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ABSTRACT
In this paper, we propose an approach to determine seven parameters of the Helmert transfor
mation by transforming the coordinates of a continuous GNSS network from the World Geodetic 
System 1984 (WGS84) to the International Terrestrial Reference Frame. This includes (1) convert
ing the coordinates of common points from the global coordinate system to the local coordinate 
system, (2) identifying and eliminating outliers by the Dikin estimator, and (3) estimating seven 
parameters of the Helmert transformation by least squares (LS) estimation with the “clean” data 
(i.e. outliers removed). Herein, the local coordinate system provides a platform to separate points’ 
horizontal and vertical components. Then, the Dikin estimator identifies and eliminates outliers in 
the horizontal or vertical component separately. It is significant because common points in 
a continuous GNSS network may contain outliers. The proposed approach is tested with the 
Géoazur GNSS network with the results showing that the Dikin estimator detects outliers at 6 out 
of 18 common points, among which three points are found with outliers in the vertical compo
nent only. Thus, instead of eliminating all coordinate components of these six common points, 
we only eliminate all coordinate components of three common points and only the vertical 
component of another three common points. Finally, the classical LS estimation is applied to 
“clean” data to estimate seven parameters of the Helmert transformation with a significant 
accuracy improvement. The Dikin estimator’s results are compared to those of other robust 
estimators of Huber and Theil-Sen, which shows that the Dikin estimator performs better. 
Furthermore, the weighted total least-squares estimation is implemented to assess the accuracy 
of the LS estimation with the same data. The inter-comparison of the seven estimated parameters 
and their standard deviations shows a small difference at a few per million levels (E-6).
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1. Introduction

Global Navigation Satellite System (GNSS) networks 
for monitoring the movement of the Earth’s crust have 
been actively developed in many countries or regions 
with seismic activities, such as Japan (Ito, Takahashi, 
and Ohzono 2019), Turkey (Uzel et al. 2013), China 
(Yao 2003), Australia (El-Mowafy and Bilbas 2016; 
Woodgate et al. 2017). In fact, GNSS networks are 
expanding in terms of spatial scale and data storage, 
which causes a big challenge for processing the posi
tion time series of GNSS stations with high accuracy. 
This raises the demand for developing robust algo
rithms for data processing. In GNSS data processing, 
an essential step is transforming coordinates of points 
from the World Geodetic System 1984 (WGS84) to the 
International Terrestrial Reference Frame (ITRF), 
which is an accurate and stable coordinate system in 
time (Rebischung et al. 2012), using the Helmert 
transformation (Ronen and Even-Tzur 2017). 
Generally, the ITRF network is updated in every 2–4  
years and is provided freely on http://itrf.ensg.ign.fr/.

The Helmert transformation parameters are estimated 
from common points with known coordinates in both 

WGS84 and ITRF systems. Over time, the coordinates of 
common points may occur jumps caused by poor signal, 
antenna replacement, or earthquakes (Ming et al. 2016). 
Also, they may consist of gross errors (a.k.a. outliers) 
caused by multipath effects, site-specific error, or abnor
mal satellite orbits (Nikolaidis 2002). When the coordi
nates of common points contain outliers, the estimation 
results of the Helmert transformation parameters may be 
incorrect (Yang 1999). Consequently, the calculated 
coordinates of other GNSS points are incorrect as well. 
Therefore, it is necessary to identify and eliminate com
mon points containing outliers before calculating 
Helmert transformation parameters. It allows reducing 
the uncertainty of GNSS stations in the ITRF as well as 
improving the accuracy of velocity fields of the contin
uous GNSS network.

Generally, to process a GNSS position time series, 
a classical method such as the least-squares (LS) estima
tion is often used to determine the Helmert transforma
tion parameters. As an example, Tran (2021) processed 
GNSS data and transformed the coordinates of points 
to the ITRF2000 by using the Bernese software (Dach 
and Walser 2015), which implemented the LS estimator 
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for calculating the parameters of the Helmert transfor
mation. In another example, the GIPSY/OASIS soft
ware applying the LS estimator to determine the 
Helmert transformation parameters was employed to 
calculate the coordinates of monitoring stations in the 
IGS08 system (Rebischung et al. 2012). In a study of 
transformation parameter determination, only the data 
that did not contain outliers were used to estimate the 
parameters of the Helmert transformation (Watson  
2006).

On the other hand, in studies of transforming the 
geodetic reference system by using robust estimations, 
a stable estimator was implemented to determine the 
Helmert transformation parameters based on common 
points, which consisted of high breakdown points (Yang  
1999). The estimation results were reasonable. However, 
Yang’s work focused on significantly high outliers, and 
the transformation equation was formed in the global 
three-dimensional (3D) coordinate system. Also, 
Janicka (2011) applied the M-estimation and 
Hausbrand’s correction to estimate the transformation 
parameters. The results showed that this technique was 
effective when the influence of outliers was removed 
before transformation calculation. Similarly, the 
M-estimation was implemented to determine parameters 
of coordinate transformation to eliminate the influence of 
outliers during data processing as in Janicka and Rapinski 
(2013) and Chang, Xu, and Wang (2018). In most of these 
studies, the Helmert transformation parameters, which 
had been estimated in the previous step using 
M-estimation, were immediately applied to transform 
the coordinates of other GNSS stations. It is not optimal 
because the errors in those estimations do not follow the 
normal distribution. Therefore, we propose an approach 
that consists of two steps to determine the Helmert 
transformation parameters from common points of con
tinuous GNSS networks. Initially, the Dikin estimator is 
used to detect and eliminate outliers. Then, the classical 
LS estimator is implemented to estimate the Helmert 
transformation parameters from the clean data, i.e. that 
does not include outliers. Also, to eliminate outliers inde
pendently in the horizontal and vertical components, 
both steps are performed in the local coordinate system.

