
1. Introduction
The representation of unresolved processes is a key source of uncertainty in weather and climate models. Climate 
science and weather forecasting indeed heavily rely on numerical simulations of the Earth's atmosphere and 
oceans (Bauer et al., 2015; Neumann et al., 2019). But even the most advanced applications are currently far 
from resolving explicitly the wide variety of space-time scales and physical processes involved. This will likely 
remain the case for the foreseeable future because of the nonlinearity of fluid dynamics and thermodynam-
ics, and because of the finite nature of computational resources (Fox-Kemper et al., 2014; Schneider, Teixeira, 
et al., 2017). Weather and climate models will therefore keep relying on approximated representations of the effect 
of unresolved processes in the form of subgrid parametrization schemes (Fox-Kemper et al., 2019; Schneider, 
Lan, et al., 2017). Parametrization schemes accounting for the impact of turbulence in the atmosphere and oceans 
at various scales will in particular remain essential components of these models.

Abstract The use of machine learning to build subgrid parametrizations for climate models is receiving
growing attention. State-of-the-art strategies address the problem as a supervised learning task and optimize 
algorithms that predict subgrid fluxes based on information from coarse resolution models. In practice, 
training data are generated from higher resolution numerical simulations transformed in order to mimic 
coarse resolution simulations. By essence, these strategies optimize subgrid parametrizations to meet 
so-called a priori criteria. But the actual purpose of a subgrid parametrization is to obtain good performance 
in terms of a posteriori metrics which imply computing entire model trajectories. In this paper, we focus 
on the representation of energy backscatter in two-dimensional quasi-geostrophic turbulence and compare 
parametrizations obtained with different learning strategies at fixed computational complexity. We show that 
strategies based on a priori criteria yield parametrizations that tend to be unstable in direct simulations and 
describe how subgrid parametrizations can alternatively be trained end-to-end in order to meet a posteriori 
criteria. We illustrate that end-to-end learning strategies yield parametrizations that outperform known 
empirical and data-driven schemes in terms of performance, stability, and ability to apply to different flow 
configurations. These results support the relevance of differentiable programming paradigms for climate models 
in the future.

Plain Language Summary Climate projection and weather forecast heavily rely on computer
simulations. But, if the physical laws governing the evolution of the climate system are well known, their 
simulation is still rather challenging. Fluid flows being essentially turbulent, small details at fine scales can 
have a tremendous impact on larger scales. Still, because of the limitations in computing power, all these 
interactions across scales cannot be explicitly resolved in computer simulations. Some of these interactions 
can only be represented approximately, and the design of these approximations is an active research area. 
Here, we describe a new method which leverages recent advances in machine learning. We propose to train an 
approximate representation of unresolved scales of motions that optimizes the quality of the climate model over 
some temporal horizon. This results in more accurate and stable predictions. Our method shows very promising 
results in toy example flow simulations, but its deployment at scale may seriously challenge the overall design 
of legacy climate models.
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Parametrizations of unresolved turbulent motions are usually based on first principles, physics, idealized exper-
iments, field observations, and high-resolution simulations. Their design involves a mixture of empirical and 
process-based modeling. Process-based models are formulated, tested and calibrated with experiments performed 
in the field, in the laboratory or with computers (Stensrud,  2009). On this basis, the actual parametrization 
scheme estimates a tendency term for the target model from its resolved variables. The underlying conceptual 
framework can rely on some ensemble averaging procedure, so that the parametrization intends to capture the 
bulk statistical effect of unresolved processes, as for instance for turbulence models (Mellor, 1985). Alterna-
tively, one may consider a spatial filtering procedure and the parametrization can then exploit the scale-invariant 
properties of turbulence, as in Large Eddy Simulation models (Lesieur et al., 2005). This latter framework is 
used for instance for the parametrizations of ocean macro-turbulence in eddy-rich ocean models (Fox-Kemper & 
Menemenlis, 2008).

Recently, the use of machine learning (ML) for better parametrizing unresolved processes in weather and climate 
models has gained momentum. Calibrating physics-based parametrization schemes against observation with ML 
and emulators is for instance becoming common practice (Couvreux et al., 2021; Ollinaho et al., 2013; Schneider, 
Lan, et al., 2017). Emulation approaches based on ML have also been proposed as a strategy for accelerating or 
regularizing existing schemes (Chantry et al., 2021; Meyer et al., 2021; Ukkonen et al., 2020). ML also provides 
new means to design new subgrid parametrization schemes from high-fidelity simulations. In this context, 
ML may learn a mapping which predicts the tendency term due to unresolved subgrid effects from resolved 
quantities available in a target model. In atmospheric models, these approaches have been used to improve 
the representation of cloud micro-physics and moist processes (Brenowitz & Bretherton, 2018; Krasnopolsky 
et al., 2013; O’Gorman & Dwyer, 2018; Rasp et al., 2018; Seifert & Rasp, 2020). In ocean models, it is expected 
that the representation of macro-turbulence could be improved with similar approaches (Bolton & Zanna, 2019; 
Guillaumin & Zanna, 2021).

The design of parametrizations with ML builds on the rise of scientific machine learning (SciML) and its broad 
application to physical sciences. SciML is an emerging field, which bridges scientific computing and ML. Some 
recent key developments in this field have been motivated both from physical insights and for their applications 
to physical sciences, especially in fluid dynamics (Carleo et al., 2019; Thuerey et al., 2021). The conceptual 
developments in ML motivated by applications to problems governed by partial differential equations (Long 
et al., 2018; Raissi et  al., 2019; Sirignano & Spiliopoulos, 2018) have for instance gradually freed ML from 
its black-box reputation. The design of parametrization schemes now directly benefits from ML approaches 
for dynamical system identification and equation discovery (Brunton et al., 2016; Zanna & Bolton, 2020). The 
ability to embed symmetries and law invariances into neural networks (Alet et al., 2021; Cohen & Welling, 2016; 
Cranmer et al., 2020) will also likely be important in the design of parametrization schemes (Frezat et al., 2021), 
and in applications of ML to fluid mechanics in general (Brunton et al., 2020; Vinuesa & Brunton, 2021).

But ML-based approaches to subgrid parametrizations are still mostly based on a priori learning strategies, 
which could limit their performance and applicability. There are indeed two different sorts of evaluation metrics 
for measuring the precision of subgrid models in turbulent simulations (Pope, 2000). A priori metrics, on the 
one hand, measure to what extent a given subgrid model is able to predict a tendency term due to unresolved 
subgrid effects at a fixed time. A posteriori metrics, on the other hand, require to perform simulations with 
the subgrid model, and measure its integrated impact on the simulated flows. The common strategy for learn-
ing  subgrid  parametrizations is to formulate a supervised learning task from a high-resolution reference simula-
tion data set. In practice, learned parametrizations result from the minimization of a cost function based on some 
a priori metrics measuring how well a mapping can predict unresolved fluxes from coarse-grain quantities. Still, 
with such strategy, what we really intend to optimize is the ability of the parametrization to yield good solutions, 
when used a posteriori in numerical simulations. In principle, the versatility of ML algorithms should allow 
us to train parametrization schemes with learning criteria based on a posteriori metrics, adopting the so-called 
end-to-end learning framework (Glasmachers, 2017). But surprisingly, there are very few published examples 
of end-to-end learning strategies in computational fluid dynamics (Kochkov et al., 2021; Sirignano et al., 2020; 
Stachenfeld et al., 2021). It is therefore yet unclear how subgrid parametrizations trained with a priori and a poste-
riori compare in terms of performance, stability, and ability to apply to different flow conditions.

