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Abstract: Metagenomics studies have revealed tremendous viral diversity in aquatic environments.
Yet, while the genomic data they have provided is extensive, it is unannotated. For example, most
phage sequences lack accurate information about their bacterial host, which prevents reliable phage
identification and the investigation of phage–host interactions. This study aimed to take this knowl-
edge further, using a viral metagenomic framework to decipher the composition and diversity of
phage communities and to predict their bacterial hosts. To this end, we used water and sediment
samples collected from seven sites with varying contamination levels in the Ebrié Lagoon in Abidjan,
Ivory Coast. The bacterial communities were characterized using the 16S rRNA metabarcoding
approach, and a framework was developed to investigate the virome datasets that: (1) identified
phage contigs with VirSorter and VIBRANT; (2) classified these contigs with MetaPhinder using the
phage database (taxonomic annotation); and (3) predicted the phages’ bacterial hosts with a machine
learning-based tool: the Prokaryotic Virus-Host Predictor. The findings showed that the taxonomic
profiles of phages and bacteria were specific to sediment or water samples. Phage sequences assigned
to the Microviridae family were widespread in sediment samples, whereas phage sequences assigned
to the Siphoviridae, Myoviridae and Podoviridae families were predominant in water samples. In terms of
bacterial communities, the phyla Latescibacteria, Zixibacteria, Bacteroidetes, Acidobacteria, Calditrichaeota,
Gemmatimonadetes, Cyanobacteria and Patescibacteria were most widespread in sediment samples, while
the phyla Epsilonbacteraeota, Tenericutes, Margulisbacteria, Proteobacteria, Actinobacteria, Planctomycetes
and Marinimicrobia were most prevalent in water samples. Significantly, the relative abundance of
bacterial communities (at major phylum level) estimated by 16S rRNA metabarcoding and phage-host
prediction were significantly similar. These results demonstrate the reliability of this novel approach
for predicting the bacterial hosts of phages from shotgun metagenomic sequencing data.

Keywords: virome; phage-host interaction; 16S rRNA metabarcoding; host prediction; bacteria;
metagenomic; lagoon

1. Introduction

Bacteriophages (viruses that infect bacteria) make up the majority of viruses found
on Earth and occur in a variety of environments: marine, freshwater and terrestrial [1,2].
Phages are likely to be distributed wherever their potential hosts exist [3]. They have
been found to have a significant impact on microbial ecosystems by affecting bacterial
mortality, reshaping bacterial diversity via horizontal gene transfer and rewiring bacterial
metabolism [4]. Phages are classified as lytic (virulent) or lysogenic (temperate) depending
on the infection pathway they use when targeting a permissive host [5]. As our knowledge
of viral diversity increases, new tools are needed to facilitate the identification of newly
discovered viruses, allowing taxonomic and functional assignment and the prediction of
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their associated hosts. The identification of the viral host is essential for the characterization
of phages, as they depend on the host for survival [3]. Currently, the most common method
used to determine the host of a phage is through cultures, but this can be inefficient, time
consuming and expensive [6].

In recent decades, shotgun metagenomic sequencing has been proposed to study
genomes of uncultured viral populations in the environment, an approach known as viral
metagenomics [7]. This has allowed virome analysis (of all viral assemblies in a given
environment) to uncover many new phage genomes never previously reported, enriching
viral sequence databases [7]. However, in contrast to the conventional culture-based
approach, which provides direct host information, viral metagenomics does not reveal the
relationships between phages and their hosts [8]. This has led to a growing demand for
computational tools able to annotate new viral genomes with host taxon information [9]. To
date, high-throughput methods for determining reliable virus-host associations are lacking,
preventing this aspect from keeping pace with the rapid pace of virus discovery.

Several approaches have been put forward to predict phage-host relationships; for
the most part, these are based on abundance profiles, genetic homology, CRISPR, exact
matches or oligonucleotide profiles [8,10]. More recently, a variety of computational
approaches have been developed for phage-host prediction. These fall under two main
groups depending on their use of sequence alignment: alignment-based or alignment-free
methods [11]. The alignment-based methods (e.g., using BLAST or CRISPR spacers) rely
on sequence-similarity searches between a query virus and a host genome, since viruses
and hosts may share genes and short nucleotide sequences [8,12]. Alignment-free methods
predict the host of a virus based on the co-occurring k-mers (the oligomers of length k) of
phages with known hosts [13] or the similarity of sequence signatures between viruses and
their hosts [8]. To determine the most likely host, these methods calculate the similarity
between the phage sequence and the genome of each candidate host using oligonucleotide
frequency, a Markov chain model, or a Gaussian model [10]. Of the latter approaches,
VirHostMatcher [12] and WIsH [14] have shown the highest accuracy in predicting hosts.

