotranspiration is less than precipitation,

and a dry environment, where evapotranspiration is greater than

precipitation. Our preliminary results show that, in consistency

with similar studies in other countries, soil moisture and nitrogen

fertilization are the main factors that determine the intensity of

N2O emission. After nitrogen fertilization, an increase in the

emission of N2O is observed, while the emission decreases over

time, after fertilization increases.
3.10 Convergence and future prospects

The OMICAS program brings a trans-disciplinary approach

into crops breeding. It couples theory, lab, field and

computational experiments within a multiscale omics

characterization strategy that enables breeding and validation

of new varieties with improved agronomical traits; with higher

precision, and in a cost-effective and timely manner. Within

three years of its launch, the OMICAS team has, among others:
Fron
• uncovered epigenetic differences from four commercial

rice cultivars and two accessions of wild rice associated

to Al3+ toxicity tolerance,

• developed and validated novel graph-theory and

machine learning tools to annotate genes using

topological properties from co-expression networks,

Identified 13 SNP biomarkers and 20 candidate genes

associated to sucrose production in sucarcane,

• designed, developed and validated new nano-sensors for

the detection and quantification of biomarkers (primary

and secondary metabolites) related to a plant organism’s

health, heavy metals (Al3+) that compromise nutrient
tiers in Plant Science 17
absorption, and gases (methane and nitrous oxide) that

contribute to the greenhouse footprint of agriculture,

• predicted the tertiary structure of a key membrane

protein for stress signaling in plants, from which we

are currently studying the plausible signaling pathways

through two plant hormones (Abscisic acid [ABA] and

gibberellins [GA1]),

• designed, developed and validated a high-throughput

phenotyping platform that integrates real-time data

from fixed, mobile terrestrial with aerial devices to

characterize soil, plant, atmosphere and crop variables,

• identified different rice genes that confer tolerance to

RHBV, high nocturnal temperatures, low-radiation, and

to aluminum toxicity,

• applied gene-editing technologies (mainly site-specific

nuclease (SSN) with CRISPR/Cas) to produce

experimental rice crops with enhanced stress response

to RHBV, and improved resource use efficiency

(Nitrogen and water) and higher yields for both rice

and sugarcane, and

• quantified and mapped the emission of nitrous oxide,

methane and carbon dioxide from commercial

sugarcane production in contrasting environments in

Colombia.
We expect the OMICAS strategy, methods and tools will

continue to have an incremental impact on breeding of new

varieties, beyond rice and sugarcane, and on general agricultural

practices. As epigenome and genome-wide characterizations

studies lead to function discovery, and our understanding of

stress signaling pathways and identification of response

mechanisms progresses, we expect a move from editing single

or a few nucleotides, to full allele replacement, and ultimately

new functional gene insertions.

Such a broad and in-depth characterization effort poses

enormous challenges, in terms of the combinatorial explosion

of datum, the inherent complexity of deep/hidden

interrelationships, and of the non-deterministic nature of

multi-objective optimizations will require new processing and

interpretation capabilities that are discipline-agnostic.

Notwithstanding, this strategy will lead, not only to crops that

can resist pests and thrive in difficult climates, but to significant

nutritional value improvements, all of which contributes to food

security, sustainable productivity, and to the democratization of

food production, which disproportionately affects the poorest

and most vulnerable people today.
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Camila Ayala, M., Lorena López, L., Jaramillo-Botero, A., and Valencia, D.
(2022). Electrochemical modified electrode with bismuth film for ultrasensitive
determination of aluminum (iii). J. Electroanalytical Chem. 919, 116552.
doi: 10.1016/j.jelechem.2022.116552
Cantagallo, J. E., Medan, D., and Hall, A. J. (2004). Grain number in sunflower as
affected by shading during floret growth, anthesis and grain setting. Field Crops Res.
85, 191–202. doi: 10.1016/S0378-4290(03)00160-6

