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1  |  INTRODUC TION

Pelagic ecosystems are the largest living space in the ocean. It is 
a three- dimensional aquatic environment away from the seabed 

where small crustaceans, fish, squid and a variety of gelatinous life- 
forms make up the bulk of animal biomass (Murray & Hjort, 1912). 
Collectively, they can be referred as zooplankton or micronek-
ton depending on their ability to swim against currents (Brodeur 
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Abstract
Aim: Water column acoustic backscatter is regularly registered during oceanographic 
surveys, providing valuable information on the composition and distribution of pelagic 
life in the ocean. We propose an objective approach based on functional data analysis 
to classify these acoustic seascapes into biogeographical regions.
Location: Tropical South Atlantic Ocean off northeastern Brazil.
Taxon: Sound- scattering pelagic fauna detected with acoustic echosounders, princi-
pally small fish, crustaceans, squid and diverse gelatinous life- forms.
Methods: We use acoustic backscatter as a function of depth, simultaneously at three 
frequencies, to numerically describe the vertical distribution and composition of 
sound- scattering organisms in the water column. This information is used to classify 
the acoustic seascape through functional principal component analysis. The analysis 
routine is tested and illustrated with data collected at 38, 70 and 120 kHz in waters 
affected by contrasting environmental conditions.
Results: Acoustic seascape partitioning mirrored the distribution of current systems, 
fronts and taxonomically based regionalization. The study area was divided between 
slope- boundary and open- ocean waters, and between spring and fall hydrological 
regimes.
Main Conclusions: The acoustic seascape consistency and the spatiotemporal coher-
ence of the regions classified show that the method is efficient at identifying homoge-
neous and cohesive sound- scattering communities. Comparisons against hydrological 
and biological regionalization prove that the method is reliable at delineating distinct 
pelagic ecosystems in a cost- efficient and non- intrusive way.
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et al., 2005). They are the link between primary production and 
top predators (Choy et al., 2016), but also between surface and 
the deep ocean by undertaking extensive vertical migrations that 
fuels the water column with organic matter (Ariza et al., 2015; Saba 
et al., 2021). Zooplankton and micronekton inhabit a vast three- 
dimensional space, influenced by different physical and biogeo-
chemical regimes, such as light, temperature, oxygen or productivity 
(Aksnes et al., 2017; Bertrand et al., 2011; Boswell et al., 2020). Their 
distribution and composition change across eddies, fronts, internal 
waves and water masses, being affected by both local-  and large- 
scale processes (Béhagle et al., 2016; Bertrand et al., 2014; Godø 
et al., 2012; Kaartvedt et al., 2012; Klevjer et al., 2016).

As a result of these complex spatial patterns, it is difficult to in-
vestigate the distribution of zooplankton and micronekton solely 
through traditional net sampling. Instead, this research is often 
complemented with continuous and higher- resolution observation 
instruments such as acoustic echosounders (Godø et al., 2014; 
Handegard et al., 2013). Water column backscatter is nowadays 
regularly recorded during oceanographic research surveys. When 
collected in mobile platforms, continuous series of these vertical 
profiles form acoustic seascapes, where the spatial distribution of 
sound- scattering organisms can be observed along the surveyed 
transect. While not all organisms are efficiently detected with echo-
sounders (Dornan et al., 2019; Proud et al., 2019), acoustic seascapes 
are useful to study the structure and composition of pelagic ecosys-
tems (Benoit- Bird & Lawson, 2016). In fact, along- track differences 
in the shape and scattering properties of profiles often reveal the 
presence of ocean fronts or ecosystem transitions (Escobar- Flores 
et al., 2020; Godø et al., 2012; Nero et al., 1990).

Historically, acoustic classification methods were aimed at 
identifying specific targets and not entire water- column profiles 
(Fernandes et al., 2005; Korneliussen et al., 2018). However, new 
promising approaches have emerged in recent years to extract tem-
poral or spatial patterns, using acoustic profiles as the unit of classifi-
cation. While some of these methods extracted distribution metrics 
(Urmy et al., 2012) or scattering layer features (Proud et al., 2015, 
2018) to parametrize profiles, others used the profile signal itself 
(Lee & Staneva, 2020; Receveur et al., 2020). Ideally, a combina-
tion of aspects such as vertical distribution, magnitude and the fre-
quency response of backscatter, all along the acoustic profile, would 
yield the most comprehensive seascape classification. This would 
be equivalent to taxonomically based marine regionalization where 
the spatial assemblage, the proportions and composition of com-
munities are key aspects to delineate ecosystems (Longhurst, 2010; 
Spalding et al., 2007).

Functional data analysis (FDA) is a branch of statistics that oper-
ates with functions rather than discretized data vectors. It encom-
passes a set of tools similar to those in conventional statistics such 
as the analysis of variance or principal component analysis (PCA) 
but operating with functions instead of discrete values (Ramsay & 
Silverman, 2005). In this way, FDA can parametrize and analyse the 
shape of any signal varying over a physical continuum, typically, time 
or space. FDA has been long used in the fields of economics, medical 

sciences or meteorology, but also in oceanographic studies, exhibit-
ing a great potential at classifying temperature and salinity profiles 
in the ocean (Assunção et al., 2020; Nerini et al., 2010; Pauthenet 
et al., 2017). With conventional statistics, the analysis of variance or 
PCA in a set of oceanographic profiles would yield the same result 
even if we permuted the order of values along the depth dimension. 
With FDA, on the contrary, results would be different because the 
method explicitly considers the along- depth distribution of values. 
This makes FDA specially suitable to describe and classify profiles 
according to their shape, a feature that has proven of great utility 
to delineate systems and fronts in the ocean (Assunção et al., 2020; 
Pauthenet et al., 2017).