The remainder of the study is organized as follows: 
Section 2 introduces the proposed flowchart for trans
forming coordinates of points from WGS84 to ITRF. 
Section 3 introduces the Helmert transformation calcu
lation in a 3D coordinate system and the challenge of its 
implementation in a continuous GNSS network. The 
implementation of the Helmert transformation in 
a local coordinate system is shown in Section 4. In 
Section 5, the Dikin method to detect and eliminate 
outliers is presented. The dataset, results, and discussions 
are described in Section 6. Finally, Section 7 is the 
conclusion.

2. Workflow

Figure 1 illustrates the steps used in transforming 
coordinates of points in a continuous GNSS network 
proposed in this study. In the first step, the GNSS data 
is processed by which coordinates of points are 
derived in WGS84. At the same time, common points 
are also provided in ITRF. The coordinates are then 
converted to the local coordinate system. As men
tioned above, this is to separate the coordinates into 
the horizontal (e; n) and vertical (u) components. The 
Dikin estimator is subsequently applied to common 
points to detect outliers. In this way, detected outliers 
are removed to form “clean” data, which is then used 
to estimate the Helmert transformation parameters by 
the LS estimation. Finally, the derived parameters are 
utilized to transform the coordinates of other points 
from WGS84 to ITRF. Details on these steps will be 
described in the following sections.

3. Challenge of applying the Helmert 
transformation to continuous GNSS 
observations

3.1. Helmert transformation

In geodesy, the Helmert transformation method is 
often used to transform the coordinates between two 
3D coordinate systems (Chen and Wang 2009; Deakin  
1998). In the Helmert transformation, two 3D coordi
nate systems are different in their origins, axes, and 
scale factor. These components are decomposed into 
seven parameters, including three translations of the 
coordinate origin along the axes (tx, ty, tz), three 
Euler rotation angles between three axes (rx, ry, rz), 
and the scale factor (1+k), as in Figure 2.

The Helmert transformation allows transforming 
the coordinates of points X1 Y1 Z1½ �

T in the 1st 

coordinate system to X2 Y2 Z2½ �
T in the 2nd coor

dinate system. When the Euler rotation angles are 
small, the Helmert transformation is interpreted fol
lowing the Bursa–Wolf’s equation (Mitsakaki, Agatza- 
Balodimou, and Papazissi 2006): 
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The seven parameters of the Helmert transformation 
model are determined based on common points with 
known coordinates in both systems. For a common 
point i, Equation (1) can be written as 
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Equation (2) can then be reformed as 
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In the form of error equation, Equation (3) can be 
written as 
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and can be reformed as 
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Figure 1. Proposed flowchart for transforming coordinates of points from WGS84 to ITRF.

Figure 2. Helmert transformation between two 3D coordinate 
systems.
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Rewrite Equation (5) in the matrix form as follows: 

li ¼ aiXþ vi (6) 

where 
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The weight matrix, pi, is calculated from the variance- 
covariance matrix, Ci

1;C
i
2 of the point i in the first and 

second coordinate systems and given as 

pi ¼ Ci
1 þ Ci

2
� �� 1 (7) 

Then, each common point is used to form three observa
tion equations of the form in Equation (5). To determine 
seven parameters in Equation (5), at least three common 
points are needed, and the system of observation equa
tions for n common points (n ≥ 3) is written as: 
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If the coordinates of common points contain acciden
tal errors only (i.e. those remaining after removing 
possible mistakes and systematic errors), Equation 
(8) is solved by the LS estimation. 

X3n

i¼1
pivivi ¼ min (9) 

Finally, the Helmert transformation parameters in 
Equation (8) can be determined as: 

X ¼ ~ATP ~A
� �� 1

~ATP ~L
� �

(10) 

Based on the Helmert transformation parameters, the 
coordinates of other points can be transformed into 
the 2nd coordinate system by using Equation (1).

3.2. Challenge of coordinate transformation in 
a continuous GNSS network

As mentioned above, common points used in the 
transformation of the coordinates of continuous 
GNSS stations from WGS84 to the ITRF may include 
abnormal values, i.e. jumps (offsets) or outliers. The 
offsets are typically caused by ground subsidence, 
earthquakes, or GNSS antenna replacement (Ming 
et al. 2016). The outliers are often caused by weather 
noise or the failure of the algorithm used in GNSS data 
processing (Nikolaidis 2002). The coordinates of com
mon points are used to estimate 7 parameters of the 
Helmert transformation based on the LS estimation. If 
outliers appear in these points, the transformation 

results will be incorrect. Therefore, it is necessary to 
identify and remove common points containing out
liers before estimating the Helmert transformation 
parameters.

On the other hand, the number of common points 
in continuous GNSS networks is usually limited, and 
thus if many common points with outliers are detected 
and eliminated then the minimum requirement of the 
number of common points used to solve Equations (8) 
may not be met. Consequently, the aim of transform
ing the coordinates of continuous GNSS networks 
cannot complete. To meet the demand for solving 
Equation (8) based on the LS estimation, it will be 
conducted in a local coordinate system, which allows 
separating the horizontal and vertical components. In 
this way, only the component that contains outliers is 
removed before estimating the 7 parameters of the 
Helmert transformation.

4. Helmert transformation in a local 
coordinate system

On the global scale, the velocity field of GNSS stations 
is continuously calculated according to the coordinate 
components of X, Y, and Z. Locally, it is described and 
determined in the directions of North-South, East- 
West, and upward-downward, which can be repre
sented in the coordinate components of e, n, and 
u (Cox and Hart 2009). Thus, to calculate the velocity 
field of continuous GNSS stations in a local coordinate 
system, the coordinates of those points, which were 
previously transformed into ITRF, shall be converted 
to the local coordinates (n; e; u) as in Figure 3.

