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Abstract The ANOSPP amplicon panel is a genus-wide targeted sequencing panel to facilitate 
large-scale monitoring of Anopheles species diversity. Combining information from the 62 nuclear 
amplicons present in the ANOSPP panel allows for a more senstive and specific species assign-
ment than single gene (e.g. COI) barcoding, which is desirable in the light of permeable species 
boundaries. Here, we present NNoVAE, a method using Nearest Neighbours (NN) and Variational 
Autoencoders (VAE), which we apply to k-mers resulting from the ANOSPP amplicon sequences in 
order to hierarchically assign species identity. The NN step assigns a sample to a species-group by 
comparing the k-mers arising from each haplotype’s amplicon sequence to a reference database. 
The VAE step is required to distinguish between closely related species, and also has sufficient 
resolution to reveal population structure within species. In tests on independent samples with over 
80% amplicon coverage, NNoVAE correctly classifies to species level 98% of samples within the 
An. gambiae complex and 89% of samples outside the complex. We apply NNoVAE to over two 
thousand new samples from Burkina Faso and Gabon, identifying unexpected species in Gabon. 
NNoVAE presents an approach that may be of value to other targeted sequencing panels, and is 
a method that will be used to survey Anopheles species diversity and Plasmodium transmission 
patterns through space and time on a large scale, with plans to analyse half a million mosquitoes in 
the next five years.

Editor's evaluation
This piece presents a new method, ANOSPP, that uses cheap sequencing to infer genealogical rela-
tionships between Anopheles individuals, including the possibility of species-level identification. The 
method is versatile and will be useful to vector biology researchers. The proof-of-principle presented 
in the manuscript is convincing and will serve as a blueprint for future studies in Anopheles.
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Introduction
The Anopheles genus contains dozens of mosquito species that are the vectors for the Plasmo-
dium parasites which cause human malaria, and are thus of global public health interest. The genus 
contains nearly 500 formally described species (Harbach and Kitching, 2016), which span more than 
100 million years of evolution (Marinotti et al., 2013). Only a subset of these species has the ability to 
transmit human malaria; however this vectorial capacity is not limited to a specific part of the species 
tree, but found throughout the genus phylogeny. Many species are members of closely related species 
complexes or groups, which are morphologically indistinguishable and share large amounts of genetic 
variation due to their ability to hybridise in areas of sympatry (Anopheles gambiae 1000 Genomes 
Consortium, 2017; Harbach and Kitching, 2016). Accurate species identification of Anopheles 
mosquitoes is difficult yet of crucial importance. This is because even closely related species may differ 
in vectorial capacity, insecticide resistance status and behavioural traits, all of which can influence the 
efficacy of malaria control efforts (White et al., 2011). Novel control efforts like gene drive are likely 
to be implemented this decade for An. gambiae, and the success of these efforts will need to be 
closely monitored. A thorough understanding of the geographic and temporal distribution of different 
Anopheles species and the potential extent of gene flow between species within the same complex is 
a necessary condition to implement gene drive technology as a malaria control tool.

Currently, the typical process of species identification for Anopheles mosquitoes starts by assigning 
them to species complexes or groups using morphological keys (Gillies and Meillon, 1968; Gillies 
and Coetzee, 1987; Rattanarithikul and Panthusiri, 1994; Coetzee, 2020; Irish et al., 2020). These 
morphological keys are usually specific to geographical regions and hence require in-depth and up-to-
date knowledge of the species ranges. Moreover, the keys are specific to certain life-stages and may 
require one to grow larvae to a later stage or even adulthood. Because the morphological features 
distinguishing one group of species from another can be very nuanced, the accuracy of morphological 
classification depends on the level of experience and expertise of the person carrying out the identi-
fication. Species inside species complexes can be morphologically indistinguishable from each other 
at the adult stage and hence molecular assays are required for precise species identification. The 
most commonly used method is a PCR-based species diagnostic assay, targeting the highly variable 
internal transcribed spacer (ITS2) or similarly variable genomic regions (Cohuet et al., 2003; Scott 
et al., 1993; Fanello et al., 2002; Wilkins et al., 2006), although other approaches exist, for example 
based on mass spectrometry (Nabet et al., 2021). The PCR assays require the use of primers specific 
to the species complex or group, hence higher level morphological misclassification can lead to failure 
to generate PCR product or even erroneous species classification (Erlank et al., 2018). Mutations in 
primer or restriction sites can also lead to PCR failures. Moreover, in the case of hybrids or cryptic 
species, species identification based on a single marker can result in overconfident assignment to a 
single species, lacking the nuance that is desirable in this case. There exist panels targeting multiple 
loci; however, these are also specifically designed to work on a single species complex (Rongnoparut 
et al., 1996; Lanzaro et al., 1995; Wang-Sattler et al., 2007; Santolamazza et al., 2008).

To help overcome these challenges, a multilocus amplicon panel called ANOSPP (for ‘ANOph-
eles SPecies and Plasmodium’) was previously designed to amplify loci from any individual from any 
Anopheline species (Makunin et al., 2022). In brief, the panel targets 62 loci in the generic Anoph-
eles nuclear genome, spread over all chromosome arms, including exonic, intronic as well as inter-
genic regions. Additionally, it targets two conserved loci on the generic Plasmodium mitochondrial 
genome, to simultaneously evaluate Plasmodium presence and species for each individual mosquito. 
Sequence data from up to 62 nuclear loci targeted by the ANOSPP panel for each sequenced spec-
imen increases the resolution to distinguish closely related species, and to flag potential hybrid or 
contaminated samples as well as cryptic species. Moreover, the multilocus approach opens the possi-
bility of population genetic and structure analyses for single or closely related species.

The ANOSPP panel has been developed to improve accuracy and depth of information as well 
as to drive down costs and time required to carry out vector species surveillance (Makunin et al., 
2022). Accordingly, all that is required is to identify the individual mosquito as an Anopheline (as 
opposed to a Culicine), which requires minimal expertise as it is based on the length of the maxillary 
palps. Furthermore, the panel can use an extremely small aliquot of DNA (<1% of whole mosquito 
extraction) extracted from each mosquito using a cheap, nondestructive, high-throughput work-
flow (Makunin et al., 2022). Each mosquito is stored in the well of a 96well plate in ethanol, the 
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non-destructive lysis buffer is added, incubated overnight, and then removed. Ethanol is then added 
again to the mosquito carcass to preserve the mosquito and enable morphological evaluation of any 
individual post-sequencing. A dilution of the lysate is made, which is then PCR amplified with a cock-
tail of 64 primer pairs in a single well through a two-step process (Makunin et al., 2022). A single 
Illumina library is generated containing amplified and bar-coded material pooled from 768 samples, 
then sequenced on a single Illumina MiSeq lane.

The ANOSPP panel originally used a species assignment method based on alignment distances, 
using static sequence similarity thresholds fitted per target (Makunin et al., 2022). Using this method, 
amplicons contain sufficient information to distinguish between the majority of the 56 species repre-
sented in the original dataset; only samples within some species complexes could not be accurately 
assigned. However, this method was only tested on a small dataset and the test set was also used as 
the training set to form the haplotype clusters. Additionally, some targets were extremely divergent 
between different groups of samples in the dataset and the distances for these targets appear to be 
sensitive to the choice of alignment algorithm. Here, we present a new species assignment method 
that we call NNoVAE, which is a k-mer-based method consisting of an initial step using Nearest Neigh-
bours (NN) that identifies samples down to a species or, in some cases, a species complex, and a 
second step using a Variational Autoencoder (VAE) for species identification within a species complex. 
The VAE in the second step is specifically trained on the species complex to which test samples get 
assigned by the NN step. The complex-specific VAE is required because the similarity between closely 
related species is too close to detect with a general purpose method like the NN step. Both assign-
ment steps in NNoVAE work on the same k-mer tables.

NCBI GenBank’s BLAST (Altschul et al., 1997) can be used to assess the similarity of any sequence 
to those within any INSDC database such as NCBI GenBank (Benson et al., 2018). BLAST works on 
a single query at a time, and does not assign species directly, but rather reports the best hits of the 
query sequence alongside p-values based on the alignment score corrected for the size of the data-
base. Similarly, the standard search methods for BOLD (Ratnasingham and Hebert, 2007) performs 
species assignment based on a threshold of percent identity between the test sample and the samples 
in the reference database. The threshold is informed by extensive knowledge of the divergence of 
the single marker cytochrome oxidase subunit I (COI) between different species. In addition, the 
BOLD analysis toolkit contains a NN method to explore the relationship between multiple species 
in the database. Like BLAST and the BOLD toolkit, the NN step of NNoVAE uses sequence-based 
distances between the haplotypes of test samples and samples in a reference database; however, this 
is performed across all amplicons and uses k-mer distances instead of alignments. By using k-mers, we 
avoid the issues associated with alignment of highly divergent sequences and moreover are able in a 
natural way to use short indels and small structural variants as well as SNPs. NNoVAE aims to assign 
species identity and simultaneously collect information about the relationship of the test sample to 
different species or species-groups in the database, which is particularly useful when the test sample 
is of a species not represented in the database. Moreover, NNoVAE combines the information from 
the 62 different target regions in ANOSPP to build confidence in the species assignments, or reflect 
uncertainty in the species assignments where appropriate.

NNoVAE resolves species identity within the An. gambiae complex using a variational autoencoder 
trained on samples from this complex. A VAE is a machine learning method that learns structure 
in high-dimensional data by encoding it into a low-dimensional space and subsequently generating 
simulated data from the low-dimensional encodings (Kingma and Welling, 2013). VAEs have previ-
ously been used for species delineation in spiders (Derkarabetian et  al., 2019) and visualisation 
of population structure in Anopheles and humans (Battey et  al., 2021). Both these studies used 
sequence alignments containing much more genomic sequence than the amplicon panel provides. 
In contrast, NNoVAE is k-mer based, making it robust to alignment ambiguity and enabling it to effi-
ciently make use of all the available sequencing data.

With the application of the NNoVAE method to data resulting from the ANOSPP panel, we aim to 
create a robust and efficient platform for molecular species identification within the entire Anopheles 
genus. We present a method that can assign individuals to any of the 62 species currently repre-
sented in the reference database as well as taxonomically place species not yet represented. We will 
include more samples from more species in the reference database as they are sequenced by the 
amplicon panel, so as to represent the full diversity of the Anopheles genus. NNoVAE also indicates 
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the uncertainty of the assignment and provides information on other closely related species in the 
dataset, so in particular can flag potential hybrids. It can also be applied to whole genome shotgun 
(WGS) data by computationally extracting the amplicon target regions, allowing to integrate WGS 
reference panels with amplicon-sequenced field samples.

Results
Reference database construction
Species assignment methods commonly work by comparing a query sequence to a reference data-
base (Ratnasingham and Hebert, 2007; Benson et al., 2018). The completeness and quality of the 
reference database heavily influence the accuracy of the assignment method. The reference data-
base we constructed consists of well-curated samples sequenced with the panel, in silico extracted 
reference genomes, and in silico extracted whole genome short read data. As we expect that the 
reference database will expand to include additional species and populations over time, we assign 
a version number to the database. The reference database described here, which we call NNv1, 
contains 186 samples, representing 62 species spread over 4 subgenera. The dataset from Makunin 
et al., 2022 forms the backbone of the reference panel. In addition, six species in the An. gambiae 
complex have been included from publicly available whole genome data (The Anopheles gambiae 
1000 Genomes Consortium, 2021; Fontaine et  al., 2015) in order to increase the resolution in 
a group of hard to distinguish species. To maintain the advantages of multi-locus assignment, we 
required samples to have at least 10 targets amplified to be included in the reference database. 
Ideally, the database would contain several specimens per species to represent within species varia-
tion. This is particularly important for species with a wide geographical range.