Here we propose a novel approach based on FDA to describe 
and classify acoustic seascapes. The method do not rely on met-
rics or features extracted from acoustic profiles. Instead, we look 
at the shape of the signal along the depth dimension, considering 
the full information embedded in the profiles, simultaneously at 38, 
70 and 120 kHz. This functional and multifrequency approach en-
ables to explicitly consider the vertical assemblage of distinct bio-
logical components within the water column, allowing an effective 
visualization of how the system changes along the surveyed area. 
Similarly to the term ‘ecoregion’, referred in biogeography to areas 
with characteristic species assemblages (Longhurst, 2010; Spalding 
et al., 2007), here we introduce the term ‘echoregion’, referred 
to areas with particular assemblages of sound- scattering pelagic 
organisms.

The analysis routine is tested and illustrated on acoustic data 
collected in waters off northeastern Brazil, an area in the western 
Tropical Atlantic influenced by coastal processes, island mass effects 
and the convergence of major ocean currents systems (Assunção 
et al., 2020; Dossa et al., 2021). We describe the application of FDA 
on multifrequency echosounder data for the first time, and provide 
an open- source software to facilitate future implementations of the 
method. Additionally, we discuss the results in the context of ocean-
ographic and ecological features of the studied area.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

Two oceanographic surveys, ABRACOS I and ABRACOS II, were 
performed in the Southwest tropical Atlantic in Austral spring 2015 
(September 29– October 21) and fall 2017 (April 9– March 8), as part of 
the project ‘Acoustics along the Brazilian coast’ (Bertrand, 2015, 2017). 
The sampling areas included the continental slope off northeastern 
Brazil, and oceanic waters around the islands and seamounts of the 
Fernando de Noronha Chain. Acoustic transects were conducted per-
pendicularly over the continental slope, and radially around the Rocas 
Atoll and the Fernando de Noronha Archipelago (Figure 1; Figure S1). 
Acoustic data were collected with a SIMRAD EK60 echosounder at 
38, 70 and 120 kHz, synchronously transmitting every 2– 3 s. Volume 
backscattering strength ‘Sv’ (dB re 1 m−1; MacLennan et al., 2002) was 
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recorded down to 700 m depth with a pulse duration of 512 μs, beam 
angle of 7°, and a transmit power of 1000, 750 and 200 W at 38, 70 and 
120 kHz, respectively. Standard target calibration of the echosounder 
was conducted prior to data acquisition (Demer et al., 2015).

2.2  |  Data processing

Acoustic data were processed using the open- source library EchoPY 
v1.1, (2020), implemented in Python 3. Near- surface noise was 
avoided by excluding the signal from the transducer to a fixed dis-
tance of 10 m. Background noise was estimated and subtracted using 
the approach of De Robertis and Higginbottom (2007). Low signal- to- 
noise regions were excluded in two steps. First, samples with signal- 
to- noise ratios below 10 dB were set to −999 dB. Second, the depth 
range where background noise was above −80 dB was removed. 
Single- ping interferences from other instruments, and periods with 
either noise or attenuated signal due to inclement weather, were re-
moved using the filters described by Ryan et al. (2015). Sv data were 
vertically and horizontally downsampled, by computing the arith-
metic mean in the linear domain, to a resolution of 2 m by 2000 m, 
respectively. Such resolution was chosen to prevent ephemeral hor-
izontal features to be considered, as the present study was aimed 
at analysing larger regional- scale patterns of the acoustic seascape. 
Only acoustic profiles collected at isobaths deeper than 1000 m were 
included in the analysis.

2.3  |  Functional data analysis

Functional data analysis was used to simultaneously consider varia-
tions of the Sv signal at 38, 70 and 120 kHz, as a function of depth. 

This enabled to numerically describe and classify each acoustic 
profile according to the along- depth distribution of distinct sound- 
scattering organisms. This analysis was conducted separately on 
daytime and nighttime data, but mixing the two sampling periods, 
Spring 2015 and Fall 2017. Dawn and dusk time was excluded from 
the analysis by removing profiles where the centre of the sun was 
between 0° and 18° below the horizon, following the astronomical 
definition of twilight. A summary flowchart documenting the meth-
odology sequence for the use of FDA is presented in Figure 2 and 
described below. All functions required to implement the FDA rou-
tine, as described in the present study, are publicly available within 
the analysis module of EchoPY v1.1 (2020).

