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Abstract: Background: In North African countries, zoonotic cutaneous leishmaniasis (ZCL) is a
seasonal disease linked to Phlebotomus papatasi, Scopoli, 1786, the primary proven vector of L. major
dynamics. Even if the disease is of public health importance, studies of P. papatasi seasonal dynamics
are often local and dispersed in space and time. Therefore, a detailed picture of the biology and
behavior of the vector linked with climatic factors and the framework of ZCL outbreaks is still
lacking at the North African countries’ level. Our study aims to fill this gap via a systematic review
and meta-analysis of the seasonal incidence of ZCL and the activity of P. papatasi in North African
countries. We address the relationship between the seasonal number of declared ZCL cases, the
seasonal dynamic of P. papatasi, and climatic variables at the North African region scale. Methods:
We selected 585 publications, dissertations, and archives data published from 1990 to July 2022. The
monthly incidence data of ZCL were extracted from 15 documents and those on the seasonal dynamic
of P. papatasi from 11 publications from four North African countries. Results: Our analysis disclosed
that for most studied sites, the highest ZCL incidence is recorded from October to February (the
hibernal season of the vector), while the P. papatasi density peaks primarily during the hot season of
June to September. Overall, at the North African region scale, two to four months laps are present
before the apparition of the scars reminiscent of infection by L. major. Conclusions: Such analysis is of
interest to regional decision-makers for planning control of ZCL in North African countries. They
can also be a rationale on which future field studies combining ZCL disease incidence, vector activity,
and climatic data can be built.

Keywords: zoonotic cutaneous leishmaniasis; Phlebotomus papatasi; seasonal transmission; L. major;
Africa region; meta-analysis

1. Introduction

Cutaneous leishmaniasis (CL), a skin infection provoking ulcers on exposed body
parts, affects annually between 600,000 to 1 million new cases on a global scale [1]. In North
African countries, Morocco, Algeria, Tunisia, and Libya, the disease is caused by L. major, L.
tropica, and L. infantum, which belong to the Leishmania genus [2]. Cutaneous leishmaniasis
caused by L. major remains the most frequent in North Africa and Middle East countries.
Still, they present a high incidence rate in other territories, such as Afghanistan [3], Iran [4],
and Saudi Arabia [5]. One or more lesions appear after the bite by an infected sand fly, and
the inflammation causes scarring if not treated, which leads to traumatic psychological
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impacts. Shaw’s jird (Meriones shawi) and the fat sand rat (Psammomys obesus) are the
identified reservoirs, while P. papatasi is the proven vector of L. major [6,7]. This disease
affects regions with semi-arid and arid climates in North African countries, especially in
the poorest provinces. It is estimated that 97.8% of cases concentrate in areas with poor
socio-economic conditions, below 725 m, and arid semi-arid climates [8]. The infection
affects, more commonly, younger humans and males. Most ZC cases are aged < 10 years,
males, with ulcers primarily present on the face and hands [4]. ZCL is endemic in rural
areas, with lesions and scars appearing between August and January [9] in arid regions [10].
Socioeconomic conditions [11], anthropogenic disturbance in the peri-urban area [12], and
topography [13] are also associated with the disease incidence. Vegetation, wind speed,
and altitude are significant factors in forecasting ZCL cases [14].

In North African countries, zoonotic cutaneous leishmaniasis caused by L. major re-
mains among the most widespread neglected tropical diseases impacting public health. The
geographical dispersion of the disease is primarily affected by ecological and socioeconomic
drivers that favor vector proliferation and host-reservoir sheltering conditions. In addition,
seasonal climatic conditions influence ZCL incidence and dispersion [15] via the ecological
conditions required for the vector and reservoirs. These factors were addressed in Morocco,
Algeria [10], and Tunisia [16]. The world health organization (http://www.emro.who.
int/neglected-tropical-diseases/information-resources-leishmaniasis/cl-factsheet.html; ac-
cessed on 14 July 2022) reported the incubation period of L. major needs at least one week
and usually less than four months, while L. tropica requires at least one week and usually
2–8 months [17].

