
Citation: Hammami, H.; Carreau, J.;

Neppel, L.; Elasmi, S.; Feki, H.

Smooth Spatial Modeling of Extreme

Mediterranean Precipitation. Water

2022, 14, 3782. https://doi.org/

10.3390/w14223782

Academic Editor: Pankaj Kumar

Received: 18 October 2022

Accepted: 16 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Smooth Spatial Modeling of Extreme Mediterranean Precipitation
Hela Hammami 1,2,* , Julie Carreau 3 , Luc Neppel 1 , Sadok Elasmi 2 and Haifa Feki 4

1 HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34093 Montpellier, France
2 COSIM Laboratory, Higher School of Communication of Tunis, University of Carthage, Ariana 2083, Tunisia
3 Department of Mathematics and Industrial Engineering, Polytechnique Montreal,

Montreal, QC H3T 1J4, Canada
4 GREEN-TEAM Laboratory, LR17AGR01, University of Carthage, Tunis 1082, Tunisia
* Correspondence: hela.hammami@supcom.tn; Tel.: +216-53-982-747

Abstract: Extreme precipitation events can lead to disastrous floods, which are the most significant
natural hazards in the Mediterranean regions. Therefore, a proper characterization of these events is
crucial. Extreme events defined as annual maxima can be modeled with the generalized extreme value
(GEV) distribution. Owing to spatial heterogeneity, the distribution of extremes is non-stationary in
space. To take non-stationarity into account, the parameters of the GEV distribution can be viewed as
functions of covariates that convey spatial information. Such functions may be implemented as a
generalized linear model (GLM) or with a more flexible non-parametric non-linear model such as an
artificial neural network (ANN). In this work, we evaluate several statistical models that combine the
GEV distribution with a GLM or with an ANN for a spatial interpolation of the GEV parameters. Key
issues are the proper selection of the complexity level of the ANN (i.e., the number of hidden units)
and the proper selection of spatial covariates. Three sites are included in our study: a region in the
French Mediterranean, the Cap Bon area in northeast Tunisia, and the Merguellil catchment in central
Tunisia. The comparative analysis aim at assessing the genericity of state-of-the-art approaches to
interpolate the distribution of extreme precipitation events.

Keywords: intense precipitation events; non-stationarity in space; generalized extreme value distri-
bution; spatial interpolation; generalized linear models; artificial neural networks

1. Introduction

The increasing hazard triggered by extreme precipitation events heightens the need
to develop risk estimation approaches. The last decades have seen several deadly floods
caused by extreme rainfall, particularly in the Mediterranean region (e.g., [1,2]). For exam-
ple, during a heavy flood event in northeastern Tunisia in 2018, precipitation of around
200 mm occurred on a regional scale, producing a record of 297 mm in the Beni Khalled
station in just a few hours [3]. The south of France was affected by a similar event in
2014 that left the city underwater with a record equivalent to more than six months of
precipitation [4]. Every autumn, regions around the Mediterranean are affected by floods.
The consequences of these phenomena are sometimes dramatic, including human and ma-
terial losses, pollution of water resources and destruction of agricultural farms. Therefore,
an effective forecasting system is essential to reduce the impacts of these disasters and to
make the right decisions regarding flood risk assessment.

Extreme value theory (EVT) provides a proper parametric framework to model the
distribution of extremes, particularly in hydrology [5]. The distribution of maxima over
blocks of observations, often chosen to correspond to a time period of length one year, can
be approximated by the generalized extreme value (GEV) family of distributions [6]. To
convey information on the probability of extreme events, quantiles of the GEV distribution
function are of particular interest because of their interpretation as return levels. This value

Water 2022, 14, 3782. https://doi.org/10.3390/w14223782 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14223782
https://doi.org/10.3390/w14223782
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-9371-1156
https://orcid.org/0000-0002-0935-9138
https://orcid.org/0000-0002-4750-7904
https://doi.org/10.3390/w14223782
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14223782?type=check_update&version=1


Water 2022, 14, 3782 2 of 18

is defined as the level of rainfall intensity that is expected to be exceeded on average once
in a given year.

A major challenge in investigating the distribution of extreme rainfall events is to
define a spatial representation at ungauged sites. Rainfall data are usually recorded from
networks of rainfall stations in the study area. The spatial interpolation process involves
using point data to find estimates at surrounding locations for which observations are not
available. Several interpolation schemes have been proposed in the literature [7–11]. In
classical initial interpolation approaches, the distribution parameters are estimated locally
and then interpolated to obtain return level maps. For instance, in [12], local estimates of
extreme rainfall intensities are interpolated to perform a regional analysis. Among others,
the Inverse Distance Weighting (IDW) [13] and classical Kriging techniques [10,11], such as
Ordinary Kriging [14], are frequently used. In this case, the grid estimate is obtained by the
weighted average of the relevant observations, and each of the techniques uses a different
weight calculation method.