The amplicon panel is designed to improve accuracy of species assignments over morphological 
or single-marker methods. However, the species labels supplied by our sample partners were in most 
cases obtained by the latter methods, hence it was necessary to reconfirm them. All label information 
for the reference database NNv1 is listed in Supplementary file 1, and the assignment of species 
labels is discussed in more detail in Appendix 1, but we present an outline of the principles we used 
here. For most samples sequenced by the amplicon panel, two molecular barcodes (COI and ITS2) 
were also sequenced and compared to the sequences available in BOLD (Ratnasingham and Hebert, 
2007) and NCBI (Benson et al., 2018). Here, we used the barcode information as well as the pairwise 
k-mer distances between samples in the reference database NNv1 to generate a consensus species 
label for each sample. A few samples show inconsistencies between their partner labels, molecular 
barcodes and amplicon assignments; these samples were also removed or flagged as overly diverged 
in Makunin et al., 2022. For these samples, the distances to samples of the same species label is much 
larger than the distance to some other samples in the database, suggesting they were mislabelled. 
In some cases, there is additional evidence from molecular barcodes and it was possible to relabel 
them to the species they match. Other samples are clearly different from samples with the same 
species label, but do not clearly belong to any other species in the database. These are labelled as the 
species-group they belong to appended by ‘_sp1’, ‘_sp2’, etc. Hopefully, by extending the reference 
database in the future, we can get a better understanding of which species such samples represent. 
For some closely related species, the different species labels were supported neither by the pairwise-
distances nor by the barcodes. Samples from these species are assigned to a group of closely related 
species and their consensus labels end in ‘_c’ to notify that they are part of a complex of species that 
cannot be distinguished by the nearest neighbour method. None of the in silico extracted samples 
showed inconsistencies with pair-wise k-mer distances and hence all retained their published labels.

Species-groups construction
The species-groups are defined based on the pairwise k-mer distances between samples in the refer-
ence database NNv1 and make use of the consensus species labels discussed above. The k-mer distance 

between two samples, s1 and s2, is defined as 
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where Ti is the set of targets amplified in sample i and Qi,t is the set of unique haplotypes of sample i 

at target t and by |S| we mean the number of elements in set S. The k-mer distance dk between two 
sequences is defined in the Methods section on k-mers. So in words, for a given target the k-mer 
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distance between two samples is the mean k-mer distance between all pairs of haplotypes from the 
two samples; for example if sample s1 is homozygous and s2 heterozygous at target t, then the k-mer 
distance at target t between these samples is the mean of the k-mer distance of the haplotype from 
s1 compared to the first haplotype from s2 and the k-mer distance of the haplotype from s1 compared 
to the second haplotype from s2. If a sample has more than two alleles at a single target, we take into 
account all haplotypes according to the above definition. The k-mer distance between two samples 
is defined as the average of the k-mer distance between these samples at all the targets that were 
amplified in both samples.

Figure 1 shows the pairwise k-mer distances between all samples in the reference database. The 
samples are ordered roughly by phylogeny (as in the tree in Figure 2) and this results in a visible 
structure in the distance plot. One can observe dark triangles below the diagonal, reflecting that 

Figure 1. Lower triangle: heatmap of 8-mer distances between pairs of samples in the reference database. Samples are on the x- and y-axis, roughly 
ordered by phylogeny and labelled with their consensus species label. Dark colours correspond to small 8-mer distances and light colours to larger 8-
mer distances. Upper triangle: species-groups at fine, intermediate and coarse levels (see main text for definitions of these).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Thresholds used to define species-groups.

https://doi.org/10.7554/eLife.78775
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samples of the same or closely related species have a smaller 8-mer distance to each other than to 
other samples. This effect repeats itself on different scales, mirroring the multi-level structure in the 
phylogenetic tree.

We identify clusters of samples in the reference database NNv1 and we will refer to those as 
species-groups. It is important to emphasise that the way we use the term ‘species-groups’ does not 
refer to a taxonomic classification, but to the clusters of samples defined by thresholds on the 8-mer 
distances between samples. Ideally, a threshold would partition the samples in the reference data-
base NNv1 into species-groups, such that the 8-mer distance between each pair of samples within 
the group is smaller than the threshold and the 8-mer distance from any sample within the group 
to any sample outside the group is larger than the threshold. The motivating assumption is that the 
samples in the same species-group share more recent ancestry with each other than with samples that 
are members of different species-groups. While several thresholds satisfy the partitioning condition, 

Figure 2. Nearest neighbour assignment example. Left panel: The heatmap shows the nearest neighbours of sample Amou-2–3, an An. moucheti 
specimen, at its different targets. For clarity, not all samples in the reference database have been displayed, only those in the Myzomyia and Neocellia 
series (except Amou-2–3). The samples from the reference database are arranged along the x-axis and the targets along the y-axis. An entry is coloured 
pink if the corresponding sample from the reference database has a nearest neighbour sequence at the corresponding target. Peach entries indicate 
that the corresponding sample from the reference database does not carry a nearest neighbour sequence at the corresponding target. If either the test 
sample or the reference sample did not amplify at the corresponding target, the entry is white. The bars at the bottom show the overall assignment 
proportions for the displayed species-groups, only assignment proportions of at least 1% are shown. From top to bottom the assignment proportions 
are for the fine, intermediate,, and coarse level. For the three-letter code abbreviations of species-groups, see Supplementary file 1. The numeric 
abbreviations stand for 1: An. marshallii complex sp1, 2: Myzomyia sp1, 3: An. gabonensis, 4: An. culicifacies, 5: An. maculatus B; none of these species-
groups represent more than 1% of the assignment. Right panel: The heatmap showing the nearest neighbours of sample Agam-35, an An. gambiae 
specimen. Not all samples in the reference database are displayed, only those in the Pyretophorus series (except Agam-35) as well as five samples from 
the Neocellia series. The numeric abbreviations stand for 6: An. gambiae complex sp1 (0.06 assignment proportion), 7: An. christyi and MNs stands for 
Myzomyia_Neocellia_series.

https://doi.org/10.7554/eLife.78775
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they are most useful for the purpose of species classification when they generate species-groups 
that (approximately) correspond to classification at an established taxonomic level. Not surprisingly, 
there are no thresholds that perfectly satisfy the partitioning condition and are completely concordant 
with current taxonomy, but several thresholds give groups that are close to taxonomic entities and 
given the paucity of molecular data for some of these species, it may be that the taxonomic entities 
are less phylogenetically accurate than the k-mer based groupings. In exploring different thresholds 
(Figure 1—figure supplement 1), we selected three levels that best matched described taxonomic 
entities. The species-groups at each of the threshold levels we have selected are listed in Supplemen-
tary file 1.

For very low thresholds, each sample will form its own species-group, which is not informative. For 
a threshold of 0.1 on the sample 8-mer distance, most species-groups satisfy or nearly satisfy the parti-
tioning condition, and each species-group contains a single species or multiple species from a known 
species complex or group, for example An. gambiae and An. coluzzii are grouped together at the 0.1 
threshold. We refer to the species-groups at the 0.1 level as the fine level species-groups and they are 
most useful for species assignment, because they provide the highest resolution. A threshold of 0.3 
merges samples representing species from some well-known complexes, like the entire An. gambiae 
complex, into a single species-group. Similarly, many of the species for which we currently only have 
a single representative in the reference database NNv1, are merged into larger species-groups. We 
refer to this level of species-groups as the intermediate level, which provides insight into the degree 
of similarity between different fine level species-groups. Additionally, the intermediate level species-
groups can be informative when we sequence a sample whose species is not represented in the 
database because the species assignment at the intermediate level places the sample within its most 
closely related species-group in the database. Thresholds higher than 0.3 tend to violate the parti-
tioning condition to a greater extent, but it is desirable to include a coarse level classification to 
get an approximate taxonomic position of unrepresented species and of more diverged species. 
We selected 0.51 as a threshold for the coarse level classification because this gives reasonably clear 
species-groups that roughly correspond to taxonomic series. However, it is not perfect, as it groups 
together the Myzomyia and Neocellia series in the Cellia subgenus and it splits the Neomyzomyia 
series into three distinct species-groups. A similar effect was observed in Makunin et al., 2022, where 
the Neomyzomyia series did not form a monophyletic clade.

At the fine level, most species-groups contain all samples from a single species, but there are 
some exceptions. For some species, for example An. nili and An. hyrcanus, the samples are split into 
multiple fine-level species-groups, because they appear much more distinct from each other than 
you would expect in a single species (see Appendix 1 and Figure 1—figure supplement 1 for more 
detailed discussion). In our assignment, these will be treated as distinct species, highlighting to ento-
mologists and taxonomists that further work to refine species in these groups is needed. Conversely, 
there are also species-groups that contain samples from multiple different species. These do not 
represent a single species, but instead they represent a complex of closely related species. Species 
inside species complexes often share a lot of genetic variation and the k-mer distance based method 
that we discuss here does not have sufficient resolution to reliably distinguish between them. The 
species-groups at the fine level that contain more than a single species are the An. marshallii group 
(contains An. hancocki, An. brohieri, and An. demeilloni), An. gambiae/coluzzii, the An. sundaicus 
complex (contains An. sundaicus and An. epiroticus) and the An. coustani group (contains An. cous-
tani, An. ziemanni, An. tenebrosus, and An. paludis).

Nearest neighbour assignment
The first step of the hierarchical assignment method performs nearest neighbour assignments to 
samples in the reference database at the three different levels of species-groups introduced above. 
The assignment is initially done independently at each target, for each sample, computing assign-
ment proportions for the species-groups at the chosen level, normalised such that they sum up to 
one over all species-groups. The resulting per-target assignment proportions are then averaged over 
all targets, resulting in the overall sample assignment proportions at the chosen level. If the sample 
assignment proportion is at least 0.8 for one species-group, the sample is classified as a member of 
that group. If the classification threshold of 0.8 is not met at the chosen level, the sample remains 
unassigned at that level.

https://doi.org/10.7554/eLife.78775
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For example, to assign a sample s at the coarse level, we translate its target sequence corre-
sponding to target 1 to an 8-mer count table, denoted as qs,1. Next, we compute its 8-mer distance, 

‍d8
(
qs,1, qr,1

)
‍ , to every target sequence in the reference database corresponding to target 1, that is 

to every ‍qr,1‍ . The nearest neighbours of the test sequence qs,1 are those sequences in the database 
that minimise the 8-mer distance between themselves and qs,1. In other words, the nearest neighbour 
sequences of qs,1 are the target 1 sequences in the database with the highest percentage of matching 
8-mers. The nearest neighbour sequence of qs,1 can be a sequence that occurs in a single sample in 
the reference database, or the nearest neighbour sequences can be the same sequence occurring in 
multiple samples in the database, or the nearest neighbour sequences can be distinct sequences that 
have the same distance to qs,1.