Most published research papers focus on localized geographical areas in a restricted
time range. Here, we collected data on the proven vector of ZCL, P. papatasi, whose seasonal
activity causes seasonal outbreaks at the North African region scale. To our knowledge, no
studies dealing with these aspects were undertaken on such a broad geographic scale. We
further analyzed the interplay between seasonal ZCL cases number, P. papatasi density, and
climatic data.

2. Materials and Methods
2.1. Systematic Review, Data Set Collection, and Localization of Sites
2.1.1. Systematic Review

The current study was based on a systematic review following the guidelines of the
PRISMA initiative (2020) [18] (Figure 1) and meta-analyses [19].

Monthly data on ZCL case number (Table 1) and P. papatasi density (Table 2) were
extracted from selected publications. The keywords used in this study are “leishmaniasis”,
“ZCL seasonal transmission”, “cutaneous leishmaniasis”, “L. major”, “sand fly”, “vectors
of Leishmaniasis”, ”P. papatasi” combined with “North Africa”, and the countries of the
area, including from north to east “Morocco”, ”Algeria”, “Tunisia”, and “Libya”. The
searches were performed on 11–14 July 2022 using PubMed, Web of Science, Scopus, and
Google Scholar. Only studies with available monthly data were included from an initial
panel of 585 scientific publications published between 1990 and July 2022. From this panel,
15 documents gathered data on the monthly incidence of ZCL, while only 11 presented
data on the seasonal dynamic of P. papatasi in African countries. The annual distribution of
ZCL cases in the considered area was compiled from 1995 to 2020 (the available data).

2.1.2. Data Set Collection and Sites Localization

Quantitative and qualitative information from the selected publications were extracted
and presented in two tables; a map of the extracted data is shown in Figure 2.

The geographic information, including altitude, latitude, and longitude, was extracted
from the literature (Tables 1 and 2, and Figure 1), and climatic variables (monthly maximum
temperature, minimum temperature, precipitation, and relative humidity) in the relevant
areas were collected from the Tutiempo Network, S.L.

http://www.emro.who.int/neglected-tropical-diseases/information-resources-leishmaniasis/cl-factsheet.html
http://www.emro.who.int/neglected-tropical-diseases/information-resources-leishmaniasis/cl-factsheet.html
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Data were processed using the Arc-GIS software (Figure 2, Tables 1 and 2) and com-
bined with the regional annual precipitation (Figure 2). Most sites with available published
data are localized in semi-arid to arid areas where the rainfall is low and irregular in time
and space, and the temperature ranges from moderate to high.
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Table 1. Geolocalization of sites whose monthly data of ZCL cases in the North African countries are
published. The geographic information includes the latitude, longitude, and altitude (m); for the sites
without geographic data, the symbol ‘~’ was used, and the approximate values were estimated from
Google Earth.

Country Zone Latitude Longitude Altitude (m) Annual Rainfall
(mm) Period References

Morocco

Zagora province (2005) ~30◦18′27.60” N ~5◦52′4.55” W 500 80 2005 [20]
Zagora province (2017) ~30◦40′20.60” N ~5◦7′4” W 500 80 2017 [20]

Errachidia Province
(2012–2017) ~31◦55′5” N ~4◦26′6” W ~1037 150 2012–2017 [21]

Errachidia Province
(Urban) ~31◦55′46.27” N 4◦26′55.83” W ~1037 134 2004–2013 [22]

Errachidia Province
(Rural) ~31◦51′1” N ~4◦16′4” W ~1011 134 2004–2013 [22]

Errachidia Province
(1990–2009) ~31◦55′46” N ~4◦26′55” W ~1037 134.28 1990–2009 [10]

Errachidia Province
(2012–2020) ~31◦55′48” N ~4◦26′58” W ~1037 134 2012–2020 [23]

Ouarzazate province
(2002–2009) ~30◦55′59” N ~6◦55′10” W ~1148 146.97 2002–2009 [12]

Algeria El Hodna 35◦18′–35◦32′N 4◦15′–5◦06′ E 400–1800 500–600 1995–2000 [24]
Saida ~34◦50′29.47” N ~0◦8′44.18” E ~802 353.47 1990–2009 [10]