For this study, we chose the Prokaryotic Host Predictor (PHP) (https://github.com/
congyulu-bioinfo/PHP) as it has greater prediction accuracy than VirHostMatcher and
WIsH (28–34%, genus level) [11]. This software tool uses a Gaussian model to predict the
hosts of prokaryotic viruses by looking for differences in k-mer frequencies between viral
and host genomic sequences [11]. K-mer profiles use nucleotide composition to predict
the host of a viral sequence by identifying the corresponding prokaryotic genome with the
highest significant similarity, assuming that this is the host of the virus of interest [15].

In a previous study, we had characterized the viral communities of the Ebrié Lagoon
in Abidjan in the Ivory Coast, a tropical lagoon subject to high levels of contamination from
human activities (submitted for publication 2022). Most of the sequences obtained from the
virome analysis were annotated as phages. However, because studies of viruses in tropical
lagoon environments are scarce, phage hosts remain largely unknown. To investigate this
further, we aimed to develop a viral metagenomic framework able to describe the phage
communities and predict their putative bacterial hosts. The viromic data was obtained from
water and sediment collected from seven sites with contrasting contamination levels from
the lagoon. In parallel to the metagenomic framework, we performed a 16S metabarcoding
analysis to describe the bacterial communities. This allowed us to compare the relative
abundance of bacterial communities (at phylum level) estimated by the 16S-based method
and by phage-host prediction to assess the accuracy of the viral metagenomic framework
in predicting phage hosts and to identify its main challenges.

2. Materials and Methods
2.1. Study Site and Sample Collection

The samples were collected between 21 and 28 May 2019 around the Ebrié La-
goon, which borders Abidjan, the Ivory Coast’s largest city. Seven stations (S) with
contrasting anthropization levels and sources were sampled around the lagoon: (S1) Mon-
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doukou (05◦11′15.8′′ N, 03◦41′20.8′′ W), (S2) Cocody Bay (05◦19′41.1′′ N, 03◦59′26.4′′ W),
(S3) Yopougon Beach (05◦18′26.0′′ N, 04◦02′18.0′′ W), (S4) Yopougon Bay (05◦18′31.1′′ N,
04◦04′08.3′′ W), (S5) Boulay Island (05◦17′15.0′′ N, 04◦01′48.6′′ W), (S6) Bietri slaughter-
house (05◦15′58.3′′ N, 03◦58′01.1′′ W) and (S7) Bietri Neck (05◦15′37.0′′ N, 03◦58′28.8′′ W).
Sediment and water samples were collected in triplicate at each of the seven stations. Water
samples were collected at a depth between 15 and 50 cm using 1.5-L sterile plastic Nalgene
bottles. The bottles were rinsed twice with lagoon water before collection. Sediment sam-
ples were collected with a Van Veen grab (KC Denmark) at a depth of approximately 1 m.
The top layer of each sediment core (~2 cm) was removed and placed in a sterile plastic
ziplock bag (Whirl-Pak). All samples were kept cool in an icebox during transport to the
laboratory, where they were analyzed within 3 h of collection.

2.2. Bacterial DNA Extraction, Amplification and Sequencing

The three water and sediment samples taken from each station were analysed sepa-
rately (nwat = 21; nsed = 21). Water samples (100 mL) were filtered through 0.2 µm filters
(Anodisc, Whatman, Maidstone, UK). The filters and sediment samples were transferred
into cryotubes, flash-frozen in liquid nitrogen, and stored at −80 ◦C prior to nucleic acid
extraction. DNA extraction was performed using the PowerSoil®DNA Isolation Kit (MoBio
Laboratories, Solana Beach, CA, USA) following the manufacturer’s instructions.