The local coordinates ei ni ui
� �T and the 3D 

coordinates Xi Yi Zi
� �T of a point ith in ITRF 

can be transformed to each other by (Tran 2013): 

Figure 3. Global coordinate system and the local coordinate 
system.

4 D. T. TRAN ET AL.



ei

ni

ui

2

4

3

5 ¼ R
Xi � X0
Yi � Y0
Zi � Z0

2

4

3

5 (11) 

Xi

Yi

Zi

2

4

3

5 ¼ R� 1
ei

ni

ui

2

4

3

5þ

X0
Y0
Z0

2

4

3

5 (12) 

The variance-covariance matrix is transformed as 

Cenu ¼ RCxyzRT (13) 

where the rotation matrix is represented by 
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and X0 Y0 Z0½ �
T and φ0; λ0

� �
are the global 3D 

coordinates and the latitude, longitude of the central 
point of the GNSS network. The differences of the 
coordinates of the common point ith between the 
first andsecond coordinate systems are determined as 
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or reform Equation (16): 

li
enu ¼ Rli (18) 
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Using Equation (17), we can rewrite Equation (6) in 
the local coordinate system as 

li
enu ¼ ai

enuX þ vi
enu (19) 

where ai
enu ¼ Rai.

In this study, we propose to use Equation (18) that 
replaces Equation (6) in estimating the Helmert trans
formation parameters. Indeed, Equation (18) is writ
ten in the local coordinate system that allows 
separating the coordinate components into the hori
zontal (e, n) and vertical (u) as mentioned above. In 

this way, we can remove the equation of vertical com
ponents if only that part contains outliers, while the 
equations of horizontal components remain. If the 
outliers exist in either of the horizontal components, 
all three coordinate components of that point must be 
eliminated. It is useful when the number of the com
mon points is small but outliers only exist in the 
vertical component. This is a normal phenomenon in 
continuous GNSS networks due to the antenna 
change.

5. Dikin estimator

Generally, to determine model or regression para
meters when the number of measurements is larger 
than the number of variables, the classical LS estima
tion is implemented. However, the LS estimation can
not help eliminate the influence of outliers, which may 
appear in the observations. Therefore, statistical meth
ods and robust estimations are implemented to iden
tify outliers. To detect outliers from the GNSS position 
time series, statistical methods such as the Student test 
or the Fisher–Snedeker test are usually used, but they 
are reported not suitable for processing big data as well 
as have difficulty in identifying common points that 
contain outliers. Additionally, these statistical tests are 
only helpful when the number of measurements that 
consist of outliers is small. The Detection, 
Identification, and Adaptation (DIA) method, which 
combines estimation and testing, was proposed for 
detection, identification, and adaptation of model mis
specifications (Kok 1984; Teunissen 2018). This 
method overcomes the disadvantages of the statistical 
methods. However, for eliminating outliers’ effects in 
the coordinates of common points in a continuous 
GNSS network, it is not optimal. In contrast, to elim
inate outliers in a linear equation system, it is better to 
apply robust estimations (Janicka 2011; Yang 1999). 
This technique allows isolating outliers, adjusting 
data, and providing the results without the influence 
of outliers. In geodetic or GNSS applications, those 
robust estimations could be M-estimations (Chang, 
Xu, and Wang 2018; Janicka and Rapinski 2013), 
such as the Huber estimation (Huber 1992), the Theil- 
Sen estimation (Wang et al. 2009; Wilcox and Clark  
2014).

Figure 4 shows an example of estimation results of 
the LS and robust estimations. It indicates that the 
fitting line of the LS estimation might not be sensitive 
to outliers, while the straight-line fitting of robust 
estimation methods represents the accurate determi
nation of the central path position. This demonstrates 
the capability of robust estimation methods for iden
tifying and isolating outliers in measurement data. In 
this study, we apply a robust estimation, which is 
called the Dikin estimator. This estimator follows the 
L1 norm and can simplify the calculation. As a result, 
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the computation can be four times faster than the 
classical simplex method (Khodabandeh and Amiri- 
Simkooei 2011).According to Khodabandeh and 
Amiri-Simkooei (2011), the robust estimators are 
implemented based on the L1 norm following the 
condition:

Xn

i¼1
pi vij j ¼ min (20) 

Herein, we will summarize the main steps of the Dikin 
adjustment method, which was introduced in 
Khodabandeh and Amiri-Simkooei (2011).

Standardize the error equations. As the initial 
assumption, there are m independent measurements 
and n unknowns in Equation (8). This equation is 
normalized by dividing by its standard deviation as: 

V ¼ P� 1 ~V; L ¼ P� 1~L; A ¼ P� 1 ~A (21) 

Equation (8) becomes: 

L ¼ AX þ V; P ¼ 1 (22) 

Optimize Equation (21) with the absolute minimum 
conditions. The residual vi in Equation (21) is decom
posed into two positive natural numbers ui; andwi. 
Therefore, if the error vector V is decomposed into 
the vector form of two positive vectors u and w, we 
have: 

V ¼ u � w (23) 

Similarly, the variable vector X is analyzed into two 
component vectors λ; γ: 

X ¼ λ � γ (24) 

If we denote x ¼ λ γ u w½ �
T, B ¼ A � A½

E � E �T, and f ¼ OT OT CT CT
� �T, with E 

being the unit matrix of the m×n size, O being the 
zero vector of size n, and C being the unit vector 
of size m then Equation (21) becomes: 

BTx ¼ L (25) 

and the condition in Equation (19) becomes: 

f Tx ¼ min (26) 

Solve the linear programming problems (24) and (25). 
Equation (24) is solved by using the iteration techni
que based on the central path, which allows pushing 
the iteration process of the interior point algorithms. 
Based on this theory, the solution x tð Þ is always at the 
center of interpolation regions, which can be achieved 
by applying the following scaling transformation: 

x¼D� 1x; B ¼ D� 1B; f
¼

D� 1f (27) 

where D is the diagonal matrix of vector x in the 
previous iteration. The matrix D is given as: 

D ¼
x tð Þ

1 . . . 0
. . . . . . . . .