Tunisia

Bir Badr, Hichria, and
Zefzef (Sidi Bouzid) ~34◦49′45” N ~9◦22′37” E 407 228 2009–2015 [25]

R’milia, Sidi Bouzid (1995) 35◦46′ N 9◦36′ E 280 260 1995 [26]
R’milia, Sidi Bouzid (1996) 35◦46′ N 9◦36′ E 280 260 1996 [26]
R’milia, Sidi Bouzid (1997) 35◦46′ N 9◦36′ E 280 260 1997 [26]

Sidi Bouzid (1991–2007) ~35◦02′00” N ~9◦30′00” E ~373 - 1991–2007 [16]
Village of Felta, Sidi

Bouzid (2005) ~34◦49′27” N 8◦42′09” E ~768 - 2004–2005 [27]

Central Tunisia
(2009–2014) ~34◦49′45” N ~9◦22′37” E ~407 ~228 2009–2014 [9]

Center and South Large distribution in the center and south of the country 2007–2011 [28]

Libya

Northwest (1995–2008) Large distribution in the north-western districts of the country. 1995–2008 [29]

Northwest (2011–2012) Large distribution in the north-western districts of the country, including Jafara,
Tripoli, Misrata, and Nalut. 2011–2012 [30]

Northwest (1995–2008) Large distribution in the north-western districts of the country, including Jafara,
Tripoli, Misrata, and Nalut. 1995–2008 [30]

Northwest (1995–2012) Large distribution in the north-western districts of the country, including Jafara,
Tripoli, Misrata, and Nalut. 1995–2012 [30]

Table 2. Geolocalization of sites whose monthly density data of P. papatasi in the North African
countries was extracted. The geographic information includes the latitude, longitude, and altitude
(m); for the sites without geographic data, the symbol ‘~’ was used, and the approximate values were
estimated from Google Earth.

Country Zone Latitude Longitude Altitude (m) Annual Rainfall (mm) Period References

Morocco

Ksar Mougni, Tinzouline
(Zagora) C1 30◦27′3” N 5◦58′26” W 775 37 2019 [31]

Ksar Mougni, Tinzouline
(Zagora) C2 30◦27′3” N 5◦58′26” W 775 37 2019 [31]

Touna, Tinzouline
(Zagora) C1 30◦37′28.2” N 5◦49′56.1” W 910 26 2019 [31]

Touna, Tinzouline
(Zagora) C2 30◦37′28.2” N 5◦49′56.1” W 910 26 2019 [31]

Meknes (prefecture) ~33◦45′02” N ~4◦34′00” O 500 660 2016–2017 [32]
Aichoun, Tazouta, Sefrou ~33◦45′22” N ~5◦32′26” O 750 400 2013–2014 [33]

Marrakech
Urban 31◦36 N 8◦02 W 471 2002–2003 [34]

Sefrou 33◦39 N 04◦38 W 809 2012 [35]
Moulay Yacoub

Oulad aid ~34◦05′N ~4◦45′ W 345 2011–2012 [36]

Moulay Yacoub Zlilig 33◦57 N 5◦05 W 500 2011–2012 [36]
Azilal province,

Ouaouizaght district 32◦09′27.26” N 6◦ 20′57.58” O ~900–1200 2010 [37]

Algeria El Hodna 35◦18′−35◦32′ N 4◦15′–
5◦06′ 500–800 2004 [38]

Province of M’Sila 35◦18′ and
35◦32′ N 4◦15′ and 5◦06′E 2003/2004 [39]

Tunisia SidiBouzid ~35◦02′01” N ~9◦28′54” E 350 2005 [27]

Lybia Al Rabta East village 32◦9′46.59” N 12◦50′50.65” E 300 2012–2013 [40]
Al Rabta West village 32◦9′46.59” N 12◦50′50.65” E 300 2012–2013 [40]
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Figure 2. Localization of the North African countries with seasonal activity data of ZCL cases
and P. papatasi with the annual distribution of precipitation (mm). ZCL seasonal data: the current
study. Climatic data source: ESRI grids, resolution 10 min according to WorldClim 1.4 (current
conditions) http://worldclim.com/current, accessed on 15 October 2022 [41] is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.