The DNA was quantified by fluorescence using the Qubit dsDNA BR Assay kit
(Invitrogen, Carlsbad, CA, USA) and the Qubit 3.0 Fluorometer. The universal primer set
341F (5′-CCTACGGGNGGCWGCAG-3′) and 785R (5′-GACTACHVGGGTATCTAATCC-3′)
was used to amplify a 444-bp fragment size corresponding to the V3–V4 region of the
16S rRNA gene [16]. The reaction was carried out in a 25-µL mixture including 0.5 µL of
each primer at 10 µM, 12.5 µL of 2X KAPA HiFi HotStart ReadyMix (KAPA Biosystems
Inc., Wilmington, MA, USA), 2.5 µL of DNA template (0.5 µg/mL), and 9 µL of sterilized
water. The following PCR conditions were applied: initial denaturation at 94 ◦C for 3 min,
followed by 25 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, ending with a final
extension at 72 ◦C for 5 min. The PCR products were purified with Agencourt AMPure
beads (Beckman-Coulter, Villepinte, France) following the manufacturer’s protocol. The
quality of the PCR products was checked by agarose gel electrophoresis. The resulting
amplicons were quantified by fluorescence using the Qubit dsDNA BR Assay kit (Invitrogen,
Carlsbad, CA, USA) and the Qubit 3.0 Fluorometer. The DNA quality was checked with the
Agilent DNA 7500 kit on the Agilent 2100 Bioanalyzer System (Agilent Technologies, Santa
Clara, CA, USA) following the manufacturer’s protocol. The amplicons were sequenced
with MiSeq Technology using the Nextera XT library kit in a 2 × 250 bp format (Illumina
Inc., San Diego, CA, USA).

2.3. 16S rRNA Gene Sequence Analysis

Bioinformatic analyses were performed using RStudio (v2021.9.0) and R version 4.1.2
(Figure S1). Raw reads were preprocessed using DADA2 v1.22.0, a model-based approach
for correcting sequencing errors [17]. The 16 rRNA paired-end reads were quality checked,
trimmed, dereplicated, denoised, assembled and the chimeras were discarded following
the DADA2 pipeline [17]. The high-quality sequences obtained were considered amplicon
sequence variants (ASVs), in which each ASV differs from the others by at least one
nucleotide. The taxonomic assignment of ASVs was performed using the SILVA database,
version 132 [18], with 100% of sequence identity required for species ranking. The final
ASV abundance table was normalized by subsampling for downstream analysis. Beta
diversity was characterized using the R packages phyloseq v1.32 [19], vegan v2.5, and
pheatmap v1.012. The visualization and comparison of the taxonomic profiles of the
bacterial communities in the water and sediment samples from the seven stations were
performed by hierarchical clustering using the Bray-Curtis dissimilarity [20].
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2.4. Viral Particles Isolation and Viral Metagenomic Analysis

The viral DNA extraction and viral metagenomic analyses have been detailed in a pre-
vious article (submitted for publication 2022). The viral particles were isolated and purified
from the water and sediment samples of the seven stations by particle-size filtration and
sucrose centrifugation. The total viral nucleic acids were extracted and purified using the
Roche High Pure Viral Nucleic Acid Kit (Roche Diagnostics, Basel, Switzerland) following
the manufacturer’s protocol. The DNA was amplified in duplicate using a Genomiphi Kit
(GE Healthcare, Chicago, IL, USA) following the manufacturer’s protocol. The resulting
DNA was sequenced using MiSeq technology (next-generation sequencing). Viral metage-
nomic framework is represented in Figure S1. The quality control of reads was carried
out using Trimmomatic [21], AfterQC [22] and FASTQc [23]. The resulting reads were
assembled with MetaSpades [24]. Contig assemblies were aligned with DIAMOND [25]
using BLASTx against the non-redundant (nr) NCBI GenBank protein database with an
e-value of 10−3. Taxonomic annotation was performed with MEGAN-CE (MEtaGenome
Analyzer; v.6.3) [26] using the lowest common ancestor (LCA) algorithm with a min-score
of 50, a top-percent filter of 0.001 and a min-support filter of 1. Contigs annotated as phages
were exported and processed for taxa relative abundance analysis. The visualization and
comparison of the taxonomic profiles of the phage communities in the water and sedi-
ment samples from the seven stations were performed by hierarchical clustering using the
Bray-Curtis dissimilarity [20].