More recent approaches, called “response surfaces”, consider that the distribution
parameters vary according to geographical covariates. For instance, a smooth GEV fitting
was proposed in [15] for mapping snow depth where parameters are directly modeled
as function in space. In particular, the authors in [16] highlighted the use of several
stations in regional approaches, known as region-of-influence, to reduce variance. Response
surfaces provide a more flexible alternative to the regional approach by allowing the
parameters to vary more flexibly in space. The relationship between GEV parameters
and spatial covariates can be described by a regression model. Artificial neural networks
(ANNs) can offer greater accuracy in estimating climate variables due to their ability to
recognize patterns in the data [17]. As universal approximators, ANNs can model non-
linear relationships between a set of inputs without making assumptions regarding the
nature of data [18]. Owing to their flexible structure, neural networks can be related to
other regression methods, such as the generalized linear model (GLM). For example, the
authors in [19] conducted a spatial regression model with a GLM for the estimation of
the GEV parameters to model the univariate marginal distributions. In this work, spatial
modeling is carried out using response surfaces.

In order to obtain a spatial mapping of the extreme distribution at ungauged locations,
covariates must be known everywhere in the study area. The main way to incorporate
non-stationarity into the modeling of extreme events is to assume that the distribution
parameters are no longer constant but vary as a function of covariates [5]. Researchers
have highlighted the need to incorporate climatic and hydrological-based variables as
covariates [20]. For example, in [21], an evaluation of several climatic covariates has been
presented (altitude, longitude, latitude, mean annual rainfall, mean number of daily rainfall
and mean daily rainfall). In [22], the authors proposed a model with annual precipitation as
a covariate that exhibits good performance. We can also refer to the use of the North Atlantic
Oscillation and Mediterranean Index in [23], the frequency of southern-type circulation
patterns and air temperature in [20] and the Southern Oscillation Index in [24]. Satellite-
based rainfall data are increasingly used, since they provide spatially detailed information
about rainfall distribution [25].

The main objective of this work is to propose a smooth spatial modeling framework
based on GEV response surfaces to interpolate extreme Mediterranean precipitation hazard.
In Section 2, we described the three selected Mediterranean study areas and the used data
set. We presented two techniques for modeling the relationship between GEV parameters
and spatial covariates (GLM and ANN) (see Section 3). The model selection strategy
involved determining the complexity level (i.e., the number of parameters in the model) by
satisfying a trade-off between bias and variance, and finding the optimal set of covariates
using a cross-validation technique. In Section 4, we presented the pointwise and the smooth
spatial GEV parameters estimation. An assessment of the goodness-of-fit of each spatial
model is conducted by comparing the confidence bands of the return levels at test stations.
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2. Study Area and Data

We consider three study areas marked by a Mediterranean climate: a region in the
French Mediterranean, the Cap Bon area in northeast Tunisia, and the Merguellil catchment
area in central Tunisia, which are located in Figure 1. These three Mediterranean regions
are characterized by a north–south aridity gradient [26] and by a high spatial variability of
precipitation with the occurrence of extreme events such as floods and droughts. The rainy
season for the three study areas was fixed as the period from September to April (241 or
242 days per season). For each month of the year, the average rainfall totals show an increase
between September and April and a decrease for the other months. For regions around
the Mediterranean, other authors have considered the same rainy season (e.g., [10,27]).
We note that all gauging stations in Figure 2 were selected by having at least 30 years of
observations with less than 10% missing values per rainy season.

Figure 1. Localization of the selected study areas around the Mediterranean region.