Flows governed by quasi-geostrophic (QG) dynamics provide an interesting and challenging testbed to evaluate 
learning strategies for subgrid parametrizations. QG theory indeed proposes a simple framework for studying 
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geophysical flows constrained by earth rotation and stratification, as for instance large-scale atmospheric dynam-
ics and ocean macro-turbulence (Cushman-Roisin & Beckers, 2011). The two-dimensional turbulence emerging 
from barotropic QG dynamics (Boffetta & Ecke, 2012; Majda & Wang, 2006) exhibits a dual cascade scenario 
with inverse energy transfers to larger scales and direct enstrophy transfers to smaller scales (Kraichnan, 1967; 
Thuburn et al., 2014). Because of this inverse energy cascade, developing subgrid parametrizations for QG flows 
is a challenging task, as the stability of numerical integration schemes is directly controlled by the rate of energy 
backscatter, that is, transfers from subgrid to resolved scales (Carati et al., 1995; Lilly, 1992). As a consequence, 
a large number of subgrid parametrization schemes have been proposed for two-dimensional turbulence (see 
e.g., Danilov et al., 2019 for a review) and well documented flow configurations with performance metrics for
parametrization are readily available (Graham & Ringler, 2013). Unsurprisingly, attempts to learn subgrid para-
metrizations for two-dimensional turbulence with ML have been less successful than for other types of turbulent 
flows (Guan, Chattopadhyay, et al., 2022; Maulik et al., 2019). In particular, ad-hoc solutions had to be imple-
mented in order to ensure the numerical stability of the learned schemes under energy backscatter conditions. 
For instance, Maulik et al. (2019) use a clipping post-processing procedure to remove negative diffusivity while 
Guan, Chattopadhyay, et al. (2022) mitigate this problem in decaying turbulence by increasing the size of the 
training data set. More recently, Guan, Subel, et al. (2022) and Pawar et al. (2022) demonstrated how incorpo-
rating physics in the models could lead to stable simulations that requires less data for training and generalizes 
better. Up to now, however, none of the published works investigates the long-term statistical performance of 
learned schemes far beyond the decorrelation horizon. Learning stable parametrizations for two-dimensional 
turbulence in QG flows is therefore still an open problem.

In this work, we compare parametrizations for two-dimensional turbulence obtained with different learning strat-
egies, at fixed computational complexity. In particular, we show that we are able to train a model based on a 
posteriori metrics with an end-to-end learning strategy. Through evaluation on three different configurations 
(decay, wind-forcing and beta-effect), the end-to-end learning strategy is shown to yield stable parametrizations 
that outperform previous physics-based and NN-based models without any explicit postprocessing step. Statisti-
cal metrics on long-term spectral transfers are shown to be in excellent agreement to direct numerical simula tions 
(DNS), which is particularly encouraging for future climate models. The paper is organized as follows: In 
Section 2, we present the a priori and a posteriori learning strategies and the type of metrics they are respectively 
able to optimize. The application to QG parametrizations is described in Section 3 with the numerical setup and 
baselines used in the evaluation. Results are presented both for short-term and long-term statistics for three differ-
ent configurations in Section 4. Finally, we discuss the limitations and implications of the described strategies for 
realistic large-scale solvers.

2. Learning Strategies
In this study, we address the simulation of the time evolution of geophysical quantities y(t). We assume the under-
lying governing equations to be known. Let us denote by f(y) these true dynamics. The numerical integration of 
this system being either impossible or expensive, we aim at solving the time evolution of reduced variables 𝐴𝐴 �̄�𝐲(𝑡𝑡) 
such that:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜕𝜕𝐲𝐲

𝜕𝜕𝜕𝜕
= 𝑓𝑓 (𝐲𝐲), 𝐲𝐲 ∈ Ω

𝜕𝜕�̄�𝐲

𝜕𝜕𝜕𝜕
= 𝑔𝑔 (�̄�𝐲) + (�̄�𝐲) , �̄�𝐲 ∈ Ω̄

 (𝐲𝐲) = �̄�𝐲

 (1)

where 𝐴𝐴 Ω̄ ⊂ Ω , g a reduced-order operator, 𝐴𝐴  a subgrid-scale (SGS) parametrization and 𝐴𝐴   is a projection opera-
tor that maps true variables to reduced ones. The objective in reduced-order modeling is to design operator g such 
that the evolution of the reduced variables matches the projection  (�) of the true variables y. We note that for 
some reduced order problems, we identify f = g with variables existing on different spaces or dimensionalities.

Within a learning framework, one states the identification of SGS term �(�) =  (� (�)) − �( (�)) as a learning 
problem from reduced variables for a parametrization (�̄|�) where θ are trainable model parameters. Under 
the assumption that projection operator 𝐴𝐴   commutes with partial derivatives, the most classic approach comes 
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to train parametrization (�̄|�) as a functional approximation of closure term R. This approach has been widely 
explored in the recent literature (Bolton & Zanna, 2019; Vollant et al., 2017). It does not however constrain the 
trained parametrization to behave as expected when implemented in the solver of the reduced-order system. In 
this respect, an end-to-end framework would appear as an appealing approach to explicitly state the SGS para-
metrization problem according to the best possible approximation of the true reduced variables. Such end-to-end 
approaches have shown many advantages in the approximation of differential equation in general (Bakarji & 
Tartakovsky, 2021; Chen et al., 2018; Fablet et al., 2021). When applied to physical problems, they are often 
referred as differentiable physics (de Avila Belbute-Peres et al., 2018; Holl et al., 2020; Um et al., 2020), since 
they require the gradient of all the considered operators and solvers to be available for the optimization algorithm. 
Overall, these two categories of learning approaches differ in the space where the training is performed, similarly 
to the definition of a priori and a posteriori metrics (Pope, 2000) for the benchmarking of SGS parametrizations. 
This is the reason why we refer to a priori and a posteriori learning strategies as detailed in the subsequent.

2.1. A Priori Learning

The a priori learning strategy comes to learn SGS parametrization using training metrics defined on instantane-
ous quantities, that is, a direct measure of the accuracy of the model based on the predicted SGS term R(y). The 
a priori loss 𝐴𝐴 prio has the form,

prio() ∶= 𝓁𝓁 (𝑅𝑅(𝐲𝐲), (�̄�𝐲|𝜃𝜃)) (2)

where 𝐴𝐴  is a given SGS model to be evaluated. The most common a priori metrics ℓ found in the fluid dynamics 
community are the mean squared error (MSE) and the correlation between true and predicted SGS terms. Train-
ing a NN-based parametrization according to a priori setting then comes to building a representative ground-truth 
data set 𝐴𝐴 {𝑅𝑅 (𝐲𝐲𝑖𝑖) , �̄�𝐲𝑖𝑖}𝑛𝑛 of paired SGS terms and reduced variables to solve the following minimization problem with 
respect to model parameters θ

argmin
�

prio() ≡ argmin
�

� ({� (��)} , ({�̄�}|�)) . (3)

Solving for (Equation 3) requires evaluation of the partial derivative of the a priori loss 𝐴𝐴 prio with respect to 
parameter θ, which only involves the gradient of 𝐴𝐴  ,

𝜕𝜕prio

𝜕𝜕𝜕𝜕
=

𝜕𝜕prio

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕prio

𝜕𝜕

𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝜕𝜕prio

𝜕𝜕

𝜕𝜕

𝜕𝜕𝜕𝜕
. (4)

This approach has been applied to scalar (Frezat et al., 2021; Portwood et al., 2021; Vollant et al., 2017) and 
momentum (Beck et al., 2019; Gamahara & Hattori, 2017; Xie et al., 2020; Yuan et al., 2020) parametrizations 
of three-dimensional turbulence on different configurations. The two-dimensional case is also well documented 
in decaying (Guan, Chattopadhyay, et al., 2022; Maulik et al., 2019; Pawar et al., 2020) and double-gyre (Bolton 
& Zanna, 2019; Zanna & Bolton, 2020) configurations. We may emphasize that, by construction, the a priori 
learning strategy shall lead to the best a priori results, which shall translate into a good instantaneous prediction 
of the SGS term according to metrics 𝐴𝐴 prio .