2.5. Identification and Classification of Phage Contigs

To predict phage contigs from virome datasets, we used the CyVerse Discovery Envi-
ronment platform (https://de.cyverse.org, accessed on 7 January 2020) to run VirSorter
v1.0.3 [27] and VIBRANT v1.2.0 [28]. The used contigs represent genome fragments with a
minimum length of 1000 base pairs (bp) and a maximum length of 58,536 bp. The minimum
contig length was chosen to obtain reliable phage contigs (partial genomes) for estimating
the associated host, as viral genomes vary considerably in length. No maximum size
requirement was imposed to increase the possibility of having complete phage genomes.
VirSorter annotates contigs using MetaGeneAnnotator [29], and then uses hmmsearch [30]
to predict PFAM domains [31] and viral domains on the annotated genes. VirSorter was
run in decontamination mode with the virome database. Predicted phages were assigned
to categories (from 1 to 6). We retained phages in categories 1 to 3, which corresponded
to the “most reliable” (1), “likely” (2), and “possible” (3) predictions. As a second comple-
mentary approach, we used VIBRANT, a hybrid machine-learning and protein-similarity
tool that allows the automated recovery of both free and integrated phage genomes from
metagenome assemblies. Only phage sequences predicted and classified (category 1, 2 and
3) by the two aforementioned tools (VirSorter and VIBRANT) were used for host prediction
and were examined with MetaPhinder v.2.1 [32], which compares contigs to a database of
the whole genome sequences of phages.

2.6. Prediction of Phage Hosts

Putative bacterial hosts were predicted with the Prokaryotic Virus-Host Predictor
(PHP) [11], a computational tool for host prediction of prokaryotic viruses based on a
Gaussian model (GM). GM for predicting hosts of prokaryotic viruses takes the differences
of k-mer frequencies between viral and host genomic sequences as features, and outputs
a score (the logarithm of the probability of being viral host) for bacteria [11]. The k-
mer frequencies correspond to the number of subsequences (consisting of nucleotides) of
length k (k = 4) composing the bacterial and viral genomes. This tool takes the predicted
phage contigs as inputs. For each phage contig, PHP calculates the host probability for
60,105 prokaryotic genomes, assigning the prokaryotic genome with the highest probability
as the predicted host. The outputs of this tool include the name of the bacterial genome
with the highest score as well as the host score of all bacterial genomes. Host prediction
was performed at phylum level. The list of bacterial hosts was extracted, and their relative
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abundance was calculated using an internal Python script. The relative abundance of each
bacterial community obtained by PHP was compared to that of the bacterial community
obtained by the 16S method.

2.7. Statistical Analysis

Statistical analyses of viromes, 16S rRNA gene sequence, and phage-host predictions
were performed using the R packages FSA v0.9.3 and Stat v4.1.2. The significance threshold
for the p-value was 0.05. The adjusted p-value for correcting multiple tests was based
on the Benjamini-Hochberg procedure [33]. All plots were created using the R package
ggplot2 v.3.3.5. To test for significant differences between the taxonomic profiles of bacterial
communities in sediment and water samples, permutational multivariate analysis of vari-
ance (PerMANOVA) was performed based on the Bray-Curtis distance using the adonis
function in the R package vegan. To test the homogeneity of multivariate dispersions (i.e.,
deviations from centroids) between sample types, a permutation multivariate analysis of
dispersion (PERMDISP) was performed using the betadisper and permutest function from
the R package vegan. To compare the similarity between the relative abundance of bacterial
communities obtained from the two approaches (16S vs phage-host prediction), a correla-
tion test (Spearman’s rank-order correlation) was applied. Spearman R correlation falls in
the range of −1 to +1: −1 indicates a perfect negative association of ranks and +1 indicates
a perfect positive association. An r value of 0 indicates no association between ranks.