Now we bring in the species-groups. For each species-group, we record the frequency of nearest 
neighbour sequences. This can be thought of as an ‘allele-frequency’ when we classify each target 
sequence as either a ‘nearest neighbour allele’ or not a ‘nearest neighbour allele’. But just like allele 
frequency, it takes into account the zygosity of the samples. The nearest neighbour frequencies are 
normalised, such that they are equal to one when summed over all species-groups. These quantities 
are the per-target assignment proportions.

This procedure is repeated for every amplified target in the test sample. Finally the per-target 
assignment proportions are averaged over all successfully amplified targets to give the overall assign-
ment proportions for sample s at the coarse level. If there is a species-group with an assignment 
proportion of at least 0.8, the sample is classified as a member of this group, otherwise it remains 
unassigned at this level. Assignments to the intermediate and fine levels are made in the same fashion, 
starting from the same nearest neighbour assignments, but based on the relevant species-group 
memberships.

The per-target assignment proportions are based on the frequency of nearest neighbour 
sequences in the species-groups and not simply on the count of nearest neighbour sequences. The 
use of frequencies corrects for the different sizes of the species-groups. Suppose a nearest neighbour 
sequence occurs in 2 out of 10 samples of species-group A and in 1 out of 2 samples in species-group 
B (and assume all samples are homozygous). By using counts, we would attribute 2/ (2+1)=0.67 and 1/ 
(2+1)=0.33 assignment proportion to species-group A and B, respectively. But if we did this, species-
group A would only have a higher assignment proportion because it contains more samples. What we 
are really interested in, is how similar the target sequence of the test sample is to the target sequences 
in the species-groups. So by using the nearest neighbour frequencies, the assignment proportions are 
(2/10)/(2/10+1/2)=0.29 and (1/2)/(2/10+1/2)=0.71 for species-group A and B, respectively.

The nearest neighbour frequencies observed for a given target of a given sample at a given assign-
ment level are normalised to obtain the per-target assignment proportions. This normalisation ensures 
that every target is weighted equally. Without the normalisation, the weight of a target would be 
determined by a combination of the overall frequency of the nearest neighbour sequences and their 
distribution amongst the species-groups, whilst we are more interested in the distribution than the 
total frequency.

Targets that did not amplify in the sample are simply ignored. There are different reasons why a 
certain target does not get amplified in a sample. It might be that the primer binding sites for the 
target are too diverged or altogether absent in the test sample’s genome. Or the target might not be 
amplified due to technical reasons like poor DNA quality. In the former case, we are implicitly using 
the information contained in the missingness, because we restrict our attention to the targets that did 
amplify in the sample, which should be the same targets that amplified in the samples of the same 
species contained in the reference database. In the latter case, as long as the missingness is randomly 
affecting the targets, ignoring missing targets does not bias the assignment proportions.

So far, we have assumed that the test sample was homozygous at each target. To generalise to 
the heterozygous case, we compute the per-target assignment proportions separately for both target 
sequences and average them for the final per-target assignment proportions. It does occasionally 
happen that a sample has more than two different target sequences. This can be due to errors in the 
PCR amplification or sequencing, contamination by other samples, or a certain target region might 
be duplicated in the genome of some species. In the NNv1 reference database on average 1.2% of 
targets per sample have more than two different sequences; in the query datasets discussed later in 
this article this percentage ranged from 0.3% to 2.3%. We deemed this small enough to simply extend 
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the per-target assignment proportion computation to include targets with more than two different 
sequences, by taking the average assignment proportions over different sequences as for the hetero-
zygous case.

Figure 2 shows two examples of the nearest neighbour assignment of a test sample. The test 
samples are Amou-3–2 and Agam-35, an An. moucheti and An. gambiae individual, respectively. 
For Amou-3–2 we see that for most targets, the nearest neighbour sequence is found in all four 
An. moucheti samples in the reference database NNv1. For some targets, the nearest neighbour 
sequence is only carried by a subset of the An. moucheti samples in the database, whilst for other 
targets the nearest neighbour sequence is also carried by individuals of other species. For Agam-35 
the heatmap shows that, for many targets, the nearest neighbour sequences are not only found in 
An_gambiae_coluzzii samples, but also in samples from other species in the An. gambiae complex. 
There are only two matches to samples outside the Pyretophorus series, not shown here. This results 
in a high-confidence assignment to the Pyretophorus series at the coarse level as well as a high-
confidence assignment to the An. gambiae complex at the intermediate level. At the fine level, the 
largest assignment proportion is to the An_gambiae_coluzzii species-group, but it does not meet the 
0.8 classification threshold because of the relatively high assignment proportions to other species-
groups within the An. gambiae complex. So at the fine level, this sample cannot be classified with 
sufficient confidence to a single species. Later, we will present a method to resolve the species iden-
tities of samples within the An. gambiae complex.

The species-group assignment has been tested on the reference database itself, by dropping out 
one sample at a time. The majority of samples could be assigned to the correct species-group at 
the fine level when using a threshold of 0.8 assignment proportion, see Figure 3, Figure 3—figure 
supplement 1 and Supplementary files 2–4. To provide context, we have included a phylogenetic 
tree constructed from pairwise 8-mer distances using FastME (Lefort et  al., 2015) and displayed 
using TreeViewer (Bianchini, 2021). If we ignore the samples that form a species-group on their own, 
because we do not yet have sufficient representation for those species, 61.8% of samples are assigned 
correctly at the fine level, and 98.8% and 100% at the intermediate and coarse level respectively. In 
most cases, the fine level species-groups consist of a single species, although in some cases they 
comprise multiple species. The jump in assignment success from the fine to the intermediate level 
is mostly caused by the An. gambiae complex, which is well-represented in the reference database. 
Most samples within the complex can be assigned to the correct fine level species-group to some 
extent, but they only meet the assignment threshold at the intermediate level species-group assign-
ment, where all samples in the An. gambiae complex are grouped together. This effect is seen in a 
few other groups as well, and motivates the VAE part of our assignment procedure (described below).

For the same group of samples, the average correct assignment proportion per sample at the 
coarse level is 99.4%. This shows that for samples of species that are well-represented in the reference 
database, there is a near perfect assignment at the coarse level. And in fact, the average correct assign-
ment proportion of 95.8% at the intermediate level shows that these assignments are also generally 
with high confidence. At the fine level the confidence starts to break down for some samples, in 
particular the An. gambiae complex, which is represented by many samples in the reference database. 
Then the average correct assignment per sample is 81.3%. This shows that an additional classification 
method for species complexes is desirable.

In NNv1, 21 species-groups at the fine level consist of a single sample. These cannot be assigned to 
the correct species-group in the drop-out assignment experiment. 12 of these samples are members 
of a larger species-group at the intermediate level and 11 of them can be assigned at the intermediate 
level, the other sample is not assigned at the intermediate, nor at the coarse level. The remaining 
nine samples only become a member of a larger species group at the coarse level. Six of them can be 
classified at this level, the other three remain unclassified.

The four unclassified samples are An. christyi, An. atroparvus, An. oryzalimnetes, and An. cruzii. All 
of these are quite diverged from everything else in the reference database and as such do not exhibit 
a strong matching to any of the coarse level species-groups. In particular, the Kerteszia and Nysso-
rhynchus subgenus are underrepresented, both in number of species and number of samples, but also 
the basal species in for instance the Pyretophorus series are not well represented and are too diverged 
from the other species in this series to exhibit strong similarity to the other samples from this series. In 
the case of An. cruzii in the Kerteszia subgenus it is actually impossible to assign it to its coarse level 
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Figure 3. Species-group assignment accuracy on reference database NNv1. Samples were dropped out of the database one at a time to test the 
assignment accuracy. Left: phylogenetic tree of the samples in the reference database NNv1 constructed from pairwise 8-mer distances using fastme. 
Samples are labelled by their fine level species-group label. Dark-shaded clades are instances of species-groups that contain more than one species. 
Right: Samples are placed along the vertical axis, ordered by the species tree. The bars represent the assignment proportion to the correct species-

Figure 3 continued on next page
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species group with the current threshold of 0.8, because of its 26 amplified targets, only 15 are also 
amplified in the single other sample in the reference database from the Kerteszia subgenus, which 
results in a theoretical maximum assignment to the correct species-group of 0.58. Note that this is 
the only species-group at the coarse level for which the theoretical maximum correct assignment for 
a sample in the reference database is smaller than the threshold. But it again underlines the necessity 
to extend the reference database, both in number of species and number of samples per species.

When a sample is of a species not represented in the reference database, three things can happen. 
If its species is much more closely related to a single species in the database than to all the others, 
it will likely be assigned to the species it is related to. Alternatively, if the database contains multiple 
closely related species, it will be assigned at a higher level to the group that contains all these closely 
related species. If the sample is highly diverged from all species represented in the database, its 
nearest neighbours will essentially be chosen at random, and the assignment threshold will not be 
met. This emphasises the importance of extending the reference database, both by increasing the 
number of species represented and by increasing the number of samples per species, with a partic-
ular focus on capturing the within-species diversity (e.g. representing the geographic species range, 
representing all karyotypes when polymorphic chromosomal inversions are present).

The species-groups with a single representative can be used to explore the three possible scenarios 
for when the test sample belongs to a species not present in the reference database: assignment to 
a closely related species, assignment to a group of species at the intermediate or coarse level, or no 
assignment.

The first scenario is represented by An.bellator. The only other representative of the Kerteszia 
subgenus in our reference dataset is a sample representing An. cruzii. At the fine level species-groups, 
the An. bellator sample is assigned for 0.875 to An. cruzii and hence meets the threshold to be clas-
sified at the fine level. So it can happen that a sample is classified to the wrong species, if this species 
is the only reasonably close species in the database. This scenario is more likely for diverged groups 
of species with little representation in the database, for example the Nyssorhynchus and Kerteszia 
subgenera.

An example of the second scenario is the sample Amar-3–1, in the Myzomyia series. At the fine 
level, it has an assignment proportion of 0.474 to the An_marshallii_complex and 0.378 to the An. 
theileri species-group. All other species-groups have an assignment proportion of less than 0.06. So 
this sample is more related to these two species-groups than to anything else in the reference data-
base, but it does not belong to either of them. At the intermediate level, it has an assignment propor-
tion of 0.850 to the An_marshallii_group species-group, which is the An_marshallii_complex and An. 
theileri species-group combined. Now it meets the threshold and it will be classified as a member of 
the An_marshallii_group species-group.

An. christyi is an example of a sufficiently diverged sample that does not reach high assignment 
proportions for a single species-group at any level. At the coarse level, it is assigned to the Pyreto-
phorus_series with 0.506 and the Myzomyia_Neocellia_series with 0.392 and other species-groups 
have much lower assignment proportions. Hence, it is not possible to classify this sample as a member 
of any species-group. Adding more samples from this and other underrepresented species to the 
database, would increase its power to classify samples from those species.

Gambiae complex classifier datasets
The nearest neighbour approach is not able to confidently distinguish between closely related species 
that share a lot of genetic variation, but it does identify samples of those species as members of a 
species complex at the intermediate assignment level. To resolve the species identity inside these 
species complexes, we use a variational autoencoder approach specifically trained for the complex 

group and the colours indicate the species-group level. As an example, the first sample is assigned to the correct species-group with a proportion 
of 0.88 at the fine level, with a proportion of 0.91 at the intermediate level and with a proportion of 0.99 at the coarse level. The thin horizontal lines 
indicate the different species-groups at the fine level and the thick horizontal lines at the coarse level. The separation of the species-groups at the 
intermediate level has not been displayed for clarity. The vertical line represents the assignment threshold of 0.8.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Species-group assignment proportions.

