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Agent-based modeling (ABM) has been successfully used, since its emergence

in the 1990s, to model and simulate the dynamics at work in complex socio-

environmental systems, in many domains and applications where interactions

between people and their environments give rise to emergent phenomena that

are di�cult to study otherwise (urban planning, land-use change, adaptation

to environmental changes, biodiversity protection in socio-ecosystems,

environmental pollution control, etc.). The inclusion of multiple levels of

analysis, abstraction, and representation in these models, however, is much

more recent and is still the subject of many proposals and discussions within

a relatively informal field, Multilevel Agent-Based Modeling (ML-ABM), which is

most often presented as an approach that extends the classical ABM paradigm

to include multilevel concepts. Over the past decade, ML-ABM has been

increasingly adopted and explored by researchers as an e�ective paradigm

for framing and defining the mechanisms underlying multilevel dynamics.

However, due to the youth of the field, no single definition, methodology,

or tool unifies studies in this rapidly expanding area. This review will begin

with an introduction to socio-environmental systems (SES) and the challenges

that modeling approaches face in representing them properly, especially

regarding the complexity of human behaviors and organizations. ABM presents

opportunities for modeling SESs with respect to these challenges, including

the simulation of individual and social behavior and their ability to provide a

descriptive and generative representation of the simulated system. However,

ABM is limited in its ability to represent levels and scales, as these concepts

are absent from the classical ABM metamodel. A complete review of the

ML-ABM literature will be carried out, structured around a continuum that

emerged during the review: that of the distribution of behaviors (and thus,

from a software engineering perspective, of control) across the levels, from

approaches that allow only one level to be active at a time, to approaches

that rely on simultaneous activity and feedback loops between several levels.

Di�erent design choices will, thus, be presented to meet the di�erent needs

of multi-level representation, focusing on the interest on modelers and the

strengths and limitations of each. In particular, we will highlight a limitation

shared by all the reviewed approaches, namely their inability to represent

several parallel hierarchies of levels and their interactions, a capability that
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appears more and more crucial to finely represent social behaviors in SES. A

new perspective on the interest that the AGR approach could represent to

allow this representation of hierarchies allows us to conclude on the research

perspectives are still open.

KEYWORDS

review, multi-level agent based model, design pattern, socio-environmental systems

(SES), multi-level, agent-based modeling

1. Introduction

1.1. Socio-environmental systems

We have been living in the so-called Anthropocene [1] for

some time now, where human influence on the environment

is expanding globally and driving the need for holistic and

integrated approaches to understanding coupled natural and

human systems, which includes monitoring, analyzing, and

modeling the complex systems resulting from their interactions.

This is where the concept of a social-environmental system

(or socio-ecological system), SES, comes in. It is defined as

a complex dynamic system that includes people and nature

and is continually changing in response to internal or external

pressures [2]. Pressures can result from the behavior of their

social (e.g., demographic changes) and ecological (e.g., climate

fluctuations) components, or, more usually, from a combination

of both (e.g., human-induced climate change).

However, as interesting as this concept is for describing

human-nature complex systems, it significantly defies available

modeling capabilities. On one hand, SES is not really

different from “ordinary complex systems,” i.e., systems whose

perceived complicated behaviors can be attributed to one

or more of the following characteristics: a large number

of possibly heterogeneous elements, numerous possibly non-

linear and discontinuous relationships between these elements,

a dynamic emergence of forms (phenomena, structures,

aggregates, organisms, or problems), at different levels of

abstraction or scales, to which the elements adapt [3].

This notion of “emergence,” and the related notions of

“levels” or “scales” lie at the heart of the various complexity

theories [4], where the spontaneous appearance of structured

macroscopic patterns resulting from independent microscopic

interactions between the elements of the system is considered

as a distinctive signature that distinguishes simple systems from

complex systems.

The “scales” used in complex systems usually refer to three

possible quantifiable dimensions: space, time, and size [5], which

are then used to define and position “levels” at which the

system can be observed, described, or analyzed. It is common

to distinguish between micro, meso, and macro levels, using

the hierarchical view of systems and subsystems popularized

by Herbert Simon in his famous article “The Architecture of

Complexity” [6]. According to this vision, a large number of

indivisible individual elements, engaged in local short-term

interactions, compose the micro-level; as one progresses to the

higher levels, the spatial and temporal scales become larger, and

the number of elements smaller. Each level, except the macro-

level, is nested into or spatially and temporally bounded by a

higher level.

These levels may be explicit in the description of the system

because they have a recognized existence in reality (e.g., an

organism, a physical structure) or because they correspond to

scales at which observers want to describe or understand the

system. The passage between these levels, similarly, may be

described explicitly in the description of the system (e.g., in

the form of a count or aggregation or disaggregation functions

between levels), or it may be considered emergent. Here,

“emergence” refers to the way in which structural or functional

properties can emerge spontaneously, in an unplanned manner,

at a given level from the self-organization of elements identified

at a finer level [7], this notion of self-organization refers

to a bottom-up process in which a system modifies its

internal organization to adapt to changes in its goals and the

environment without explicit external or top-down control.

All these characteristics translate into a real difficulty in

producing an analytical and deterministic description of the

behaviors of complex systems, as models of these systems imply

being able to represent non-linear, ill-posed, or chaotic behaviors

operating simultaneously at multiple levels of abstraction. But

there are also specific characteristics of SES, mainly related to the

fact that they include human elements, whichmake this category

of systemsmuchmore complicated to deal with using traditional

modeling techniques.

1.2. Challenges of SES modeling

Socio-environmental systems modeling (SES) consists of

developing models to study the complex problems that arise

from interactions between human (i.e., social, economic)
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and natural (i.e., biophysical, ecological, and environmental)

systems. While there are many ways to describe SEA (especially

in the anthropological or sociological literature), dynamic

models appear to be indispensable tools for understanding

and managing them, as they allow us to study the behavior

of these systems not only under past and present conditions

but also in the future, through scenario analysis or the virtual

exploration of possible paths. With the advent of new techniques

and computational power on one hand and the growing

sustainability challenges on the other, SES modeling is used

to support multiple goals, such as informing decision-making

and science or raising awareness, or promoting education and

communication on sensible issues [8]. However, to be useful,

these models must be able to handle, in an integrated way,

the complexity of SES, often characterized by intricate feedback

loops in human-nature and human-society interactions [9,

10], at different levels of abstraction and with different levels

of details [11]. More generally, they need to address the

eight major SES modeling challenges listed by Elsawah et al.

[8]:

1. Bridging epistemologies across disciplines.

2. Integrated treatment of modeling uncertainty.

3. Combining qualitative and quantitative methods and data

sources.