Colorado, J. D., Calderon, F., Mendez, D., Petro, E., Rojas, J. P., Correa, E. S.,
et al. (2020a). A novel nir-image segmentation method for the precise estimation of
above-ground biomass in rice crops. PloS One 15, 1–20. doi: 10.1371/
journal.pone.0239591

Colorado, J. D., Cera-Bornacelli, N., Caldas, J. S., Petro, E., Rebolledo, M. C.,
Cuellar, D., et al. (2020b). Estimation of nitrogen in rice crops from uav-captured
images. Remote Sens. 12, 3396. doi: 10.3390/rs12203396

CON. (2015). El Campo Colombiano: un camino hacia el bienestar y la paz.
Misión para la Transformación del Campo. Colombian National Planning
Depar tment . Ava i l ab l e a t : h t tps : / / co laborac ion .dnp .gov . co /cd t /
agriculturapecuarioforestal%20y%20pesca/el%20campo%20colombiano%20un%
20caminio%20hacia%20el%20bienestar%20y%20la%20paz%20mtc.pdf

Correa, E. S., Calderon, F., and Colorado, J. D. (2020). “Gfkuts: a novel
multispectral image segmentation method applied to precision agriculture,” in
2020 Virtual Symposium in Plant Omics Sciences (OMICAS). NY: IEEE. 1–6.
doi: 10.1109/OMICAS52284.2020.9535659
frontiersin.org

https://doi.org/10.1104/pp.103.026005
https://doi.org/10.1109/MHTC.2017.80064108006410
https://doi.org/10.1016/j.jelechem.2022.116552
https://doi.org/10.1016/j.jelechem.2022.116552
https://doi.org/10.1080/01904169009364057
https://doi.org/10.1016/j.jelechem.2022.116552
https://doi.org/10.1016/S0378-4290(03)00160-6
https://doi.org/10.1371/journal.pone.0239591
https://doi.org/10.1371/journal.pone.0239591
https://doi.org/10.3390/rs12203396
https://colaboracion.dnp.gov.co/cdt/agriculturapecuarioforestal%20y%20pesca/el%20campo%20colombiano%20un%20caminio%20hacia%20el%20bienestar%20y%20la%20paz%20mtc.pdf
https://colaboracion.dnp.gov.co/cdt/agriculturapecuarioforestal%20y%20pesca/el%20campo%20colombiano%20un%20caminio%20hacia%20el%20bienestar%20y%20la%20paz%20mtc.pdf
https://colaboracion.dnp.gov.co/cdt/agriculturapecuarioforestal%20y%20pesca/el%20campo%20colombiano%20un%20caminio%20hacia%20el%20bienestar%20y%20la%20paz%20mtc.pdf
https://doi.org/10.1109/OMICAS52284.2020.9535659
https://doi.org/10.3389/fpls.2022.992663
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jaramillo-Botero et al. 10.3389/fpls.2022.992663
Cruz-Gallego, M., Rebolledo, C., Cuasquer, J., Cruz, D., Peña-Fernández, A. L.,
Quintero, C., et al. (2018). Identification of new sources of resistance to RHBV- rice
hoja blanca virus. Acta Agronomica 67, 368–374. doi: 10.15446/acag.v67n2.61334

Davy, R., Esau, I., Chernokulsky, A., Outten, S., and Zilitinkevich, S. (2017).
Diurnal asymmetry to the observed global warming. Int. J. Climatol. 37, 79–93. doi:
10.1002/joc.4688

Delerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Patiño, V. H.,
et al. (2016). Assessing weather-yield relationships in rice at local scale using data
mining approaches. PloS One 11, e0161620. doi: 10.1371/journal.pone.0161620

Devia, C. A., Rojas, J. P., Petro, E., Martinez, C., Mondragon, I. F., Patino, D.,
et al. (2019). High-throughput biomass estimation in rice crops using uav
multispectral imagery. J. Intelligent Robotic Syst. 96, 573–589. doi: 10.1007/
s10846-019-01001-5