Figure 3 continued
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under consideration. We demonstrate this method for the An. gambiae complex, both because many 
of our samples fall within this complex and it is medically relevant to be able to distinguish them, 
and also more practically, because we have access to a large dataset of species-labelled samples. 
The classifier we present here contains 7 out of 8 formally named species in the complex (Coetzee 
et al., 2013), as well as two putative cryptic species (Tennessen et al., 2021; Barrón et al., 2019). 
Compared to NNv1, three additional species are represented in this classifier to present as much of 
the diversity of the An. gambiae complex as possible. We expect that this method can be applied to 
other species complexes for which large species-labelled datasets are available.

The An. gambiae complex classifier has been constructed using a training set (GCref v1) and a vali-
dation set (GCval v1) of species-labelled samples. We included as many described species in the An. 
gambiae complex as we could find or generate sequence data for. For species with wide geographic 
ranges and a large amount of genomic data available, we also aimed to represent the diverse geog-
raphy where possible.

Both GCref v1 and GCval v1 consist of amplicon sequences and in silico extracted published samples 
(Fontaine et al., 2015; Neafsey et al., 2015; Tennessen et al., 2021; The Anopheles gambiae 1000 
Genomes Consortium, 2021). The samples from Nigeria and Madagascar were not species-labelled, 
but they were unambiguously classified by an earlier version of this classifier and we included these 
samples because Nigeria and Madagascar fill geographic gaps in our sampling dataset. The species 
represented in GCref v1 are An. gambiae (406), An. coluzzii (222), An. arabiensis (94), An. quadrian-
nulatus (11), An. melas (3), ​An.​merus (6), An. bwambae (3), An. tengrela (38), and An. fontenillei (4). 
These samples are generally high coverage: 97% of samples have at least 55 of 62 targets amplified. 
The average number of targets tends to be lower for the samples representing species other than An. 
gambiae, An. coluzzii, or An. arabiensis, which are also those species represented by fewer samples, 
but the geographic ranges of these other species are also much more restricted so the samples we 
do have are likely good representatives of the species. The species represented in GCval v1 are An. 
gambiae (80), An. coluzzii (15), An. arabiensis (30), An. melas (1), An. merus (5), and An. tengrela 
(12). The average number of amplicons for the species other than An. gambiae, An. coluzzii or An. 
arabiensis is lower than in GCref v1 set. Given that for those species, there is only a small number of 
samples available, we decided to use ones with at least 45 targets amplified in GCref v1 and the ones 
with at least 30 targets in GCval v1. Sample information for these datasets can be found in Supple-
mentary files 5 and 6.

The input for the VAE is one 8-mer count table per sample, summed over all targets. If a test 
sample is heterozygous at a given target, we translate each of its haplotypes to an 8-mer count table 
and sum them to get the test sample’s 8-mer count table for the corresponding target. If a test sample 
is homozygous at a given target, we translate its haplotype to an 8-mer count table and double the 
counts to obtain its 8-mer count table at the corresponding target. The counts are doubled in order 
to represent the target sequences as diploid sequences, and not introduce artificial differences in the 
total number of 8-mers between homozygous and heterozygous target sites. If the test sample has 
more than two different haplotypes at a given target, two haplotypes are chosen at random and the 
sample is treated as a heterozygote. It happens on average in less than 1% of the amplified targets 
that there are more than two different sequences, so we expect that this inexact way of dealing with 
those cases does not have a major impact on the results. Because we model the 8-mer counts as 
the observations of a Poisson distribution, the counts have to be integers, hence we cannot average 
over all observed alleles as in the nearest neighbour method. If a given target did not amplify in the 
test sample, the associated 8-mer count table will just contain zeroes, equivalent to simply ignoring 
missing data. To obtain the VAE input, we sum the 8-mer tables over all 62 targets. This results in a 
single table per sample, with 65,536(=48) integer entries, roughly summing to twice the number of 
basepairs covered by the amplified targets, so a little under 20,000 for a sample in which all targets 
amplified.

Variational autoencoder
The within-complex assignment is based around a variational autoencoder. We considered two other 
non-linear dimension reduction methods to perform the projection step: UMAP (McInnes et  al., 
2018) and t-SNE (van der Maaten and Hinton, 2008). t-SNE does not have the ability to embed 
new samples onto an already existing projection. This means that the distribution of the training set 
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samples depends on the test set we are projecting, which is not desirable for a classification problem. 
UMAP can distinguish between most species in the An. gambiae complex. The projections have a 
distinctly different quality from the VAE: the clusters are much tighter and well separated, there are no 
‘fuzzy’ boundaries as in the VAE. However, these tight and well separated clusters come at the cost of 
containing some hard misclassifications; that is samples of one species, which lie well inside the cluster 
of a different species, which makes it hard to attach any measure of uncertainty to the assignments. 
For a full description of the UMAP projections and their comparisons with the VAE projection, see 
Appendix 2. We also ran ADMIXTURE on our data, but it did not separate the species in GCref v1 by 
assigning them to a unique ancestral population, see Appendix 3.

The VAE consists of an encoder, a latent space projection and a decoder. The specific design we 
used was inspired by popVAE (Battey et al., 2021). The encoder is a fully connected neural network 
that takes high-dimensional data as input and encodes that as a point in a latent space of much 
lower dimension. The decoder is also a fully connected neural network, and it takes as input a point 
in the latent space and outputs ‘simulated’ data of the same dimensions as the input data. The VAE 
learns a ‘good’ encoding by adjusting the weights in the encoder and decoder to obtain an output 
similar to the original input. To prevent overfitting, the input of the decoder is not the exact output 
of the encoder, but a nearby point in latent space. Furthermore, the loss function used to update the 
encoder and decoder weights contains a regularisation term on the latent space, in addition to the 
term measuring the similarity of the decoder output and the original input. Because of the introduced 
sampling noise and the regularisation constraint, the most efficient way to encode the data is to repre-
sent samples that are similar in the high-dimensional data by nearby points in the low-dimensional 
latent space. In summary, we expect that species identity shapes the structure in the 8-mer count 
tables and that the VAE projects this structure to the low-dimensional latent space, resulting in clus-
tering by species in the latent space.

In our case, the encoder input is the 8-mer count table of the training set, so a table of dimension 
n x 65536 with non-negative integer entries, where n is the number of samples in the training set. 
The output of the encoder is a set of 2d parameters for each sample, where d is the dimension of the 
latent space. For each dimension, one parameter corresponds to the mean position in latent space 
and one parameter corresponds to the variance of the position in latent space. In our case, we use a 
three-dimensional latent space (d=3). The input of the decoder is a position in latent space for each 
sample, sampled from the distribution determined by the encoder output. The decoder output is an 
n x 65536 dimensional table of strictly positive entries, however, unlike the input table, the entries are 
not necessarily integers.

The loss function is the sum of two terms: one measuring the difference between the input and 
output data and one acting as a regulariser on the latent space. The relative weight of these terms 
can be adjusted. If we model the count tables as observations of independent Poisson variables, the 
difference between the input and output can be measured as the Kullback-Leibler divergence (KL 
divergence) of the Poisson distribution with the means given by the output from the Poisson distribu-
tion with the means given by the input. The KL divergence is the same up to a constant as the negative 
of the Poisson loglikelihood with the input as the observed counts and the output as the means. So 
minimising the KL divergence is equivalent to maximising the loglikelihood with respect to the output. 
The difference term of the loss function is obtained by summing over all unique 8-mers. The theo-
retical minimum of the difference term of the loss function is zero, and this is attained if the output 
is exactly the same as the input. However, this theoretical minimum cannot be attained in practice, 
because the sparsity of the input implies that there will be entries equalling zero and the activation 
function of the decoder generating the output results in strictly positive entries.

The regularisation term of the loss function is based on the KL divergence of the normal distribution 
parameterised by the encoder output from a standard normal distribution, that is ‍N

(
0, 1

)
.‍ The regula-

riser is computed for each latent space dimension separately. Again, the theoretical minimum equals 
zero and is attained when the mean outputted by the encoder is zero and the variance outputted 
by the encoder is one. The regularisation term of the loss function is defined as the KL divergence 
summed over the latent space dimensions. This effectively enforces the distribution specified by the 
encoder output to look like a multi-dimensional Gaussian distribution with mean zero, variance one 
and covariance zero. In layman’s terms, it pulls the projected positions of the samples in latent space 
towards the origin and establishes a natural scale for them. The regulariser prevents overfitting by 
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making it expensive for the encoder to place samples far away from the origin. The loss function 
used to train the VAE is the weighted sum of the similarity term and the regularisation term described 
above, with a parameter w that controls the relative strength of the two terms.

We set most of the parameters involved in training the VAE by comparing the latent-space projec-
tions for different parameter values, using a subset of GCref v1 containing only samples from An. 
gambiae, An. coluzzii, and An. arabiensis. The criteria we used to pick parameter values were species 
classification accuracy of the reference set and the validation set, using assignments based on convex 
hulls (described below), visible within-species structure, and, as a secondary criterion, useful visuali-
sation. Further detail on the choice of parameter values is provided in Appendix 4. The latent space 
projection is also affected by the training dataset. We observed that the presence or absence of most 
countries does not affect the classification, except for the Gambia and Guinea-Bissau. When these 
countries are removed, the accuracy to distinguish between An. gambiae and An. coluzzii consider-
ably reduces. This is not surprising, since these samples lie on the boundary of the An. gambiae and 
An. coluzzii clusters and as such are crucial for assigning those species. The complete results can be 
found in Appendix 5.

Within-complex species classification
We use the trained and tuned VAE to assign species as follows. We input the summed 8-mer table of 
the test samples into the encoder of the VAE. The encoder outputs a position in latent space for each 
sample. Importantly, the VAE is agnostic to species labels; the species assignment happens based on 
the position in latent space of the test samples in relation to the latent space positions of the species-
labelled reference dataset GCref v1.

The top two panels of Figure 4 show the latent space projection of GCref v1. While most species 
form nicely isolated clusters, An. gambiae and An. coluzzii border each other closely. Interestingly, 
the boundary is formed by mosquitoes from The Gambia and Guinea-Bissau. These mosquitoes 
are labelled as An. gambiae by conventional molecular barcoding, but they cannot be confidently 
assigned to either An. gambiae or An. coluzzii using over 500 ancestry informative markers (AIMs) 
or whole genome PCA (Anopheles gambiae 1000 Genomes Consortium, 2017; Clarkson et al., 
2020). The clusters containing An. bwambae and the putative new species An. fontenillei are placed 
very close to each other, and can also not be reliably distinguished. These species are closely related, 
but up until now they have only been discovered in Uganda and Gabon, respectively, and so, since 
they do not seem to have overlapping geographic species ranges (Barrón et al., 2019), the species 
identity of samples falling into either of these two clusters can be resolved by their geographic origin.