4. Dealing with scales and scaling.

5. Capturing Systemic changes in SES.

6. Integrating the human dimension.

7. Elevating the adoption of SES models.

8. Leveraging new data types and sources.

Reading the article and the arguments behind each of

the “challenges,” it is easy to see that the first three, which

concern interdisciplinary, uncertainty, and source diversity,

are not at all unique to SES modeling, but are, of course,

shared by any type of integrated modeling involving different

domains. Similarly, the last two, which are concerned with

the adoption and integration of models in decision-making,

are largely shared by the whole field of modeling, whether

integrated or not. This leaves challenges 4, 5, and 6 as

specific to the modeling of SES, i.e., in short, those related to

the representation of human behavior (individual and social)

and to the representation of different levels of abstraction

between which emergencies and “systemic” constraints can

be identified.

Models of SES have been developed using diverse

approaches, including system dynamics, Bayesian networks,

agent-based models, dynamic stochastic equilibrium

models, statistical micro-simulation models, and any

hybridization of these methods [12], but only one

so far, agent-based modeling (ABM), has proved its

capacity to faithfully represent individual and social

human behaviors.

1.3. ABM and SES modeling

Agent-based modeling effectively present clear

opportunities for SES modeling and help to address some

of the main weaknesses of the various categories of models

described in Schulze et al. [13] and Giupponi et al. [2],

particularly with respect to the simulation of individual and

social behavior and their ability to provide a descriptive and

generative representation of the simulated system along the four

dimensions briefly described below (loosely based on Giupponi

et al. [2]).

The first is heterogeneity

In general, ABMs consist of detailed dynamic simulations

in which many heterogeneous human and natural agents

interact: it avoids a coarse, average, and, therefore, unrealistic

representation of the system components. Human agents

may vary in their demographic characteristics, location,

endowments, individual capabilities, worldview, attitudes,

and behavior. Natural agents can also vary in spatial and

temporal attributes.

The second is individual complexity

Compared to natural agents, human agents are more

complex to simulate, as they perform deliberative processes

and make autonomous individual decisions [14, 15]. Behavioral

complexity arises from agents’ mental models [16, 17] or more

commonly their “architectures,” which include their cognition,

reasoning, and learning capabilities, based on the abundance

of social science theories about how human agents behave

in various contexts. ABM has the potential to enable the

exploration of this set of decision-making theories, including

the ability of agents to learn from past experiences [18],

which is extremely important for long-term simulations of

SES evolution.

The third is Interactions and, in particular,
social interactions

Not only are human agents deliberative, but they are also

social: they communicate with other agents and their behavior

arises from interactions in multiple contexts with other human

and nonhuman agents and the environment [19]. This aspect is

fundamental capturing dynamics such as clustering, imitation,

learning, and diffusion processes. It is a crucial feature for

modeling SES insofar as the interactions of agents, and in

particular informal relationships and opinion dynamics, can

shape collective patterns of behavior.
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The fourth dimension deals with the
representation of organizations and the
emergence of organizational structures

Human agents are deliberative and social, but they are

also organizational and can form themselves into various

structures, hierarchical or not. At the same time, norms and

institutions, whether fixed or emergent, may induce individuals

to act differently from their individual choices, which may be

crucial to understanding the appearance or disappearance of

certain dynamics.

The potential of ABM is thus clear for representing the

social, heterogeneity, and interaction dimensions of SES, and

indeed is the approach of choice for the majority of researchers

faced with this need [2], but considerable methodological

challenges remain, in particular, as will be seen in this review,

those related to the explicit representation of scales and levels of

abstraction, absent from the classical meta-model of agent-based

modeling [20].

1.4. Presentation of the review

This review will explore how multi-level agent-based

modeling (ML-ABM) has evolved and what solution it

proposes to address modelers’ representation needs. The

aforementioned propositions (either formalism, framework, or

ad hoc implementations) will be organized along a continuum

expressing the autonomy of the levels in terms of control.

Along this continuum will be described three milestones of

interest. At one end of the continuum, this review starts with

the pattern we name Section 2.2, the most restrictive in terms of

the autonomy of levels, as it can only represent one active level

at a time. It is followed, in the middle, by a pattern we name

Section 2.3, which allows the levels to have a certain degree of

autonomy in terms of behavior, but imposes to describe strict

hierarchical coordination over these behaviors; then, at the last

end of the continuum, the one we name Section 2.4 giving levels

a high degree of autonomy and control, in exchange of some

complexification in the description of their coordination.

In the course of the review, the strengths and limitations

of these approaches will be highlighted in relation to the needs

expressed by modelers of complex socio-environmental systems

in terms of modeling and simulation, as well as from a software

engineering perspective. Specifically, in terms of modeling, the

review focuses on how each pattern supports the representation

of levels and their interactions or feedback, the design of the

overall architecture, and the ease of use for modelers. In terms

of simulation, it focuses on the operational instantiation of

processes such as the consideration of emergence phenomena

between levels.

This review will initiate a discussion of the common

limitations of the patterns. It will first point out that ABM

lacks an explicit representation of time and space scales,

which are necessary for ML-ABM. It will then outline the

difficulty of escaping the “single viewpoint hierarchy” to describe

and simulate phenomena where multiple hierarchies (social,

environmental, etc.) may be involved at the same time.

This discussion will allow us to introduce the proposal of a

more faithful representation of multiple scales in ABM (Section

3.2). Although ABM does not really provide a way to represent

the entirety of the concepts used in complex systems science

(notably simultaneous hierarchies of viewpoints), its software

basis, multi-agent systems (MAS), had explored some interesting

paradigms that could be used to enrich the patterns presented

in this review. This will be illustrated, among others, with

the AGR architecture and its main change being the use of

roles to describe groups/levels and the aggregation of roles to

describe agents. This would remove the obligation to have agents

belonging to only one super-level but would also create more

complexity for modelers to use and analyze emerging patterns.

Finally, it will conclude by summarizing the studies

presented in the papers in relation to the necessities expressed

by modelers trying to build models of complex socio-

environmental systems. Then it lists their respective limitations

and calls for renewed research in this area using the approach

presented in the discussion.

2. Multi-level ABM in the literature

2.1. Introduction

We have seen in Section 1.3 that ABM has the potential to

address some of the challenges raised by the modeling of SES,

particularly the three points listed below:

4. Dealing with scales and scaling.

5. Capturing Systemic changes in SES.

6. Integrating the human dimension.

The way they are addressed in the ABM literature is

of course highly dependent on the needs of modelers and

the goals of the models themselves; not all the modeling

questions require to represent simultaneously multiple levels

or the emergence of structures and functions, which is why

there exist different architectures for implementing “multi-

level” ABMs. This multiplicity of offers is the reason why

the vocabulary is not completely fixed, making it sometimes

difficult to find direct correspondences between the concepts

used in complex systems science and the ones proposed in the

different ML-ABM approaches. For instance, instead of using

concepts of time and space scales, ABM designers have to

deal with scheduling algorithms and encapsulation to translate

temporal and spatial constraints and transfers between agents

that represent levels; similarly, “systemic changes” can be

represented by different aspects: dynamic instantiation of agents,

injection of new code, etc.
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Implementing these levels and their interactions to represent

scales and their links is then dependent on two aspects: on

one hand, the choices of the modelers regarding the resulting

complexity of the models, which ultimately depends on their

usage: should they be kept simple enough to be understood by

anyone? Should they exhibit emerging properties only found

in “real” complex systems? Should they allow different levels

of exploration and explanation?; on the other hand, of course,

the technical and computational limitations of the existing

languages and computer systems available for implementing the

ABM architectures used. Both aspects have evolved over time,

and although we can witness a complexification of the questions

asked to models in parallel with a considerable increase in

computational capabilities devoted to running simulations, it

does not mean that “simple” approaches are not relevant in

most cases, which explains the diversity of the proposals listed

in this review. Morvan and Jolly [21] reviewed those points

and demonstrate that it has been applied in numerous different

research fields as biomedical research, human flow, social

science, ecology, etc.