2.2. A Posteriori Learning

The a posteriori learning strategy states the SGS parametrization problem as the approximation of the true 
reduced variables according to some a posteriori metrics. This is important since it is possible for a model to 
perform well a priori while failing a posteriori, the most common factor being numerical instabilities due to the 
lack of small-scale energy dissipation (Guan, Chattopadhyay, et al., 2022; Maulik et al., 2019). Let us denote by 
Φ the flow operator that advances the reduced system in time, that is,

Φ
𝑡𝑡1

𝜃𝜃
(�̄�𝐲 (𝑡𝑡0)) = �̄�𝐲 (𝑡𝑡0) +

∫

𝑡𝑡1

𝑡𝑡0

𝑔𝑔 (�̄�𝐲(𝑡𝑡)) + (�̄�𝐲(𝑡𝑡)|𝜃𝜃) d𝑡𝑡𝑡 (5)
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Numerically speaking, flow operator Φ involves a time integration scheme (see Figure  1) from start to end 
time t0 and t1, respectively. Following recent advances in neural integration schemes (Chen et al., 2018; Ouala 
et al., 2021), we may consider here both explicit and adaptive schemes. Let 𝐴𝐴 𝓁𝓁 (𝐲𝐲(𝑡𝑡), �̄�𝐲(𝑡𝑡)) be some a posteriori 
metrics defined in the true 𝐴𝐴 {𝐲𝐲(𝑡𝑡)}

𝑡𝑡∈[0,𝑇𝑇 ] and reduced 𝐴𝐴 {�̄�𝐲(𝑡𝑡)}
𝑡𝑡∈[0,𝑇𝑇 ] spaces and a representative data set of trajectories 

over a time interval [0, T]. The a posteriori learning strategy comes to minimize an a posteriori training loss,

post ∶= 𝓁𝓁

(
{𝐲𝐲(𝑡𝑡)}

𝑡𝑡∈[𝑡𝑡0 ,𝑡𝑡1] ,
{
Φ𝑡𝑡

𝜃𝜃
(�̄�𝐲 (𝑡𝑡0))

}
𝑡𝑡∈[𝑡𝑡0 ,𝑡𝑡1]

)
 (6)

Now, the a posteriori minimization problem involves the time integration of Φ on sub-intervals [t0, t1] from the data 
set of trajectories spanning the interval [0, T], with initial reduced states typically taken to be �̄ (�0) =  (� (�0)) ,

argmin
𝜃𝜃

post ≡ argmin
𝜃𝜃

𝓁𝓁

(
{𝐲𝐲(𝑡𝑡)}

𝑡𝑡∈[𝑡𝑡0 ,𝑡𝑡1] ,
{
Φ𝑡𝑡

𝜃𝜃
(�̄�𝐲 (𝑡𝑡0))

}
𝑡𝑡∈[𝑡𝑡0 ,𝑡𝑡1]

)
,∀ [𝑡𝑡0, 𝑡𝑡1] ∈ [0, 𝑇𝑇 ]. (7)

Then from the Leibniz integral rule, updating model parameters θ requires the flow partial derivative, that is,

𝜕𝜕post

𝜕𝜕𝜕𝜕
=

𝜕𝜕post

𝜕𝜕𝐲𝐲 (𝑡𝑡1)

𝜕𝜕𝐲𝐲 (𝑡𝑡1)

𝜕𝜕𝜕𝜕
+

𝜕𝜕post

𝜕𝜕Φ

𝜕𝜕Φ

𝜕𝜕𝜕𝜕
=

𝜕𝜕post

𝜕𝜕Φ

(
�̄�𝐲 (𝑡𝑡0) +

∫

𝑡𝑡1

𝑡𝑡0

𝜕𝜕𝜕𝜕 (�̄�𝐲(𝑡𝑡))

𝜕𝜕𝜕𝜕
+

𝜕𝜕 (�̄�𝐲(𝑡𝑡)|𝜕𝜕)
𝜕𝜕𝜕𝜕

d𝑡𝑡

)
. (8)

This equation makes explicit that the gradient-based optimization of the a posteriori criterion involves the computa-
tion of the gradient with respect to all the components of the forward model, that is, dynamical operator g as well as 
the considered time integration scheme. Assuming that one can run all components within a differentiable program-
ming framework (here, PyTorch [Paszke et al., 2019]), the embedded automatic differentiation (AD) tools make these 
computations direct with no additional programming cost. In our experiments, this comes to performing an AD for an 
explicit fourth-order Runge-Kutta scheme with N discrete time-steps, which defines the temporal horizon T = NΔt.

The a posteriori strategy significantly widens the range of metrics which can be considered to calibrate the SGS 
parametrization. We illustrate this modeling flexibility for QG turbulence in the next section. We may point out 
that this a posteriori learning strategy has recently been explored for temporally developing plane turbulent jets 
(MacArt et al., 2021) and the short-term simulation of short-term two-dimensional flows (Kochkov et al., 2021). 
Here, we explore further its relevance for two-dimensional geophysical flows, including a benchmarking with the 
a priori setting for different flow configurations.

3. Application to QG Turbulence
Geophysical turbulence is widely acknowledged to involve energy backscatter. This makes SGS parametrization 
a key issue for the simulation of ocean and atmosphere dynamics (Graham & Ringler, 2013; Jansen et al., 2015; 
Juricke et  al.,  2020). As case-study framework, we consider QG flows. While providing an approximate yet 
representative model for rotating stratified flows found in atmosphere and ocean dynamics, they involve relatively 
complex SGS features that make the learning problem non trivial. As such, QG flows are regarded as an ideal 

Figure 1. Sketch of one learning step for the a priori and a posteriori strategies. The a priori loss is computed at instantaneous time t (dashed, red), while the a 
posteriori loss involves several states forward in time (dashed, blue).
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playground to explore and assess the relevance of a priori and a posteriori learning strategies for SGS parametri-
zation in geophysical turbulence. QG equations (Majda & Wang, 2006) are given by,

𝜕𝜕𝑡𝑡𝜔𝜔 + 𝐽𝐽 (𝜓𝜓𝜓𝜔𝜔) = 𝜈𝜈∇2
𝜔𝜔 − 𝜇𝜇𝜔𝜔 − 𝛽𝛽𝜕𝜕𝑥𝑥𝜓𝜓 + 𝐹𝐹 (9)

which is equivalent to the transport of vorticity ω, obtained by taking the curl of the incompressible Navier-Stokes 
equations, that is, ∇ ⋅ u = 0 and ω = ∇ × u and applying beta-plane approximation, hydrostatic and geostrophic 
balances. In addition, we have,

𝐮𝐮 = (−𝜕𝜕𝑦𝑦𝜓𝜓𝜓 𝜕𝜕𝑥𝑥𝜓𝜓) (10)

𝜔𝜔 = ∇2
𝜓𝜓 (11)

where ψ is the stream function, u the velocity and J(ψ, ω) = ∂xψ∂yω − ∂yψ∂xω is the nonlinear Jacobian operator. 
The model is parametrized by viscosity ν, linear drag coefficient μ, Rossby parameter β and a source term F. The 
QG equations have two invariants in the limit of inviscid flow (Bouchet & Venaille, 2012), for energy

𝐸𝐸 =
1

2 ∫
𝐮𝐮
2d𝑟𝑟 (12)

and enstrophy

𝑍𝑍 =
1

2 ∫
𝜔𝜔

2d𝑟𝑟𝑟 (13)

In order to study scales interactions, we introduce the enstrophy spectrum, Z(k) in spectral space as the enstrophy 
contained in the shell of radius k,