We perform species classification using the convex hulls of species clusters. A convex hull is the 
mathematical notion of the smallest convex set containing all points of interest. A nice metaphor is 
to imagine that you are wrapping all points corresponding to samples of a single species together in 
such a way that requires the minimal amount of wrapping paper. We constructed one convex hull for 
each species represented in the dataset, using latent space positions of the samples from GCref v1 as 
well as of 363 additional species-labelled samples that were not used in training the VAE, to account 
for possible effects caused by projecting the samples to the latent space (sample information to be 
found in Supplementary file 7). For our classification procedure, it is important that the convex hulls 
of different species do not overlap. When constructing convex hulls from the full sample set, only the 
convex hulls corresponding to An. gambiae and An. coluzzii overlap. We trimmed these hulls by iter-
atively removing samples from the set of points used to construct them until they did not overlap. In 
total, we removed 17 An. gambiae and 6 An. coluzzii samples. The samples from An. bwambae and 
An. fontenillei are combined in one convex hull because they are so close together in latent space.

The classification of new samples happens as follows. If the latent space position of the test sample 
falls inside a convex hull, the sample is classified as that species. If the latent space position of the 
test sample falls outside all convex hulls, there are two options. If the sample is much closer to one 
convex hull than to all others, it is classified as the species corresponding to the hull it is closest to. To 
be precise, this happens if the euclidean distance to the closest convex hull is at least 7 times smaller 
than the distance to all other convex hulls. This allows for ‘fuzzy’ boundaries of the convex hulls that 
are proportional to the separation between the different hulls. We fitted the parameter value 7 on the 
dataset from Gabon to reflect the assumption that An. tengrela is not believed to be found in Gabon. 
If the latent space position of the test sample falls outside all convex hulls and outside their fuzzy 
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boundaries, the sample is assigned ‘uncertain’ followed by the labels of all the species whose convex 
hulls are within a radius of 7 times the distance to the closest convex hull, in order of proximity. This 
assignment reflects the uncertainty in our classification of samples that fall in an area in latent space 
where no species-labelled samples fall. At the same time, it gives information on our best guess or 
guesses for the species identity and leaves open the possibility to modify the assignments based on 
prior knowledge, for example species ranges or habitat restrictions.

Figure 4. VAE projection of the gambiae complex reference dataset GCref v1. Top panels: the samples are represented by dots at the inferred mean 
position in three-dimensional latent space and coloured by their species label. The left panel shows latent dimension 1 versus latent dimension 2 and 
the right panel shows latent dimension 1 versus latent dimension 3. Bottom panel: the same projection as above, but here the samples are coloured by 
the country of collection revealing structure related to geography.
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There is one exception to the above assignment procedure: if the closest two convex hulls are from 
An. gambiae and An. coluzzii and the euclidean distance to both of these hulls is less than 14 then the 
test sample is classified as uncertain_gambiae_coluzzii or uncertain_coluzzii_gambiae, depending on 
which convex hull is closer, because we cannot reliably distinguish between these species in this part 
of the latent space.

In addition to structure driven by species, the latent space projection of GCref v1 also exhibits 
geographical structure. Within the An. gambiae species cluster, there is a distinct subcluster of 
samples from Madagascar. Similarly, there is a distinct subcluster of samples from Madagascar in the 
An. arabiensis species cluster. As mentioned before, the boundary between the An. gambiae and An. 
coluzzii species clusters is formed by samples from the far West of Africa. These samples also stand 
out as a separate group in a study on whole genome data (Caputo et al., 2021; Clarkson et al., 
2020). There also appears to be a cluster of East African An. gambiae samples that are distinct from 
the main cluster of An. gambiae as well as the Madagascar samples. It is promising to see signatures 
of geographic structure within species from the amplicon panel data, because this suggests that the 
panel can also be useful to explore population structure within species.

VAE classification accuracy
We applied the species assignment procedure to GCval v1 (Figure 5). 134 out of 142 samples (94.4%) 
samples are assigned to a single species and 132 of those (98.5%) are assigned to the species concor-
dant with their species label. One sample labelled as An. coluzzii is classified as An. gambiae and one 
sample labelled as An. gambiae is classified as An. coluzzii. For all eight samples classified as uncer-
tain, the reference species label is among the set of assigned labels. Seven of the samples classified 
as uncertain had fewer than 45 targets and we know that the proportion of missing targets affects the 
position in latent space of the projected samples. The other sample classified as uncertain falls in the 
space between An. gambiae and An. coluzzii. Further information can be found in Supplementary 
file 6.

Case studies
Ag1000G whole genome sequenced samples that are too diverged from 
the reference genome
The Ag1000G project removes samples from its analysis that appear not to be An. gambiae, An. 
coluzzii, or An. arabiensis based on their divergence from the PEST (An. gambiae) reference genome. 
We ran NNoVAE on all samples that fail the divergence filter from data releases v3 and v3.1 through 
v3.5. In these datasets, 212 of nearly 10,000 samples were filtered due to high divergence from the 
PEST reference genome; we assign 166 of those to An. funestus at the fine level and 17 to the An. 
gambiae complex at the intermediate level. Furthermore, we assign one sample to An. nili gp sp3 
and one to An. jebudensis at the fine level, and one to An. marshallii group at the intermediate level. 
There are 20 samples that get assigned only at the coarse level to the Myzomyia Neocellia series and 
six samples do not get assigned at any level. See Supplementary file 8 for all sample and assign-
ment information.

All 17 samples that are assigned to the An. gambiae complex had at least 50 targets. We assigned 
5 samples to An. merus, 11 to An. melas and 1 to Uncertain_melas_quadriannulatus (Figure 5). The 
geographic origin of the samples assigned to An. merus and An. melas is compatible with the known 
ranges of these species (Wiebe et al., 2017).

Two of the unassigned samples stand out by their assignments: one sample appears to be from the An. 
gambiae complex but contaminated by an An. funestus sample; the second appears to be a member of 
the Culex genus rather than the Anopheles genus, based on mitochondrial analysis (data not provided). 
For this sample, we extracted only 13 targets. The remaining unassigned samples and those only assigned 
at the coarse level have at least 42 targets. They can be split into four groups of samples that are similar to 
each other in assignment proportions and mitochondrially. Because of the high amplicon recovery rate and 
the similarity of assignment proportions, often found in different countries, we believe that these samples 
represent species that are not present in NNv1. We aim to confirm the species identity for these groups by 
morphology and genomic comparison to publicly available data and, assuming this is successful, to include 
them in the next update of the reference database.

https://doi.org/10.7554/eLife.78775
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Burkina Faso
We collected 950 mosquitoes from three different locations in Burkina Faso. All individuals were morpholog-
ically assigned to the An. gambiae complex. For 905 individuals (95.3%) we obtained at least 10 amplified 
targets, the minimum number required for NN assignment. A total of 901 samples are indeed assigned to 

Figure 5. VAE projections of (A) validation set GCval v1 (B) diverged samples from Ag1000G (C) sample set from Burkina Faso (D) sample set from 
Gabon. The samples from the reference set GCref v1 are displayed as half transparent circles, coloured by species as in Figure 4. The samples from 
each of the projected sample sets are coloured by their assigned labels. The numbers behind each label corresponds to the number of samples in that 
category. Samples with more than 3 species-labels are listed as ‘other’. The two samples from GCval v1 for which the species label does not match the 
assigned species are marked with a red cross.

https://doi.org/10.7554/eLife.78775
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the An.gambiae complex at the intermediate level, 2 samples are assigned to An. nili group sp3 at the fine 
level, 1 sample could only be assigned at the coarse level to the Myzomyia Neocellia series and 1 sample 
could not be assigned at any level. The latter two samples require more detailed morphological investiga-
tion, which is made possible by the non-destructive extraction approach we used on these mosquitoes.

For 770 of the samples assigned to the An. gambiae complex (85.5%) we obtain at least 50 ampli-
fied targets, the minimum number required for VAE assignment. We find three species in this dataset: An. 
gambiae, An. coluzzii, and An. arabiensis (Figure 5). Most samples (91.6%) could be assigned to a single 
species, but we also find some samples labelled as uncertain shared between An. gambiae and one other 
species. The two samples that fall in the space between the An. gambiae and An. arabiensis reference 
samples are remarkably far away from all other samples. We cannot exclude the possibility that contamina-
tion between samples plays a role here, especially because these samples were stored with 10 individuals 
in ethanol in a single 1.5 mL tube in the years before sequencing. All metadata and assignment information 
can be found in Supplementary file 9.

Gabon
We collected 1,056 mosquitoes by human landing catch from different locations in Lopé village in 
Gabon. All individuals were morphologically identified as members of the An. gambiae complex. 
Eleven mosquitoes were identified as An. fontenillei by a species diagnostic PCR (Fanello et  al., 
2002) and those clustered with the An. fontenillei and An. bwambae samples in the VAE projection 
as expected. Those samples were used to construct the convex hulls. For 1002 (95.9%) of the uniden-
tified samples we obtain at least 10 targets and these are classified by the NN step of NNoVAE. The 
vast majority (993 samples; 99.1%) is assigned to the An. gambiae complex. The other species we 
find in this dataset are An. funestus (two individuals) and An. coustani complex (two individuals), plus 
five individuals that could not be assigned at any level. The five unassigned individuals had a high 
proportion of multi-allelic targets, suggesting contamination may have occurred at some point in the 
process.

Of the 993 mosquitoes assigned to the An. gambiae complex, 890 (89.6%) have sufficiently many 
targets to be run through the VAE (Figure 5). Most of these are assigned to a single species: 632 to 
An. coluzzii, 130 An. gambiae, and 1 An. fontenillei (the latter is actually assigned to the combined 
convex hull of An. fontenillei and An. bwambae, but are assumed to be An. fontenillei because of the 
non-overlapping species ranges). An. fontenillei was first discovered in the forest of La Lopé National 
Park, 10–15 km south of the sampling locations presented in this study (Barrón et al., 2019). Although 
the species strongly prefers forested habitats, it is not surprising to find one of them in the village 
given the small distance. It is noticeable that a large number of samples fall in between the An. coluzzii 
and An. tengrela clusters. Judging from the projection, we suspect that the whole cluster is An. colu-
zzii, but it may be interesting to explore what drives the variation within this large cluster and why so 
many samples are projected to an area where none of our reference samples are. Four other samples 
are projected close to the An. arabiensis cluster, although they are assigned to a large set of species 
labels. Independent PCR species diagnostics confirmed these four samples as An. arabiensis (Fanello 
et al., 2002). This was surprising because An. arabiensis has not been observed in Gabon before, 
despite extensive sampling efforts. The fact that we see only four such specimens in this set of more 
than 1,000 with sufficient data, demonstrates that whatever species these mosquitoes are, they are 
probably quite rare or less likely to be caught by human landing catches. We plan to generate whole 
genome sequencing data for these individuals to investigate their species and their relationship to An. 
arabiensis from other geographic locations and to other sympatric species. All sample information and 
assignment results are listed in Supplementary file 10.