2.2. Normalization of ZCL Case Number and/Vector Density (Nj)

Data on monthly ZCL cases number and P. papatasi density were extracted from tables
or digitized using ‘digitizelt’ software and represented by country. However, the original
values of these different sources are heterogeneous, which requires the normalization of
data to be comparable. Therefore, equation 1 was used to calculate the normalized incidence
value of ZCL standardizing extracted values for monthly ZCL cases and P. papatasi activity
on a scale ranging from 0 to 1, where 0 refers to the absence of data or no recorded activity,
and 1 indicates the highest activity. For example, the normalized values of a month’s
incidence and vector activity are a ratio between the extracted values for that month and
the month with the maximal value.

Nj = [ZCL cases or vector activity in a month]/[Month with maximal ZCL cases or vector activity] (1)

2.3. Statistical Analysis

The Pearson correlation coefficient and R2, the coefficient of determination, were
analyzed with the social science statistics calculator, R.

3. Results and Discussion
3.1. Annual Distribution of ZCL Cases in the North African Region

We compiled annual data on published ZCL case numbers in North African coun-
tries for 26 years (from 1995 to 2020) (Figure 3). In addition, data from four oasis sites
(Ouarzazate, Zagora, Errachidia, and Figuig) were considered for Morocco. As a result,
three principal peaks were recorded in 2003, 2010, and 2017. In Algeria, data from two sites
point to two prominent peaks in 1997 and 2003, while data from Tunisian sites depict
three primary peaks in 1999, 2004, and 2013. Finally, data published from Libya shows
two major peaks in 2004 and 2008 (Figure 3).

http://worldclim.com/current


Microorganisms 2022, 10, 2391 6 of 16Microorganisms 2022, 10, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 3. The evolution of ZCL cases in North African countries from 1995 to 2020 (26 years) as 
revealed by the systematic review and meta-analysis. The red box refers to the year with the peak 
of incidence. 

An overall decreasing trend in ZCL incidence was observed during the period 
studied and in the sites we reviewed (Supplementary Figure S1). However, if the average 
ZCL case number followed a decreasing trend in Algeria and Tunisia, the opposite is 
reported in Morocco and Libya; overall, the decreasing trend was recorded in North 
Africa, which can be related to interventions aimed at combating the disease. 

3.2. Monthly Distribution of P. papatasi in the North African Region 
Data collected on the seasonal P. papatasi dynamic depicted bi- to tri-modal activity 

from March to November (Figure 4). They point to a higher P. papatasi density during the 
hot period in the Moroccan sites. In the Algerian sites studied, El Honda recorded a 
monomodal activity, with the maximum activity in August. In M’Sila, a bi-modal 
distribution with a maximal peak in June is recorded. Sidi Bouzid, Tunisia, displays 
seasonal activity with a density peak in September. The two sites studied in Libya display 

Figure 3. The evolution of ZCL cases in North African countries from 1995 to 2020 (26 years) as
revealed by the systematic review and meta-analysis. The red box refers to the year with the peak
of incidence.

An overall decreasing trend in ZCL incidence was observed during the period studied
and in the sites we reviewed (Supplementary Figure S1). However, if the average ZCL case
number followed a decreasing trend in Algeria and Tunisia, the opposite is reported in
Morocco and Libya; overall, the decreasing trend was recorded in North Africa, which can
be related to interventions aimed at combating the disease.

3.2. Monthly Distribution of P. papatasi in the North African Region

Data collected on the seasonal P. papatasi dynamic depicted bi- to tri-modal activity
from March to November (Figure 4). They point to a higher P. papatasi density during the hot
period in the Moroccan sites. In the Algerian sites studied, El Honda recorded a monomodal
activity, with the maximum activity in August. In M’Sila, a bi-modal distribution with a
maximal peak in June is recorded. Sidi Bouzid, Tunisia, displays seasonal activity with a
density peak in September. The two sites studied in Libya display a bi-modal distribution
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with maximal density in June and September. These results show P. papatasi density peaks
primarily during the hot season in the North African region.