𝑍𝑍(𝑘𝑘) =
1

2 ∫|𝐤𝐤|=𝑘𝑘
�̂�𝜔(𝐤𝐤)�̂�𝜔∗(𝐤𝐤)d𝑆𝑆(𝐤𝐤) (14)

where the Fourier transform is represented by 𝐴𝐴 𝐴⋅ , complex conjugation by ⋅* and with dS(k) the integration element 
of the shell of radius k from wavevector k. The evolution equation of Z(k) writes in spectral space,

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑍𝑍(𝑘𝑘) = −𝐷𝐷(𝑘𝑘) −𝑄𝑄(𝑘𝑘) − 𝐵𝐵(𝑘𝑘) + 𝐹𝐹 (𝑘𝑘) + 𝑇𝑇 (𝑘𝑘) (15)

where the different terms of the right hand side are related to various effects: external energy source F, dissipation 
D, large-scale drag Q, beta-plane effect B and transfer between scales T. This last term writes

𝑇𝑇 (𝑘𝑘) =
∫|𝐤𝐤|=𝑘𝑘

ℜ
{
�̂�𝜔

∗(𝐤𝐤)𝐽𝐽 (𝜓𝜓𝜓𝜔𝜔)(𝐤𝐤)
}
d𝑆𝑆(𝐤𝐤). (16)

This allows to define the enstrophy flux (Gupta et al., 2019) through the wavenumber k as

Π𝑍𝑍 (𝑘𝑘) = −
∫

𝑘𝑘

0

𝑇𝑇
(
𝑘𝑘
′
)
d𝑘𝑘′ (17)

which is a key quantity to measure effect of SGS modeling on enstrophy distribution on the range of resolved 
scales.

3.1. SGS Parametrization for QG Dynamics

The derivation of the reduced model for QG dynamics follows the same procedure that is described for fluid 
dynamics in general. Assuming a known projection operator 𝐴𝐴   from Equation 1 at spatial coordinate x given as a 
discretization 𝐴𝐴  ∶ Ω → Ω̄ and the convolution of y with a kernel function G(x) (Leonard, 1975),

�̄�𝐲(𝐱𝐱) =  (𝐲𝐲(𝐱𝐱)) = 

[

∫
𝐺𝐺
(
𝐱𝐱 − 𝐱𝐱

′
)
𝐲𝐲
(
𝐱𝐱
′
)
d𝐱𝐱′

]
. (18)
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We can then derive the equations which govern the evolution of reduced vorticity 𝐴𝐴 𝐴𝐴𝐴 as,

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜕𝜕𝑡𝑡𝜔𝜔 + 𝐽𝐽 (𝜓𝜓𝜓𝜔𝜔) = 𝜈𝜈∇2
𝜔𝜔 − 𝜇𝜇𝜔𝜔 − 𝛽𝛽𝜕𝜕𝑥𝑥𝜓𝜓 + 𝐹𝐹 𝜓 𝜔𝜔 ∈ Ω

𝜕𝜕𝑡𝑡�̄�𝜔 + 𝐽𝐽 (�̄�𝜓 𝜓 �̄�𝜔) = 𝜈𝜈∇2
�̄�𝜔 − 𝜇𝜇�̄�𝜔 − 𝛽𝛽𝜕𝜕𝑥𝑥�̄�𝜓 + 𝐹𝐹 + 𝐽𝐽 (�̄�𝜓 𝜓 �̄�𝜔) − 𝐽𝐽 (𝜓𝜓𝜓𝜔𝜔)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑅𝑅(𝜓𝜓𝜓𝜔𝜔)

𝜓 �̄�𝜔 ∈ Ω̄ (19)

where R(ψ, ω) is the SGS term. For convenience, note that the reduced term can be expressed in a flux formulation,

𝑅𝑅(𝜓𝜓𝜓𝜓𝜓) = ∇ ⋅
(
�̄�𝐮�̄�𝜓 − 𝐮𝐮𝜓𝜓

)
. (20)

In this context, 𝐴𝐴 𝐴𝐴𝐴 is only solved for the largest scales of the flow, and R(ψ, ω) accounts for the effect of unre-
solved motions on the resolved scales. The SGS term is thus not known from the reduced variables because of the 
nonlinear interactions of small-scale dynamics 𝐴𝐴 𝐽𝐽 (𝜓𝜓𝜓𝜓𝜓) . Following the notations introduced in Section 2, we aim 
to identify a QG SGS parametrization (�̄ , �̄|�) given the parametrization for operator g by Equation 19 using 
both a priori and a posteriori learning strategies.

In order to study the effect of the SGS parametrization on scales interactions, we will consider the enstrophy 
spectrum Z(k) and the associated enstrophy flux ΠZ(k) in various flow configurations. Note that when the 
governing equation of reduced vorticity 𝐴𝐴 𝐴𝐴𝐴 is solved, the transfer term is now split in a resolved and a modeled 
part, as

𝑇𝑇 (𝑘𝑘) =
∫|𝐤𝐤|=𝑘𝑘

ℜ

⎧
⎪
⎨
⎪
⎩

̂̄𝜔𝜔
∗
(𝐤𝐤)𝐽𝐽 (�̄�𝜓 𝜓 �̄�𝜔) (𝐤𝐤)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

resolved

− ̂̄𝜔𝜔
∗
(𝐤𝐤)�̂�𝑅(𝜓𝜓𝜓𝜔𝜔)(𝐤𝐤)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

modeled

⎫
⎪
⎬
⎪
⎭

d𝑆𝑆(𝐤𝐤). (21)

We can also look at the resolved enstrophy equilibrium in physical space. The governing equation for 𝐴𝐴 𝐴𝐴𝐴 =
1

2
𝐴𝜔𝜔
2 

writes

𝜕𝜕𝑡𝑡�̄�𝑧 = 𝜈𝜈�̄�𝜈∇2
�̄�𝜈 − 𝜇𝜇�̄�𝜈�̄�𝜈 − 𝛽𝛽�̄�𝜈𝜕𝜕𝑥𝑥�̄�𝜓 + �̄�𝜈𝐹𝐹 − �̄�𝜈𝜔𝜔 (�̄�𝜓 𝜓 �̄�𝜈) + �̄�𝜈𝜔𝜔(𝜓𝜓𝜓𝜈𝜈)

⏟⏞⏞⏟⏞⏞⏟

𝑇𝑇�̄�𝑧

(22)

where the last term 𝐴𝐴 𝐴𝐴�̄�𝑧 shows the direct effect of the SGS term on the resolved enstrophy equilibrium. From Equa-
tion 20, this last term can be expressed as,

𝑇𝑇�̄�𝑧 = ∇ ⋅
(
�̄�𝜔
(
�̄�𝐮�̄�𝜔 − 𝐮𝐮𝜔𝜔

))
−
(
�̄�𝐮�̄�𝜔 − 𝐮𝐮𝜔𝜔

)
⋅ ∇�̄�𝜔𝜔 (23)

with  first term related to diffusion, and  second term related to the transfer between resolved and unresolved 
scales: if 𝐴𝐴

(
�̄�𝐮�̄�𝜔 − 𝐮𝐮𝜔𝜔

)
⋅ ∇�̄�𝜔 𝜔 0 , there is a direct transfer from resolved to unresolved scales (forwardscatter), but 

if 𝐴𝐴
(
�̄�𝐮�̄�𝜔 − 𝐮𝐮𝜔𝜔

)
⋅ ∇�̄�𝜔 𝜔 0 , there is a transfer from unresolved to resolved scale (backscatter). The latter will be the 

key quantity to study the ability of models to take into account backscatter. However, because models are built 
directly for R(ψ, ω) the above decomposition can not be performed, and only 𝐴𝐴 𝐴𝐴�̄�𝑧 can be considered.