Discussion
In this paper we presented NNoVAE, a method for robust species identification for the entire Anopheles 
genus from multilocus targeted amplicon sequencing data. This integrated approach removes the need 
for sorting the specimens into species groups or complexes based on morphology, which is labour inten-
sive and error prone, particularly in the case of damaged mosquitoes, for instance when collected with 
CDC light traps. The NN step can distinguish between most species in our reference database. But equally 
importantly, it gives an indication of the uncertainty of the assignment, using the same thresholds for the 

https://doi.org/10.7554/eLife.78775
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entire genus, enabling us to quantify confidence in assignment in a meaningful way allowing for comparison 
between all species groups. For individuals from species not yet represented in the reference dataset, we 
can often assign to a species-group at the intermediate level (corresponding to taxonomic species groups 
or complexes) or at the coarse level (corresponding to taxonomic series or subgenera). A few samples did 
not meet the threshold to be assigned at the coarse level, but the assignment results do give an indication of 
the position of these samples in the phylogeny. Initial explorations of the mitochondrial sequences for those 
samples do not indicate a close match to publicly available mitochondrial data of any Anopheles species. 
We hope to resolve the species identity of these samples by extending our reference database and collab-
orating with morphological experts, but until then we retain the groups of unresolved species to compare 
future samples against them.

The NN step alone struggles to differentiate closely related species within species complexes. For 
the An. gambiae complex we developed a high resolution species identification method based on a 
variational autoencoder. This VAE step should be easily extendable to other species complexes for 
which a sufficient amount of species-labelled data is available, which we expect to be the case soon 
for An. funestus and An. coustani. The VAE can accurately distinguish between eight species in the 
An. gambiae complex; only An. bwambae and An. fontenillei are too close together in the projection 
to reliably separate them, but geographic origin helps with this. The species assignments for the VAE 
are currently quite conservative; only if the VAE projection of the test sample falls within the cloud of 
training samples from a single species, or much more close to it than to any other cluster, is it assigned 
to that species. Otherwise it gets assigned all the species labels of nearby clusters. This way, we flag 
potential outliers or unexpected species, as for the An. arabiensis in Gabon, but entomologists can 
still decide to exclude certain species labels if they are sure that they are not appropriate for their 
collection location and time, for instance the An. tengrela label in Gabon.

The VAE projection of the An. gambiae complex also shows some population structure within species 
clusters. Some of the structure reflects the geography of the collection locations, for example Madagascar 
stands out as a separate subcluster both for An. gambiae and An. arabiensis. However, the sample sets from 
Burkina Faso and Gabon show that samples from the same location can be projected to different positions 
in latent space and it would be interesting to investigate what is driving this observed diversity.

NNoVAE relies on a reference database and therefore the accuracy of the species assignments also 
depends on the quality and completeness of the reference database. We expect that version 2 of the 
reference database will contain approximately fifty additional species, as well as more individuals of 
species that are underrepresented in NNv1 and we are seeking further well-characterised samples.

Our goal over the next 2 years is to adapt the ANOSPP protocol, which currently uses high-
throughput robotics equipment at Sanger, to run it in any basic molecular laboratory. We plan to build 
an accompanying website where sequence data will be automatically accessible and data analyses can 
be run interactively and openly (if desired). We hope that the combination of the complete end-to-end 
protocol from sample to sequence interpretation together with a one stop shop for data interpreta-
tion will help connect vector control initiatives across the globe.

We believe that this genomic species identification tool for the entire genus is extremely valuable 
to monitor Anopheles populations at large scale. We think that similar tools could benefit researchers 
studying other genera with morphologically similar species, in particular when knowing the species 
identity is of medical importance. We hope that the methods outlined in Makunin et al., 2022 and 
in this manuscript can be of help in developing a targeted amplicon panel for other important vector 
genera such as Aedes and Culex and that by extending NNoVAE as described here it will be straight-
forward to analyse data from such future panels.

NNoVAE can characterise vector populations in a uniform way across the Anopheles genus and 
as such contributes to our understanding of Anopheles species composition, population struc-
ture, species ranges, and transmission potential. We believe that large scale monitoring of Anoph-
eles populations of all species is of pivotal importance for successful implementation of malaria 
control strategies. ANOSPP and NNoVAE enable us to catalogue species ranges and distributions 
and identify and record which species are found to carry Plasmodium. It has been shown that by 
successfully targeting a single vector species, a different species can become the main transmitter 
of malaria (Okumu and Finda, 2021). An. stephensi, an efficient vector species originally found in 
South East Asia and the Arabian peninsula, has been reported to spread in the Horn of Africa and 
was implicated in malaria outbreaks in Djibouti (Faulde et al., 2014; Seyfarth et al., 2019; Ahmed 

https://doi.org/10.7554/eLife.78775
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et al., 2021). These examples underscore the importance of monitoring species and their transmis-
sion potential agnostically. ANOSPP and NNoVAE also provide an opportunity to study changes in 
species composition, for instance by comparing catches before and after implementing a malaria 
control intervention, or by comparing catches collected in different seasons or in areas undergoing 
land use changes. Lastly, ANOSPP and NNoVAE provide a quick and cheap way to select interesting 
samples (e.g. unexpected species for the collection area or season, or simply balanced numbers 
of different species) for whole genome sequencing to study important genomic features, such as 
evidence of population bottlenecks or spread of strongly selected putative insecticide resistance 
alleles. In conclusion, the combination of ANOSPP and NNoVAE offers a cheaper, more robust, 
more informative, and more reliable way to carry out malaria vector surveillance that we hope will 
be embraced over the coming years by the medical entomology community and National Malaria 
Control Programs.

Methods
Data processing
Panel sequences
The amplicon sequencing data are processed as described previously (Makunin et al., 2022). In brief, 
the fastq files containing the reads are split into one file per target by cutadapt v2.5 (Martin, 2011), 
which uses the primer sequences to do so. Cutadapt also filters for read pairs where both the forward 
and reverse read match the appropriate primer and trims the primers. Next, DADA2 v1.10 (Callahan 
et al., 2016) is used to reconstruct sample haplotypes from these read pairs and they are filtered using 
a custom script to include only haplotypes supported by at least 10 read pairs and with at least 0.1 
haplotype frequency per sample-amplicon pair.

Reference genomes
In silico amplicon extraction from reference genomes is done as described previously (Makunin et al., 
2022). Targets are extracted by matching the primer sequences in the reference genome using Seek-
Deep v2.6 command ‘genTargetInfoFromGenomes’ (Hathaway et al., 2018).

Publicly available data
Where short read whole genome sequence data are publicly available for Anopheles mosquitoes, we use 
these data to pull out target haplotypes to add to our reference index. If the genomic coordinates of the 
primers are known (e.g. the reads are aligned to a publicly available reference genome), we extract the reads 
overlapping the primer or target sites for each amplicon separately from BAM files and convert these to 
fastq files, using samtools v1.9 (Li et al., 2009). These are used as input for fermi-lite (Li, 2015), which creates 
an assembly graph. The unitigs from the assembly graph are cleaned up by cutadapt v3.1 (Martin, 2011): 
the sequences outside the primer sites are trimmed, while the sequences matching the primers are retained 
and the unitigs are oriented according to the primers. Next, the unitigs are merged using the information 
from the assembly graph with a custom python script, which relies on MAFFT v7.475 (Katoh and Standley, 
2013) for sequence alignment. In the final step, the primers are trimmed from the resulting haplotypes by 
cutadapt and any haplotypes that do not have primer sequences on both ends are removed, which helps 
to get rid of contamination. If the genomic coordinates of the primers are not known, we align the samples 
to the most appropriate reference genome, identify the genomic coordinates of the primer sites if not yet 
known and follow the steps above.This pipeline is implemented in Snakemake 5.30.2 (Mölder et al., 2021). 
Snakefile and scripts are available on GitHub.

Data structure
The resulting haplotypes are stored in a table with columns recording the sample name, target, haplo-
type sequence, read count of supporting reads (for amplicon data only), fraction of supporting reads 
(for amplicon data only). So each row corresponds to a unique haplotype for a sample target combi-
nation, hence samples that are heterozygous at a certain target will have two rows for the same target.

https://doi.org/10.7554/eLife.78775
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Implementation
Species labels are assessed and species-groups constructed using custom Python scripts implemented in 
python 3.8 (Van Rossum and Drake, 2009). The VAE is implemented in keras 2.3 (Chollet, 2015) using 
a custom python script. Convex hull construction and distance computations rely on scipy 1.6 (Virtanen 
et al., 2020) and pygel3d 0.2 (Baerentzen, 2018). Plots are created with matplotlib 3.3 (Hunter, 2007) and 
seaborn 0.11 (Waskom, 2021). All scripts and environments are available on GitHub.

K-mers
Alignments of amplicon target sequences from highly diverged species are often poor and it is difficult 
to define a ‘fair’ distance metric based on these alignments. Moreover, there is not a straightforward way 
to account for small indels and structural variants with alignment based distances. K-mer based distances 
naturally incorporate indels and structural variation and account for highly diverged sequences in an objec-
tive way and provide a solution to the problems arising from relying on alignments. Therefore, our species 
assignment method uses k-mers to support better comparisons between the sequences in the database and 
the sequences of the test sample.

There is a trade-off in the choice of k. For large k there is little tolerance for errors, while for small k 
there is a high chance that the same k-mer is found in multiple locations in the sequence. For example, 
in a 149 bp sequence, 5 evenly spread SNPs result in no 25-mers matching the reference. On the 
other hand, the chance that all 4-mers are unique in a sequence of the same length is incredibly small 
(<10–22). Based on these trade-offs, we selected 8-mers as a reasonable length. The total sequence 
length of the amplicon panel targets for the current An. gambiae PEST reference genome sequence 
AgamP4 is 9928 bp, with a mean target length of 160 bp. There are 65536 unique 8-mers, so the 
chance that all 8-mers within a target are unique is 84% on average. Across the nearly 10 kb of ampli-
fied sequence, the chance that all 8-mers are unique is vanishingly small, but the expected number 
of unique 8-mers is approximately 8533 (sd 46) and the expected number of non-unique 8-mers is 
approximately 680 (sd 22).

The methods we present here work with k-mer tables created from each haplotype from each target. A 
k-mer table consists of 4k columns, each corresponding to a unique k-mer. To translate a sequence to a k-mer 
table, we record in each column how often the corresponding k-mer occurs in the sequence. This results in 
a sparse table (the sparsity of course depends on the choice of k) with non-negative integer entries. As an 
example, the 2-mer table for the sequences AACT​ACTC​T (first row) and AGCT​ACTT​ (second row) is shown 
below. Note that all possible k-mers are represented in the table, even when they do not appear in any 
sequence.

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

1 2 0 0 0 0 0 3 0 0 0 0 1 1 0 0

0 1 1 0 0 0 0 2 0 1 0 0 1 0 0 1

The k-mer distance between two sequences is defined as follows. Translate both sequences to 
k-mer tables as described above and call these q1 and q2. Then the k-mer distance between them 

is given by 
‍
dk

(
q1, q2

)
= Σ

∣∣q1−q2
∣∣

Σ
∣∣q1+q2

∣∣ ‍
 , that is the number of non-matching k-mers divided by the total 

number of k-mers in both sequences. The normalisation is required to correct for a bias attributing 
smaller distances to shorter sequences. In the nearest neighbour method we use this k-mer distance 
to compare one haplotype sequence of a test individual against one haplotype sequence from the 
reference database. Note that this definition relies on the k-mer counts, not simply on the presence 
or absence of each k-mer. Using this definition, the 2-mer distance between AACT​ACTC​T and AGCT​
ACTT​ is 7/15.