2.1. Rainfall Station Data

The French Mediterranean region is bounded on the south by the Mediterranean sea,
on the west by the Cevennes mountain range (maximum elevation around 1687 m), and on
the east by the Southern Alps (maximum elevation around 2694 m) (see the rightmost panel
of Figure 2). Severe flooding, known as the “Cévenole”, occurs in this region, especially in
the fall season [1]. From a climatic point of view, this study area is not homogeneous, since
it contains two types of climate: the Mediterranean climate and the mountain climate [28].
Compared to the Mediterranean climate, the mountain climate is characterized by colder
winters and milder summers. The hydrological processes are different due to the high
variability of the rainfall regime, which means that the rainy season can be different.
In order to work on a spatially homogeneous region and to define the same season for all
study sites, we have chosen to classify the stations by climate type. We are only interested in
the Mediterranean climate because of its high vulnerability to flooding. We selected stations
by identifying sub-regions similar in terms of extreme rainfall behavior, inspired by the
climatic regionalization approach presented in [29]. Each station was described by a vector
containing 15 elements: the 95% quantiles of the monthly maxima of daily precipitation for
each of the 12 months of the year and the three corresponding geographical coordinates
(longitude, latitude, altitude). Then, the K-means clustering method was applied to split
the stations into two groups. Stations with a Mediterranean climate were retained. Those
data were collected by Météo-France, with a spatial resolution of 0.4 km, and they consist
of daily precipitation records measured at 183 rainfall stations from 1958 to 2019. Average
annual rainfall totals in this region over the rainy season vary from 433.4 to 1697.3 mm
(see the rightmost panel of Figure 2). There are 20 stations with a complete number of
observations and missing data for the remaining stations are up to 50.8%.
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Figure 2. DEMs for the three study sites. The selected stations are represented with average annual
rainfall totals over rainy season represented by the blue scale. The stations numbered in red will
serve as test stations. The sky blue area represents the Mediterranean Sea and the blue lines delimit
the catchment areas.

The region in central Tunisia, west of Kairouan, includes the Merguellil catchment,
which covers an area of about 1200 km² upstream of El Haouareb dam [2,30] (see the
central panel in Figure 2). Average annual rainfall totals over the rainy season vary from
185.6 mm in the plain to 430.2 mm in the highest part of the catchment. In this region,
observations are available from 1900 to 2014 in 26 gauging stations, and the percentage
of missing data varies between 40.35% to 72.45%. We have also considered the Cap Bon
region in northeastern Tunisia, which contains the Lebna catchment that covers an area of
about 210 km2 (see the leftmost panel of Figure 2). The maximum altitude is located in the
mountainous region known as Djebel Abderrahmane and then decreases toward the coast.
Daily precipitation data are available from 1919 to 2014 in 18 stations, with a percentage of
missing data that varies between 19.29% and 67.5%. Average annual rainfall totals over the
rainy season range from 377.3 to 583.2 mm. Both daily rainfall data sets in Tunisia were
collected from the Tunisian General Directorate of Water Resources.

2.2. CHIRPS Data Set

In addition to the covariates extracted from the geographical coordinates (longitude,
latitude, altitude), we proposed to integrate the climatic variable obtained from the CHIRPS
data set. Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)
is a precipitation dataset developed by combining real-time observations with infrared
data [31]. It is derived from three products: global climatologies, satellite estimates and
gauge observations with daily, monthly and yearly temporal resolutions. From 1981
to the near present, CHIRPS data offer precipitation records with a spatial resolution
(0.05× 0.05 degree) and a quasi-global coverage 50° N to 50° S. This type of data will
permit depicting the spatial pattern of precipitation in different regions. This information
is not used directly to analyze extreme events because of its low spatial resolution and the
existing bias between this data and local observations.

Daily CHIRPS GeoTIFF data were retrieved for the selected study area from https:
//climateserv.servirglobal.net/ (accessed on 17 November 2022). Average annual totals
per rainy season (September to April) were computed from 1981 to 2019. The longitude
and latitude coordinates were projected onto Lambert 2 coordinates. Bi-linear interpolation
was applied to the averaged annual total values to match the DEM grid. The results of the
interpolation are presented in Figure 3. For each gauged station, we assigned the value
of the nearest grid cell in order to obtain the “chirps” covariate, which will be used as a
spatial covariate.

https://climateserv.servirglobal.net/
https://climateserv.servirglobal.net/
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Figure 3. Interpolated average seasonal precipitation totals computed from the CHIRPS data consti-
tuting the CHIRPS spatial covariate. The gauging stations are depicted as black points, and contour
lines from DEM are represented by the gray lines.

2.3. Inter-Covariate Correlation Analysis

Kendall correlation coefficients between each pair of covariates were computed as a
preliminary analysis to assess the amount of inter-dependence present in the covariates.
Kendall’s coefficient varies from −1 and +1 and can be interpreted as follows: the closer
it is to 1, the stronger the positive association is (variation in the same direction), and the
closer it is to −1, the stronger the negative association. However, if the coefficient is close to
zero, it means that there is no association. The correlation matrix for the three study regions
is presented in Figure 4. For the French Mediterranean region, we observe a correlation
coefficient that exceeds 0.5 for (x,y), (z,chirps), and (y,chirps); see the rightmost panel of
the Figure 4. For Merguellil, see the central panel of Figure 4, where the covariate x has a
negative correlation coefficient with all other covariates, especially a strong negative value
with z-coordinate, which is obvious on the elevation map of the region (in Figure 2). For the
Cap Bon region, see the leftmost panel of Figure 4: there is a moderate negative correlation
coefficient for (x,chirps) and a lack of association for the other covariates.