3.2. Numerical Solver

Equation 9 is solved using a pseudo-spectral differentiable code with full 3/2 dealiasing (Canuto et al., 2012) 
and a classical fourth-order Runge-Kutta time integration scheme. The system is defined in a squared domain 
Ω ∈ [−π,π] 2 with a Fourier basis, that is, double-periodic boundary conditions ∂Ω on Ntrue = (Nx, Ny) grid points 
with uniform spacing 𝐴𝐴 Δtrue = Ω𝑁𝑁−1

true . The reduced states are obtained by projecting the true (or high-resolution) 
states through a convolution with a spatial kernel Gδ(k) at spatial scale δ > 0 followed by a discretization on the 
reduced grid 𝐴𝐴 Ω̄ , that is, with larger spacing Δreduced = δΔtrue equivalent to a sharp cutoff,

�̄�𝜔(𝑘𝑘) ∶= (𝜔𝜔 ∗ 𝐺𝐺𝛿𝛿)
(
|𝑘𝑘| < 𝜋𝜋Δ−1

reduced

)
. (24)



Journal of Advances in Modeling Earth Systems

FREZAT ET AL.

10.1029/2022MS003124

8 of 23

It has been shown previously that SGS parametrizations can perform differently depending on the type of filter 
used in the evaluations (Piomelli et al., 1988; Zhou et al., 2019). We then aim to evaluate how the choice of the 
filter affects the learning strategies and we consider two common types of filters, defined in spectral space as

Gaussian filter ∶

𝐺𝐺𝛿𝛿(𝑘𝑘) = exp

(

−
𝑘𝑘
2Δ2

reduced

24

)

,
(25)

Cut-off filter ∶

𝐺𝐺𝛿𝛿(𝑘𝑘) = 0,∀𝑘𝑘 𝑘 𝑘𝑘Δ−1

reduced
.

(26)

Regarding numerical aspects, we can solve the time integration of the reduced system g with a larger time-step 
by a factor corresponding to the grid size ratio (or filter scale δ), that is, Δtreduced = δΔttrue. To generate the corre-
sponding data sets 𝐴𝐴 {𝑅𝑅 (𝐲𝐲𝑖𝑖) , �̄�𝐲𝑖𝑖}𝑛𝑛 and 𝐴𝐴 {𝐲𝐲(𝑡𝑡)}

𝑡𝑡∈[0,𝑇𝑇 ] , we subsample one true state every δ iterations performed by the 
true system f.

3.3. Baseline Parametrizations

For benchmarking purposes, we implement some physics-based baselines and focus on parametrizations based 
on functional eddy viscosity (Kraichnan, 1976), that is, models that artificially dissipate energy at relevant scales 
to remain stable. This is to be contrasted with structural models that produce backscatter and thus suffer from 
stability issues and will not be considered here. One can state these parameterizations in a flux formulation,

P (�̄�𝜓 𝜓 �̄�𝜓) = ∇ ⋅ (𝜈𝜈𝑒𝑒∇�̄�𝜓) . (27)

where the eddy viscosity coefficient νe contains an arbitrary constant cP for which the optimal value depends on 
the flow configuration,

𝜈𝜈𝑒𝑒 = (𝑐𝑐PΔ)
𝑛𝑛|𝜀𝜀P (�̄�𝜓 𝜓 �̄�𝜓) | (28)

with n depending on the scaling law used to derive the model. We used the dynamic procedure proposed by 
Germano et al. (1991) and Lilly (1992) where the constant is computed from a least-square minimization of the 
residual SGS term with a filter size larger than δ, that is, 𝐴𝐴 𝐴𝐴𝐴 = 𝐴𝐴 ∗ 𝐺𝐺𝐴𝛿𝛿,

𝐴𝛿𝛿 𝛿 𝛿𝛿 . We also apply spatial averaging 
with positive clipping (Guan, Chattopadhyay, et al., 2022; Pawar et al., 2020) in order to avoid locally negative 
constants cP(x, y) < 0, that is, ensuring that the models are purely diffusive and νe ≥ 0.

One of the most popular SGS model has been proposed by Smagorinsky (1963). It derives from the assumption 
of direct cascade of energy, which is relevant for three-dimensional flows. However, this assumption is expected 
not to translate well to two-dimensional or geophysical turbulence, even if it has been already employed in global 
climate models (Delworth et al., 2012). Following a similar derivation, the Leith model (Leith, 1996) is often 
referred as the two-dimensional counterpart of the Smagorinsky model, assuming a direct cascade of enstrophy. 
The models are defined as eddy viscosity coefficients proportional to the resolved strain rate 𝐴𝐴 �̄�𝑆 and vorticity 
gradient 𝐴𝐴 ∇�̄�𝜔 , respectively,

Smagorinsky model ∶

𝜈𝜈𝑒𝑒 = (𝑐𝑐SΔ)
2|�̄�𝑆|,

(29)

Leith model ∶

𝜈𝜈𝑒𝑒 = (𝑐𝑐LΔ)
3|∇�̄�𝜔|.

(30)

We will denote by 𝐴𝐴 DynSmagorinsky and 𝐴𝐴 DynLeith the dynamic versions of these two models where cP has been 
computed using the dynamic procedure mentioned above.
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3.4. Neural Architecture and Training

Our main focus being here the impact of a priori and a posteriori strategies, 
we consider the same neural-network-based parametrization 𝐴𝐴  with the two 
learning settings. We use a convolutional neural network architecture, which 
is particularly relevant for translation-invariant problems and have been used 
with success to train SGS parametrizations, for example, Beck et al. (2019), 
Bolton and Zanna  (2019), Frezat et  al.  (2021), Guan, Chattopadhyay, 
et al. (2022), Lapeyre et al. (2019), and Mohan et al. (2020).

As shown in Figure 2, we use a simple ConvNet with 10 layers of convo-
lutions with nonlinear ReLU activations. More involved architectures could 
further improve the performance. We may point out that our goal is not to 
design an optimal NN-based architecture, but rather to evaluate the impact of 
different learning strategies at similar computational complexity for the SGS 
parameterization.

Regarding the learning phase, the training loss for the a priori strategy (Equa-
tion 3) computes the MSE of the predicted term with respect to the true SGS 
term on a batch of S samples,

prio() ∶=
1

𝑆𝑆

𝑆𝑆∑

𝑠𝑠=1

‖𝑅𝑅(𝜓𝜓𝜓𝜓𝜓)𝑠𝑠 − (�̄�𝜓𝑠𝑠𝜓 �̄�𝜓𝑠𝑠) ‖22. (31)

For the a posteriori strategy (Equation 7), the choice of training loss is more 
flexible, since we can explore spatio-temporal metrics for a batch of N = T/
Δtreduced discrete integration steps. To illustrate the basics of the strategy, we 
choose the MSE of the most important state of the QG system, that is, the 
vorticity,

post() ∶=
1

𝑁𝑁

𝑁𝑁∑

𝑛𝑛=1

‖ (𝜔𝜔 (𝑛𝑛Δ𝑡𝑡reduced)) − �̄�𝜔 (𝑛𝑛Δ𝑡𝑡reduced) ‖22. (32)

The models are trained with the Adam optimizer on the same data set containing 10 independent trajectories, 
that is, simulations of 3,000 snapshots each using different initial conditions, which gives a data set of 30,000 
samples. As stated in Equation 32, we subsample training data from the DNS sequences with a Δtreduced sampling 
rate. We may point out that this configuration leads to a high inter-sample correlation for the training data set 
(Guan, Subel, et al., 2022). In our experiments, we chose an a priori batch size equal to the number of a posteriori 
temporal iterations, that is, S = N = 25. This experimental setting ensures that both a priori and a posteriori train-
ing epochs use each training state only once within one epoch. It enables a fair comparison of the two schemes in 
terms of training convergence. Empirically, we noted that 30 epochs were necessary for the a priori strategy, while 
five are enough for the a posteriori strategy. We note however that the latter is consequently more expensive due 
to the solver steps involved in the training loop. Regarding the a posteriori strategy, training a model that performs 
the time integration of a system of PDEs inside the minimization loop may lead to instabilities and difficulties. 
To address these issues, we consider Algorithm 1. It involves the following key steps:

•  A gradual increase of the time horizon [0, T] (Line 2). The time integration scheme of reduced system with
operators g and 𝐴𝐴 NN may result in a very deep computational graph (typically, ConvNet with more than eight
layers with the considered configuration with 25 integration steps), which may in turn lead to the commonly
known vanishing gradient problem (Hochreiter et al., 2001), especially for the first epochs of the training

process. To address this issue, we gradually increase the temporal horizon from𝐴𝐴

[
0,

𝑇𝑇

𝜖𝜖

]
 to [0, T] where ϵ corre-

sponds to the number of training epochs. In this study, the increment is done using a simple linear function,
but any increasing heuristic should work as long as the first critical epochs take a small number of iterations.