2.3.1  |  From discrete to functional data

First, discrete data from acoustic profiles must be converted 
into continuous curves using a decomposition in a basis system 
(Figure 2, step 1). Basis systems are linear combinations of known 
basis functions (�k) adjusted on the data, where the user can choose 
the type and number of functions or even apply constraints to tune 
the fitting process (Ramsay & Silverman, 2005). Here we chose a 
‘B- spline’ basis, which is built upon spline functions, as the most 
suitable approximation system for non- periodic functional data (de 
Boor, 1978). The mathematical expression can be summarized as 
follows:

where ci
n,k

 is the coefficient of decomposition for the basis function 
�k, which is dependent on the depth dimension z and is defined for a 

(1)

x
i

n
(z) =

K
∑

k=1

c
i

n,k
�k(z), i ∈ {u38, u70, u120,m38,m70, l38}, n = 1, … ,N,

F I G U R E  1  Sampling area and ship track (black line) for ABRACOS I and ABRACOS II surveys, conducted in Austral spring 2015 and fall 
2017, respectively.
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given spatial location n and variable i . The number and the degree of 
basis functions (N) control the flexibility and the fitting performance 
of the basis system with respect to the actual data points. The more 
basis functions and the higher the degree, the better it will keep the 
vertical complexity of the original profile. On the contrary, few basis 
of low degree will be better to smooth out high- frequency variability 

in exchange to target broader vertical patterns in the water column. 
The number of basis is a user decision. It depends on the vertical vari-
ability that the study aims to represent and analyse. Here, regional- 
scale acoustic features were mainly sound- scattering layers with a 
vertical extent greater than 10 m. We found therefore appropriate to 
use a third- degree basis function every 10 m depth to represent the 

F I G U R E  2  Implementation of the method. Acoustic data are segmented in upper (u), mid (m) and lower (l) depth intervals of equivalent 
range at 38, 70 and 120 kHz frequencies. For every profile, six curves are fitted, one for every depth- frequency segment where the acoustic 
signal is available: u38, u70, u120, m38, m70 and m120. Profiles and their curve descriptors are stored in a data matrix as rows and columns, 
respectively. The cross- covariance matrix is computed and decomposed into principal components (PCs) through functional principal 
component analysis (PCA). The variance induced in the water column by each PC and for any frequency can be explored and then a suitable 
number of these PCs are selected to classify the acoustic seascape. Each step of this figure is described in detail in Section 2.3.
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underlying vertical structure of the surveyed region without overfit-
ting (Figure 3).

2.3.2  |  Defining functional variables

A requirement for multivariate FDA is that all variables within 
the same observation need to be approximated with a consistent 
basis system. Which means that they must be built with the same 
type and number of basis functions, and use the same independ-
ent variable. The challenge with multifrequency acoustics is that 
the independent variable, depth, is not consistent. For this study, 
acoustic data were available from 10 m to approximately 700, 450 
and 250 m depth, at 38, 70 and 120 kHz, respectively. Depending 
on the background noise conditions during the survey. If the same 
number of basis functions were adjusted to every frequency, we 
would end up with basis systems of inconsistent vertical resolu-
tion. To solve this issue, we broke up the three frequencies into 
six variables covering identical vertical extent along consecutive 
depth ranges (Figure 3). We defined the following variables for 
every observation: upper- 38, upper- 70, upper- 120, mid- 38, mid- 70 
and lower- 38 (u38, u70, u120, m38, m70 and l38). Where ‘upper’, 
‘mid’ and ‘lower’ refer to 220 m vertical intervals, from 10 to 230, 
230 to 450 and 450 to 670 m depth, respectively (Equation 1; 
Figure 3). These six variables were then approximated with a B- 
spline basis system consisting in 22 third- degree polynomial basis, 
regularly distributed along 220 m. This resulted in a consistent 
resolution of 10 m per polynomial basis for the variables u38, u70, 
u120, m38, m70 and l38. After FDA, and to properly visualize re-
sults, the six variables were joined back into the three original fre-
quency profiles.

2.3.3  |  Functional PCA

To explore the along- depth Sv variance in the surveyed area, we ap-
plied functional principal component analysis (fPCA; Ramsay & 
Silverman, 2005) using the curve descriptors of the six variables pre-
sented in Section 2.3.2. In a discretized data scenario, a conventional 
PCA would be applied over a data matrix of n observations by m Sv val-
ues concatenated from 38, 70 and 120 kHz profiles. In a functional sce-
nario, and for the application of a fPCA, the counterpart of the Sv values 
are the function coefficients, which in this case are those concatenated 
from the variables u38, u70, u120, m38, m70 and l38. This resulted in a 
data matrix with 1057 daytime or 1542 nighttime observations by 6 × 22 
function coefficients (Figure 2, step 2). Each block of variables is then 
divided by its own variance as a normalization step usual in conventional 
PCA and a cross- covariance matrix is computed afterwards (Figure 2, 
step 3). The fPCA consists in finding the unique decomposition of the 
cross- covariance matrix that concentrate the variance explained by a 
minimum number of modes. These modes define a subspace in which 
each observation can be projected. The projections are the new vari-
ables called principal components (PCs) and the first ones represent the 
most significant modes of data variation (Figure 2, step 4). Once the 
fPCA has been solved, positive and negative perturbations on the aver-
aged acoustic profiles can be examined by adding or subtracting the 
variance contained in each PC. This allowed to decouple the different 
modes of variation in the acoustic profiles, and quantify this variation at 
any given depth and frequency (Figure 2, step 5). Particularities on the 
fPCA computation, with respect to conventional PCA, can be found in 
Ramsay and Silverman (2005). All the operations performed in fPCA 
after the matrix of coefficients is obtained were implemented as in 
Pauthenet et al. (2017), and made publicly available in the open- source 
library associated to this study (FDA module in EchoPY v1.1, 2020).