Gallo-Franco, J. J., Sosa, C. C., Ghneim-Herrera, T., and Quimbaya, M. (2020).
Epigenetic control of plant response to heavy metal stress: A new view on
aluminum tolerance. Front Plant Sci. 11, 602625. doi: 10.3389/fpls.2020.602625

Gnyp, M. L., Miao, Y., Yuan, F., Ustin, S. L., Yu, K., Yao, Y., et al. (2014).
Hyperspectral canopy sensing of paddy rice aboveground biomass at different
growth stages. Field Crops Res. 155, 42–55. doi: 10.1016/j.fcr.2013.09.023

Goddard, W. A., Kim, S.-K., Li, Y., Trzaskowski, B., Griffith, A. R., and Abrol, R.
(2010). Predicted 3d structures for adenosine receptors bound to ligands:
Comparison to the crystal structure. J. Struct. Biol. 170, 10–20. doi: 10.1016/
j.jsb.2010.01.001

Großkinsky, D. K., Syaifullah, S. J., and Roitsch, T. (2017). Integration of multi-
omics techniques and physiological phenotyping within a holistic phenomics
approach to study senescence in model and crop plants. J. Exp. Bot. 69, 825–844.
doi: 10.1093/jxb/erx333

FAO. (2013). Global state of agriculture and nutrition. Food systems for a better
nutrition. United Nations Development Programme. Available at: https://www.fao.
org/3/i3300e/i3300e.pdf

Heffelfinger, C., Fragoso, C. A., and Lorieux, M. (2017). Constructing linkage
maps in the genomics era with MapDisto 2.0. Bioinformatics 33, 2224-2225.

Hernandez, P., Arango, A., Kim, S., Jaramillo-Botero, A., and III, W. G. (2022).
Predicted 3d structure of the gcr1 putative gpcr in plants and its binding to abscisic
acid and gibberellin a1. in prep for submission to the journal of the American
chemical society under submission.

IPPN (2022). International plant phenotyping network (ippn) IPPN.

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change. Eds. T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J.
Boschung, et al. Cambridge University Press, Cambridge, United Kingdom and
New York, NY, USA, 1535 pp.

Jagadish, S. V. K., Murty, M. V. R., and Quick, W. P. (2015). Rice responses to
rising temperatures–challenges, perspectives and future directions. Plant Cell
Environ. 38 9, 1686–1698. doi: 10.1111/pce.12430

Jamil, I. N., Remali, J., Azizan, K. A., Nor Muhammad, N. A., Arita, M., Goh, H.-
H., et al. (2020). Systematic multi-omics integration (moi) approach in plant
systems biology. Front. In Plant Sci. 11. doi: 10.3389/fpls.2020.00944

Janni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T.,
et al. (2020). Molecular and genetic bases of heat stress responses in crop plants and
breeding for increased resilience and productivity. J. Exp. Bot. 71, 3780–3802. doi:
10.1093/jxb/eraa034

Jaramillo-Botero, A., Hermith, D. P., and Hernandez, P. (2019). Synthesis of
functionalised gold nanoparticles and nanocompounds containing same for
measuring sucrose or starch in cells.

Jaramillo-Botero, A., and Marmolejo-Tejada, J. M. (2019). All-armchair
graphene nanoribbon field-effect uridine diphosphate glucose sensor: First-
principles in-silico design and characterization. IEEE Sens. J. 19, 3975–3983.
doi: 10.1109/JSEN.2019.2896448

Kanke, Y., Tubaña, B., Dalen, M., and Harrell, D. (2016). Evaluation of red and
red-edge reflectance-based vegetation indices for rice biomass and grain yield
prediction models in paddy fields. Precis. Agric. 17, 507–530. doi: 10.1007/s11119-
016-9433-1

Langfelder, P., and Horvath, S. (2008). WGCNA: an r package for weighted
correlation network analysis. BMC Bioinf. 9, 559. doi: 10.1186/1471-2105-
9-559