•  Withdrawing simulated data on the fly for which the Courant-Friedrichs-Lewy (CFL) is greater than some
threshold (Line 8). Incorrect predictions from the NN especially during the first epochs of the training process 
for PDE problems at the limit of numerical stability can lead to numerical blowups of the system and by

Figure 2. Sketch of the fully convolutional architecture employed in this 
study. The model applies nine inner convolutional blocks, that is, one 2D 
convolution layer 𝐴𝐴 Conv𝐾𝐾

𝐶𝐶
 and one nonlinear ReLU activation. The number 

of channels C for the inner convolutions and the kernel size K are equal to 
64 and 5, respectively. For the final layer, the model uses a 2D convolution 
layer to output the targeted real-valued subgrid-scale (SGS) term. Since our 
computational domain is doubly periodic, we also use a periodic padding as a 
first layer.
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consequence exploding gradient for the minimization algorithm. We then discard batches for which the CFL 
is greater than some threshold, commonly chosen to be 1.

4. Results
In order to evaluate the performance of a priori and a posteriori learning strategies, we report numerical exper-
iments for three different configurations of QG flows (see Equation 3). First, we study decaying turbulence and 
compare the a posteriori strategy with previous works based on the a priori strategy (Guan, Chattopadhyay, 
et al., 2022; Maulik et al., 2019). Then, we assess the performance of the proposed models in a more realistic 
wind-forced configuration representative of mesoscale oceanic simulations (Fox-Kemper & Menemenlis, 2008; 
Graham & Ringler, 2013). Finally, we analyze the impact of planetary rotation through the beta-plane effect on 
a mid-latitude geophysical flow.

For these three cases, we consider the following experimental setup. The training and test data involve respec-
tively 10 and 5 DNS corresponding to the same configurations with different initial conditions. The reduced 
systems are run with δ = 16, that is, the reduced grid is 16 times smaller compared to the true grid resolution in 
each direction. Reduced systems are integrated for 6,000 iterations for the non-stationary decay cases and 18,000 
iterations to determine long-term statistics of the forced and beta-plane configurations. We may emphasize that 
the simulations used for evaluation purposes are never seen during the training phase. The parameters of the 
different flows are shown in Table 1 in dimensionalized units. Overall, for each QG configuration, we report a 

Algorithm 1. Training Algorithm for SGS Model 𝐴𝐴  Using the a Posteriori Strategy. True Variables y are 
Sampled Randomly From Data Set Which is Only Required to Contain True Variables. In Practice, the Projection 
can Be Applied Beforehand and Data Set 𝐴𝐴 { (𝐲𝐲(𝑡𝑡))}

𝑡𝑡∈[0,𝑇𝑇 ] can Also Be Built From Projected True States. Note 
That the Outer Loop Iterates Over the Entire Trajectories for Each Epoch.
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quantitative synthesis for the cutoff and Gaussian filters and further illustrate the key features of the different 
learning strategies using a cutoff filter.

Important quantities discussed in the evaluation are both;

•  short-term temporal evolution of quadratic invariants both for the energy (Equation 12) and the enstrophy
(Equation 13), typical in weather forecast.

•  long-term statistics from enstrophy spectrum and flux (Equation 17) in spectral space, relevant for climate
predictions.

Name Nx × Ny Lx × Ly Δt μ ν β Re

Decay 2,048 × 2,048 2π × 2π 10 –4 0 3.125 × 10 −5 0 3.2 × 10 4

Forced 2,048 × 2,048 2π × 2π 10 –4 2 × 10 −2 1.025 × 10 −5 0 2.2 × 10 5

Beta-plane 2,048 × 2,048 2π × 2π 10 –4 2 × 10 −2 1.025 × 10 −5 2.195 × 10 2 3.4 × 10 5

Note. Details about simulation spin-up, initialization, and forcing parameters are described in more details in Section 4.2.
Note that reduced systems use the same parameters, except for grid resolution 𝐴𝐴

(
�̄�𝑁𝑥𝑥, �̄�𝑁𝑦𝑦

)
 obtained from the spatial filter scale 

(Nx/δ, Ny/δ) and time-step Δtreduced = δΔttrue. The quantities are given as numerical (unitless) values directly used in the solver 
for reproducibility. Still, details on how these parameters are chosen are provided in their corresponding result section.

Table 1 
Parameters of the Different Direct Numerical Simulations (DNS) Flow Configurations

Figure 3. True initial vorticity field ω (left) and corresponding sub-grid contribution 𝐴𝐴 𝐴𝐴
′ = 𝐴𝐴 − �̄�𝐴 (right) for the three 

case-studies: decay (top), forced (middle) and beta-plane (bottom).
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4.1. Decaying Turbulence

In the context of two-dimensional SGS parametrization with ML models, 
the decaying turbulence configuration is one of the most studied (Guan, 
Chattopadhyay, et  al., 2022; Maulik et  al., 2019; Pawar et  al., 2020). This 
type of flow is particularly interesting because of its non-stationary nature, 
i.e., the system invariants are temporally varying. Similarly to Guan,
Chattopadhyay, et al. (2022), we sample the initial vorticity fields randomly 
from a Gaussian distribution 𝐴𝐴 𝐴𝐴 ∼  (0, 1) at moderate wavenumbers k ∈ [10, 
32] and integrate the system for 10,000 iterations before reaching spectrum
self-similarity (Batchelor, 1969).

From this starting time t0, the vorticity fields exhibit an early turbulence 
behavior with a lot of fine structures (see Figure 3, top). DNS and reduced 
models with SGS parametrizations are run until t  =  9.6, which is longer 
than the temporal horizon used in the training data by a factor of two. In 
two-dimensional decaying flows, we expect to see vortex pairing and emer-
gence of larger structures as shown in Figure 4. Due to their purely diffusive 
form, parameterizations 𝐴𝐴 DynSmagorinsky and 𝐴𝐴 DynLeith cannot perform well 
on this configuration and are indeed incorrectly dissipating relevant small 
scales. The NN-based model trained with the a priori strategy has accumu-
lated small-scale enstrophy and is thus perturbed with noise coming from 
numerical instabilities. The model trained with the a posteriori visually 
shows the expected stable dynamics with small-scale features, even outside 
the training regime, which supports some degree of generalization (or 
extrapolation).

The evolution of domain-averaged quadratic integrals in Figure 5 confirms 
the observations from the vorticity fields, since we can see a large energy 
and enstrophy decrease for both 𝐴𝐴 DynSmagorinsky and 𝐴𝐴 DynLeith , while the a 
priori model correctly captures the energy decay but dissipates enstrophy too 
slowly compared to the DNS. Spectral statistics shown in Figure 6 are also in 
close agreement to the DNS for the a posteriori-trained model, in particular 
for the large wavenumbers of the enstrophy spectrum Z(k) = k 2E(k) which 
particularly highlight the dynamics of the smallest resolved scales.