F I G U R E  3  Functional data variables analysed: Upper 38, 70 and 120 kHz (u38, u70 and u120), mid 38 and 70 kHz (m38 and m70) and 
lower 38 kHz (l38). Upper, mid and lower refer to 220 m depth intervals with the following limits: 10– 230, 230– 450 and 450– 670 m.
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2.4  |  Clustering

Acoustic profiles were classified using 9 PCs, which contained 
76% and 83% of the total variance of daytime and the nighttime 
datasets, respectively. We used agglomerative hierarchical clus-
tering to evaluate the hierarchical structure of the classification 
(Figure 2, step 6). The ‘Ward’ linkage method was chosen as the 
most appropriate method to deal with globularly- distributed data 
(see Scikit- learn clustering module in Python). Groups of acoustic 
profiles with similar shape at 38, 70 and 120 kHz, as derived from 
hierarchical clustering, were referred here as ‘classes’. If those 
classes exhibited spatiotemporal coherence (Figure 2, step 7) and 
consistent acoustic profiles (Figure 2, step 8), we referred to them 
as echoregions.

2.5  |  Ancillary environmental and biological data

To discuss the distribution of echoregions in relation to environmental 
and biological features in the area, acoustic classification results were 
accompanied with ancillary data. Seabed was mapped at 15 arc seconds 
resolution from the GEBCO (2019) bathymetry. Thermohaline regions 
were extracted from Assunção et al. (2020). Current velocity fields 
were collected and processed as in Dossa et al. (2021) and horizontally 
resampled through linear interpolation to match the spatiotemporal 
resolution of the acoustic profiles. Biological regionalization was ob-
tained from Eduardo et al. (2021), based on the horizontal assemblage 
of lanternfish species (Myctophidae) and from Tosetto et al. (2022), 
based on the distribution patterns of Pyrosoma atlanticum (Thaliacea). 
Additionally, the distribution patterns of physonect siphonophores 
(Hydrozoa) are included in the present study. Siphonophores were 
sampled through oblique hauls from 200 m depth to surface, using a 
Bongo net with a mouth diameter of 0.6 m and mesh size of 300 μm. 
The number of pyrosome and siphonophore colonies was standardized 
by water volume filtered at each haul. Siphonophores colonies were 
roughly estimated by dividing by 10 the number of nectophores found 
in each sample. Further information about biological sampling and pro-
cessing can be found in Eduardo et al. (2021) and Tosetto et al. (2021, 
2022). Thermohaline and current velocity fields, as well as lanternfish, 
pyrosomes and siphonophores distribution charts were obtained in 
parallel to the acoustic survey.

3  |  RESULTS

3.1  |  Daytime classification

The first nine PCs of the daytime dataset explained 76% of the total 
variance contained in the acoustic profiles at 38, 70 and 120 kHz 
(Figure 4a). These nine PCs were used to classify the acoustic pro-
files through hierarchical clustering (Figure 5b). The resulting clas-
sification was projected along the first two PCs (Figure 5c) and along 
geographical coordinates (Figure 5d,e).

Three acoustic seascape classes were found, one associated with 
slope- boundary waters in any of the two sampling periods (D1), and 
two in the Fernando de Noronha chain separated in time. One in 
Spring 2015 (D2) and one in Fall 2017 (D3). PCs 1 and 2— nearly rep-
resenting 50% of the total seascape variance— show that the major 
differences between acoustic profiles were firstly found between 
200 and 500 m depth (Figure 4f– h), and second, between 100 and 
300 m depth (Figure 4i– k). Both modes of variance were consistent 
across frequencies. Profile variance was useful to identify the main 
differentiating features between seascape classes. For example, 
positive weights in PCs 1 and 2 show profiles with low backscatter at 
300– 500 m and high backscatter at 100– 300 m depth (Figure 4f– k).  
In the PC space, we can see that these coordinates correspond 
to the acoustic seascape D1 (Figure 4c), associated with slope- 
boundary waters (Figure 4d,e). These differences were also evident 
in the classification of acoustic profiles. The acoustic seascape in 
slope- boundary waters (D1, Figure 4l– n) and near the Fernando 
de Noronha chain in Spring 2015 (D2, Figure 4o– q) were charac-
terized by a weak mesopelagic backscatter signal in comparison to 
the Fernando de Noronha chain in Fall 2017 (D3, Figure 4r– t). The 
second important difference was the decay of signal between 100 
and 300 m depth in the Fernando de Noronha chain in comparison 
to slope- boundary waters. As we can see in Figure 4o– q, this was 
specially marked in Spring 2015, suggesting a strong stratification 
between epipelagic and mesopelagic sound- scattering domains. 
Vertical integration values of acoustic backscatter and minor modes 
of daytime profile variance can be seen in supplementary material 
(Figures S2 and S3).

3.2  |  Nighttime classification

The first nine PCs of the nighttime dataset explained 83% of the total 
variance contained in the acoustic profiles at 38, 70 and 120 kHz 
(Figure 4a). As in the daytime analysis, these nine PCs were used to 
classify the acoustic profiles through hierarchical clustering (Figure 4b), 
and the resulting classification was projected along the first two PCs 
(Figure 4c) and along geographical coordinates (Figure 4d,e).