0 . . . x tð Þ
mþn

2

4

3

5 (28) 

Then, the solution x of the t þ 1ð Þ
th iteration is calcu

lated by 

�x
tþ1ð Þ

¼ �x
tð Þ
þ αd (29) 

where d is the directional vector, which can be calcu
lated by 

d ¼ � P?B f (30) 

here 

P?B ¼ E � B BTB
� �� 1BT (31) 

α is chosen as 

α ¼
0:9

� min dð Þ
(32) 

The iteration process in Equation (28) is performed 
until the solutions of Equation (24) at two successive 
iteration steps are less than a threshold, usually chosen 
as 10−6. Then, the residual vector v is determined and 
used to identify outliers (Tran 2013). 

vi
n
�
�
�
�> 3�median vnj jð Þ

vi
e
�
�
�
�> 3�median vej jð Þ

vi
u
�
�
�
�> 3�median vuj jð Þ

(33) 

The coordinates of points consisting of outliers are elimi
nated before estimating the Helmert transformation 
parameters using the LS estimation. Also, the rows and 
columns of the variance-covariance matrix in Equation 
(13) corresponding to eliminated coordinate components 
are removed. Then, a new variance-covariance matrix 
used to determine the weight matrix of “clean” data is 
established. As mentioned above, to retain as many 
observations as possible in the determination of transfor
mation parameters, only the observation equation of the 
u component of a point is removed if an outlier is found 
in the vertical component of that point, while other 
components are retained in the next step. On the other 

Figure 4. Example of LS and robust estimation (Press et al.  
1992).
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hand, if at least one of the horizontal components consists 
of outliers, all three components are removed. The elim
ination of only the vertical component allows a large 
number of clean observations to be retained, and thus 
the accuracy of the Helmert transformation parameters is 
guaranteed.

6 Data, results, and discussion

6.1. Géoazur GNSS network

The proposed approach is tested with the determina
tion of the seven parameters of the Helmert transfor
mation of two continuous GNSS networks; REseau 
NAtional GNSS permanent (RENAG) (http://renag. 
unice.fr/) and Réseau GNSS permanent (RGP) 
(https://rgp.ign.fr/) were developed from 1997 for 
scientific research and Earth observation in internal 
and external geophysics and geodesy. These data were 
collected and processed by the Geoazur laboratory 
(https://geoazur.oca.eu/fr/acc-geoazur). In this study, 
they are termed the Géoazur GNSS network for short.

The locations of common points that are used to 
calculate the Helmert transformation parameters for the 
Géoazur GNSS network are shown in Figure 5. The 
common points are located in the area covering most of 
the European continent. They are used for multi- 

purposes such as monitoring the displacement of plate 
tectonics, repositioning the local ellipsoid based on ITRF, 
satellite orbit adjustment. The precision of the observa
tions is mentioned in Gordon and Stein (1992), Bock 
et al. (1993), Haasdyk et al. (2014) and the field velocity 
uncertainties are described in Perez, Monico, and Chaves 
(2003), Bock, Prawirodirdjo, and Melbourne (2004), 
Vernant et al. (2014), Ming et al. (2016). In this study, 
the coordinates of 18 common points in the network at 
the 1998.0055 epoch are used. The coordinates in the 
WGS84 system are derived using the GAMIT/Glock soft
ware, while the ITRF coordinates are in IGS12P33.snx 
(https://cddis.nasa.gov/archive/gnss/products/1701/) 
that were also transformed to the 1998.0055 epoch which 
has taken the associated discontinuities file (https://itrf. 
ign.fr/ITRF_solutions/2008/doc/Discontinuities-IGS 
-I08.snx). The coordinates of 18 common points in the 
WGS84 and the ITRF systems are listed in Table 1.

6.2. Results and discussion

The system of equations of common points is formed 
and calculated in the local coordinate system. To 
assess the effect of outliers on the estimated results of 
the LS and Dikin estimations, the coordinates of the 18 
common points are used to estimate the Helmert 

Figure 5. The common points of the Géoazur GNSS network.
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transformation parameters. The LS estimator is 
applied first with the weights computed from the 
standard deviations of coordinate components. The 
residuals of common points computed by the LS 

estimator are shown in Table 2, in which the mean 
horizontal (2D), vertical (up), and 3D residuals are 3.6, 
8.0, and 8.8 mm, respectively, while the maximum 
values of the horizontal and 3D uncertainties are 

Table 1. Coordinates of 18 common points in WGS84 and ITRF at the 1998.0055 epoch.