Some previous study did draw some categories of ML-

ABM trying to give a reading grid over previous modeling

questions. Notably, Mathieu et al. [22] extracted four categories

based on modelers’ coupling choices (following a decision tree)

between two levels. This approach represents a valuable tool

for modelers building ML-ABM but does not give more detail

on the overall internal model mechanism. This review provides

a complementary analysis and aims to see existing ML-ABM

architectures, frameworks, and approaches from the point of

view of level control in the global model.

As displayed in Figure 1, we propose to present the evolution

of level control along a continuum. This continuum goes from

completely rigid (Zoom) without any autonomy of the levels

to levels not completely autonomous but running under rigid

control (Russian Dolls) or autonomous levels with relatively

flexible control (Collaboration). Those three milestones are

not impermeable, and there are some models and work in

between them.

These levels’ control differences can come from the

conceptualization, creation, and organization of levels in a

multi-level architecture, which is handled differently between

the different approaches presented here. The Section 2.2 design

pattern which coordinates levels as different models, each built

with a single temporal and spatial scale, uses functions to allow

switching from one level to another. Some other approaches aim

to have a more discrete composition between levels and include

each level into another one in a spatio-temporal hierarchical

order. This extension can keep ABM’s scheduling concept, like

with the Section 2.3 pattern which allows building an integrated

model at the cost of losing the level’s inner control, or, without

this control lost, as in the Section 2.4 pattern weak coupling

model’s level.

All these level control difference creates some extra

complexity in the exploitation of those models (point 5 from

Elsawah et al. [8]). When a model starts to have different levels

(made or not of different independent models), it becomes

more complicated to capture and analyze emerging patterns

from the global system or in-between described levels. This

analytic point can be needed by modelers which require to

keep detailed information from each level and ensure interaction

between them. RussianDolls and Collaboration patterns provide

different approaches to do so. The first one uses similar analysis

tools as classical ABM as this multi-level architecture remains

very close to it. The second one uses some tools inspired by

software engineering.

But, somemulti-level models do not need this to analyze and

capture those changes, as in the first multi-level model presented

by Gil-Quijan et al. [5] about the growth of a cancerous tumor.

At the beginning of the simulation, the micro-level (at the cell

scale) is important as it lets emerging a cluster of cells that can

be observed and identified as the tumor. However, those cells

can be aggregated into a bigger agent at a higher scale and lose

the detailed level to see this tumor evolution over organs. The

micro-level was useful to see and be precise on the creation of

the tumor, once it has been created, this level is not useful in the

model anymore and can, therefore, be removed.

Therefore, the choice of a pattern in the continuum to build

an ML-ABM will have to be chosen by modelers following

some modeling constraints or some more general software

development limitations. In the first case, as in the previous

example of the tumor model, modelers can choose a simpler

construction of levels as in-between level emergence is not the

main interest. Concerning software limitations, these can, for

example, come from the fact that a model is composed of sub-

models of different natures (ABM, EBM, etc.), which can be

complicated to integrate into a Russian doll type architecture;

in this case, it is simpler to use a Zoom or Collaboration type

architecture. Also, the choice of an ML-ABM pattern can be a

combination of both modeling and software choices.

Finally, integrating the human dimension as a dedicated

level in an ML-ABM, as pointed out in Section 3, is the next big

challenge of SES using agent-based models. Current solutions

make it mostly impossible to escape the “unique hierarchy of

viewpoints” to describe and simulate models. This prevents

the implementation and coordination of multiple simultaneous

viewpoints, which usually require multiple hierarchies (e.g.,

authors in the reviewing process) to define the functions and

structures of a complex socio-environmental system.

In order to highlight the benefice of each approach as well

as illustrate which questions can be answered by which multi-

level coupling solutions, we propose to use a simple agent-

based model of pedestrian evacuation (composed of People

agents walking from left to right) along this review over every

pattern presented.
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FIGURE 1

Multi-level agent-based modeling (ML-ABM) control’s continuum going from control fully delegated to the global model in the Zoom approach,

or keeping level’s self-autonomy in the Collaboration approach.

2.2. Zoom

2.2.1. Problematic faced in SES

On the first end of the continuum, the most rigid control

is the one represented by the so-called “Zoom” pattern. Each

level is an independent model using a level of abstraction on the

system using different kinds of models (agent-based, equation-

based, else) with any scale. In this pattern, only a single level

(i.e., model) is processed at a time, and modelers describe

how the model will switch from one level to another using

some transition function allowing to aggregate or disaggregate

elements from one level to another.

In other words, while zooming in, the model will (1) call a

transition function (defined by modelers) over the current level,

(2) give this result to initialize the new level, then (3) destroy the

previous level now unused. The system coherence over levels is

insured by modelers with the transition function chosen.

However, as levels are not persistent in the execution of the

model, the second SEs’ problem of capturing systemic changes is

very limited (or impossible), and the Zoom pattern is not used

to answer this need.

2.2.2. Definition

To describe it in a more formal way: the Zoom pattern

corresponds to a representation where levels are explicitly

described (usually as agents) in the model with destructive

behavior. Level behaviors, scales, transfer functions, etc. are also

described explicitly. However, only one level is active at a time

in the simulations. This ensures that there is no competition

or conflict between the levels of representation during the

execution of the model. Each level has an explicit aggregate and

disaggregates transfer function that explains how to go from one

level to the next one. Therefore, the use of this function will

destroy the source level currently in use, to create the next one.

Figure 2 illustrates the global architecture of this pattern.

In this illustration, the model has three levels: one equation-

based model and two agent-based models. As shown, every level

represents a different scale and is spatially (and temporally)

limited by the level above. Finally, it is possible to move

from one level to another, following some transfer functions

(aggregation, disaggregation, etc.). This construction leaves each

level independent, but only one level can be executed at a time.

If this Zoom pattern is used on the evacuation example

model, it allows us to model and simulate the crowd either

as an agent-based model (i.e., the initial model) or as a fluid

mechanics equation (as in Henderson [23]). Zoom does not

allow processing them at the same time; therefore modelers

will have to define transition functions to move from one level

to another. In this example, the mean-field approximation of

agents [24] can be used to move from the ABM level to the

EBM one as displayed in Figure 3.