Li, X.-M., Chao, D.-Y., Wu, Y., Huang, X., Chen, K., Cui, L., et al. (2015). Natural
alleles of a proteasome a2 subunit gene contribute to thermotolerance and
adaptation of african rice. Nat. Genet. 47, 827–833. doi: 10.1038/ng.3305

Liu, X., Ferguson, R. B., Zheng, H., Cao, Q., Tian, Y., Cao, W., et al. (2017). Using
an active-optical sensor to develop an optimal ndvi dynamic model for high-yield
rice production (yangtze, china). Sensors 17, 672. doi: 10.3390/s17040672
Frontiers in Plant Science 19
Lu, J., Yang, T., Su, X., Qi, H., Yao, X., Cheng, T., et al. (2020). Monitoring leaf
potassium content using hyperspectral vegetation indices in rice leaves. Precis.
Agric. 21, 324–348. doi: 10.1007/s11119-019-09670-w

Lorieux, M. (2012). MapDisto: fast and efficient computation of genetic linkage
maps. Molecular Breeding 30, 1231–1235.

Maimaitijiang, M., Sagan, V., Sidike, P., Maimaitiyiming, M., Hartling, S.,
Peterson, K. T., et al. (2019). Vegetation index weighted canopy volume model
(cvmvi) for soybean biomass estimation from unmanned aerial system-based rgb
imagery. ISPRS J. Photogrammetry Remote Sens. 151, 27–41. doi: 10.1016/
j.isprsjprs.2019.03.003

Mallory, A. C., and Vaucheret, H. (2010). Form, function, and regulation of
argonaute proteins. Plant Cell 22, 3879–3889. doi: 10.1105/tpc.110.080671

Marshall-Colon, A. (2022). Crops insilico.

Matthews, M., and Marshall-Colón, A. (2021). Multiscale plant modeling: from
genome to phenome and beyond. Emerg. Top. Life Sci. 5(2), 231-237. doi: 10.1042/
ETLS20200276

Mishra, P., Asaari, M. S. M., Herrero-Langreo, A., Lohumi, S., Diezma, B., and
Scheunders, P. (2017). Close range hyperspectral imaging of plants: A review.
Biosyst. Eng. 164, 49–67. doi: 10.1016/j.biosystemseng.2017.09.009

Morales, F., and Jennings, P. (2010). Rice hoja blanca: a complex plant–virus–
vector pathosystem. perspectives in agriculture, veterinary science, nutrition and
natural resources MOR2010.

Naito, H., Ogawa, S., Valencia, M. O., Mohri, H., Urano, Y., Hosoi, F., et al.
(2017). Estimating rice yield related traits and quantitative trait loci analysis under
different nitrogen treatments using a simple tower-based field phenotyping system
with modified single-lens reflex cameras. ISPRS J. Photogrammetry Remote Sens.
125, 50–62. doi: 10.1016/j.isprsjprs.2017.01.010NAITO201750

Nigon, T. J., Yang, C., Dias Paiao, G., Mulla, D. J., Knight, J. F., and Fernández, F.
G. (2020). Prediction of early season nitrogen uptake in maize using high-
resolution aerial hyperspectral imagery. Remote Sens. 12, 1234. doi: 10.3390/
rs12081234rs12081234

OECD. (2015). Economic studies of the OECD: Colombia. OECD. Available at:
http://www.oecd.org/eco/surveys/Overview_Colombia_ESP.pdf

PEC. (2016). The Strategic Plan for Colombia's Agricultural Science, Technology
and Innovation – PECTIA (2017-2027). Colombian Ministry of Agriculture,
CorpoICA, Colciencias. Available at: https://minciencias.gov.co/sites/default/files/
upload/noticias/pectia-2017-actualizado.pdf