Figure 4. Kendall’s correlation matrix for the covariates corresponding to the three study areas.

3. Statistical Methods
3.1. Extreme Value Theory

As we are interested in extreme events, we need to focus on the behavior of the upper
tail of the distribution. Extreme value theory (EVT) is a classical set of tools used to analyze
extreme values [6]. We suppose that X1 . . . Xn is a sequence of independent random vari-
ables and that Mn = max{X1 . . . Xn} is their maximum values. In this paper, the random
variables are time series of daily rainfall observations from several gauged stations.

The fundamental theorem of [32] gives an asymptotic result allowing us to characterize
the distribution of Mn. Suppose that there exists cn > 0 and dn ∈ R, two sequences of real
numbers, such that:

lim
n→∞

P
(

Mn − dn

cn
≤ x

)
= G(x) (1)
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where G is a non-degenerate distribution function that can be expressed as the generalized
extreme value (GEV) distribution:

G(z) = exp−
[

1 + ξ

(
z− µ

σ

)]−1/ξ

+

(2)

defined for the values of z for which 1 + ξ(z− µ)/σ > 0 and (µ, σ, ξ) are the location, scale
and shape parameters, respectively. The GEV distribution encompasses the three different
behaviors of the maximum as controlled by the shape parameter. If ξ > 0, the tail decays as
a polynomial function; if ξ = 0, the tail decays exponentially, and if ξ < 0, the upper tail
is bounded. The shape parameter is often assumed to be constant because it is difficult to
estimate [6,33]. However, it would be advantageous to allow all GEV parameters to vary as
a function of covariate [15,34].

The quantiles of the GEV distribution function are particularly significant because
of their interpretation as return levels. The behavior of the extremes of the distribution
function can be seen as the upper quantiles of a high order. To estimate these quantiles
for the GEV, we invert Equation (2) such that G(zp) = 1− p to obtain a return level zp,
with a return period T = 1/p which should be exceeded by the annual maximum with a
probability p. The return level is given as follows:

zp =

{
µ− σ

ξ [1− (−log(1− p))−ξ ] if ξ 6= 0

µ− σlog(−log(1− p)) if ξ = 0
(3)

The block maxima approach consists of sampling the observed maximum over a block,
which is often chosen to correspond to a period of one year. In this paper, the block is
considered as the rainy season in order to reduce the effect of temporal non-stationarity.

Several approaches have been proposed to estimate the parameters of the GEV dis-
tribution, including maximum likelihood (ML) or L-moments. The L-moment method
estimates the set of parameters by matching the L-moments of the model to the L-moments
of the empirical distribution [35,36]. It generally performs well with small samples and
is usually more robust and less biased than the ML. However, applying the L-moment
estimator is almost limited to stationary data. We will use the L-moment for the pointwise
estimation and the ML for the spatial estimation.

3.2. Smooth Spatial Modeling for Extremes
3.2.1. Generalized Linear Models

The generalized linear model (GLM) is an extension of ordinary linear regression [37].
This model is widely used to model hydrometeorological variables [38,39]. The main idea
of GLMs is to allow the linear model to be related to a response variable through a link
function. These variables are no longer limited to the normal distribution, as assumed in
linear regression, and they can come from any exponential family distribution (e.g., Gamma,
Poisson). We consider that for a response variable Y assumed to follow the same exponential
family distribution, and for xn a set of covariates, there exists the following relation:

g(E(Y|x)) = β0 +
n

∑
i=1

βixi. (4)

The link function g(·) is used to define a relationship between the linear predictor
β0 + ∑n

i=1 βixi and the conditional mean of the distribution E(Y|x). The choice of this
function depends on the nature of the response variable (e.g., identity, log). The set of
parameters β is estimated by the maximum likelihood [40].
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Smooth spatial modeling can be achieved by considering that the input variables
x are covariates reflecting spatial information. Suppose that g(z) = (g1(z), g2(z), g3(z)).
The GLM applied to the GEV distribution can be written as follows:

g1(µ(Y, βµ)) = βµ0 +
n

∑
i=1

βµi xi (5)

g2(σ(Y, βσ)) = βσ0 +
n

∑
i=1

βσi xi (6)

g3(ξ(Y, βξ)) = βξ0 +
n

∑
i=1

βξi xi, (7)

where g(z) = (z, log(z), log(z + 0.5)). The link function for the scale parameter is the log
function to ensure its positivity. For the shape parameter, it is assumed that ξ > −0.5 to
ensure the regularity of the maximum likelihood estimators. The GLM is implemented by
the VGAM package [41] for the R statistical computing environment.