Four major acoustic seascape classes were found, two associ-
ated with slope- boundary easterly waters in Spring 2015 (N1) and 
Fall 2017 (N2), and two associated with open- ocean westerly wa-
ters, also divided between Spring 2015 (N3) and Fall 2017 (N4). PCs 
1 and 2— representing above 50% of the total seascape variance— 
show that the major differences between acoustic profiles were 
first concentrated between 200 and 500 m depth (Figure 5f– h) 
but also in a second mode of variance which evenly affected the 
acoustic profile all along the water column (Figure 5i– k). Modes 
of variance were overall consistent across frequencies. Looking at 
the PC weights along the acoustic profiles (Figure 5f– k) and at the 
classification results in the PC and geographical space (Figure 5c– e), 
we conclude that the first and second mode of variance operated 
in the spatial and temporal dimension, respectively. In other words, 
weak and strong mesopelagic backscatter divided slope- boundary 
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westerly from open- ocean easterly waters, while weak and strong 
backscatter all along the water column changed from Spring 2015 
to Fall 2017. These differences were also evident in the classifica-
tion of acoustic profiles. Slope- boundary westerly waters in Spring 
2015 (N1, Figure 5l– n) and Fall 2017 (N2, Figure 5o– q) were charac-
terized by a weak mesopelagic backscatter in comparison to open- 
ocean easterly waters in Spring 2015 (N3, Figure 5r– t) and Fall 2017 
(N4, Figure 5u– w). In agreement with the second mode of variance, 
these two regions presented similar acoustic profile shapes between 
sampling periods but with overall weaker backscatter in Spring 2015 
and stronger in Fall 2017. Vertical integration values of acoustic 

backscatter and minor modes of nighttime profile variance can be 
seen in supplementary material (Figures S2 and S4).

4  |  DISCUSSION

In this study, we apply a novel approach based on FDA to character-
ize the three- dimensional distribution of sound- scattering biota in 
oceanic waters off northeastern Brazil. By taking into account all the 
backscatter signal contained in multifrequency profiles, we success-
fully partitioned the seascape and defined spatially and temporally 

F I G U R E  4  Variability and classification of daytime acoustic profiles. It shows the percentage of specific (black) and accumulated (grey) 
acoustic profile variance contained within each principal component (PC) (a), the clustering of profiles using the first nine PCs (b), and the 
classification of profiles projected along the first two PCs (c), and along geographical coordinates (d, e). It also shows the along- depth Sv 
variance contained within the first (f– h) and the second (i– k) PC, and three acoustic profile classes, associated with the echoregions D1 (l– n), 
D2 (o– q) and D3 (r– t). Acoustic profiles are shown at 38, 70 and 120 kHz. In variance profiles (f– k), central lines represent the mean, and lines 
with plus or minus symbols represent the variation over the mean after adding (+) or subtracting (−) each of the corresponding PC functions. 
In classification profiles (l– t), central lines represent the mean and side lines represent the 5%– 95% percentile range. Numbers at the bottom 
indicate the vertically integrated backscatter of these lines, as the nautical area scattering coefficient (m2 nmi−2). Western- boundary and 
South- equatorial currents (WBC and SEC) are indicated according to Assunção et al. (2020).

(a)

(b) (c)

(d) (e)

(f) (g) (h)

(i) (j) (k)

(l) (m) (n)

(o) (p) (q)

(r) (s) (t)
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coherent echoregions with consistent acoustic features (Figures 4 
and 5). We discuss below the application of FDA in acoustic data, the 
abiotic factors driving the seascape partitioning, and the ecological 
interpretation of this partitioning.

4.1  |  Why functional acoustics?

Perhaps the most obvious advantage of FDA, compared to other sta-
tistical methods, is the ability to capture the distribution of variance 
along the physical continuum in which the signal is measured. This 

is of paramount importance when it comes to echosounder data, 
which is inherently functional, and registers the distribution of or-
ganisms along the depth dimension. In fact, one of the features that 
emerged as the most informative through the classification process 
in this study was the examination of backscattering variance along 
the depth dimension (see Figures 4f– k and 5f– k). This allowed to de-
scribe and diagnose the different modes of variation for any depth 
interval and frequency, facilitating the interpretation of similarities 
and dissimilarities between echoregions.

Another attractive aspect in the context of pelagic ecology is 
that FDA operates in a comprehensive way, capturing and analysing 

F I G U R E  5  Variability and classification of nighttime acoustic profiles. It shows the percentage of specific (black) and accumulated (grey) 
acoustic profile variance contained within each principal components (PC) (a), the clustering of profiles using the first nine PCs (b), and 
the classification of profiles projected along the first two PCs (c), and along geographical coordinates (d, e). It also shows the along- depth 
Sv variance contained within the first (f– h) and the second (i– k) PC, and four acoustic profile classes, associated with the echoregions N1 
(l– n), N2 (o– q), N3 (r– t) and N4 (u– w). Acoustic profiles are shown at 38, 70 and 120 kHz. In variance profiles (f– k), central lines represent 
the mean, and lines with plus or minus symbols represent the variation over the mean after adding (+) or subtracting (−) each of the 
corresponding PC functions. In classification profiles (l– w), central lines represent the mean and side lines represent the 5%– 95% percentile 
range. Numbers at the bottom indicate the vertically integrated backscatter of these lines, as the nautical area scattering coefficient 
(m2 nmi−2). Western- boundary and South- equatorial currents (WBC and SEC) are indicated according to Assunção et al. (2020).
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all phenomena occurring within the acoustic profile. There is no need 
to select specific parts of the signal, such as layers or schools. This 
might be convenient when attempting to describe particular targets 
or aggregations (Coetzee, 2000; Proud et al., 2015), but it is limiting 
when studying the acoustic seascape as a whole. Certainly, peaks in 
acoustic profiles might represent layers or schools but these are not 
the only features considered. Signal drops are equally described in a 
basis function system because Sv thresholds are not applied during 
the process. Target detection algorithms also imply further compu-
tation in processing workflows, often adding reliability and scalabil-
ity constraints in large- scale applications.