Data collection and availability
All mosquitoes collected as part of this work were done so under the local guidelines and with 
permission, which vary depending on the country of origin. ABS (Nagoya) compliance for receiving 
mosquitoes or their DNA in the UK was completed for all mosquitoes used in this research. Raw 
sequencing data will be made available on ENA (accession to be confirmed). Pipelines and anal-
ysis code, together with processed target haplotypes are available on GitHub: https://github.com/
mariloubodde/NNoVAE.

https://doi.org/10.7554/eLife.78775
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Data availability
Pipelines and analysis code, together with processed target haplotypes are available on GitHub: 
https://github.com/mariloubodde/NNoVAE, (copy archived at swh:1:rev:560351c897476e4e869f-
eafaa39a077fa5a7aa86). Raw sequencing data has been made available on ENA; accesions can be 
found on GitHub.
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Appendix 1
Species labels
The wild-caught mosquitoes in the reference database were labelled either morphologically or 
confirmed with species diagnostic PCR. Species identities were further determined by Sanger 
sequencing the molecular barcodes Cytochrome c oxidase I (COI) and Internal transcribed spacer 2 
(ITS2). Both markers were compared to the NCBI database to assess species identity, and COI was 
also compared to the BOLD database. (See Makunin et al., 2022 for more information).

Some partner labels were revised when distances between the samples in the reference dataset 
suggested mislabelling. Preferably the relabelling was further supported by molecular barcodes. 
Relabelled samples are:

•	 Amar-5: An. marshallii → An. gambiae. The average distance to samples in the An. marshallii 
complex is 0.54 (0.52–0.58), while the average distance to samples in An. gambiae/coluzzii is 
0.09 (0.07–0.13). Additionally, both COI and ITS2 have An. gambiae as best hit.

•	 Amar-42: An. marshallii → An. jebudensis. The average distance to samples in the An. marshallii 
complex is 0.38 (0.35–0.42), while the distance to An. jebudensis is 0.05. Unfortunately, neither 
An. marshallii nor An. jebudensis is present in the barcode databases.

•	 Amar-3–1: An. marshallii → An_marshallii_cp_sp1. It has the lowest distances to samples of 
An. hancocki, An. brohieri, An. demeilloni, An. theileri, on average 0.26 (0.22–0.29), while the 
distances of An. hancocki, An. brohieri and An. demeilloni samples to each other is on average 
0.03 (0.02–0.04) and the distances of the An. theileri samples is 0.07 (0.05–0.08). The average 
distance between the group containing An. hancocki, An. brohieri and An. demeilloni and the 
An. theileri is 0.29 (0.25–0.33). So it seems like Amar-3–1 does not belong to either of these 
two groups, but it is as related to these groups as they are to each other. Unfortunately it does 
not have any informative matches on the molecular barcodes. Therefore this sample is labelled 
as an unnamed species in the An. marshallii complex.

•	 Adem-15: An. demeilloni → Myzomyia_sp1. Its lowest distance to another sample in the data-
base is 0.39, to an An. funestus. This is a much higher distance than a sample usually has to 
other samples of the same or of a closely related species. In particular, the distance of An. 
hancocki, An. brohieri and An. demeilloni samples to each other is 0.03 (0.02–0.04), while 
the average distance of Adem-15 to these samples is 0.41 (0.39–0.44). As it does not show 
similarity to any of the samples in the database, but it is closer to almost all samples in the 
Myzomyia series than to almost all samples outside the Myzomyia series, it is labelled as an 
unnamed species in the Myzomyia series.

•	 Acol-645: An. coluzzii → An_gambiae_cp_sp1. This sample is different from other An. coluzzii 
and An. gambiae, this was found both in the sample-pair differences and in the subsequent 
VAE method which is tailored at the An. gambiae complex. The molecular barcodes also 
suggest that this sample is not An. coluzzii or An. gambiae, but that it is a member of the 
complex. Therefore, it is labelled as an unnamed species in the An. gambiae complex.

•	 Apal-257: An. paludis → An_coustani_cp_cl3. Its smallest distances are to samples of An. tene-
brosus, An. ziemanni, An. coustani and An. paludis, on average 0.29 (0.28–0.32). We found 
that the samples of these species split into two clades and the distance of Apal-257 to either 
of these clades was much higher than the distances between samples in the same clade. Addi-
tionally, the average distances between the two clades is 0.18 (0.14–0.21), so Apal-257 is also 
further away from the two clades than they are from each other. Yet, it is closer to these two 
clades than it is to An. sinensis and An. hyrcanus, which are the next closest species. Regarding 
the molecular barcodes, Apal-257 matches to An. coustani on COI, like most samples in the 
An. coustani complex. On ITS2 it matches to An. junlianensis and An. yatsushiroensis, species 
in the hyrcanus group. We therefore decided to relabel it to a third clade in the An. coustani 
group.

•	 An. nili samples. Anils-7: An. nili s.s. → An_nili_gp_sp1. Anil-237 & Anil-239: An. nili → An_nili_
gp_sp2. Anil-233, Anil-236 & Anil-238: An. nili → An_nili_gp_sp3. Both the distances and align-
ment of the molecular barcodes support this split. It is possible that some of these samples 
represent different member species of the An. nili group, which have been shown from cytoge-
netic analysis to differ substantially (Sharakhova et al., 2013), but molecular barcodes are not 
yet available in public databases for all member species.

https://doi.org/10.7554/eLife.78775


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Boddé et al. eLife 2022;11:e78775. DOI: https://doi.org/10.7554/eLife.78775 � 27 of 40

dist An_nili_gp_sp2 An_nili_gp_sp3

An_nili_gp_sp1 0.19 (0.19–0.20) 0.24 (0.23–0.26)

An_nili_gp_sp2 0.02 0.24 (0.24–0.26)

An_nili_gp_sp3 0.04 (0.03–0.05)

•	 An. hyrcanus samples. VBS00085 & VBS00086: An. hyrcanus → An_hyrcanus_gp_sp1. VBS00082 
& VBS00083: An. hyrcanus → An_hyrcanus_gp_sp2. The distances within these pairs are 0.08 
for both pairs. The distances between the pairs are 0.35 (0.34–0.36). The molecular barcode 
matches support the split. Even though hyrcanus is present in all databases, there are few 
matches to it. On COI in both BOLD and NCBI, the first pair matches to nitidus and the second 
pair to crawfordi; these species are in two distinct subgroups of the hyrcanus group. On ITS2 
the first pair matches to hyrcanus and then nitidus, and the second pair matches to sinensis 
(sinensis is in the main hyrcanus group, not in either of the aforementioned subgroups). The 
alignments of COI and ITS2 sequences for these four samples also clearly support the split 
into pairs.

•	 Samples in the An. coustani complex. This complex contains the species An. tenebrosus, An. 
ziemanni, An. coustani and An. paludis. The between sample distances indicate a split into two 
clades (disregarding sample Apal-257, discussed above); however, the split is not correlated 
with the species labels. The proposed clades are An_coustani_cp_cl1 containing Aten-191, 
Aten-185, Azie-334, Acou-956, Acou-959, Acou-962 and An_coustani_cp_cl2 containing Aten-
333, Aten-79, Aten-954, Azie-1032, Azie-1055, Azie-70, Azie-77, Acou-71, Acou-80, Apal-81. 
The average distances between members of the same clade is 0.07 (0.05–0.09) and 0.07 (0.05–
0.10) respectively, while the distance between members of different clades is 0.18 (0.14–0.21). 
The barcode matches are to An. coustani for the vast majority of the samples, even though 
COI sequences for An. ziemanni and An. tenebrosus are present in both BOLD and NCBI 
database. Alignment of the COI sequences shows extremely little variation. Alignment of ITS2 
does support a split into the two proposed clades.

All labels and groupings are displayed in Supplementary file 1. In the majority of cases, the fine 
species-groups are supported by at least one molecular marker and not contradicted by different 
species labels. Some species are not present in one or both databases, so for these a match to a 
closely related species is allowed. The exceptions are:

•	 An. jebudensis: one sample was labelled as An. jebudensis, the other one originally as An. 
marshallii, but showed sufficient evidence for relabelling. Neither An. jebudensis nor An. 
marshallii is present in either database. On ITS2 they both match to An. moucheti, which is the 
closest species in the dataset, neither has a match in BOLD, and on COI in the NCBI database 
the best matches are to An. lindesayi and An. sawyeri, which are in the Anopheles and Nysso-
rhynchus subgenus respectively. However, it has to be noted that the NCBI database does not 
contain an An. moucheti COI sequence and the best hits are based on 81% and 91% identity 
respectively.

•	 An. rhodesiensis: All samples match to uninformative ‘Anopheles_sp’; even though a COI 
sequence is available in BOLD and NCBI. The best hit to a named species in the dataset is to 
An. funestus for COI and An. aconitus for ITS2.

•	 An. jamesii: Is predicted for BOLD and ITS2, but not for COI in the NCBI database, even 
though an An. jamesii COI sequence is present there.

•	 An. maculatus A: has a few matches to An. sawadwongporni, which is also a member of the 
maculatus group, even though sequence of An. maculatus A is present in all databases.

•	 An. rampae: the four different samples match to An. rampae(2 x), An. sawadwongporni(1 x) 
and An. maculatus(1 x) in the BOLD database; all these are in the same species group. In the 
NCBI database, all COI hits are for An. maculatus (An. rampae COI not present in database), 
and all ITS2 hits are An. rampae and the uninformative Anopheles_sp.

•	 An. balabacensis: matches to An. introlatus on COI in both databases, even though An. bala-
bacensis sequence is present. The two species are in the same complex.

•	 An. carnevalei: all samples match to An. carnevalei on BOLD and ITS2. An. carnevalei sequence 
is not present in NCBI database for COI; four out of five samples match to An. nili, one to An. 
darlingi, which is in a different subgenus.

https://doi.org/10.7554/eLife.78775
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•	 An. dureni: sequence not present in either database; on ITS2 one sample matches to An. 
minimus and one to An. leesoni, which are both in different groups; but placement of An. 
dureni is not very clear on the species tree.

•	 An. vinckei: sequence not present in either database; on COI there are distant matches to An. 
gambiae and An. maculatus, which are both in different groups; but placement of An. vinckei 
is not very clear on the species tree (seems to be close to An. dureni).

•	 An. coustani group: we have samples of four species, An. coustani (present in all databases), 
An. paludis (present in no databases), An. ziemanni (COI present in both databases), and An. 
tenebrosus (COI present in both databases). In BOLD, all samples match to An. coustani. In the 
NCBI database, on COI most matches are to An. coustani, there is one match to An. ziemanni, 
and a few matches to Anopheles_cf. On ITS2 there are many matches to Anopheles_sp. and 
Anopheles_cf., and the remaining matches are to An. coustani and one sample to An. junli-
anensis and An. yatsushiroensis in the hyrcanus group (this is the An. paludis sample, that is 
further removed from all other samples in this complex). These samples also show a ‘checker-
board’ pattern, which splits them into two clades, which are not correlated with species labels.

•	 An. barbirostris: there are matches to An. barbirostris and to the closely related An. dissidens. 
However, the samples do not form two separate groups based on the distances.

•	 An. oryzalimnetes: no Sanger sequencing done.
•	 An. cruzii: no Sanger sequencing done.
•	 An. bellator: no Sanger sequencing done.