No Site

WGS84 at the 1998.0055 epoch ITRF at the 1998.0055 epoch

X/std. (m) Y/std. (m) Z/std (m) X/std. (m) Y/std. (m) Z/std (m)

1 BOGO 3633739.0586 1397433.9842 5035353.3619 3633739.1002 1397434.0237 5035353.4151
0.0577 0.0285 0.0541 0.0010 0.0007 0.0011

2 BRUS 4027893.7955 307045.6622 4919474.9939 4027893.8330 307045.7067 4919475.0480
0.0573 0.0291 0.0547 0.0006 0.0005 0.0006

3 CAGL 4893378.8643 772649.6031 4004182.0082 4893378.9127 772649.6444 4004182.0786
0.0555 0.0288 0.0566 0.0007 0.0005 0.0006

4 EBRE 4833520.1999 41536.9279 4147461.4073 4833520.2284 41536.9640 4147461.4650
0.0556 0.0295 0.0563 0.0006 0.0005 0.0006

5 GRAS 4581690.9544 556114.6577 4389360.6542 4581690.9914 556114.6990 4389360.7107
0.0560 0.0289 0.0558 0.0005 0.0005 0.0005

6 GRAZ 4194423.8927 1162702.5265 4647245.2804 4194423.9353 1162702.5660 4647245.3399
0.0569 0.0286 0.0554 0.0006 0.0005 0.0006

7 JOZE 3664940.2462 1409153.7170 5009571.2743 3664940.2866 1409153.7554 5009571.3250
0.0576 0.0285 0.0541 0.0005 0.0005 0.0005

8 KOSG 3899225.1893 396731.7815 5015078.3114 3899225.2275 396731.8256 5015078.3659
0.0577 0.0290 0.0546 0.0005 0.0005 0.0005

9 MATE 4641949.6400 1393045.2510 4133287.3015 4641949.6814 1393045.2883 4133287.3617
0.0552 0.0283 0.0557 0.0011 0.0007 0.0010

10 MEDI 4461400.8353 919593.3931 4449504.6311 4461400.8676 919593.4424 4449504.6934
0.0563 0.0287 0.0557 0.0008 0.0005 0.0008

11 ONSA 3370658.6033 711876.9929 5349786.8391 3370658.6441 711877.0373 5349786.8892
0.0587 0.0287 0.0535 0.0006 0.0005 0.0008

12 POTS 3800689.7107 882077.2331 5028791.2077 3800689.7446 882077.2733 5028791.2542
0.0576 0.0287 0.0542 0.0004 0.0004 0.0005

13 SFER 5105519.0384 −555146.0322 3769803.2297 5105519.0543 −555145.9878 3769803.2751
0.0779 0.0315 0.0700 0.0034 0.0024 0.0029

14 TORI 4472544.3947 601634.1739 4492545.0614 4472544.4356 601634.2137 4492545.1218
0.0564 0.0289 0.0557 0.0034 0.0023 0.0031

15 VILL 4849833.7270 −335049.2087 4116014.7910 4849833.7689 −335049.1640 4116014.8564
0.0536 0.0298 0.0550 0.0006 0.0005 0.0006

16 WSRT 3828735.9210 443304.7983 5064884.5841 3828735.9679 443304.8443 5064884.6461
0.0579 0.0290 0.0545 0.0004 0.0004 0.0004

17 WTZR 4075580.6247 931853.6359 4801568.0145 4075580.6638 931853.6764 4801568.0668
0.0572 0.0287 0.0550 0.0004 0.0004 0.0005

18 ZIMM 4331297.1146 567555.7081 4633133.7937 4331297.1557 567555.7498 4633133.8528
0.0569 0.0290 0.0556 0.0008 0.0005 0.0008

Table 2. Residuals of common points estimated by the LS estimation with “noisy data”.
Site Residual e (mm) Residual n (mm) Residual u (mm) 2D (mm) 3D (mm)

BOGO −1.0 0.3 −2.4 1.1 2.7
BRUS 0.8 −0.5 0.4 1.0 1.1
CAGL 0.1 −1.4 13.4 1.4 13.4
EBRE −5.5 4.3 −5.9 7.0 9.2
GRAS 0.2 −1.1 −1.9 1.1 2.2
GRAZ −0.7 0.3 2.3 0.7 2.4
JOZE −1.8 −0.6 −5.4 1.9 5.7
KOSG 0.3 0.1 1.3 0.3 1.3
MATE −0.6 −0.5 −1.5 0.8 1.7
MEDI 10.1 6.7 −1.2 12.1 12.1
ONSA 0.2 −1.3 −0.3 1.3 1.3
POTS −1.0 −0.5 −10.1 1.1 10.2
SFER 2.2 1.6 −21.7 2.7 21.9
TORI −1.9 −0.4 3.7 2.0 4.2
VILL −0.7 −1.8 11.0 2.0 11.2
WSRT 1.0 −0.8 12.8 1.3 12.8
WTZR −0.5 −1.9 −3.5 1.9 4.0
ZIMM −0.6 −0.8 4.0 1.0 4.1

Mean residuals: 2D: 3.6 mm; 3D: 8.8 mm 
Mean residuals: East: 2.9 mm; North: 2.1 mm; Up: 8.0 mm 
Max 2D residual: 12.1 mm at MEDI; Min 2D residual: 0.3 mm at KOSG 
Max 3D residual: 21.9 mm at SFER; Min 3D residual: 1.1 mm at BRUS
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12.1 mm at the MEDI station and 21.9 mm at the 
SFER station, respectively. Except for the east residual 
at MEDI, most residuals are lower than two standard 
deviations at the 95% of confidence level.

The Dikin estimator is then applied to detect and 
eliminate outliers from the “noisy” data, with the 
residuals of the coordinates of common points 
shown in Table 3. From the table, the median residuals 
of the east, north, and up components are 0.65, 0.75, 
and 3.05 mm, respectively, and the maximum resi
duals are 10.3, 6.7, and 27.6 mm for the east, north, 
and up uncertainties, respectively. By implementing 
the condition in Equation (27) with the threshold in 
Equation (32), 6 common points containing outliers 
are identified and noted in the last column of Table 3. 
Specifically, 10 out of 54 coordinate components 
(approximately 18.5%) are identified as outliers by 
the Dikin method, in which 3 out of 6 common points 
have detected outliers in the vertical component.