Prabhakara, K., Hively, W. D., and McCarty, G. W. (2015). Evaluating the
relationship between biomass, percent groundcover and remote sensing indices
across six winter cover crop fields in maryland, united states. Int. J. Appl. Earth
Observation Geoinformation 39, 88–102. doi: 10.1016/j.jag.2015.03.
002PRABHAKARA201588

Rasheed, A., Mahmood, T., Gul, A., and Mujeeb-Kazi, A. (2013). An overview of
omics for wheat grain quality improvement. In K. Hakeem, P. Ahmad and M.
Ozturk Eds. Crop Improvement. Boston, MA: Springer. 307–344. doi: 10.1007/978-
1-4614-7028-1_10

Ray, D. K., Mueller, N. D., West, P. C., and Foley, J. A. (2013). Yield trends are
insufficient to double global crop production by 2050. PloS One 8, 1–8.
doi: 10.1371/journal.pone.0066428

Riccio, C., Finke, J., and Rocha, C. (2020). Using overlapping communities and
network structure for identifying reduced groups of stress responsive genes.

Romero, M., Finke, J., Quimbaya, M., and Rocha, C. (2020). “In-silico gene
annotation prediction using the co-expression network structure,” in Complex
networks and their applications VIII. Eds. H. Cherifi, S. Gaito, J. F. Mendes, E. Moro
and L. M. Rocha (Cham: Springer International Publishing), 802–812.

Romero, M., Finke, J., Quimbaya, M., and Rocha, C. (2014). “In-silico gene
annotation prediction using the co-expression network structure,” in Complex
networks and their applications VIII. Eds. H. Cherifi, S. Gaito, J. , F. Mendes, E.
Moro and L. M. Rocha (Springer International Publishing), 802–812.

Sekhar, S., Panda, D., Kumar, J., Mohanty, N., Biswal, M., Baig, M. J., et al.
(2019). Comparative transcriptome profiling of low light tolerant and sensitive rice
varieties induced by low light stress at active tillering stage. Sci. Rep. 9 (1), 5753.
doi: 10.1038/s41598-019-42170-5

Shao, L., Liu, Z., Li, H., Zhang, Y., Dong, M., Guo, X., et al. (2021). EnglishThe
impact of global dimming on crop yields is determined by the source–sink imbalance
of carbon during grain filling. Global Change Biol. 27, 689–708. doi: 10.1111/gcb.15453

Shao, L., Li, G., Zhao, Q., Li, Y., Sun, Y., Wang, W., et al. (2019). The fertilization
effect of global dimming on crop yields is not attributed to an improved light
interception. Global Change Biol 26 (3), 1697–1713. doi: 10.1111/gcb.14822

Sheehy, J. E., Mitchell, P. L., and Ferrer, A. B. (2006). Decline in rice grain yields
with temperature: Models and correlations can give different estimates. Field Crops
Res. 98, 151–156. doi: 10.1016/j.fcr.2006.01.001
frontiersin.org