2.2.3. Literature review

Differently from other patterns presented later, the Zoom

implementation is simple and does not require a real framework

to create this kind ofML-ABM.Most of the implementations are

ad hoc (i.e., dedicated to the model it has been used for, and not

generic to any model), then instead of listing them, this review

will list how and which mathematical functions are used to allow

switching from one level to another.

A note can nevertheless be made to highlight that this

pattern is preferred in the modeling field of road traffic [25], as

well as in crowd simulation [26, 27].

Some of the most commonly used transfer functions are

aggregation approaches including mean-field theory [24, 28]
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FIGURE 2

Simplified representation of the zoom architecture.

and aggregation of variable methods [29]. In those approaches,

the studies of the behavior of complex dynamics at the micro

level with many agent components interacting with each other

and with the environment is approximated by a single average

dynamics of the system at the macro level. Those approaches

have been applied to a wide range of fields such as physics,

artificial intelligence, epidemics, ecology, biology, and game

theory. However, they have the drawback of not keeping a

detailed representation of the system, and, in particular, do not

offer any flexibility in information transported between levels of

the system due to the principle of mathematical functions.

One way to overcome the limitation is to use a graph-

representation as an intermediate level which allows

more flexible information transfer from different levels

of a complex system either as bottom-up or top-down

information flow through levels. This idea was introduced

in Nguyen [30] and in some related and extended work

[31–33]. This methodology was first tested with the

theoretical case study in population systems/ecology; and

later rapidly applied to fishery systems, epidemiology

systems [34], soil systems [35], and waste management

systems [36].

2.2.4. Strengths and limitations

It is possible to extract some common strengths and

limitations from the use of the Zoom pattern by modelers.

The greatest strength of this pattern lies in its ease

of use and implementation by modelers. This simplicity

is found in the independence of the levels between them.

Actually, they are only linked by transition functions to

switch from one level to another. In fact, this independence

leaves, among other things, the modelers free in the nature

of the models that can be used as levels (agent-based,

equation-based, etc.).

Moreover, due to this autonomy of the levels, the

development of the layers of a multi-level model can be done

in parallel by letting a multi-disciplinary team work on different

models (in their nature, temporal and spatial scales, etc.)

which can be easily joined in a Zoom-type ML-ABM. Also,

the development and extension of a single level can be done
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FIGURE 3

Simplified representation of the example model in the Zoom pattern aggregating agents from the micro-level to an equation at the macro-level.

This operation is destructive, then after the aggregation, the ABM is removed and the model runs only with the macro-level.

independently of the global nesting of this level in the rest of

the model.

Two more strengths result from the independence of the

levels, namely that they are, by nature, reusable in other models

and can be arranged at the discretion of the modelers. The

reusability allows retrieving highly specialized models (ABM,

EBM, etc.) from another team of modelers to improve and

enrich the model currently developed. These models can be

independent or come from another ML-ABM of the Zoom

type. The choice in the arrangement of levels between them

allows one to follow the vision and the architecture that the

modelers wish to apply. It also reinforces the independence

of the levels because they do not necessarily have to fit

together according to scales or any other constraint (except

for the feasibility of the transition function, which is virtually

always feasible).

A final strength of this pattern lies in the resource saving

it allows. Indeed, by only computing one level at a time, the

addition of new levels will not impact the resources consumed

by the execution of this multi-level model.

These forces create, nonetheless, a strong limitation in the

use of this pattern. The destruction of unused levels (positive

for the model resources’ consumption) inevitably creates a loss

of information from these levels and prevents the appearance

and exploration of emergent phenomena at multiple scales and

between these levels.

2.3. Russian Dolls

2.3.1. Problematic faced in SES

As a reminder, SES is using ML-ABM to try to deal with

abstract representation at different scales (spatial and temporal)

and to capture systemic changes in the whole model and in-

between levels.

The Russian Dolls pattern tackles both problems by offering

a less rigid control over the levels : they are provided with the

possibility, when needed, to act on their own, but this follows a

very hierarchical coordination. Each level is developed in a given

scale and space, then they are all coordinated (i.e., scheduled

as defined in ABM) together at the model point of view in

regard to each scale. In other words, the temporal scale means

that a level executed at a minute scale will be executed 60

times between steps of a level working at an hour scale; as

for the spatial scale, each level is limited and bounded in a

sub-space of the above level, like a house (sub-level) in a city

(above-level).

As a result, this pattern forces levels to be used in a

strict hierarchical order with each level smaller, or equal, in

its temporal and spatial scale to the level above. Also, it is

important to highlight that levels are no longer independent,

making this ML-ABM very comparable to integrated models.

Thus, compared to the previous Zoom pattern, no level (then

nor information) is lost or destroyed which allows capturing the
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emergence and systemic changes of each level of the model and

in-between executed levels.

This architecture is based on a software engineering concept

called “tight coupling” (or “strong coupling”) [37]. A component

(in ML-ABM, it is level) in this concept is usually highly

dependent on each other and needs to know a lot about other

components. Changing the internal logic of one component in

a tightly coupled application often requires changes to several

other components. But it offers the advantage of a very stable

whole system and a strong integration from one component with

the others.

2.3.2. Definition

This pattern, as well as its corresponding implementations

in different platforms, offers support for representing multiple

levels simultaneously. However, it must respect the constraint

of strict control over how the levels behave and exchange

information. This can be implemented using scheduling

schemes similar to those in the holonic formalism [38].

In this holonic-like approach, levels are globally rescheduled

to execute the full model by level (i.e., one level is executed

at a time and the whole model is considered as a simple

single-level ABM). It requires mixing processes and structures

(which are central to systems thinking). The organization

on multiple levels impacts both the structural and functional

aspects of the model. First, in the structural aspects, elements

(i.e., agent, level, etc.) belong to others, or are contained in

others; second, in the functional aspects, elements depend

on others’ dynamics. These generally correspond to an

implementation of concepts of spatial and temporal scales

(playing a central role in multi-level mechanisms), and the

extension or modification of some properties from ABM: agents

now can “belong” to others or be contained in others, which

makes those agents being “executed” by others and lost their

own control.

In the example illustrated in Figure 4, the ML-ABM

rescheduled following the Russian Doll pattern will be executed

as follows. The macro-level (i.e., the city scale level) is executed

where cars are moving according to a traffic model. Then, each

building will be executed at the meso-level, calculating its energy

consumption. Finally, for each room in the building, the micro-

level is scheduled and runs each agent following another model.

Once every level has been executed, the model starts a new cycle,

following this same process.

Furthermore, each level can have a reciprocal effect within

and with other levels, leading to some emerging patterns in

the multi-level model. For example, the meso-level could be

influenced by actions done at the micro-level: if a room is

cooking, doing a videoconference, or reading a book, this will

influence differently the energy consumed at the meso-level.

Moreover, if we were to add a pollution model at a higher level

than the current macro-level, it could be fed by our macro-

level (with car’s pollution) and meso-level (with electricity’s

generation pollution).