Microorganisms 2022, 10, x FOR PEER REVIEW 8 of 18 
 

 

a bi-modal distribution with maximal density in June and September. These results show 
P. papatasi density peaks primarily during the hot season in the North African region. 

 
Figure 4. The normalized monthly density of the P. papatasi with 0 indicates no data/absence of 
activity, and 1 shows high density in the studied sites in the Northern African countries. 

Our analysis at the North African geographic scale depicts a seasonal activity of P. 
papatasi with maximal densities during the hot season. In North African countries, high 
densities are recorded in October and November in Marrakech, Morocco [34], and in 
August and September in Tunisia and Algeria [27,28]. While in Egypt, density peaks are 
recorded in July [42], while in Saudi Arabia and Iran, they occur in May and August [43]. 

3.3. Monthly Records of ZCL Cases in the North African Region 
Morocco and Tunisia are the North African countries with the highest published 

data, followed by Libya and Algeria. In the Moroccan sites, the high incidence of ZCL was 
recorded from October to February, coinciding with the vector’s hibernal season. This 
pattern was also found in the Algerian sites. However, Libyan and Tunisian sites display 
a pattern with a high incidence ranging from October to January (Figure 5). For the whole 
region, ZCL recorded a high incidence between October and January (Figure 5). This 
indicates a contrast between the maximal activity of the vector (P. papatasi) and the 
apparition of the ZCL lesions. 
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Our analysis at the North African geographic scale depicts a seasonal activity of
P. papatasi with maximal densities during the hot season. In North African countries,
high densities are recorded in October and November in Marrakech, Morocco [34], and in
August and September in Tunisia and Algeria [27,28]. While in Egypt, density peaks are
recorded in July [42], while in Saudi Arabia and Iran, they occur in May and August [43].

3.3. Monthly Records of ZCL Cases in the North African Region

Morocco and Tunisia are the North African countries with the highest published
data, followed by Libya and Algeria. In the Moroccan sites, the high incidence of ZCL
was recorded from October to February, coinciding with the vector’s hibernal season.
This pattern was also found in the Algerian sites. However, Libyan and Tunisian sites
display a pattern with a high incidence ranging from October to January (Figure 5). For
the whole region, ZCL recorded a high incidence between October and January (Figure 5).
This indicates a contrast between the maximal activity of the vector (P. papatasi) and the
apparition of the ZCL lesions.

This increase in seasonal incidence in the North African countries was also found
in other regions. For example, in Afghanistan (Mazar-e Sharif), most cases of ZCL occur
in mid-October [3], while in Iran (Golestan Province), the high incidence is recorded in
September and October [44]. In addition, hot temperatures occurring after a wet season
could increase the number of ZCL cases [15].

To highlight differences between the monthly activity of the vector (P. papatasi) and
the number of ZCL cases, a combination of the normalized average values per country
and within the North African region was performed (Figure 6). Differences may add
information helping to delineate the laps between the vector emergence and biting (the
infection by the L. major) and the apparition of the lesion(s) following a medical consultation.
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There are great laps in time between sandfly density and ZCL incidence with differences
between region countries. P. papatasi displays a bi-modal pattern of activity, with the highest
activity in June and September, while maximum ZCL cases are recorded in November and
January (Figure 6).
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Data collected from the North African countries included in this study display a
bi-modal distribution of P. papatasi in June and September; concomitantly, the peak of ZCL
cases was recorded in November (Figure 7).

Overall, in the North African region, two to four months laps are recorded between
lesions and scars reminiscent of L. major infection appearance and peak density of P. papatasi.
Such a lap was also recorded in Afghanistan (Mazar-e Sharif) with an incubation period of
8–12 weeks. In Germany, the incubation period for ZCL was reported to be seven weeks [3].