As shown in Table 3, the outliers are identified in 
the CAGL, EBRE, MEDI, POST, SFER, and WSRT 
stations, in which the outliers in the horizontal com
ponents are found at EBRE, MEDI, and SFER. 
Therefore, all coordinate components of these points 
are eliminated in the following step. Meanwhile, the 
outliers in the vertical component only (u) are found 
at CAGL, POTS, and WSRT, and thus the horizontal 
(n and e) components of these points are retained, i.e. 
only the u components are removed in the next step. 
Totally, 12 coordinates (approximately 22.2%) are 
removed before implementing the LS estimator. As 
a result, 42 coordinates from 15 common points that 
do not contain outliers (i.e. “clean” data) are used to 
estimate 7 parameters of the Helmert transformation 
by using the LS estimation. This is the core in the 
proposed approach in this study to estimate the 
Helmert transformation parameters with high accu
racy, in which the Dikin and LS estimators are 

combined into a flowchart as shown in Figure 1. The 
residuals of the estimated results are shown in Table 4 
and the estimated parameters are shown in the 2nd 

column of Table 5.
In Table 4, the mean values of the horizontal and 

vertical uncertainties derived from the LS estimator 
with “clean” data are 1.1 mm and 2.4 mm. The max
imum residuals in the horizontal components are less 
than 2 mm, while that of the vertical component is 5  
mm. This indicates a significant improvement in accu
racy compared to the results in Table 2. Furthermore, 
compared with the accuracy shown in other studies by 
Bock et al. (1993), Perez, Monico, and Chaves (2003), 
Bock, Prawirodirdjo, and Melbourne (2004), El- 
Mowafy and Bilbas (2016) and Ronen and Even-Tzur 
(2017), the results in Table 4 and in the 2nd column in 
Table 5 are of higher confidence. It shows the effi
ciency of the proposed approach in improving the 
precision of the Helmert transformation parameters.

To demonstrate the robustness of the Dikin estima
tor in eliminating outliers, we use the estimated results 
by the LS estimator with “clean” data as the reference 
results. They are subsequently compared with those 
computed from the Huber estimator (Huber 1992) 
and Theil Sen estimator (Wang et al. 2009; Wilcox 
and Clark 2014) with all coordinates of 18 common 
points (“noisy” data). The estimated results of 3 robust 
estimators are shown in Table 5 together with the 
differences in seven parameters between the three 
robust estimators and those of the reference results.

The Tx, Ty, and Tz comparisons in Table 5 show 
that the largest difference between the reference 
results and the Dikin estimator’s results is only 1.2  
cm, while 2.9 cm and 3.1 cm are found from the 
differences between Huber and Theil-Sen estimators 
with the reference values. In contrast, the compar
ison of Rx, Ry and Rz shows that the results from the 
Dikin estimator are slightly worse than those of the 

Table 3. Residuals of common points estimated from the Dikin estimator with “noisy” data.
Site Residual e (mm) Residual n (mm) Residual u (mm) 2D (mm) 3D (mm) Outlier

BOGO 0.0 0.9 0.0 0.9 0.9
BRUS 0.9 0.1 −1.3 0.9 1.6
CAGL 0.3 −1.7 12.5 1.7 12.6 u
EBRE –5.8 4.3 –9.4 7.2 11.8 e, n, u
GRAS 0.1 −1.0 −3.2 1.0 3.4
GRAZ −0.2 0.5 3.4 0.5 3.4
JOZE −0.7 0.0 −3.0 0.7 3.1
KOSG 0.5 0.8 0.0 1.0 1.0
MATE 0.1 −0.7 0.0 0.7 0.7
MEDI 10.3 6.7 −1.2 12.3 12.4 e, n
ONSA 1.0 −0.2 −0.1 1.0 1.1
POTS −0.4 0.1 –9.6 0.4 9.6 u
SFER 2.0 1.6 –27.6 2.6 27.7 e, u
TORI −1.9 −0.2 2.6 1.9 3.3
VILL −1.0 −1.7 6.2 2.0 6.6
WSRT 1.2 0.0 11.7 1.2 11.8 u
WTZR −0.1 −1.4 −3.1 1.5 3.4
ZIMM −0.6 −0.5 2.9 0.7 3.0

Median of absolute east residual: 0.65 mm; max: 10.3 mm at MEDI 
Median of absolute north residual: 0.75 mm; max: 6.7 mm at MEDI 
Median of absolute up residual: 3.05 mm; max: 27.6 mm at SFER
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Huber method, but are much better than the Theil- 
Sen estimator. Furthermore, the difference of the 
estimated k between the LS estimation and the 
Dikin method is only 0.4 ppb, which is approxi
mately half of the differences between Huber’s and 
Theil-Sen’s results and the reference results. Overall, 
the 7 parameters estimated by the Dikin estimator 
are the closest to the reference results. This demon
strates the efficiency of the Dikin method in elimi
nating outliers and providing better results compared 
to the Huber and Theil-Sen methods.