The global scheduling explained in the example can be

re-adapted by modelers depending on their needs. It can

start from the smallest level to the biggest (some Bottom-Up

scheduling), or the opposite (Top-Down scheduling). Thus,

all levels are synchronized and computed together, keep their

agent’s details, and can dynamically draw emerging properties

in between levels.

This holonic implementation is very similar and comparable

to what is called “tight coupling” (or strong coupling) in software

engineering. It is a type of coupling which describes a system in

which software parts are not only linked together but are also

highly dependent on each other.

In this comparison, Russian Dolls’ parts are its levels and

share many developmental characteristics with parts of tightly

coupled systems, which are often seen as disadvantages:

• A change in one module (level) usually forces a cascade of

changes in the other.

• The software architecture composition of the modules

(levels) might require more effort and time due to the

increased inter-module dependency.

• A particular module (level) might be more difficult to reuse

and test because dependent parts must be included.

Coming back to the case of the pedestrian example model,

the use of the Russian doll architecture allows for example

to integrate of this model, which allows simulating pedestrian

movements on a single road, in a larger scale model simulating

for example the traffic in the whole city. This coupling would

benefit the bigger level to have a more precise simulation of

critical points with a finer simulation of people evacuating an

area. Those two levels would, however, lose their self-execution

scheduler and be considered as a whole by themulti-level model.

This way, considering that the city (i.e., big-scale level) has a step

of 1 h, and the evacuating crowd (i.e., small-scale level) of 30

min, the model would execute the crowd one extra time between

each city’s execution as displayed in Figure 5.

2.3.3. Literature review

Different tools and frameworks have been developed over

years to ease this kind of ML-ABM by modelers. Some of them

have been made and used in the field of urban traffic as Multi-

Level Mesa [39] provides methods to help manage the complex

interactions of agents andmodules of agents (e.g., groups) across

multiple hierarchies (i.e., levels).

But, some more generic platforms have also been created for

modelers either to apply some formalism or to extend already

existing ABM platforms like:
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FIGURE 4

Simplified representation of the Russian Dolls architecture.

• GEAMAS (GEneric Architecture for MultiAgent

Simulation) [40] is a pioneering ML-ABM framework

integrating three levels of description (micro, meso,

macro). Themicro andmacro levels represent, respectively,

agent and system points of view, while the meso level

represents an aggregation of agents in a specific context.

Levels communicate with each other asynchronously. It

has been applied to a variety of fields as thermodynamic

models [41].

• ML-DEVS (Multi Level DEVS) [42] is an extension of

DEVS formalism [43] which allows the simulation of

multi-scale models (and not only coupled models in which

the behavior of amodel is determined by the behaviors of its

sub-models). There are two types of relation between levels:

information propagation and event activation. However,

ML-DEVS focuses on multi-scale modeling and therefore,

only supports pure hierarchies of models. This extended

formalism has been implemented in the framework of

James II [44] to develop multi-level models.

• CRIO (Capacity Role Interaction Organization) [45] is an

organizational meta-model dedicated to ML-ABM based

on the concept of holon. It has been specially developed

for multi-scale simulations of pedestrian flow. It had been

used to model human activities [46] as well as a base

to build normative holonic metamodel for multi-agent

systems [47].

• LevelSpace Hjorth et al. [48] is an extension for NetLogo

[49] which allows modelers to dynamically create models

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2022.1020353
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Brugière et al. 10.3389/fams.2022.1020353

FIGURE 5

Simplified representation of the example model in the Russian Dolls pattern rescheduling both models’ execution. The micro-model is

processed alone in time=30 as it has a smaller time step than the macro-model.

inside other models (in the same way as agents are

created inside models), which implies a strong hierarchical

structure.

• Capture Release Vo [18] is a GAMA Platform extension

[50] that allows aggregate agents in the above level’s agent.

This process changes the behavior of captured agents which

will be controlled by the bigger agent. It has been used,

for instance, on an evacuation model [20] and several

toy models displaying the clusterization of boids [51] as

flocks [52].

Finally, some ad hoc implementations have also been used

in different projects and research fields with similar approaches

as in medicine with some tumor modeling [53], in urban traffic

[54, 55] or even in hydrological modeling project [56].

2.3.4. Strengths and limitations

It is possible to extract some common strengths and

limitations from the use of the Russian Dolls pattern

by modelers.

Level’s persistence is one of the strengths of this pattern in

regard to the fifth SES challenge from Elsawah et al. [8]. It allows

modelers to analyze and capture emergence between levels and

explore modeling problems over multi-level representations of

the system.

Another strength of this architecture is its natural

hierarchical architecture. The spatio-temporal imbrication

of levels is what is perceived from our reality and makes the

conceptualization of those multi-level models simple.

However, this strength also creates one of the major

drawbacks of this pattern as levels are not independent, which

creates several problems shared with tight coupling in software

engineering. As levels are integrated into the full model,

extending or debugging them becomes more complex.

This design pattern is pretty close to classical ABM as it

does not bring any new concept or method to build or use ML-

ABM but extends some (like ABM’s scheduling) for a multi-level

explicit purpose. Therefore, it has been very straightforward

for the modeling community to develop this pattern and

create a wide variety of simple and powerful tools to build

Russian Dolls.

But, this strength also creates a limitation in the nature

of usable levels. As the full model will be close to a

simple ABM, it is difficult to add levels that are not

agent-based (but not impossible as in Chapuis et al. [57]).

Furthermore, it will be impossible to use anything else

than an ABM for an intermediate level (like in a multi-

level model architecture with some ABM at the macro

level, equation-based at the meso, and ABM at the micro).

This kind of structure is possible with the last pattern

(Section 2.4).
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2.4. Collaboration

2.4.1. Problematic faced in SES

As a reminder, SES is using ML-ABM to try to deal with

abstract representation at different scales (spatial and temporal)

and to capture systemic changes in the whole model and in-

between levels.

At the other end of the continuum, we find a pattern

of Collaboration that represents a loose control between

autonomous levels. Each level is, therefore, considered as an

independent model using any level of abstraction on the system

using different kinds of the model (agent-based, equation-based,

else) with any scale.

However, to ensure catching emerging patterns in and in-

between levels, those are not destroyed and created during the

model’s simulation run. Similar to the Russian Dolls, they all are

collaborating and processed at the same time.

This architecture derives from software engineering

concepts called “loose coupling” or “weak coupling” (and is

opposed to “tight coupling”) [58]. The idea behind this concept

lies in two main aspects: 1) components (for ML-ABM it is

level) are weakly associated (i.e., have a breakable relationship)

with each other, making changes in one component least

affect the existence or performance of another component;

and 2) each component has little (or no) knowledge of the

definitions of other separate components. Those points protect

level autonomy and independence, especially the second one

preventing levels to lose their own scheduling/execution control.

The drawback of this flexibility is the complexity of the use

of such a pattern. Even though this kind of coupling has been

experienced for years and is widely adopted by the software

development field, it requires some technical software work

to connect each level together with some unusual concepts

for modelers.