https://doi.org/10.15446/acag.v67n2.61334
https://doi.org/10.1002/joc.4688
https://doi.org/10.1371/journal.pone.0161620
https://doi.org/10.1007/s10846-019-01001-5
https://doi.org/10.1007/s10846-019-01001-5
https://doi.org/10.3389/fpls.2020.602625
https://doi.org/10.1016/j.fcr.2013.09.023
https://doi.org/10.1016/j.jsb.2010.01.001
https://doi.org/10.1016/j.jsb.2010.01.001
https://doi.org/10.1093/jxb/erx333
https://www.fao.org/3/i3300e/i3300e.pdf
https://www.fao.org/3/i3300e/i3300e.pdf
https://doi.org/10.1111/pce.12430
https://doi.org/10.3389/fpls.2020.00944
https://doi.org/10.1093/jxb/eraa034
https://doi.org/10.1109/JSEN.2019.2896448
https://doi.org/10.1007/s11119-016-9433-1
https://doi.org/10.1007/s11119-016-9433-1
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1038/ng.3305
https://doi.org/10.3390/s17040672
https://doi.org/10.1007/s11119-019-09670-w
https://doi.org/10.1016/j.isprsjprs.2019.03.003
https://doi.org/10.1016/j.isprsjprs.2019.03.003
https://doi.org/10.1105/tpc.110.080671
https://doi.org/10.1042/ETLS20200276
https://doi.org/10.1042/ETLS20200276
https://doi.org/10.1016/j.biosystemseng.2017.09.009
https://doi.org/10.1016/j.isprsjprs.2017.01.010NAITO201750
https://doi.org/10.3390/rs12081234rs12081234
https://doi.org/10.3390/rs12081234rs12081234
http://www.oecd.org/eco/surveys/Overview_Colombia_ESP.pdf
https://minciencias.gov.co/sites/default/files/upload/noticias/pectia-2017-actualizado.pdf
https://minciencias.gov.co/sites/default/files/upload/noticias/pectia-2017-actualizado.pdf
https://doi.org/10.1016/j.jag.2015.03.002PRABHAKARA201588
https://doi.org/10.1016/j.jag.2015.03.002PRABHAKARA201588
https://doi.org/10.1007/978-1-4614-7028-1_10
https://doi.org/10.1007/978-1-4614-7028-1_10
https://doi.org/10.1371/journal.pone.0066428
https://doi.org/10.1038/s41598-019-42170-5
https://doi.org/10.1111/gcb.15453
https://doi.org/10.1111/gcb.14822
https://doi.org/10.1016/j.fcr.2006.01.001
https://doi.org/10.3389/fpls.2022.992663
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jaramillo-Botero et al. 10.3389/fpls.2022.992663
Singh, N., Rai, V., and Singh, N. K. (2020). Multi-omics strategies and prospects
to enhance seed quality and nutritional traits in pigeonpea. Nucleus-India 63, 249–
256. doi: 10.1007/s13237-020-00341-0

Sun, J., Yang, J., Shi, S., Chen, B., Du, L., Gong, W., et al. (2017). Estimating rice
leaf nitrogen concentration: Influence of regression algorithms based on passive
and active leaf reflectance. Remote Sens. 9, 951. doi: 10.3390/rs9090951

SYL. (1999). “Fundamentals and applications of arbuscular mycorrhizae: A
biofertilizer perspective,” in In Soil Fertility, Biology, and Plant Nutrition
Interrelationships. Eds. J. O. Siqueira, et al. Vicosa: SBCS, Lavras: UFLA/DCS.
705–723.

Taddese, B., Upton, G. J. G., Bailey, G. R., Jordan, S. R. D., Abdulla, N. Y., Reeves,
P. J., et al. (2014). Do plants contain G protein-coupled receptors? Plant Physiol.
164, 287–307. doi: 10.1104/pp.113.228874

UN. (2019). World Population Prospects 2019. United Nations Department of
Economic Affairs, Population division. Available at: http://www.unpopulation.org

UNDP. (2012). Human Development Report: Rural Colombia, Reasons for Hope.
United Nations Development Programme. Available at: https://info.undp.org/docs/
pdc/Documents/CO L/00056950_2Anexo%20sobre%20proceso%20 de%20difusión%
20INDH%20- %20Informe%20a%20Embajada%20de%20Sue cia%20(2).pdf

Urano, D., Chen, J.-G., Botella, J. R., and Jones, A. M. (2013). Heterotrimeric G
protein signalling in the plant kingdom. Open Biol. 3, 120186–120186.
doi: 10.1098/rsob.120186

Vaidehi, N., Floriano, W. B., Trabanino, R., Hall, S. E., Freddolino, P., Choi, E. J.,
et al. (2002). Prediction of structure and function of g protein-coupled receptors.
Proc. Natl. Acad. Sci. 99, 12622–12627. doi: 10.1073/pnas.122357199

Viji, M. M., Thangaraj, M., and Jayapragasam, M. (1997). Low irradiance stress
tolerance in rice (Oryza sativa l.). Biol. Plantarum 39, 251–256. doi: 10.1023/
A:1000353206366