3.2.2. Artificial Neural Networks

The artificial neural network (ANN) is a flexible model capable of identifying complex
non-linear relationships between inputs and outputs [18], without predefined information
about the underlying process involved. They are composed of a set of stacked and inter-
connected layers: the first layer contains inputs, the last layer contains outputs, and the
layers in between are called hidden layers. In this work, we will use a feed-forward neural
network with one hidden layer, i.e., the information flow is unidirectional from input
to output. The neurons feed the neurons of the following layers to obtain final output
data. Associating an ANN with the GEV distribution is equivalent to considering that the
parameters (µ, σ, ξ) are the outputs of the network.

The first step of training the neural network (forward phase) is presented as follows.
Suppose that x = {x1, . . . xn} are the input variables (or covariates). Each neuron j of the
hidden layer transforms m linear combination of inputs to give an output:

zj = h(
n

∑
i=1

wjixi + wj0), (8)

with j = 1, . . . , m. wji is the weight between two neurons i and j, and wj0 is the bias of the
neuron j. We took the hyperbolic tangent as the activation function h(.) of the hidden layer.
To obtain the outputs θk = (µ, σ, ξ), we proceed to another linear combination with the
activation function f (.) over zj:

θk = f (
m

∑
j=1

wkjzj + wk0). (9)

For y = {y1, . . . , yn} that comes from a GEV distribution, the conditional log likelihood
is defined as a cost function to optimize the parameter values. To ensure that−0.5 < ξ < 0.5,
we assumed that ξ = 2

k − 0.5 for all k > 2. The cost function can be written as follows:

l(θ; y) = log σ + (1 +
1
ξ
)

n

∑
i=1

log
[

1 + ξ(
yi − µ

σ
)

]
+

n

∑
i=1

[
1 + ξ(

yi − µ

σ
)

]− 1
ξ

= log σ + (
2 + 0.5k
2− 0.5k

)
n

∑
i=1

log
[

1 +
(2− 0.5k)(yi − µ)

kσ

]
+

n

∑
i=1

[
1 +

(2− 0.5k)(yi − µ)

kσ

]−( k
2−0.5k )

.

(10)

The second step (the backward phase) consists of the computation of the gradient of
the log-likelihood in Equation (10) with respect to all the weights of the network using the
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back-propagation algorithm, and the optimization is completed with a gradient descent
algorithm. Weights are given randomly at the first step of the training and then updated
until convergence.

The complexity level is controlled by the number of hidden units of the neural network.
Indeed, the number of hidden units directly influences the number of weights in the
ANN and hence its flexibility. The choice of the number of hidden units must satisfy the
bias–variance trade-off: if it is too small, the ANN is biased (a phenomenon also called
under-fitting), if it is too high, the ANN has a large variance (a phenomenon also called
over-fitting). Therefore, the selected number of hidden units must simultaneously minimize
the bias and variance of the ANN. One way to do this is to use cross-validation, which is a
process that aims to estimate the generalization capability, i.e., the ability to perform well
on unseen data.

In this work, to estimate the generalization capability, we will use the 10-fold cross-
validation technique summarized in the following steps:

• Shuffle the data set randomly.
• Split the data set into k = 10 folds.
• For each fold:

– Define that fold as the validation data set.
– Define the remaining folds as the training data set.
– Fit the model on the training set and evaluate on the validation set.

• The error is calculated as the average of the error over all validation sets. The optimal
number of hidden units corresponds to the minimum of errors.

4. Results

The present research compares two spatial models (GLM and ANN), which are defined
in Section 3, applied to the daily rainfall data sets described in Section 2. In Section 4.1,
we explored the estimation of the GEV parameters locally (i.e., for each gauging station)
to gain insight into the spatial estimation. Then, in Section 4.2, we proceeded to build the
two spatial models by identifying the covariates and the appropriate level of complexity
(i.e., the number of hidden units). Finally, comparison and evaluation were dedicated in
Section 4.3.

4.1. Pointwise GEV Parameters Estimation

Once the maxima per rainy season have been fixed for each station s, the GEV distribu-
tion parameters (µs, σs, ξs) are estimated locally by the L-moments method. The 100-year
return levels were computed from these estimates by Equation (3). A summary of all point
estimates is presented in Figure 5. All shape parameter estimates are between −0.5 and
0.5. Indeed, the majority of stations have positive values of the shape parameter indicating
the heaviness of the tail of the distribution (very large rainfall events can occur). However,
fewer stations have negative values in the Merguellil and Cap Bon region compared to the
French Mediterranean (32 stations).