3. Results
3.1. Taxonomic Profile of Bacterial Communities at Phyla Level in Water and Sediment Samples

The hierarchical heatmap showed a distinctive taxonomic profile between bacte-
rial communities in sediment and water samples (Figure 1). The phyla Latescibacteria,
Zixibacteria, Bacteroidetes, Acidobacteria, Calditrichaeota, Gemmatimonadetes, Cyanobacteria and
Patescibacteria were most widespread in sediment samples, while the phyla Epsilonbacteraeota,
Tenericutes, Margulisbacteria, Proteobacteria, Actinobacteria, Planctomycetes and Marinimicrobia
were most prevalent in water samples. The sediment in three stations (S4, S6, S7) had
a distinct pattern related to the phyla Chlamydiae, Aegiribacteria, Fusobacteria, Nitrospirae,
Chloroflexi, Firmicutes, Modulibacteria and Spirochaetes. Based on a comparison of the Bray-
Curtis dissimilarity, the taxonomic profiles of bacterial communities in sediment and
water samples were tested by PerMANOVA and were found to be significantly different
(F = 8.72, p = 0.003) (Figure 1). Dispersion analysis showed that the bacterial communities
in water samples were more homogeneous (the communities were more similar between
stations) compared to those in sediment samples (the communities were more dissimilar
between stations) (Figure S2).

3.2. Taxonomic Profile of Phage Communities in Water and Sediment Samples

In terms of phage predictions, VirSorter provided 3631 (sediment) and 9682 (water)
putative phage sequences, while VIBRANT recovered 6522 (sediment) and 14,505 (water)
phage sequences (Table S2). The taxonomic annotation of the identified phage sequences
by METAPHINDER showed a predominance of phages belonging to the Caudovirales order
(Siphoviridae, Myoviridae and Podoviridae families) in water samples and belonging to the
Microviridae family in sediment samples (Figure S3).

The hierarchical heatmap showed a distinctive taxonomic profile of phage families
between sediment and water samples (Figure 2). Sequences assigned to Microviridae,
Tectiviridae, Pleolipoviridae, and Fuselloviridae families were dominant in sediment samples,
whereas sequences assigned as Siphoviridae, Myoviridae, Podoviridae, Autographiviridae, un-
classified bacterial viruses, Zobelliviridae and Ackermannviridae were prevalent in water
samples. Within the sediment and water samples, the taxonomic profiles of phages were
relatively homogeneous (Figure 2).
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Figure 1. Hierarchical heatmap representing the relative abundance of bacterial communities (at
phyla level) in the sediment and water samples of the seven stations (S1–S7). The relative abundance
is represented by Z-score (based on the mean and standard-deviation (SD) of Z-scores of each phyla
in all samples). The stations and bacterial phyla were clustered using the bray-curtis distance, which
is represented by a dendrogram on the top and left side of the graph. Z-scores are scaled according to
the relative abundance of bacterial communities. A positive z-score indicates that the value is above
average. A z-score of 0 indicates that the value is within the average. A negative z-score indicates
that the value is below average.

3.3. Comparison of the Relative Abundances of Bacterial Communities (At Major Phyla Level)
Determined by Phage-Host Prediction (HP) and 16S Metabarcoding (16S)

In order to compare the relative abundance of bacterial communities obtained by
host prediction (HP) and the 16S approach, a stacked bar-plot (Figure 3) and a scatter plot
(Figure 4) were performed. These showed that for both sediment and water samples, the
majority of bacterial phyla identified by HP were also detected by 16S (Figure 3A,B).

The relative abundance of bacterial communities (at major phylum level) estimated by
both approaches was significantly similar in sediment (Spearman correlation R = 0.5,
p-value = 4.4 × 10−5) and in water samples (Spearman correlation R = 0.6, p-value =
7.5 × 10−8) (Figure 4A–B).