Wang, Q., Liu, Y., He, J., Zheng, X., Hu, J., Liu, Y., et al (2014). STV11 encodes a
sulphotransferase and confers durable resistance to rice stripe virus. Nature
Communications 5

Wang, L., Deng, F., and Ren, W.-J. (2015). Shading tolerance in rice is related to
better light harvesting and use efficiency and grain filling rate during grain filling
period. Field Crops Res. 180, 54–62. doi: 10.1016/j.fcr.2015.05.010

Wang, Q., Zeng, X., Song, Q., Sun, Y., Feng, Y., and Lai, Y. (2020). Identification
of key genes and modules in response to cadmium stress in different rice varieties
and stem nodes by weighted gene co-expression network analysis. Sci. Rep. 10,
2045–2322. doi: 10.1038/s41598-020-66132-4

Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., and
Dawe, D. (2010). Rice yields in tropical/subtropical asia exhibit large but opposing
sensitivities to minimum and maximum temperatures. Proc. Natl. Acad. Sci. 107,
14562–14567. doi: 10.1073/pnas.1001222107
Frontiers in Plant Science 20
Yadav, B., Kaur, V., Narayan, O. P., Yadav, S. K., Kumar, A., and Wankhede, D.
P. (2022). Integrated omics approaches for flax improvement under abiotic and
biotic stress: Current status and future prospects. Front. Plant Sci. 13. doi: 10.3389/
fpls.2022.931275

Yang, Y., Saand, M., Huang, L., Abdelaal, W., Zhang, J., Wu, Y., et al. (2021).
Applications of multi-omics technologies for crop improvement. Front. Plant Sci. 3.
doi: 10.3389/fpls.2021.563953

Yang, J., Xiong, W., Guang Yang, X., Cao, Y., and Zhi Feng, L. (2014).
Geographic variation of rice yield response to past climate change in china. J.
Integr. Agric. 13, 1586–1598. doi: 10.1016/S2095-3119(14)60803-0

Yao, Y., Tian, H., and Shi, H. (2020). Increased global nitrous oxide emissions
from streams and rivers in the Anthropocene. Nat. Clim. Chang. 10, 138–142.
doi: 10.1038/s41558-019-0665-8

Yue, J., Yang, G., Tian, Q., Feng, H., Xu, K., and Zhou, C. (2019). Estimate of
winter-wheat above-ground biomass based on uav ultrahigh-ground-resolution
image textures and vegetation indices. ISPRS J. Photogrammetry Remote Sens. 150,
226–244. doi: 10.1016/j.isprsjprs.2019.02.022

Yu, J., Pressoir, G., Briggs, W. H., Vroh Bi, I., Yamasaki, M., Doebley, J. F.,
et al. (2006). A unified mixed-model method for association mapping that
accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208. doi: 10.1038/
ng1702

Zander, M., Lewsey, M. G., Clark, N. M., Yin, L., Bartlett, A., Guzman, J. P. S.,
et al. (2020). Integrated multi-omics framework of the plant response to jasmonic
acid. Nat. Plants 6, 290+. doi: 10.1038/s41477-020-0605-7

Zhang, K., Ge, X., Shen, P., Li, W., Liu, X., Cao, Q., et al. (2019a). Predicting rice
grain yield based on dynamic changes in vegetation indexes during early to mid-
growth stages. Remote Sens. 11, 387. doi: 10.3390/rs11040387

Zhang, K., Liu, X., Tahir Ata-Ul-Karim, S., Lu, J., Krienke, B., Li, S., et al.
(2019b). Development of chlorophyll-meter-index-based dynamic models for
evaluation of high-yield japonica rice production in yangtze river reaches.
Agronomy 9, 106. doi: 10.3390/agronomy9020106

COPYRIGHT

© 2022 Jaramillo-Botero, Colorado, Quimbaya, Rebolledo, Lorieux,
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