To verify the 7 Helmert transformation parameters 
estimated by the LS estimation (the 2nd column in 
Table 5), the weighted total least squares (WTLS) 
method (Amiri-Simkooei and Jazaeri 2012; Jazaeri, 
Amiri-Simkooei, and Sharifi 2014) is also implemen
ted. This estimator was developed based on the LS 
theory with weighted matrices calculated from the 
variance-covariance matrix of measurements and the 
variance-covariance matrix of the design matrix. The 
estimated parameters and the associated standard 
deviations of the errors from the LS and WTLS 

Table 4. Residuals of common points estimated by the LS estimation with “clean” data.
Site Residual in e (mm) Residual in n (mm) Residual in u (mm) 2D (mm) 3D (mm)

BOGO −0.2 1.2 1.8 1.2 2.2
BRUS 1.0 0.3 −2.2 1.0 2.4
CAGL 0.6 −0.9 — 1.1 —
EBRE — — — — —
GRAS 0.3 −0.5 −4.9 0.6 4.9
GRAZ −0.3 0.9 3.6 1.0 3.8
JOZE −1.0 0.3 −1.2 1.0 1.6
KOSG 0.6 0.9 −0.5 1.1 1.2
MATE 0.1 0.0 −0.4 0.1 0.4
MEDI — — — — —
ONSA 1.0 −0.2 1.1 1.0 1.5
POTS −0.5 0.3 — 0.6 —
SFER — — — — —
TORI −1.8 0.2 1.3 1.8 2.3
VILL −0.2 −1.1 2.4 1.2 2.7
WSRT 1.3 0.0 — 1.3 —
WTZR −0.2 −1.2 −2.9 1.2 3.2
ZIMM −0.5 −0.2 1.9 0.5 2.0

Mean residuals: 2D: 1.1 mm; 3D: 2.6 mm 
Mean residuals: East: 0.8 mm; North: 0.7 mm; Up: 2.4 mm 
Max 2D residual: 1.8 mm at TORI; Min 2D residual: 0.1 mm at MATE 
Max 3D residual: 4.9 mm at GRAS; Min 3D residual: 0.4 mm at MATE

Table 5. Comparison of estimated Helmert transformation parameters by the least square estimation and robust estimators (ppb 
stands for part per billion and mas stands for milliarcsecond).

Transformation 
parameters

Least square estimation 
with “clean” data

Dikin estimator with 
“noisy” data

Huber estimator with 
“noisy” data

Theil Sen estimator with 
“noisy” data

Difference of estimated 
parameters

LS - 
Dikin

LS - 
Huber

LS - 
Theil 
Sen

Tx (cm) 8.3 7.5 7.9 7.0 0.7 0.4 1.3
Ty (cm) 4.1 5.3 6.3 7.2 −1.2 −2.2 −3.1
Tz (cm) 5.6 6.3 8.4 3.8 −0.7 −2.9 1.7
k (ppb) −4.3 −4.7 −5.0 −3.5 0.4 0.7 −0.8
Rx (mas) −0.3 0.0 −0.1 0.3 −0.3 −0.2 −.6
Ry (mas) −1.1 −0.8 −1.1 −.8 −0.3 0.0 −0.3
Rz (mas) −0.2 −0.4 −0.5 −1.2 0.3 0.3 1.0

Table 6. Comparison between estimated Helmert transformation parameters of classical LS and WTLS estimation.

Helmert transformation parameters

Classical LS estimation with “clean” data WTLS estimation with “clean” data Difference

Estimated Std. error Estimated Std. error
Estimated 

(1E–6)
Std. error 

(1E–6)

Tx (cm) 8.26920898 0.45147637 8.26920956 0.45147620 −0.58 0.17
Ty (cm) 4.06669209 0.61247237 4.06669296 0.61247236 −0.87 0.01
Tz (cm) 5.57864163 0.45204974 5.57864084 0.45204955 0.79 0.19
k (ppb) −4.33263704 0.48295561 −4.33263687 0.48295556 −0.17 0.05
Rx (mas) −0.32965777 0.16412977 −0.32965752 0.16412976 −0.26 0.01
Ry (mas) −1.10066734 0.18140474 −1.10066765 0.18140465 0.31 0.09
Rz (mas) −0.17349495 0.14718731 −0.17349509 0.14718731 0.14 0.00
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methods with “clean” data are shown in Table 6. It 
indicates that the difference between the two results is 
only a few ppm in both estimated values and their 
standard deviations. Therefore, it can be confidently 
concluded that the results estimated by the LS estima
tion are reliable when the observations contain only 
random noise.

The residuals of common points computed by the 
LS estimation with “clean” data are the same as those 
by the WTLS estimation. Therefore, the statistics of 
coordinate residuals estimated from the WTLS esti
mation is not shown.

6.3. Discussion

Here, the results retrieved from the LS estimation are 
discussed. Using a p-value lower than 0.05, a threshold 
of two 3D standard deviations is chosen. From Table 2, 
only the 3D residual at the SFER station is over the 
threshold, indicating 5.6% of common points having 
significant errors. This means that the results from the 
LS estimator with original data are still reasonable. From 
Table 2, the mean residuals in the east, north, and up 
components are 2.9, 2.1, and 8.0 mm, respectively, and 
the mean 3D residual is 8.8 mm. This bias estimation 
might not meet the requirement of the common point 
quality as mentioned in El-Mowafy and Bilbas (2016) and 
Ronen and Even-Tzur (2017). To verify the necessity of 
outlier elimination, the residuals of common points from 
the LS estimator are compared with those from the Dikin 
estimator (see Table 3).

The Dikin estimator has been implemented with the 
coordinates of 18 common points in the Géoazur GNSS 
network. Regarding the condition in Equation (27) and 
the threshold in Equation (32), 10 outliers have been 
detected from 54 measurements, indicating approxi
mately 18.5% of the original data of common points 
containing outliers. Based on the above point of view of 
outlier removal, we have removed 12 coordinates from 6 
common points (see Table 4), i.e. approximately 22.2% of 
the original data. This number of outliers is quite large 
compared to the normal condition. Previously, the effi
ciency of the Dikin estimation was demonstrated in the 
works by Khodabandeh and Amiri-Simkooei (2011) and 
Zaman and Alakus (2015). The tests consisting of 12.5% 
and 27.0% outliers in observations were implemented 
and all added outliers were identified following 
Khodabandeh and Amiri-Simkooei (2011).