3.4. Association of ZCL Incidence and the Climatic Parameters in North Africa

The distribution in time and space of the ZCL follows a seasonal dynamic depending
on and following climatic variables, such as rainfall, temperature, or relative humidity.
Generally, the rise in cases starts in August and reaches a maximum in September in the
Moroccan sites, October in Tunisia and Libya, and December in Algeria. In these countries,
the maximum number of cases coincides with the highest amount of rainfall (Figure 8).

In the Moroccan site (Ouarzazate), the peak of ZCL cases was recorded in September
and coincided with 32.73 ◦C (maximum temperature), 18.26 ◦C (minimum temperature),
30.32 mm (monthly precipitation), and 28.6% (relative humidity) (Figure 8). In the Algerian
site (Saida), the peak of ZCL cases was recorded in June and coincided with 15 ◦C (maxi-
mum temperature), 4 ◦C (minimum temperature), 35.74 mm (monthly precipitation), and
71% (relative humidity). In the Sidi Bouzid site (Tunisia), the peak of ZCL cases density was
recorded in October and coincided with 28.79 ◦C (maximum temperature) and 14.24 ◦C
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(minimum temperature), 19.47 mm (monthly precipitation), and 26.04% (relative humidity).
In the Libyan site (Al Rabta East), the peak of ZCL cases density was recorded in November.
It coincided with 26.35 ◦C (maximum temperature), 15.15 ◦C (minimum temperature),
8.76 mm (monthly precipitation), and 55.85% (relative humidity) (Figure 8).
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The calculated Pearson correlation coefficient displays a moderate to a substantial
likelihood of ZCL cases being associated with maximum temperature, precipitation, and
relative humidity in Moroccan sites and a positive correlation and mild likelihood with
relative humidity in Algerian sites. In contrast, in the Libyan area, a highly positive
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association is recorded with precipitation (Table 3). In addition, such associations with
rainfall and maximum temperatures [45], minimum temperature [46], and aridity [10] have
also been disclosed.

Table 3. Correlation between ZCL cases and climatic parameters in the studied countries.

Correlation
Method

Temperature
(Maximum)

Temperature
(Minimum) Precipitation Relative

Humidity

Tunisia (Sidi
Bouzid)

R 0.4326 0.3309 0.189 0.3225

R2 0.1871 0.1095 0.0357 0.104

Algeria
(Saida)

R 0.3711 0.2273 0.4185 0.5764

R2 0.1377 0.0517 0.1751 0.3322

Morocco
(Ouarzazate)

R 0.5197 0.2989 0.6254 0.6715

R2 0.2701 0.0893 0.3911 0.4509

Libya
(Tripoli)

R 0.3438 0.2427 0.8641 0.3003

R2 0.1182 0.0589 0.7467 0.0902
R, Pearson correlation coefficient; and R2 is the coefficient of determination.

3.5. Association of the P. papatasi Activity and the Climatic Parameters in the North
African Region

The distribution in time and space of P. papatasi follows a seasonal fluctuation and is
dependent on climatic variables, such as rainfall, temperature, and relative humidity. We
tested the correlation of these parameters with the P. papatasi density using the available
monthly data from four North African country sites. In these sites, the vector density peaks
from May to September. In the Moroccan site (Marrakech), the rise of P. papatasi density
was recorded in July and coincided with 37 ◦C (maximum temperature), 20.4 ◦C (minimum
temperature), 2.2 mm (monthly precipitation), and 38.7% (relative humidity) (Figure 9). In
the Algerian site (M’sila), the density peak was recorded in June and coincided with 36 ◦C
(maximum temperature), 23.6 ◦C (minimum temperature), 0.5 mm (monthly precipitation),
and 32.6% (relative humidity). In the site of Sidi Bouzid (Tunisia), the peak was recorded
in September and coincided with 31.2 ◦C (maximum temperature), 18.5 ◦C (minimum
temperature), 11.3 mm (monthly precipitation), and 56.6% (relative humidity). Finally, in
the Libyan site (Al Rabta East), the peak of P. papatasi density was recorded in September. It
coincided with 35.6 ◦C (maximum temperature), 22.3 ◦C (minimum temperature), 5.7 mm
(monthly precipitation), and 47.3% (relative humidity) (Figure 9).