The smoothing process used to approximate basis functions to 
discrete data also constitutes the first step towards dimension re-
duction and was very convenient to bypass high- frequency variance 
and prioritize broader vertical patterns in the acoustic profiles (see 
Figure 3). This step can therefore be regarded as a vertical downs-
ampling method itself but with some advantages in comparison to 
the average operations commonly used in acoustic data resampling. 
For instance, while results from averaging operations are not sensi-
tive to the distribution of data within the resampling bins, function 
 coefficients tell about the shape of data within known depth intervals, 
which are in addition affected by continuity constraints from adja-
cent data in the profile (Ramsay & Silverman, 2005). After fPCA and 
clustering, these coefficients can be used to reconstruct the acoustic 
profiles to the original resolution through the evaluation of basis func-
tions. Functional smoothing provides therefore an elegant solution to 
reduce the vertical resolution of acoustic profiles while maximizing 
the retention of meaningful properties from the original data.

With a multifrequency approach, FDA also offers a convenient 
way to segment pelagic ecosystems based on the vertical distribu-
tion of distinct acoustic populations. Most seascape classification 
methods are based on single- frequency data, either designing met-
rics that describes the profiles features (Proud et al., 2015, 2018; 
Urmy et al., 2012) or using the profile signal itself as descriptors 
(Receveur et al., 2020). Recently, Lee and Staneva (2020) proposed 
an efficient method to extract temporal patterns from echosounder 
time series based on multifrequency data, demonstrating the utility 
of this approach to describe ecological processes for different bi-
ological components in the water column. Here, using multivariate 
FDA, we explicitly include depth- distribution analysis in combination 
with multifrequency analysis to describe pelagic ecosystems. This 
holistic approach can be especially useful in biogeographical studies, 
where the spatial variation in the numbers and types of organisms 
is key to determine the distribution of ecoregions (Longhurst, 2010; 
Spalding et al., 2007). As demonstrated in this study, multifrequency 
functional acoustics can efficiently describe the spatial variation in 
the numbers and types of features detected in the water column.

4.2  |  Alternative implementations of the method

The present study provides a new application of FDA to classify 
acoustic seascapes using ship- borne multifrequency echosounder 

data. In particular, we propose a solution to analyse frequencies 
with variable depth range, we provide fully documented open- 
source code to implement the method (EchoPY v1.1, 2020), and we 
show with ancillary environmental and biological data that the clas-
sification obtained is consistent with other regionalization methods. 
However, decisions on the depth range and frequencies used will 
be survey specific, depending on frequency availability and signal- 
to- noise (weather) conditions. Decisions related to spatial resolu-
tion will depend on the objectives of the study. For instance, in the 
present work, we aimed at analysing regional- scale features, essen-
tially sound- scattering layers which typically presented a vertical 
extent greater than 10 m. We found therefore appropriate to use a 
10 m vertical resolution function system on profiles averaged every 
2000 m in the horizontal (see methods Section 2.3.1 and Figure 3). 
Other case studies may target ephemeral horizontal features such as 
fish schools or thinner sound- scattering layers, with a different suite 
of frequencies and depth ranges. For that purpose, the open- source 
application associated with this study provides function arguments 
to tune these parameters conveniently (EchoPY v1.1, 2020).

4.3  |  Physical to acoustical seascapes

By applying FDA on temperature and salinity profiles collected in 
parallel to the acoustic data presented here, Assunção et al. (2020) 
defined three different thermohaline areas: the western- 
boundary and south- equatorial current systems (WBC and SEC) 
and the transition area in between (see Figures 4d,c and 5d,c). In 
the present study, echoregions systematically distributed either in 
slope- boundary or open- ocean areas, matching these thermoha-
line systems. The only exception to this occurred in the nighttime 
Spring 2015 dataset, where the slope- boundary and the Rocas 
Atoll were classified together as the same echoregion, despite they 
were geographically separated by the WBC- SEC transition area 
(Figure 5d). This result, which may appear a contradiction, seems 
to illustrate particular physical processes taking place around the 
Rocas Atoll. This area is where the North Brazil Undercurrent 
(NBUC) coalesces on its way north with the westward central 
branch of the South Equatorial Current (cSEC; Dossa et al., 2021). 
The Rocas Atoll area is also where the eastward South Equatorial 
Undercurrent (SEUC) is originated. The generation of the SEUC 
is still a matter of debate, but it has been proposed to be inter-
mittently fed by a retroflected branch of the NBUC reaching the 
area of the Rocas Atoll. Water masses features and float trajecto-
ries suggest this connection, at least in the spring season (Fischer 
et al., 2008; Johns et al., 1990). Furthermore, water masses with 
NBUC oxygen characteristics were found around the Rocas Atoll 
in Spring 2015, suggesting such NBUC- SEUC confluence (Costa 
da Silva et al., 2021). This is in agreement with our observations of 
similar acoustic seascapes between the slope- boundary area and 
the Rocas Atoll (Figure 5d). As this similarity is only found during 
nighttime, we believe that diel vertical migrants inhabiting subsur-
face waters from the NBUC are involved. Either they are out of 



10  | ARIZA et al.

our sampling range during daytime or they are gas- bearing organ-
isms, such as fish or siphonophores, that become distinguishable 
at night when they enter in resonance, due to pressure changes 
during ascent (Godø et al., 2009).