4.2. Forced Turbulence

The second case-study involves QG flows with a source term F designed to 
mimic wind-stress. We study a particular configuration inspired by Graham 
and Ringler (2013), which evaluated the performance of a large number of 
physics-based parametrizations in mesoscale ocean simulations. To repro-
duce these realistic equilibrium solutions, we use a bottom drag (μ  >  0) 
and initiate turbulent mixing from a wind-stress slowly varying in time at 
large-scale k = 4 with steady enstrophy rate injection Z(F) = 3 such that,

𝐹𝐹𝜔𝜔(𝑡𝑡) = cos(4𝑦𝑦 + 𝜋𝜋 sin(1.4𝑡𝑡)) (33)

−cos(4𝑥𝑥 + 𝜋𝜋 sin(1.5𝑡𝑡))

𝐹𝐹 =
1

3
𝑍𝑍 (𝐹𝐹𝜔𝜔)𝐹𝐹𝜔𝜔(𝑡𝑡)

(34)

In order to converge to a stationary turbulent state, we initialize the simula-
tion runs from a few large-scale Fourier modes and spin-up on a smaller grid 
(1,024 2) for over 500,000 iterations. The initial conditions for training and 

Figure 4. Vorticity fields for the different models at the end (6,000 reduced 
system iterations equivalent 96,000 true system iterations) of one decaying 
turbulence evaluation trajectory.
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evaluation (see Figure 3, middle) are taken after energy and enstrophy propagation to the smallest scales of the 
true grid (2,048 2) in about 25,000 iterations.

To evaluate the long-term performance of the forced configuration in equilibrium, we run simulations until 
t = 2.88, which is at least three times longer than the complete decorrelation time of the system due to chaos. 
We report the vorticity fields at the end of the simulations in Figure 7. The true vorticity state exhibits both large 
vortices generated by the wind forcing and small filaments in between. Overall, we draw conclusions similar to the 
decaying turbulence regime. We note that the small structures are inaccurately predicted for both 𝐴𝐴 DynSmagorinsky 
and 𝐴𝐴 DynLeith due to dissipation and for the a priori model due to numerical instabilities. By contrast, the a poste-
riori model is the only one to correctly capture both the large-scale and fine-scale patterns in this configuration.

Figure 5. Evolution of domain-averaged energy (left) and enstrophy (right) computed in non-dimensionalized time units in 
the decaying turbulence setting.

Figure 6. Final enstrophy spectrum (left) and time-averaged enstrophy flux (right) describing statistical performance of the 
models in decaying turbulence.
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While domain-averaged integrals fluctuate a lot on such long-term trajec-
tories due to the chaotic nature of the flow, we expect those quantities 
to remain approximately constant over time. This property is verified on 
the kinetic energy for both NN-based models, but the enstrophy of the a 
priori-trained model increases over time, which indicates some accumu-
lation of small-scale energy (see Figure 8) and may result in a potential 
future blow-up of the simulation. However, the time-averaged statistical 
enstrophy spectrum shown in Figure  9 demonstrates the ability of the a 
posteriori model to reproduce accurately both the smallest scales and the 
largest scales of the simulation (small wavenumbers) compared to the other 
models.

4.3. Beta-Plane Turbulence

The third case-study runs the same forced simulation as in the previous 
configuration complemented by a beta-plane effect to account for the meridi-
onal variation of Coriolis force caused by a spherical shape. We take a Rossby 
parameter β corresponding to Earth's planetary rotation on mid-latitudes 
(60°).

The beta-effect has an important impact on the topology of the dynamics, 
as it creates high-velocity longitudinal jets as seen in Figure 3, bottom. In 
this simple setting without topography (flat bottom layer), the system does 
not go through state transitions but remains in a statistical equilibrium. The 
strong vorticity gradients in between jets are predicted more accurately (see 
Figure 10) by the 𝐴𝐴 DynLeith than the 𝐴𝐴 DynSmagorinsky , which still over-dissipates 
at small-scale. The model trained a priori is not stable at all in this configura-
tion, while the a posteriori model remains stable to simulate visually consist-
ent patterns.

The instabilities visible in the vorticity field of the a priori model are 
explained by the increasing energy and enstrophy in Figure 11. This reveals a 
non-conservative behavior which leads to a simulation blowup. The a posteri-
ori strategy performs extremely well on this long-term simulation, predicting 
in particular a correct enstrophy evolution compared to that of the DNS. The 
enstrophy spectrum and fluxes (see Figure  12) are similar to those of the 
forced turbulence configuration, except that the linear damping has a stronger 
impact, due to the relative increase in velocity from the beta-effect. Overall, 
the conclusions are the same as the previous two configurations, with highest 
fidelity small-scale dynamics being produced by the model trained using the 
a posteriori strategy.

4.4. Quantitative Analysis

As a quantitative synthesis of our numerical experiments, we first report 
the performance on two metrics for the three case-studies and the different 
models: an a priori metric given by Pearson correlation coefficient of the 
predicted SGS terms (Table. 2.) and an a posteriori metric given by a variant 
of the error-landscape enstrophy flux assessment presented by Meyers (2011) 
(Table. 3). We report these performance metrics both for cutoff and Gaussian 
filters.

The selected learning strategy clearly impacts the corresponding metrics. 
For the three flow regimes, the a priori learning performs better on a priori 
metrics, whereas the a posteriori learning leads to the best score on a 

Figure 7. Vorticity fields for the different models at the end (18,000 reduced 
system iterations equivalent 288,000 true system iterations) of one forced 
turbulence evaluation trajectory.
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 posteriori metrics. Concerning the projection kernel, physical models and the NN-based model trained a 
priori perform better with the Gaussian filter. Note that this is not surprising, as Gaussian filtering tends to 
smooth out discontinuities in the subgrid term (Canuto et al., 2007) which might help during a priori training. 
By contrast, the a posteriori learning scheme results in consistent scores for both the Gaussian and cutoff 
kernels.

We analyze the ability of the benchmarked models to reproduce modeled transfers in physical space. Figure 13 
shows the PDF of 𝐴𝐴 𝐴𝐴�̄�𝑧 for the three different configurations at the end of their respective trajectories. First, 
while we can not explicitly identify forward and backward transfers, we can see that the resolved transfer term 
produced by the physical models is not symmetric, that is, it produces a larger amount of negative values. This 
suggests that theses models are not able to produce backscatter by construction. The a posteriori model always 

Figure 8. Evolution of domain-averaged energy (left) and enstrophy (right) computed in non-dimensionalized time units in 
the forced turbulence setting.

Figure 9. Time-averaged enstrophy spectrum (left) and enstrophy flux (right) describing statistical performance of the 
models in forced turbulence.
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performs better than the a priori one, with predictions that better reproduce 
the DNS on the tails of the distribution. However, even if the a priori model 
has been demonstrated to be unstable on the beta-plane configuration, the 
resolved transfer term remains close to the DNS, but overpredicts positive 
tails, which, again, could indicate an incorrect representation of energy 
backscatter. We can further analyze the instability related to 𝐴𝐴 𝐴𝐴�̄�𝑧 by looking 
at the evolution of its spatial average, as shown in Figure 14. The resolved 
transfer term of the a priori model rapidly diverges from the DNS in the 
beta-plane configuration, which identifies the instability. As expected, the 
physical models produce large negative values at the beginning of the simu-
lations, which can be explained by their highly dissipative nature. The a 
posteriori model, however, is the most accurate and remains close to the 
DNS throughout the trajectories.

5. Discussion
This study investigated different learning strategies to train SGS parametri-
zations for two-dimensional QG turbulent flows. While the state-of-the-art 
has mostly explored a priori learning schemes, our numerical experiments 
stress the significant improvement brought by the a posteriori learning 
strategy to better reproduce small-scale dynamics on large temporal hori-
zons with great accuracy. For all the flow configurations and coarsening 
schemes considered in this study, SGS parametrizations trained according 
to a posteriori training loss clearly outperform both physics-based and ML 
baselines.