2.4.2. Definition

Similar to the Russian Dolls pattern, the last pattern,

Collaboration, also addresses some modeling needs which are

not addressed by Zoom. It keeps the level’s information from

being lost. However, to ensure the independence and self-control

of each coupled level, this pattern applies a loose coupling (or

weak coupling). Therefore, the main difference between the

second pattern and Collaboration is how they both solve the

coupling problem between levels.

Collaboration allows us to get rid of the global rescheduling

constraint from the previous pattern. Here, the architecture is

coupling independent models as levels and allows reciprocal

information exchange between them. As this interaction is

bidirectional, levels have a direct influence on each other.

In computational and systems design, a system is said to

be loose when one component has a breakable relationship

with other components, and components have no knowledge

(or little) of the definitions of other separate components

in the system. In the Collaboration pattern, components

are model’s level which are all communicating by software

messages and considering each other level as a black box.

Moreover, since the levels are loosely coupled and considered

a black box, each level can be seamlessly replaced by another

model. It is also possible to extend a given Collaboration

model with another pre-existing model as in Chapuis et

al. [59].

In Figure 6, each level corresponds to an independent model

that sends information (the output result of each processed

cycle) to other levels (as the input value for the processed

cycle) in directions chosen by modelers. Those messages are

not limited by the hierarchical order of levels in the model,

e.g., the micro-level can directly interact with the macro-level,

and reverse.

Therefore, by changing the way levels are coupled, this

pattern no longer requires modelers to focus on or work on

level scheduling. Because each level is considered a black box,

they are all scheduled by themselves, each keeping control of

the evolution of the model’s level. This control distribution

among the levels is in particular interesting in terms of

the representation of systems where functions are, therefore,

also distributed.

However, this distribution comes at the cost of a greater

complexity in the models, as the interactions between levels

are less structured, and all the related problems of coherence

between levels can raise.

In the example evacuation model (Figure 7), it is possible

to apply this pattern in order to evacuate the crowd

on two exit points respecting a fluid physics model [60].

Therefore, the modeler will create an interface allowing to

send output data (e.g., Person agent entering this area)

which will be taken as input by the second model. That

second model will process its fluid simulation then send back

information on which path agents are taking (Figure 7). This

way, instead of representing the crowd as agents making

a choice, the modeler can consider it as a fluid that will

force agents to one exit following a more macro-scale

crowd dynamic.

2.4.3. Literature review

Different tools and frameworks have been developed over

years to ease this kind of ML-ABM by modelers. Some of them

have been specifically made and used in the field of urban

traffic as

• SimMobility Lu et al. [61] is structured in three

components (long-, mid-, and short-term) and follows a

multi-level approach based on the time aspect. Modeling

aspects are distributed across the three components and

brought together into a single database.
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FIGURE 6

Simplified representation of the Collaboration architecture.

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2022.1020353
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Brugière et al. 10.3389/fams.2022.1020353

FIGURE 7

Example of the Collaboration pattern allowing to simulate the example agent-based evacuation model than relying on a fluid model simulating

the crowd as a fluid to process the number of agents going to one exit or another. Those models are processed independently and are

considered by each other as black boxes.

• TraSMAPI (Traffic Simulation Manager Application

Programming Interface) [62] is a system architecture

integrating (with weak coupling) SUMO [63] and JADE

[64] frameworks to build ML-ABM. JADE agents represent

drivers (managing micro-behavior such as lane changing)

that are linked to vehicles in SUMO (managing meso travel

modes).

Some generic tools have also been created for modelers

either to apply some formalism or to extend already existing

ABM platforms like:

• GEAMAS-NG David et al. [65] is an updated version of

Russian Dolls’ GEAMAS, where the framework provides

tools to detect and reify emergent phenomena between

different kinds of models (like MAS and CBR [66]). It has

been used for modeling urban area evolution.

• Co-modeling Huynh [67] is a GAMA Platform extension

changing the base concepts of ABM formalism by allowing

agents to be models themselves. With it, the ML-ABM

consists of a collection of models that are only loosely

coupled. It has been used to couple an ABM with a

hydrological model in an evacuation model [59].

Finally, as for other patterns, some ML-ABM has been

developed using this design pattern but without any

framework in an ad hoc implementation. It is the case in

fields such as biological systems, e.g., in many works on

the multi-level modeling of tumor development [68, 69],

urban traffic [70] or resource management models [71].

An interesting usage is made by Yang et al. [72] who use

the flexibility of this pattern to easily swap the micro level

and explore its impact without having to modify the rest of

the model.

2.4.4. Strengths and limitations

These pattern offer qualities from both previous patterns.

Similarly to the Zoom pattern, it allows to use and reuse of

any kind of independent model as a level in the built multi-

level model, and, as with the Russian Dolls, it preserves levels

during the whole model’s execution allowing the exploration

of emergence in a multi-level system. Additionally, due

to its loose coupling base, it is possible for modelers to

conceptualize and coordinate levels in a hierarchical order of

their wish.

However, this pattern is also the most complicated for

non-developer scientists and modelers to use. For example,

the comodeling framework requires three extra technical files

to ensure communication and coherence between two levels

(making a total of five files). This creates a great deal of

complexity when trying to develop models.

Also, its overall complexity lets modelers precisely explicit

the coherence of levels’ execution, leading to greater complexity

in the development and can make multi-level wrong because

of it.

Because of this overwhelming cumulative complexity, few

tools currently exist that are capable of hiding this complexity
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and allowing a wide range of modelers to use and explore

this pattern.

3. Discussion

3.1. Limitations in the reviewed
continuum

Each of the approaches and ML-ABM architecture along

the continuum presented in this review have demonstrated

its utility, usability, and interest. They all have been used

by modelers in different fields to answer different scientific

questions and allow, different, to model complex systems in the

ABMmodel over several levels of abstraction. Therefore, they all

achieve the same goal to allow modelers to create, experiment

on, and work with multi-level models.

However, they also share a strong limitation in regard to

SES requirements: None of them propose ways to explicitly

represent spatial or temporal scale within or between levels. This

limitation is induced by the use of ABM in which those concepts

are missing.

Thus, the Zoom pattern simply forgets this issue between

levels by considering only one structural and functional level at a

time. The spatial scale can, in a way, be expressed in the transfer

function between levels, but the temporal scale is always induced

in the model and modelers are responsible for respecting

this coherence between levels of the model they are building.

The two other patterns, Russian Dolls and Collaboration, do

have some workarounds to address those needs, though they

are limited. The temporal constraint and coherence can be

translated with scheduling and the spatial constraint is translated

by the encapsulation of levels in each other.

Those solutions allow us to address and translate these

spatial and temporal constraints between levels in a somewhat

limited way, although they are sufficient in most cases. For

example, complex system models following the natural single

hierarchical imbrication, like in urban traffic models [54] or

biological models [53], totally fits with implicit this spatio-

temporal scales in ML-ABM; but some SES models do not (e.g.,

the scientific reviewing process).