Pointwise parameter estimates can only give information for the few stations where
data are available. It will be more interesting to investigate the spatial variation of these
parameters at any point in space. The following part of this article will focus on this issue.
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Figure 5. Box−plots of estimated L-moments parameters of GEV distribution (µ, σ, ξ) and 100-year
return level.

4.2. Spatial GEV Parameters Estimation

Two spatial tools have been proposed, acting as a bridge between local rainfall infor-
mation to a smooth spatial mapping. For both models, the choice of covariates was made
by 10-fold cross-validation (as explained in Section 3.2.2). The models are fitted for all
possible combinations of the selected covariates (see row names of Table 1). Validation error
values that resulted from the cross-validation technique by fitting the GLM are presented
in Table 1. For the ANN, there is an additional choice of the number of hidden units. We
therefore have more validation errors to compare corresponding to the fitted ANN model
with nh = (0, 1, 2, 4, 6, 8, 12) hidden units. Results of covariate selection and the optimal
number of hidden units for each region are summarized in Table 2.

Results of the 10-fold cross-validation error curves by fitting the ANN model are
presented in Appendix A.2. For the French Mediterranean site, we notice that the error
curves do not rise with increasing the complexity level to 12 hidden units. According to the
theory, the validation error curves tend to decrease until they reach a minimum and then
increase again as we add complexity to the model. While performing some preliminary
tests, we discovered that the data set is so large that we do not reach the overfitting area.
Regarding the number of hidden units, the difference in terms of validation error is tiny,
between 4 and 8 hidden units, so the optimal number was chosen where the descent stops
(4 hidden units). We can also learn from these curves that using a unique covariate will give
the worst models. So, it is recommended to select at least two covariates. When the four
proposed covariates (x,y,z,chirps) are used simultaneously, the best model with the lowest
validation error was obtained compared to the results produced by applying the other
set of covariates. This finding emphasizes the interest in considering the climate variable
CHIRPS. For both Tunisian regions, a single hidden unit corresponds to the model with the
least errors. The selected covariates for the region of Merguellil are (y,chirps), and those for
the Cap Bon region are (y,z). Compared with the French region, the model with the four
covariates increases the error value, and that using two covariates is required to obtain a
good performance.
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Table 1. Validation error values for the GLM model resulted from the 10-fold cross-validation.

Covariate French Mediterranean Merguellil Lebna

x 4341.18 488.39 364.70

y 4382.88 488.36 367.07

z 4341.94 488.46 366.97

chirps 4326.7 488.56 365.08

(x,y) 4305.67 487.34 361.42

(x,z) 4301.3 487.21 364.51

(y,z) 4340.35 488.63 363.98

(x,chirps) 4296.11 486.64 364.42

(y,chirps) 4313.43 487.00 364.65

(z,chirps) 4314.11 487.50 363.04

(x,y,z) 4275.84 486.52 360.75

(x,y,chirps) 4295.64 486.93 360.91

(y,z,chirps) 4301.79 487.46 361.89

(x,z,chirps) 4277.24 486.60 362.39

(x,y,z,chirps) 4274.04 486.55 361.25

Table 2. The selected covariates for the spatial model (GLM and ANN) of the GEV parameters over
the three sites. The number of hidden units concerns only the ANN model.

Site GLM Covariate ANN Covariate Number of Hidden
Units

French Mediterranean (x,y,z,chirps) (x,y,z,chirps) 4
Merguellil (x,y,z) (y,chirps) 1

Lebna (x,y,z) (y,z) 1

4.3. Model Evaluation

After selecting the covariates and the number of hidden units, we want to compare
the two models (ANN versus GLM). For this purpose, negative log-likelihood values
were calculated for each station and each study site. The number of stations that verified a
minimum negative log-likelihood value with the neural network model was then calculated.
The ratio over the total number of stations is given in Table 3. In addition, the goodness-of-
fit was evaluated by the non-parametric Kolmogorov–Smirnov (Ks) test. The percentage of
stations with a lower Ks distance using the ANN model was computed. These two values
prove that the neural network model performs better on more than 60% of the stations
compared to the GLM model.

Table 3. The rate of the number of stations with a better performance with the ANN model.