In addition to the coherent distribution between echoregions 
and physical provinces, acoustic seascape transitions coincided 
with bathymetric and oceanographic features registered in par-
allel to the acoustic survey. A fine look at these transitions pro-
vides further information about the processes in play (Figure 6). 
In one case, the transition occurred within the WBC system but 
in a region of strong bathymetric gradient (Figure 6a,b). In the 
other two cases, the echoregion limits were clearly related to 
abrupt changes in current velocity and direction (Figure 6c– f), 
which indicated the transition between the WBC and the SEC sys-
tems (Dossa et al., 2021). In all cases, multifrequency echograms 
showed vertical relocations and frequency- response changes in 
sound- scattering layers which, in turn, indicates a change in the 

vertical distribution and composition of sound- scattering fauna. 
These seascape snapshots near the echoregion fronts illustrate 
the high degree of fitness between hydrological and ecological 
transitions in the study area.

Echoregions also varied seasonally, in phase with the variabil-
ity of the thermohaline structure (Assunção et al., 2020), currents 
(Dossa et al., 2021) and primary production (Farias et al., 2022). 
The slope- boundary area was characterized by a relatively stable 
thermohaline structure across seasons. In contrast, open- ocean 
waters of the Fernando de Noronha Chain exhibited a stronger 
seasonal modulation, with the mixed layer extending down to 92 m 
depth in Spring 2015, but hardly reaching 46 m depth in Fall 2017 
(Assunção et al., 2020; Dossa et al., 2021). The seasonality was 
thus less marked in the slope- boundary area than in open- ocean 
waters. Accordingly, daytime acoustic seascape was classified in a 
unique echoregion in the slope- boundary but varied in the Fernando 
de Noronha Chain (Figure 4c,d). Particularly, in the Fernando de 

F I G U R E  6  Examples of transitions between echoregions. Ship tracks are shown (top panels) with arrows indicating the mean current 
velocity and direction at particular depth ranges, colours indicating the echoregion to which each position belongs, and dashed lines 
indicating the isobaths. The location of these transitions are indicated with black circles in Figures 4e and 5d,e. Multifrequency echograms 
are displayed (bottom panels) using a RGB additive colour model in which red, green and blue indicate the contribution of backscatter (Sv ) 
at 38, 70 and 120 kHz, respectively, and brightness indicate the average intensity of the three frequencies combined. Horizontal dashed 
lines in white indicate the number of frequencies involved at each depth range. A diagram is provided in the right side with hues for distinct 
combinations of frequencies and brightness scales. Alternatively, transitions are shown with single- frequency echograms in Figure S5.
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Noronha Chain, acoustic backscattering in Spring 2015 experi-
mented a sharp decline right below the base of the mixed layer, near 
100 m depth (Figure 4o– q), when compared to profiles in the same 
area in Fall 2017 (Figure 4r– t). In addition to a sharp thermocline, a 
strong current shear was observed in this area in Spring 2015 be-
tween surface and subsurface waters, in contrast to Fall 2017 (Costa 
da Silva et al., 2021). These seasonal hydrographic changes were 
accompanied with primary production changes that were nicely 
mirrored by the acoustic seascape observed in the present study. In 
fact, increases in primary production in Fall 2017 (Farias et al., 2022) 
coincided with increases in water- column backscatter (see Figures 4 
and 5), a proxy of secondary and tertiary biological production in 
the ocean (Irigoien et al., 2014). Horizontal and vertical physical 
processes are indeed known to shape the ecological seascape from 
primary production to top predators through bottom- up structur-
ing (Bertrand et al., 2014). Our approach therefore proved efficient 
to decouple the physical features in place and to define consistent 
acoustic seascapes coherently distributed in space and time.

4.4  |  Acoustic to biological seascapes

The term ‘frequency response’ or ‘acoustic signature’ refers to the 
along- frequency backscattering signal of acoustic targets, which 
has been historically exploited to identify single organisms or ag-
gregations in the form of layers and shoals (Fernandes et al., 2005; 
Korneliussen et al., 2018). Here, the along- depth Sv signal at multiple 
frequencies has been used to partition acoustic seascapes, moving 
the multifrequency classification concept to the level of community. 
Indeed, what we termed here as ‘echoregions’ are areas with par-
ticular assemblages of distinct acoustic populations, as derived from 
the along- depth distribution and frequency response of targets. 
Echoregions are related with the concept of ‘acoustic populations’ 
introduced by Gerlotto (1987), where the distribution and properties 
of fish schools were gathered into geographical squares to classify 
and delineate pelagic communities. When describing echoregions, 
and similarly to other multifrequency methods, the major challenge 
is not only the classification, but also the identification of the fea-
tures classified (Fernandes et al., 2005; Korneliussen et al., 2018). 
With echoregions the problem escalates, as we ought to describe 
multiple acoustic populations distributed along the water column.