The a posteriori learning strategy introduced in this paper opens the possi-
bility to design stable subgrid parametrizations with more flexibility than 
state-of-the-art ML-based approaches. Indeed, we have here explored a 
relatively simple a posteriori training loss given by a vorticity-based MSE, 
the a posteriori learning scheme offers a much greater flexibility for the 
exploitation and combination of different a posteriori metrics during the 
learning phase. Losses defined from classic performance metrics such 
as energy transfers and distributions seem particularly appealing. One 
may also explore application-specific metrics including among others 
boundary layers flows. As the a posteriori learning strategy results in 
an improved stability of the trained SGS parametrizations, it may also 
offer means to explore more complex neural architectures for SGS terms. 
Here, we considered a relatively simple ConvNet, but more complex and 
state-of-the-art neural architectures including for instance ResNet, UNet 
and transformer networks could be worth exploring. Another interest-
ing avenue is the joint training of a posteriori models in the context of 
data assimilation such as described in Bonavita and Laloyaux (2020) and 
Farchi et al. (2021).

An interesting connection can indeed be made between a posteriori 
learning and variational data assimilation techniques. Our a posteriori 
learning algorithm formulates a variational problem which is formally 
equivalent to the strong constraint 4D-Var scheme (Blayo et  al.,  2015; 
Carrassi et al., 2018). But, in our case, the control vector is composed of 
the parameters of the neural network and observations are assumed to be 
perfect. The analogy between a posteriori learning and 4D-Var therefore 
brings the question of whether parametrizations, or more generally correc-
tions to existing models, could be learned directly from sparse and noisy 

Figure 10. Vorticity fields for the different models at the end (18,000 reduced 
system iterations equivalent 288,000 true system iterations) of one beta-plane 
turbulence evaluation trajectory.
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 observations (Schneider, Lan, et al., 2017). In this sense, a posteriori learning is related to the bias correction 
methods that have been proposed in data assimilation (Dee, 2005), and  especially the schemes proposed to 
infer state-dependent corrections to existing models (D'andrea & Vautard, 2000; Griffith & Nichols, 2000). 
Interestingly, this field has received renewed attention over recent years with several authors proposing to 
approach bias correction with ML (Bonavita & Laloyaux,  2020; Farchi et  al.,  2021). In this context, we 
stress that our approach is very similar to the scheme introduced by Farchi et al. (2021), with the noticeable 
difference that we here learn a correction through the 4D-Var scheme itself, and not from the increment of the 
assimilation scheme.

Figure 11. Evolution of domain-averaged energy (left) and enstrophy (right) computed in non-dimensionalized time units in 
the beta-plane turbulence setting.

Figure 12. Time-averaged enstrophy spectrum (left) and enstrophy flux (right) describing statistical performance of the 
models in beta-plane turbulence.
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By construction, parametrizations learned with the a posteriori strategy should improve the short-term 
forecasting capabilities of the models. This is true in particular if the training loss is defined as the sum 
of forecasting errors over a given time horizon as considered here. Interestingly, we noted here that for 
SGS parametrizations, this short-term forecasting performance translates in a better long-term stability and 
representation of long-term flow patterns where the long-term horizon being several order of magnitudes 
greater than the time horizon in the training loss (18,000 vs. 25 time steps). While recent studies have 
explored neural models for the short-term forecasting of realistic geophysical flows, especially for weather 
forecasting applications (Schultz et al., 2021; Weyn et al., 2021), we believe our study opens new avenues 
for the exploitation of learning-based components in climate-scale simulations, which remain an open chal-
lenge (Rasp et al., 2018). In this respect, to account for the chaotic nature of turbulent flows, a posteriori 
training losses could also benefit from statistical metrics as opposed to synoptic ones as the MSE used in 
this work.

But a strong requirement of the proposed framework lies in the differentiability of the considered dynami-
cal model, which may question its practical applicability. Indeed, most large-scale forward solvers in earth 
system models (ESM) rely on high-performance languages that do not embed AD capabilities. While it is 
generally recognized that adjoint models are very useful additional tools for these solvers (Barkmeijer, 2009; 
Wunsch & Heimbach,  2013), adjoint operators are readily available only for a small fraction of them 
(Heimbach et al., 2005; Vidard et al., 2015). We stress that the emergence of a new generation of models 
written in differentiable programming languages such as JAX and JuliaDiff (Häfner et al., 2021; Huang & 

𝐴𝐴 𝐴𝐴𝑅𝑅𝑅

Decay Forced Beta-plane

Cutoff Gaussian Cutoff Gaussian Cutoff Gaussian

𝐴𝐴 DynSmagorinsky 0.16 0.38 0.09 0.55 0.04 0.28

𝐴𝐴 DynLeith 0.13 0.32 0.08 0.49 0.03 0.17

𝐴𝐴 a priori 0.75 0.90 0.82 0.95 0.82 0.96

𝐴𝐴 a posteriori (states) 0.77 0.57 0.45 0.29 0.48 0.21

Note. We compute the correlation coefficient between predicted and exact subgrid terms, which favors the a priori learning 
strategy.

Table 2 
Short-Term Performance of the Considered Subgrid-Scale (SGS) Parametrizations in the Three Different Configurations 
With Both Cutoff and Gaussian Projection Kernels

𝐴𝐴 𝐴𝐴
2
(
Π𝑅𝑅

𝑍𝑍
− Π

𝑍𝑍

)
Decay Forced Beta-plane

Cutoff Gaussian Cutoff Gaussian Cutoff Gaussian

𝐴𝐴 DynSmagorinsky 1.95 1.31 0.49 0.16 2.83 1.75

𝐴𝐴 DynLeith 1.64 1.02 0.16 0.11 1.66 0.98

𝐴𝐴 a priori 0.74 0.60 0.36 0.40 8.73 0.26

𝐴𝐴 a posteriori (states) 0.13 0.09 0.02 0.02 0.30 0.05

Note. We compute the L 2 distance between the reference enstrophy fluxes and the ones simulated using the different SGS 
parameterizations. The a posteriori learning strategy clearly leads to much better scores.

Table 3 
Long-Term Performance of Considered Subgrid-Scale (SGS) Parametrizations in the Three Different Configurations With 
Both Cutoff and Gaussian Projection Kernels
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Topping, 2021; Ramadhan et al., 2020; Sridhar et al., 2021) naturally supports our contribution. Besides, 
deep differentiable emulators (Hatfield et al., 2021; Kasim et al., 2021; Nonnenmacher & Greenberg, 2021) 
that learn a differentiable approximation of a non-differentiable forward solver or of its adjoint may also 
open new avenues for the development of SGS parametrizations for state-of-the-art ESMs with a posteriori 
learning strategies.

Still, while one could benefit from the ongoing effort for differentiable ESMs, the development and the prac-
tical implementation of ML-based parametrizations in non-differentiable ESMs (Madec et al., 2017; Marshall 
et al., 1997) is also an important question. In this context, physics-based neural networks using a priori train-
ing schemes arise as relevant options, given the promising results already reported for the oceanic (Zanna 
& Bolton, 2021) and atmospheric (Gentine et  al.,  2021) parts of climate models. We also believe that the 
proposed a posteriori strategy combined with physics-based constraints will also be worth exploring in future 
work.

Figure 13. Probability distribution of the modeled transfer term in physical space for the three case-studies: decay (left), forced (middle), and beta-plane (right) at the 
end of the trajectories.

Figure 14. Temporal evolution of the spatially averaged modeled transfer term in physical space for the three case-studies: decay (left), forced (middle), and beta-plane 
(right).
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Data Availability Statement
The results can be reproduced from the data, models, and associated learning algorithms provided along with the 
pseudo-spectral quasi-geostrophic code, available in https://doi.org/10.5281/zenodo.6799035.
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Erratum
In the originally published version of this article, Figures 7 and 10 were missing labels on the left side of the 
panels. The figures have been corrected, and this may be considered the authoritative version of record.
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