Site Negative Log-Likelihood Kolmogorov–Smirnov

French Mediterranean 72.67% 74.35%
Merguellil 61.53% 65.38%

Lebna 61.1% 61.1%

To support this evaluation, we selected test stations (six stations for the French Mediter-
ranean region and two stations for each Tunisian region) having a large number of observa-
tions and well distributed in space (see the stations depicted with red points in Figure 2).
The Bootstrap resampling method was used to construct the 95% confidence bands of the
return level curves. This technique was applied to both selected models (ANN and GLM)
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at the stations that were kept aside for testing. In total, 1000 replications were obtained
by sampling with replacement years of annual maxima. The estimated return levels are
represented by curves with the corresponding confidence bands. The evaluation consists of
comparing the bands with the empirical return levels (black dots) based on observations.

For the French Mediterranean region, return level curves are presented in Figure 6.
Confidence intervals represent the range of uncertainty associated with the estimate.
The width of the GLM confidence intervals is narrow for most test stations compared
to the ANN bands. In this case, the margin of error is smaller, and the model offers more
precision. However, the GLM presents overestimation in St-Montan and Marsanne (sta-
tions 1 and 2, respectively, in Figure 2) or an underestimation in Nimes-courbessac and
Mayres (station 3 and 6, respectively, in Figure 2) of the empirical estimates. Although the
confidence bands are wider for the ANN, it can better capture empirical values.

Figure 6. Return levels at the selected test stations for the French Mediterranean region. The 95%
bootstrap confidence bands of the return levels obtained from the fitted models: the ANN in gray
and the GLM in blue. The dots represent the empirical return levels.

For the Tunisian sites, return level curves are presented in Figures 7 and 8. For these
regions, the low density of the network of gauging stations implies that stations at the limit
of the studied domain may suffer from a high estimation uncertainty because the regression
model extrapolates outside its knowledge. The same evaluation process was applied to
different selected test stations in each Tunisian region. An increase in the variation of the
confidence bands was observed.

The test stations chosen in France have a complete number of observations, while in
Capbon, we have an average of 19.29% of missing values on the two test stations (46.79% on
all stations), and for Merguellil, we have an average of 46.3% of missing values (59.74% on
all stations). The large number of stations in the French region, as well as the density of the
hydro-meteorological station network, means that the model has more training data. This
may affect the choice of model in terms of covariates and hidden units, which generates
models with more accuracy when compared with the Tunisian data.



Water 2022, 14, 3782 12 of 18

Figure 7. Return levels at the selected test stations for the Merguellil region, showing 95% bootstrap
confidence bands of the return levels obtained from the fitted models: the ANN in gray and the GLM
in blue. The dots represent the empirical return levels.

Figure 8. Return levels at the selected test stations for the Cap Bon region, showing 95% bootstrap
confidence bands of the return levels obtained from the fitted models: the ANN in gray and the GLM
in blue. The dots represent the empirical return levels.

Given the difference between the results obtained for the French Mediterranean and
Tunisia, a relationship was suspected between the density of the networks of the gauging
station and the obtained results. It is certain that the quality of the data plays a major factor
in the modeling. We performed a downgrading of the French dataset to become closer to
the Tunisian dataset. For the French Mediterranean, the number of stations per 1000 km2

is 6.57, i.e., 1 station per 152 km2. For Merguellil, the number of stations per 1000 km2

is 3.6, i.e., 1 station per 277 km2. To have approximately the same density, we selected
100 stations instead of 183. The selection of covariates in this case for the ANN model is
4 hidden units and the covariates (x,y,z). We even attempted to take the same number of
stations, i.e., 26 stations for the French Mediterranean region. In this case, the result of the
cross-validation for the ANN model is to use (x,y,z,chirps) as covariates and 2 hidden units.
From these experiments, we can deduce that there is a close relationship between model
complexity and input size, which explains the difference between the number of hidden
units in Table 2 (four for the French Mediterranean and one for each Tunisian site).

To review, the evaluation of the performance of the two models shows that the ANN
model is considered to be more accurate than the GLM model for spatially approximating
the risk of extreme events for these three study sites. The choice of covariates and the
number of hidden units is different from one study site to another due to the difference
in sample size as well as the difference in the inter-covariate association. By the 10-fold
cross-validation, it was observed that the validation error is high when we fit a model with
one covariate, and it is less obvious for two or more covariates.

In Figure 9, we present ANN spatial estimates within a radius of 15 km around the
gauging stations of the French Mediterranean site. Pointwise estimates are illustrated by
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points for each station. The location and scale parameters show the highest values in the
northwestern mountainous region, corresponding to the same variation in local estimates.
For the shape parameter, a different spatial representation is shown with the highest values
at the lowest altitude. Spatially, there are only positive values of the shape parameter,
unlike the results of the local estimation. The results of the spatial estimation by ANN on
the Tunisian sites are shown in Appendix A.1.