In sediment samples, bacterial communities identified by 16S were dominated by the
phyla Bacteroidetes (28.2%), Proteobacteria (23.8%), Cyanobacteria (13.6%), Firmicutes (6.8%),
and Chloroflexi (6.7%) (Figure 4A), while those identified by HP were dominated by the
phyla Proteobacteria (26.5%), followed by Firmicutes (23.93%), Canditatus (12.5%), Bacteroidetes
(11.1%), Cyanobacteria (5.8%) and Actinobacteria (3.7%) (Figure 4 A). In water samples, bac-
terial communities identified by 16S were dominated by the phyla Proteobacteria (36%),
Epsilonbacteraeota (21.5%), Bacteroidetes (13.8%), Cyanobacteria (13.1%) and Actinobacteria
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(10.25%) (Figure 4B), whereas those identified by HP were dominated by the phyla
Proteobacteria (38%), Firmicutes (16.9%), Bacteroidetes (12%), Cyanobacteria (9.6%), Canditatus
(6.24%) and Actinobacteria (5.5%) (Figure 4B).
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Figure 2. Hierarchical heatmap representing the relative abundance of the main phage families in the
sediment and water samples of the seven stations (S1–S7). Number of contigs were normalized up to
the smallest given contigs count for every samples. The relative abundance is represented by Z-score
(based on the mean and standard-deviation (SD) of Z-scores for each family group in all samples).
The stations and phage families were clus-tered using the Bray-Curtis distance, which is represented
by a dendrogram on the top and right side of the graph. Z-scores are scaled by the relative abundance
of phage families.

Distinct variations in bacterial community composition at the phyla level were detected
between the two approaches. In sediment samples, Bacteroidetes (28.2% vs. 11.1%) and
Epsilonbacteraeota (3.21% vs. 0%) were more prevalent in bacterial communities identified
by 16S, whereas Firmicutes (23.93% vs. 6.8%) and Canditatus (12.5% vs. 0%) were dominant
in bacterial communities identified by HP (Figure 4A). In water samples, Actinobacteria
(10.25% vs. 5.5%) and Epsilonbacteraeota (21.5% vs. 0%) were widespread in bacterial
communities identified by 16S versus HP, whereas Firmicutes (16.9% vs. 0.9%), Canditatus
(6.24% vs. 0%), and Chloroflexi (2.71% vs. 0.05%) were dominant in bacterial communities
identified by HP versus 16S (Figure 4B).
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Figure 3. Stacked bar plot representing the relative abundances of bacterial communities (at phyla
level) determined by 16S metabarcoding (16S) and phage-host prediction (HP) approach, in the
sediment (A) and water (B) samples of the seven stations (S1–S7). Different bacterial phyla are
represented by color code. “Others” in the plots represents a group of bacterial phyla with <1%
relative abundances.
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Distinct variations in bacterial community composition at the phyla level were de-

tected between the two approaches. In sediment samples, Bacteroidetes (28.2% vs. 11.1%) 
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identified by 16S, whereas Firmicutes (23.93% vs. 6.8%) and Canditatus (12.5% vs. 0%) 

were dominant in bacterial communities identified by HP (Figure 4A). In water samples, 

Actinobacteria (10.25% vs. 5.5%) and Epsilonbacteraeota (21.5% vs. 0%) were widespread in 

bacterial communities identified by 16S versus HP, whereas Firmicutes (16.9% vs. 0.9%), 

Canditatus (6.24% vs. 0%), and Chloroflexi (2.71% vs. 0.05%) were dominant in bacterial 

communities identified by HP versus 16S (Figure 4B). 

  

Figure 4. Scatter plot representing the correlation between the relative abundances of bacterial
communities (at phyla level) determined by 16S rRNA metabarcoding (16S) and phage-host prediction



Viruses 2023, 15, 76 9 of 12

(HP) approach, in the sediment (A) and water (B) samples of the seven stations (S1–S7). Each colored
point corresponds to a single bacterial phylum. Colored crosses (+) indicate mean values of relative
abundances. The grey areas represent a pointwise 95% confidence interval on the fitted values
(regression line). “Others” in the figures represents a group of bacterial phyla with <1% relative
abundances. R: Spearman rank correlation coefficients, p = p value.