Describing the species composition and assemblage within each 
echoregion is beyond the scope and falls outside the objectives of 
the present study. Vertically stratified trawling was not available to 
reveal the identity of particular acoustic aggregations. Yet, pelagic 
trawls and bongo nets deployed in Fall 2017 outlined species dis-
tribution patterns compatible with our observations with acoustic 
echosounders (Figure 7). Pyrosoma atlanticum, for instance, was 
exclusively found around the continental slope (Figure 7d; Tosetto 
et al., 2022) while psysonect siphonophores found in epipelagic wa-
ters were much more abundant around the Fernando de Noronha 
archipelago (Figure 7e). Eduardo et al. (2021) also identified in Fall 
2017 different assemblages of mesopelagic lanternfish species, 

distributed between the west and east of the Fernando de Noronha 
chain (Figure 7f), mirroring our acoustic seascape regionalization. 
All these organisms are efficient sound reflectors at the frequen-
cies used in the present study and they might be responsible of the 
acoustic seascape variance observed at epipelagic and mesopelagic 
depths (Figures 4f– k and 5f– k). For instance, preliminary results 
on the acoustic properties of pyrosomes suggest that they can 
form prominent sound- scattering layers at 38 kHz (Ohman, 2019). 
Likewise, psysonect siphonophores and mesopelagic fish species are 
among the most important groups contributing to sound scattering 
in the water column, due to the presence of resonant gas bladders 
in their bodies (Agersted et al., 2021; Proud et al., 2019). Combined, 
all these abundant sound- scattering animals— and likely others not 
captured by our sampling nets— contributed to the formation of the 
acoustic seascape in northeastern Brazil.

Based on the above we consider echoregions as biologically 
meaningful areas that help to delineate pelagic ecosystems in a 
cost- efficient and non- intrusive way. However, care must be taken 
when interpreting acoustic seascape classifications. In principle, 
frequency response describes the composition of the features 
identified within the acoustic seascape, while the distribution of 
these features tells about their vertical assemblage. However, this 
may not always be the case. For example, gas- bearing species are 
known to change their frequency response as they move vertically 
in the water column (Godø et al., 2009). Consequently, two acous-
tic features with distinct frequency response and depth distribu-
tion may eventually represent the same biological aggregation. In 
any case, differences between echoregions always imply either 
a change in the properties or in the vertical assemblage of spe-
cies. Both things might happen at the same time and both provide 
ecologically meaningful information to delineate biogeographical 
fronts in the ocean.

Another important consideration is that the frequencies used to 
classify echoregions covered different depth ranges. This is an un-
avoidable limitation when dealing with multifrequency data but it is 
important to bear this mind. Echoregions will be much more influ-
enced by the frequency- rich acoustic seascape in epipelagic waters 
in comparison to deeper waters.

Finally, daytime and nighttime regionalization might be re-
garded as different but complementary approaches to delineate 
pelagic ecosystems. As shown in our results, both regionalization 
identified echoregions separated between slope- boundary and 
open- ocean areas, and between spring and fall in the open- ocean 
area. Yet, nighttime profiles showed a more complex regionaliza-
tion in comparison to daytime profiles, providing an extra division 
between the Rocas Atoll and Fernando de Noronha Archipelago, 
and between spring and fall in the slope- boundary area (see 
Figures 4 and 5). Differences were expected since both classifi-
cations are exploiting different set of species to describe echore-
gions. For example, new targets might enter the depth interval 
being analysed or even strong targets can mask the weak ones 
as a result of vertical relocations between day and night (Godø 
et al., 2009; Peña et al., 2020). Additionally, some of these targets 
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can be associated with different environmental thresholds and 
current systems. We advise therefore to interpret daytime and 
nighttime regionalization separately.

5  |  CONCLUSION

Functional data analysis enabled to explicitly account for the shape 
of multifrequency acoustic profiles, and exploit this information to 
objectively describe and classify sound- scattering regions in the 
ocean. Similarly to biogeographical classifications, based on the 
spatial variation in the numbers and types of organisms in the eco-
system, this method simultaneously considers the vertical distribu-
tion, the intensity and the frequency response of the acoustic signal. 
Our regionalization differentiated slope- boundary and open- ocean 
systems and two contrasting hydrological regimes in spring and 
fall. Regions borders coincided with continental margins and cur-
rent fronts, illustrating the match between biological and physical 
transitions in the ocean at the scale of kilometres, and suggesting a 

strong bottom- up structuring in the pelagic system off northeastern 
Brazil. The acoustic seascape consistency and the spatiotemporal 
coherence of the regions classified show that the method is efficient 
at identifying homogeneous and cohesive sound- scattering com-
munities. Comparisons against hydrological and biological region-
alization also show that the method is biogeographically consistent. 
Based on the term ‘ecoregion’, used in biogeography to areas with 
characteristic species assemblages, we propose the use of the term 
‘echoregion’ when these communities have been identified through 
the examination of echosounder data, and they accomplish with the 
conditions of acoustic seascape consistency and spatiotemporal 
coherence. The method proposed here and the associated open- 
source application can be implemented to any acoustic dataset to 
define echoregions in the aquatic environment.
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