Since SES are interested in the agent’s behavior, which can be

used as a level but not indexed in any natural spatio-temporal

hierarchy, it requires the possibility to explicitly define those

constraints. This point reveals another strong limitation shared

by each of those patterns: they are all restricted to represent only

one hierarchy at a time. It forces modelers to mix functional

and structural properties in describing levels and forces them

to express only a single hierarchy, despite the fact that several

hierarchies of points of view and abstraction may be necessary to

understand the functioning of a complex system and, moreover,

socio-environmental ones.

This limitation prevents modelers from working on a

wide range of models. We can illustrate this with EasyChair’s

organization: how is it possible for the same person (i.e.,

agent) to be an author, reviewer, and member of the program

committee, at the same time? Taking back this review’s example,

evacuating agents can, in the real world, also have several

roles as Pedestrians with the only will to go to the exit point,

Parents varying this first behavior with a will to keep their

children close and safe, Police Officer trying to evacuate everyone

before himself, or a combination of each. How can it be simply

implemented by modelers over the pre-existing model, and how

can modelers choose which role have the greatest influence on

the agent? Over which conditions?

Each of those roles brings a single physical agent to have

different behavior (when it is an author, it will listen to

comments and try to please reviewers, but this comportment

will be entirely reversed when the agent is wearing the reviewer

role), interaction range (interacting with other agents from

the same group with the same role), etc. This pictures the

limitation of models allowed by the use of a single hierarchy

and, if used, needs to over simplify the model in a wrong

abstraction.

3.2. Toward a more faithful
representation of multiple-hierarchy in
ABM

Although ABM does not really provide a way to represent

the entirety of the concepts used in complex system science

(notably simultaneous hierarchies of viewpoints), its software

basis, multi-agent systems (MAS), has explored some

interesting paradigms that could be used to enrich the

patterns presented above.

Multi-agent systems alone provides a good basis for building

complex agent-based systems, but it is one of its extensions, the

organization centered multi-agent system (OCMAS), which can

serve as a real base to address current SES ML-ABM drawbacks.

The concept of “organization” is hard to define, but Ferber

et al. [73] described its main features as follows:

• An organization is constituted of agents (individuals) that

manifest a behavior.

• The overall organization may be partitioned into groups

(partition) that may overlap.

• Behaviors of agents are functionally related to the overall

organization activity (concept of role).

• Agents are engaged in the dynamic relationship which may

be “typed” using a taxonomy of roles, tasks, or protocols,

thus describing a kind of supra-individuality.

• Types of behaviors are related through relationships

between roles, tasks, and protocols.
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An important element of organizations is the concept of

role. A role is a description of an abstract behavior of agents.

A role describes the constraints (obligations, requirements,

skills) that an agent will have to satisfy to obtain a role,

the benefits (abilities, authorization, profits) that an agent will

receive in playing that role, and the responsibilities associated

with that role.

A role is, then, a description of patterns of interactions that

an agent will have to perform. Organization can be considered at

two different levels: at the organizational (or social) level (i.e., as

a composition of roles) and the concrete (or agent) level (e.g., a

crowd) [74].

Another important principle described by Ferber

et al. [73] is that the organizational level describes

the “what” and not the “how.” The organizational

level imposes a structure onto the pattern of agents’

activities, but it does not describe how agents behave.

In other words, the organizational level does not have

a “code” that can be executed by agents, but it provides

specifications using rules and expectations placed on the

agents’ behavior.

3.2.1. Agent, group, and roles

One interesting approach to treating this is the

Agent/Group/Roles (AGR) paradigm [75]. When used, it

is possible to extend the behavior of the agents belonging to

roles that are changing or adding behavior to their existing ones.

The AGR formalism is, thus, defined as:

• An agent is defined as an active communicating entity that

takes on roles in groups. An agent becomes a member of a

group by taking on a role defined by this group. It can then

simultaneously take charge of other roles of this group, or

roles defined in other groups, of which it then also becomes

a member. No assumption is made about the architecture

of the agents.

• A group consists of a set of agents interacting through

their roles. At an abstract level, it defines a set of roles and

relations between these roles that realize a global function.

A group is then instantiated by the assumption of its roles

by an agent, but all the roles in it may not be assumed, and

the same role may be instantiated several times on different

agents. The group is, therefore, a description structure with

a very high level of abstraction and is capable of generating

a great diversity of realizations. Finally, groups are opaque

to each other: agents can only interact if they belong to the

same group.

• A role is defined as the abstract representation of the

function of an agent in a group. Roles are defined in groups

and encapsulate how an agent should act within the group.

To allow the application of the AGR principle, an in-depth

re-work of how Agent-Based Models conceptually (following

the AGR paradigm) and technically (in how frameworks and

software tools implement models) work is needed. Indeed, the

current structure of the ABM is based on the composition of

agents that are owned and compose groups. The architecture of

ML-ABM is based on this composition of the group of agents.

Following the new AGR structure, it needs to be changed to

allow agents to be owned and fed by different roles. Then, those

roles could compose groups on which it would be possible to

re-implement the current ML-ABM design (Figure 8).

This modification would deeply change the way levels

are composed. They will no longer be spatially bounded to

the agents composing them, and will instead let modelers

create levels that rely on non-hierarchical, non-spatial, and

non-temporal interactions between agents and roles. This new

architecture allows the creation of complex SES models as the

EasyChair’s organization previously (Section 3.1) described in

Figure 9.

In the AGR paradigm, illustrated in Figure 9, a person

(i.e., agent) can have several roles, so it can be an author, a

reviewer, and a member of the program committee. Each role

would cumulatively enhance the behavior of the agent. Agents

can also be grouped by role allowing committee members to

communicate together and know other members of the group,

which allows removing any spatial need constraint (from the

agent and the group).

This new structure allows models to escape the single

vertical hierarchy between levels. In Figure 9 1) levels are neither

spatially nor temporarily limited by other ones, and 2) several

levels can operate at the same hierarchical level as different

evaluation groups in the diagram.

3.2.2. AGR review

Several frameworks have been proposed following

this new architecture proposition, including some by J.

Ferber himself:

• AALAADIN Ferber et al. [76] is the first meta-model

of an artificial organization implementing AGR created

by J. Ferber. It allows for building multi-agent systems

with different forms of organizations such as market-like

[77] and hierarchical organizations as well as in general

modeling like in complex industrial process modeling. This

first implementation has been later extended to a generic

Java library calledMaDKit [78, 79].

• ORIGAMI (Original Roles Identification, Groups and

Agents Modeling Itinerary) [80] is based on the use of

UML diagrams to build organizational representations of a

system based on the AGR formalism. It allows structuring

the analysis of a system through the identification of its
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FIGURE 8

Classical ML-ABM UML (left) compared to a simplified AGR paradigm UML (right) [76].

FIGURE 9

The cheese-board diagram describing the EasyChair’s organizations in AGR [76].

structural units, the functions described, and the entities

that constitute it with the use of diagrams. It has been

demonstrated on a toy model reimplementing a collective

management model of water irrigation system [81].