4. Discussion

This study is the first to our knowledge to focus on the phage-host relationships of
lagoon viromes. Investigating a viromic dataset with two metagenomic approaches, it re-
sulted in a comprehensive map of phage identification that revealed Siphoviridae, Myoviridae,
Podoviridae and Microviridae as the most dominant phage families, and their main putative
bacterial hosts the phyla Proteobacteria, Firmicutes and Bacteroidetes. Using both methods
(HP or 16S), distinct bacterial communities were found in water and sediment samples,
and the same trend was found for phage communities. Of key interest, a taxonomic group
of phages could be associated with a specific group of bacterial hosts. In sediment samples,
a phage belonging to the Microviridae family was associated with Bacteroidetes and Firmi-
cutes hosts, while in water samples, phages belonging to the order Caudovirales (families
Siphoviridae, Myoviridae and Podoviridae) were associated with Actinobacteria, Firmicutes and
Proteobacteria hosts. These findings suggest specific viral–bacterial community profiles
depending on habitat type [34] and a close association between phages and their bacterial
hosts. As phages are dependent on their hosts, their frequency and distribution are likely
linked to that of their host [3]. They have also evolved with their host and often exhibit
similar oligonucleotide frequency patterns with host genomes [3,10,11]. The “predicted”
relative abundance of bacterial communities (at phylum level) showed a positive and
significant correlation with the “real” relative abundance obtained in 16S metabarcoding,
demonstrating the reliability of the predictive approach based on viral datasets generated
by shotgun sequencing.

A challenge of the approach is that host prediction based on the genomic signature
could not distinguish which phage infects which bacteria at species level, so we character-
ized the bacterial hosts of phages at the phylum level to avoid potential misclassification.
In addition to this, studies focusing on the theoretical prediction of phage hosts implicitly
assume that an individual phage infects a single host [8]. Yet in our study the majority of
phage communities were grouped into four families represented by Myoviridae, Podoviridae,
Siphoviridae and Microviridae, of which some taxa can infect a wide range of unrelated bacte-
ria [35]. This may therefore bias the accuracy of bacterial host prediction. Another issue is
that some phages can potentially be missed during virus-particle filtration, resulting in a bi-
ased representation of phage abundance and their associated hosts [7,36]. A final challenge
is that the ability to classify phage sequences, whether to identify the taxa present or the
putative functionality of a coding region, depends on the availability of representative viral
sequences in the data repository used [37]. It is essential to consider database dependency
and the limited number of characterized viral species when analyzing viromic datasets.

Notably, there were distinct variations in the bacterial community composition identi-
fied by the two approaches at phylum level. For example, the phylum Epsilonbacteraeota
was found exclusively in the bacterial communities identified by 16S, and Canditatus
was found exclusively in bacterial communities identified by HP. A handful of previous
studies [34,37,38] have compared predicted phage hosts based on viromes versus bacterial
taxonomic profiles obtained by 16S, and have also demonstrated that the relative abundance
of bacterial communities from the two approaches is not always similar. The nature and
limitations of the approaches used (viral metagenomics/computational approach versus
16S metabarcoding) may explain some of the observed differences. A variety of factors may
contribute to the discrepancies between these approaches, including limited availability of
host genomes, misannotated or incomplete annotation of bacterial genomes used for host
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prediction (this was the case in our study), primer specificity/sensitivity, and taxonomical
annotation bias due to uneven representation of bacterial genes in databases for 16S-based
methods [39,40]. The phyla absent in bacterial communities obtained by 16S but present in
those predicted by HP may have 16S rRNA gene sequences that do not perfectly match
the primers used during the amplification step. Although 16S rRNA PCR primers are
commonly referred to as “universal”, there is considerable sequence diversity in the 16S
rRNA gene, even in the most well-conserved regions and among bacteria of the same
species [41,42]. Despite these potential limitations, by combining a viral metagenomics-
based approach with a computational tool, this study was able to provide a particularly
thorough exploitation of the viromic dataset, allowing the first phage-host prediction in a
lagoon ecosystem.

5. Conclusions

The immense diversity of viruses, especially bacteriophages, in different aquatic
ecosystems is only beginning to be explored. Using a pioneering predictive approach
combining a computational method and dedicated phage bioinformatics tools, this study
shows that it is possible, to some extent, to improve our ability to identify a phage host
without the need to culture each pair, a development that should contribute to a better
understanding of viral ecology. Using a single viromic dataset, we were able to characterize
phage communities and their putative hosts. The results found that phage-host prediction
is reliable and allows the rapid identification of viral hosts, based on a comparison of
the taxonomic profiles of the bacterial hosts obtained by the conventional metabarcoding
approach targeting the 16S rRNA gene. To further improve its performance, it would be of
interest to improve the annotation of representative bacterial genomes. The development of
innovative bioinformatics methods that can be used in conjunction with high-throughput
experimental approaches to predict phage-host dynamics promise to shed light on currently
uncharacterized viromes in a variety of ecosystems.
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