Figure 9. Estimates of the GEV parameters (µ, σ, ξ) and the 100-year return level over the French
Mediterranean region. Spatial estimates result from an ANN using (x,y,z,chirps) as covariates with
four hidden units, and the point estimations are obtained by the L−moments method.

5. Discussion

In this work, we have emphasised the use of response surfaces for a smooth spatial
representation of extreme events. This choice was motivated by the outcomes of [15,16].
It has been explicitly stated that it will be more efficient to bypass conventional spatial
interpolation methods. Regional methods are more stable than methods based on spatial
interpolation. It is of great benefit to take the surrounding area into account in order to
ensure a smooth spatial variation of the parameters.

ANNs have proven their performance as a modern machine learning technique in
several research areas and are gaining more and more popularity in hydrological studies.
They overcome some of the weaknesses, such as linearity assumptions, of more classical
methods. However, they are often seen as “black box” models in the sense that, while
approximating a function, studying its structure will not provide any insight into the
structure of the approximated function. Hence, the influence of each parameter estimate on
covariates is difficult to interpret. For this purpose, it would be worth investigating the
use of so-called interpretive machine learning (ML) models, where ANNs can be enhanced
to highlight the understanding of relevant relationships in the data. For instance, the
authors in [42,43] have built a flexible modeling framework by applying ML models to
induce physically consistent models with high predictive accuracy. The idea is to combine
a data-driven method (such as ANNs) with the understanding of physical process models:
the training could be guided to mimic a physical phenomenon by specifying a physical law,
serving as prior knowledge and added into the loss function.
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Furthermore, we have focused on the analysis of extreme rainfall events that occur on
a daily time scale. In fact, daily records are more widely available and usually exceed the
length of the sub-daily observations. However, hydrological estimations often require long
time series at high temporal resolution. The issue can be overcome by disaggregating daily
into sub-daily values. Several resampling methods have been proposed to simulate a range
of possible disaggregation scenarios that could occur at finer time scales. For example,
non-parametric resampling models based on methods of fragments (MOF) (also called
the analog method) have been shown to perform well compared to other disaggregation
approaches [44,45]. In particular, [46] presented a space-time approach based on the MOF
to convert daily-to-hourly precipitation. It would be interesting to follow up this idea by
applying the proposed model to finer time scale data. Along the same lines, it would be
interesting to perform a spatial estimation of the intensity–duration–frequency (IDF) curves
in order to estimate the distribution of extreme precipitation of any duration at ungauged
locations [47,48]. This could be seen as a starting point for building stochastic weather
generators [49,50] that takes in account extreme events.

6. Conclusions

The main challenge of this work is to map the risk of extreme rainfall events taking into
account spatial non-stationarity. To achieve this goal, two spatial estimation approaches
are proposed to be applied to GEV parameters to assess the risk through the associated
return levels. It has been shown that smooth spatial modeling by ANN gives better results
on more than 60% of the stations compared to the GLM model.

One critical issue is to control the complexity level and the bias–variance trade-off. It
was identified by optimizing the number of hidden neurons by a cross-validation method.
Using a high variance model may not adequately capture the structure of the underlying
phenomenon and become too dependent on training data. By contrast, a simpler model
may lack flexibility and fail to capture the full complexity of the phenomenon. The trade-off
between bias and variance occurs at the minimum of the generalization error.

The other issue concerns the choice of appropriate covariates that serve to add a
geographical influence in the modeling of spatial non-stationarity. The CHIRPS climate
variable is an effective source of information on the spatial distribution of rainfall. It was
initially used in this study to compare the spatial behavior of observations. We checked
the inter-annual totals of the gauging stations against the CHIRPS covariate, and we
noticed that the local observations are globally higher than the CHIRPS rains, which is
expected since it is an average over a 4 km grid. We included the CHIRPS data as a
covariate with the geographical coordinates to provide a spatial description of the three
Mediterranean regions.
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Appendix A

Appendix A.1. Estimation of the GEV Parameters Using ANN on the Tunisian Sites

Figure A1. Estimates of the GEV parameters (µ, σ, ξ) and the 100-year return level over the Merguellil
region. The spatial estimates are resulted from an ANN using (y,chirps) as covariates with 1 hidden
unit and the point estimations are obtained by the L-moments method.

Figure A2. Estimates of the GEV parameters (µ, σ, ξ) and the 100−year return level over the Cap Bon
region. The spatial estimates are resulted from an ANN using (y,z) as covariates with 1 hidden unit,
and the point estimations are obtained by the L−moments method.
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Appendix A.2. 10-Fold Cross-Validation Results

Figure A3. Result of the 10-fold cross-validation with the ANN model for the French Mediter-
ranean site.
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