As the AGR formalism deeply change the structure of (ML-

)ABM, some frameworks aims to extend it to make it more

compliant with classical ABM and avoid having to change it:

• AGRE (AGR + Environment) [82] is an extension of

the AGR organizational model, which includes physical

(or simply geometrical) environments called “area.”

This extension is based on the concept of a space

which can be seen either as a physical area or as a

social group.

• IRM4S (Influence Reaction Model for Simulation) [83]

is an ABM meta-model based on the Influence Reaction

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org

https://doi.org/10.3389/fams.2022.1020353
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Brugière et al. 10.3389/fams.2022.1020353

model which views action as a two step process: first, agents

produce “influences” (i.e., individual decisions) according

to their internal state and perceptions, then, the system

“reacts” (i.e., computes the consequences of influences)

according to the state of the world [84]. The relations of

perception and influence between levels are specified with

digraphs.

In its presentation paper, this framework have been

demonstrated on robot soccer collaboration model and the

predator prey model [83] and reused as a base for a smart

traffic simulator [85].

• IRM4MLS (Influence Reaction Model for Multi-Level

Simulation) [21] is a multi-level extension of IRM4S.

It relies on a generic vision of multi-level modeling.

Therefore, interactions between levels are not constrained.

It has been successfully applied to some real cases

transportation systems [86].

Both frameworks aim to address the limitation discussed in

Section 3.1 of ML-ABM, which does not fit some new multi-

level models. They all extend agents with the new concept roles.

Roles can be used in two directions: 1) to describe groups (which

can be used as levels) and 2) to describe the aggregation of roles

to describe agents. This model’s structure enhancement removes

the constraint to have agents belonging to only one super-level

(as roles describe levels and one agent can belong to several

roles) but also creates greater complexity.

Unfortunately, none of them is actually implementing AGR

or proposing convincing tools for modelers to use and apply this

innovative paradigm. Regardless of their usability, each of them

tried to fit the AGR paradigm into either an existing framework

or the general ABM architecture. However, as discussed in this

review (Section 3.1), using both methods fundamentally cannot

work. Then, most of the reviewed frameworks do keep spatial

and temporal constraints between levels and failed to tackle the

first described ML-ABM limitations.

Therefore, research and experimentation into tools that

would allow modelers to truly use the AGR formalism is a topic

of interest and could lead to some great new models.

4. Conclusion

This review explored how agent-based multilevel modeling

(ML-ABM) has evolved and what solution it has offered

to meet the representation needs of modelers. Three high-

level architectures (called Design Patterns in this review)

were described as landmarks on a continuum that allowed

us to classify ML-ABM tools and frameworks for modelers

from very simple approaches giving control to only one

level at a time to more complex approaches allowing for

the representation of relatively sophisticated feedback loops

between autonomous levels.

The first landmark, called (Section 2.2), is the easiest to

implement and allows modelers to move from one level to

another with so-called “destructive” disaggregation/aggregation

functions. It has the advantage of being simple to implement for

the modelers and can be used with any type of model, but it

only allows representation of one active level at a time, which

limits the possibilities to represent and focus on the emergence

relations between levels. It also presupposes a complete

knowledge of how the different levels are implemented, neither

allowing reuse of legacy models nor imagining separating them

to make autonomous models.

The progression along the continuum is logically done in

terms of the autonomy of the individual levels; the second

landmark, which we call Section 2.3, marks the possibility

of describing levels that can be active simultaneously but

organizing them within a rigid holonic structure, where time

and space scales are necessarily hierarchically nested. It allows

modelers to describe the levels in a relatively natural way at the

cost of a certain rigidity of the whole and a lack of autonomy of

the individual levels as models.

The last one, which we have called Section 2.4, is the

most complicated to implement for the modelers, but it offers

the most flexibility in the description of the relations between

levels. Based on the principle of “weak coupling” from software

engineering, this approach considers each level as a black box

that communicates through predefined inputs and outputs,

which allows describing their interactions and feedback loops

in a very free way. The strength of the approaches that follow

this pattern is that they do not lock the modeler into a too rigid

approach, and allow much better reuse of existing models. Their

weakness, on the other hand, is that the design and validation of

the models are made much more complex.

It is important to emphasize that this continuum is only

used to classify the studies we have reviewed. It obviously does

not represent a qualitative value that would express that some

multilevel approaches are “better” than others, as this can only

be judged in relation to the objectives of the modelers wishing to

answer a specific question in their representation of SES. In some

cases, simply capturing the transition from one level to another

(appearance of a structure or behavior causing the transition

to a higher level model) is sufficient, and this is what the vast

majority of published study is limited to. In other cases, cyclic

behaviors of aggregation/disaggregation, emergence/constraint,

or more complex feedback loops must be implemented between

levels to allow modelers to answer the questions posed to them,

and this is what approaches ranging from Russian Dolls to

Collaboration allow.

In terms of SES representation, the review has nevertheless

highlighted (Section 3.1) two important limitations shared

by all the approaches presented: 1) the lack of convergence

on a common and documented representation of time and

space scales, which remains at the sole discretion of the

modelers and is often not explicit, making the reuse of
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models representing these levels quite problematic; 2) the

impossibility of representing more than one hierarchy at a time,

which prevents the implementation and coordination of several

simultaneous points of view, sometimes necessary to define

the functions and structures of a complex socio-environmental

system, in particular when multiple social groups—and their

overlaps and interactions—must be represented.

We hypothesize that as the questions posed to modelers

become more complex, these two limitations will become real

obstacles to a more professional use of ABM. On the one hand,

because, as multilevel modeling becomes more widespread, it

will be necessary to be able to easily reuse the models of

levels, which will have to make their time and space scales

explicit; on the other hand, because the possibility of taking

into account and interweaving different points of view is one of

the prerequisites of interdisciplinary approaches, which become

widespread in the handling of SES problems. In order to make

progress on these two points, we believe it is necessary to

revise the classical structure of agent-based modeling, which

is still too closely linked to the limitations of object-oriented

programming, fromwhich it is inherited, in order to offer amore

faithful representation of the multiple levels and to link them

more explicitly to scales of time and space. The use of the AGR

paradigm (Section 3.2) is in this respect potentially interesting.

It allows one to define an agent as a dynamic set of roles and to

define the groups of agents (the levels) in terms of the grouping

of these roles. An agent can thus be described as belonging

to several distinct levels simultaneously. The conditions for

aggregating, disaggregating, or sharing control are defined by the

group itself, which also allows, in theory, to add or subtract them

from the model dynamically and also to build, eventually, easily

reusable libraries of levels.

This proposal implies modifying the “classical” metamodel

of agent-based models while keeping their easily accessible

side for non-experts and continuing to ensure that their

implementation is not too complex or constrained. This is

not an easy challenge to meet, as it is also this simplicity

that has made them successful in recent years. But as agent-

based models become indispensable tools in decision support

processes, moving away from the “toy model” aspect that has

often been reproached to them, it seems important to us to

make sure that their development becomes more professional.

We hope that this review, these proposals, and the study that

we are going to do on them will allow us to progress in

this direction.
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