Using the results of the Dikin estimator, outliers 
have been found in the horizontal coordinates at 
EBRE, MEDI, and SFER, and in the vertical compo
nent at CAGL, POST, and WSRT (see Table 3). 
However, only one common point has residual values 
higher than two mean 3D residuals from the LS esti
mation. Thus, this estimation method can only be 
applied to the data with random noise only following 
the Gaussian distribution. If outliers exist in the 

measurements, this method will distribute them to 
nearby stations in the adjustment calculation instead 
of eliminating them. In Table 2, the residuals in the 
e and n components at EBRE and MEDI stations are 
greater than other residuals. However, the 3D residual 
is slightly higher than the mean 3D residual. 
Furthermore, the residual in the e component at 
SFER is lower than the mean 2D residual. Still, an 
outlier has been found to exist in the east component 
of this common point using the Dikin estimator. 
A similar situation has been found at the 
u components of CAGL and WSRT, where their resi
duals are lower than two times mean vertical residuals, 
but outliers are existent. In contrast, the residual in the 
u component of WILL is much bigger than the mean 
residual, and this may be due to the influence of out
liers at EBRE. The fact is that no outlier has been 
identified at of WILL (Table 4).

The residuals of coordinate components containing 
outliers in Dikin estimation results are greater than 
those of the LS estimation. Similar results from the 
work by Khodabandeh and Amiri-Simkooei (2011) 
have been presented. It pointed out that those outliers 
have been successfully isolated by the Dikin estimator, 
which means that this robust estimator isolated the 
coordinates consisting of outliers to minimize the out
liers’ effect on the estimation results of Helmert trans
formation parameters. In addition, two existing robust 
estimators, namely Huber and Theil-Sen estimators, 
have been implemented to assess the performance of 
the Dikin method. The comparison results of the 
Helmert transformation parameters in Table 5 show 
that the Dikin method outperforms the others. 
However, after identifying and eliminating the coordi
nates containing outliers, it is necessary to re-estimate 
the Helmert transformation parameters by the LS esti
mation with “clean” data. The final residual results of 
coordinate measurements and the estimated Helmert 
transformation parameters have been shown in Table 4 
and in the 2nd column of Table 5. The results in Table 4 
show that the LS estimation provides more reliable 
results with a mean 2D residual of 1.1 mm and 
a mean vertical residual of 2.4 mm, which is more 
reasonable compared to the estimation bias in El- 
Mowafy and Bilbas (2016) and Bock, Prawirodirdjo, 
and Melbourne (2004). In addition, the minimum and 
maximum 3D residuals are found to be 0.4 mm and 4.9  
mm at the MATE and GRAS stations, respectively.

To prove the rigorousness of the proposed approach, 
the estimated Helmert transformation parameters have 
been compared with those of the LS estimation. As shown 
in Table 5, there is a significant difference in the Helmert 
transformation parameters between the two estimation 
results. Also, the uncertainty of the estimated results has 
significantly been improved compared to the bias from 
the LS estimation only. This improvement is mainly 
contributed by two critical factors: the change in the 
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number of coordinate measurements and the vector 
value of observables. It has also indicated that eliminating 
outliers in previous steps is genuinely correct, even when 
the number of observations was reduced by approxi
mately 22.2%. Furthermore, the WTLS method has also 
been implemented to verify the performance of the clas
sical LS estimator. The comparison results in the two last 
columns in Table 6 have indicated that the estimation 
results from the two methods with “clean” data are simi
lar. Finally, the latest estimated results of Helmert trans
formation parameters are reliable that are only affected by 
accidental errors.

7. Conclusions

This paper has proposed an approach to estimate 
seven parameters of the Helmert coordinate trans
formation to transform coordinates of continuous 
GNSS networks from WGS84 to ITRF. The 
approach is implemented in a local coordinate 
system applying the Dikin estimator to eliminate 
outliers and the LS estimator to estimate para
meters. The proposed approach has been tested 
with the Géoazur GNSS network with the main 
findings being:

The computation of a GNSS coordinate time series 
in an accurate and stable reference frame is an essen
tial step in processing data of continuous GNSS net
works as well as determining the Earth’s crust 
displacement. To meet the accuracy requirement of 
the transformed GNSS coordinates, it is necessary to 
estimate the Helmert transformation parameters with 
uncertainties as low as possible. The estimation should 
be implemented in a local coordinate system, which 
allows separating the horizontal and vertical compo
nents. In this way, it is efficient to identify if outliers 
only exist in the vertical component by which the 
horizontal components that do not consist of outliers 
are retained. It helps to maintain a high number of 
measurements to be used in Helmert transformation 
parameter estimation.

The Dikin estimator can identify and isolate outliers 
that exist in the coordinates of common points. Also, 
compared to the reference results, the Dikin estimator 
performed better than the Huber and Theil-Sen estima
tors. However, the Helmert transformation parameters 
determined from the Dikin estimator should not be used 
to transform the coordinates of other GNSS stations 
because this estimation does not distribute errors follow
ing the normal distribution. Therefore, the combination 
of two estimations could be more beneficial for data 
processing. In this approach, the Dikin estimator is used 
to detect and eliminate the measurements containing 
outliers; then, the LS estimation is adopted to estimate 
the optimal Helmert transformation parameters.

The estimation results indicated that the uncertain
ties of the Helmert transformation parameters were 
significantly improved compared to the results esti
mated using the classical least square estimation. It 
proved that the outliers detected by the Dikin estima
tion are reliable. Finally, the calculation results indicated 
the advantage of the proposed approach to determine 
the Helmert transformation parameters and process the 
data of continuous GNSS networks, which are used in 
studies related to tectonic plate movement monitoring 
or large-scale subsidence monitoring.
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