These findings support that P. papatasi activity occurs during the hot season, where
both minimum and maximum temperatures are high, and low temperatures during the
wet season prevent vector activity. Such observation was already reported [40]. In addition,
P. papatasi metabolism and the intravectorial development of Leishmania are primarily
influenced by temperature [47]. Our study discloses a significant association between
P. papatasi density and temperature (maximum and minimum). A moderate positive
association is ascertained in Tunisia (Sidi Bouzid) and Libya (Al Rabta East), suggesting a
tendency of P. papatasi density to be somewhat linked to high, maximum, and minimum
temperatures (Table 4).

Furthermore, a medium to strong positive correlation was recorded for the Moroccan
site of Marrakech, while a weak to moderate association was found in the Algerian site.
Concerning the precipitation variable, a weak correlation was recorded (Table 4). However,
only the Moroccan site showed a moderate positive correlation between P. papatasi and
relative humidity.
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Microorganisms 2022, 10, 2391 13 of 16

Table 4. Results of the correlation between P. papatasi and climatic parameters as computed with the
social science statistics calculator.

Correlation
Method

Temperature
(Maximum)

Temperature
(Minimum) Precipitation Relative

Humidity

Tunisia (Sidi
Bouzid)

R 0.5119 0.5685 0.498 0.4616

R2 0.262 0.3232 0.248 0.2131

Algeria
(M’SILA)

R 0.494 0.5537 0.4893 0.3296

R2 0.244 0.3066 0.2394 0.1086

Morocco
(Marrakech)

R 0.7509 0.5061 0.3147 0.5725

R2 0.5639 0.2561 0.099 0.3278

Libya (Al
Rabta East)

R 0.5405 0.5309 −0.2077 0.4894

R2 0.2921 0.2819 0.0431 0.2395
R, Pearson correlation coefficient; and R2 coefficient of determination.

Data analysis further supports the hypothesis of an intricate association between
climatic factors, vector density, and disease incidence. It reinforces previous reports on the
seasonal activity of P. papatasi [48,49] and the impact of precipitation and air temperature
as significant factors affecting P. papatasi distribution [40,50,51]. In addition, moisture,
wind [52], aridity, or surface climate variables [10] also influence vector activity and dis-
persal capability. All these pieces of evidence forecast climate change as a driver for the
expansion of cutaneous leishmaniasis since they can favor contacts between the host, the
vector, and human populations [53]. Minimum and maximum temperatures are mainly
associated with P. papatasi activity, which points to the interest of these as climatic indicators
to predict ZCL incidence. The outputs may be used to set up models to forecast the periods
of high vector density and, consequently, the risk of ZCL. Further intercountry research
efforts are required to monitor the ZCL incidence, abundance, and seasonal density of
P. papatasi and to collect more local climatic variables, including maximum and minimum
temperature, relative humidity, and precipitation.

3.6. Strengths and Limitations

North Africa belongs to one of the most impacted geographic areas by ZCL. In this
paper, for the first time, the seasonal incidence of L. major infection (ZCL) and the activity
of its primary proven vector (P. papatasi) were investigated at the North African geographic
scale. Using data from the literature, we explore associations between disease incidence,
vector activity, and climatic factors to delineate underlying factors playing a role in the
ZCL seasonal dynamic and its spread. Nevertheless, the nature of the data we analyzed,
dispersed in terms of time and geographic coverage, as well as the differences in time steps
between data, particularly those concerning P. papatasi dynamic, limits the strength of our
analyses and, therefore, the conclusions raised by the study.

4. Conclusions

Our analysis points out that peaks of ZCL cases occur from October to February (the
hibernal season of the vector), while the density of P. papatasi peaks mainly in the hot
seasons in June and September. Therefore, if the presence of P. papatasi does not always
imply the existence of ZCL cases, it can be an alert or an indicator of a high risk for ZCL
transmission. Therefore, the outputs can be used as a basis for future field studies about
ZCL disease risk and management at a regional scale and decision-making in control
planning in North Africa.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10122391/s1, Figure S1. The average evolution
of ZCL cases in whole North African region from 1995 to 2020 (26 years).
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