Lastly, there are samples which are further than 0.10 distance away from other samples in the 
reference database representing the same species. Above we have discussed some samples where 
there was good evidence to adjust the species label, but there are also some for which there is good 
reason to retain the partner label. Those are:

•	 VBS00001: An. annularis. It is a bit more diverged from the other three An. annularis samples, 
which causes it to fall just above the threshold. However, the distances are not very different 
from the distance between the other An. annularis, the next closest sample in the reference set 
are much further away and the molecular barcodes support the partner label.

•	 Agam-37: An. gambiae. It is a bit more diverged from the other An. gambiae that were 
sequenced by the panel, which causes it to fall just above the threshold. But is it closer to An. 
gambiae than to other samples in the reference dataset. The molecular barcodes also support 
the partner label.

•	 VBS00149 and VBS00150: An. tessellatus. They are 0.11 distance from each other, but for both 
the molecular barcodes match to An. tessellatus and the next closest sample in the database 
is at 0.44 distance.

•	 anopheles-sinensis-chinascaffoldsasinc2 & anopheles-sinensis-sinensisscaffoldsasinc2: An. 
sinensis. They are 0.11 distance from each other and that is still clearly closer than the next 
best match in their sister species An. hyrcanus (namely An_hyrcanus_gp_sp2).

https://doi.org/10.7554/eLife.78775
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Appendix 2

Comparison UMAP and VAE
We projected the An. gambiae complex training set (GCref v1) with UMAP, using the same 8-mer 
count tables as for the VAE as input. Using the default UMAP parameters does a very poor job at 
distinguishing species (Appendix 2—figure 1). By experimenting with different parameter values 
and different metrics, the three best-performing projections (judging by eye after colouring samples 
by their species label, see Appendix 2—figure 1) are:

•	 metric = hamming, n_neighbors = 3, min_dist = 0, n_components = 2
•	 metric = canberra, n_neighbors = 3, min_dist = 0.1, n_components = 3
•	 metric = braycurtis, n_neighbors = 3, min_dist = 0.99, n_components = 3

Appendix 2—figure 1. UMAP run on 8-mer count table of An. gambiae complex dataset GCref v1. Left top is 
using the default UMAP settings, for the other three projections, the settings are specified in the title. UMAP was 
run unsupervised; the samples are coloured by their species labels after projecting them.

We have two species that are only represented by three samples and by setting the parameter 
n_neighbours higher than 3, these species will not split out as separate clusters. Although most of 
the species form distinct clusters in these three projections, there is still significant overlap between 
An. gambiae, An. coluzzii and An. tengrela.

It is noticeable that UMAP tends to generate tighter clusters than the VAE (see Figure 4 in the 
main text); there are less fuzzy boundaries, but it comes at the cost of some samples being placed in 
the wrong cluster. The convex hull assignment we used with the VAE projection is specifically aimed 
to deal with the fuzzy boundaries and it doesn’t cope well with outlier samples. Therefore, we use 
a different classification method, namely support vector machines, to perform species assignment 

https://doi.org/10.7554/eLife.78775
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using the UMAP projections. We trained an SVM with the default parameters on the reference 
dataset GCref v1. The accuracy results and comparison are shown in the table below.

UMAP hamming UMAP canberra UMAP braycurtis VAE

GCref v1 - correct 93.3% 94.6% 96.3% 98.5%

GCref v1 - uncertain 0% 0% 0% 2.4%*

GCref v1 - incorrect 6.7% 5.4% 3.7% 0.0%

GCval v1 - correct 97.9% 97.9% 97.9% 93.0%

GCval v1 - uncertain 0% 0% 0% 5.6%

GCval v1 - incorrect 2.1% 2.1% 2.1% 1.4%

*this includes 0.9% of samples assigned to Anopheles_bwambae_fontenillei, which forms a combined assignment 
category in the VAE classification, and hence cannot be assigned to a single species.

We suspected we could improve the results by treating separate clusters of the same species 
as their own assignment category, for example relabel the samples in the separate An. arabiensis 
cluster as An_arabiensis-2. However, this did not improve the accuracy, neither for the reference set 
GCref v1 nor for the validation set GCval v1.

Overall the VAE has a lower misclassification score, although this comes at the cost of a larger 
percentage of samples assigned to multiple species. We have consciously decided for a more 
conservative classifier and we intend to resolve the samples which cannot be assigned to a single 
species on an ad hoc basis; either by more in depth analysis of specific amplicons (to be developed), 
by considering carefully documented species ranges where available (e.g. to distinguish between 
An. bwambae and An. fontenillei, both of which have very specific geographical areas where they 
occur) or by performing whole genome shotgun sequencing if the identity of the samples is of 
greater interest.

The UMAP projections can probably be tuned better to achieve similar assignment performance 
to the VAE, but UMAP does not outperform the VAE.

https://doi.org/10.7554/eLife.78775
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Appendix 3
ADMIXTURE in the An. gambiae complex
To assess the amount of population differentiation between the different species in the An. gambiae 
complex, we ran ADMIXTURE on the reference dataset GCref v1. We ran ADMIXTURE on the 8-mer 
count tables; first we filtered for variable 8-mers which take count values in {0,1,2} for all samples; 
there are 25,301 such 8-mers. We treated these 8-mers essentially as unlinked SNPs. We are aware 
that these input data do not exactly follow the assumptions behind the probabilistic model used by 
ADMIXTURE, but using only unlinked SNPs would allow for at most one SNP per amplicon, so 62 
in total and it would be quite challenging to select one without bias to a certain species or group 
of species. Despite not following the model assumptions, we believe that ADMIXTURE used on k-
mers should allow us to judge whether ADMIXTURE constitutes a useful approach to differentiate 
between species in the An. gambiae complex.

The inferred ADMIXTURE proportions for different values of K can be found in Appendix 3—
figure 1. At K=3 and K=4, ADMIXTURE does a good job at distinguishing the well-represented 
species: An. gambiae, An. coluzzii and An. arabiensis. However, it struggles to differentiate between 
the species represented by a smaller number of samples, even though many of these species are 
much more diverged from each other than An. gambiae and An. coluzzii are (Fontaine et al., 2015).

https://doi.org/10.7554/eLife.78775
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Appendix 3—figure 1. Admixture fractions of the GCref v1 samples for K from 2 to 14. The samples are ordered 
by species, from left to right An. gambiae, Agamp4 reference genome, An. coluzzii, An. tengrela, An. arabiensis, 
An. melas, An. merus, An. quadriannulatus, An. bwambae and An. fontenillei. The samples within a species are 
ordered by ancestry fraction and the within species ordering is not the same between rows.

For the higher values of K, ADMIXTURE reveals substructure and mixed ancestry in the An. 
gambiae and An. coluzzii samples. The first glimpse of substructure we see already at K=3, where 
the An. gambiae samples from Guinea-Bissau and the Gambia are modelled as a mixture of An. 
gambiae and An. coluzzii. This substructure is also found in the VAE projection.

While the An. arabiensis from Madagascar split out as a separate cluster in the VAE and in the 
three UMAP projections discussed in the next section, ADMIXTURE only identifies them as a separate 
group at K=11. So similarly as for the species represented by few samples, it seems like ADMIXTURE 
is hesitant to assign a unique ancestry to a small group of samples.

ADMIXTURE identifies some structure in the An. gambiae complex when treating variable 8-mers 
as SNPs. It is particularly good at differentiating between groups represented by a larger number of 
samples and additionally finds some substructure within these groups. It is pronouncedly worse than 
the VAE at differentiating between species for which we have fewer samples. This is a shortcoming 
given that a major aim of applying ANOSPP widely to samples from across the globe is to identify 
novel species that may or may not be contributing to transmission.

To assess which values of K are most informative, we recorded the cross-validation error for these 
runs, see Appendix 3—figure 2. There are 9 species represented in the dataset GCref v1, so ideally 
we would find a minimal cross-validation error around K=9. The cross validation plot indicates that 
we need a minimum of about 9 populations, but it does not unambiguously indicate a suitable value 
of K. To properly assess the cross validation error, we’d have to run multiple replicates.

Appendix 3—figure 2. Cross-validation error for different values of K. Only one replicate shown.

Although ADMIXTURE does find structure in the An. gambiae complex, it is principally a method for 
assessing population differentiation, not for species assignment. It is possible to build an assignment 
method around it, but given that it performs worse than the VAE at differentiating between all 
species in the An. gambiae complex, we prefer using the VAE based method for assignments.

https://doi.org/10.7554/eLife.78775
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Appendix 4
Parameter choices for the VAE
Our VAE architecture is inspired by popVAE (Battey et al., 2021). We used their default parameter 
choices for learning rate, training iterations and validation proportion as well as the ‘elu’ propagation 
between the layers of the neural network and the ‘linear’ activation function to transform the output 
from the encoder to the latent space variables. Because we model k-mer counts as independent 
Poisson variables, we use the ‘softplus’ activation function to transform the output from the last layer 
of the decoder.

To set the width and depth of the encoder and decoder, we ran a grid search over a combination 
of widths and depths. We kept the width and depth the same for the decoder and the encoder and 
we trained the VAE with three different seeds for each width-depth combination. For high width 
values (more than 500 nodes) the run time required to train the VAE was very long and the process 
would often crash when conducted on a desktop. For very small networks (width 32, depth 4) the 
resolution was poor, but in the middle range the visible structure was not severely affected by the 
choice of width and depth, so we went with width 128 and depth 6, which gave a good resolution 
and reasonable run time.

As mentioned in the main text, the loss function contains a parameter, w, that controls the relative 
importance of the data driven term and the regularisation term. We ran a grid search ranging over 
four orders of magnitude, training with three different seeds for each search point. For small values 
of w, which gives higher weight to regularisation term, the resulting latent space dimension shows a 
strong correlation between the latent space dimensions, suggesting that only highly differentiated 
samples can overpower the effect from the regularisation term. For high values of w, the training 
process of the VAE becomes more unstable: it crashes sometimes and the resulting latent space 
projections look less similar to those obtained with the same w value, but a different seed. We chose 
w equal to 1000, which resulted in reasonably stable projections, with good visible structure.

To assess the effect of using 8-mers over k-mers of other length, we ran the VAE with 6-mers and 
with 10-mers as input, see Appendix 4—figure 1. The projections using 6-mers, in both two and 
three dimensions, show less tight and more overlapping clusters by species compared to the 8-mer 
projection. There are only 4,096 unique 6-mers, compared to  >65,000 unique 8-mers, and with 
almost 10 kB of sequence, there will be much fewer unique 6-mers than unique 8-mers. Although 
the VAE loss function is based on counts rather than presence/absence of k-mers, it probably is 
more sensitive to the difference between 0 and 1 than to the difference between 2 and 3. The VAE 
based on 10-mers shows clusters quite similar to those found in the 8-mer projection, although An. 
quadriannulatus is much closer to An. bwambae and An. fontenillei. It took much longer to train 
the 10-mer projection (5.5 hr compared to 20 min for the 8-mers), which is not a major drawback, 
because the training has to happen only once, but it does make it harder to tweak the parameters 
for the 10-mer projection.

https://doi.org/10.7554/eLife.78775
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Appendix 4—figure 1. VAE projection of GCref v1 in two dimensions (top) using 6-mers (left) and 10-mers (right) 
and in three dimensions using 6-mers (bottom).

To determine the number of latent space dimensions, we ran a grid search over 2, 3 and 4 latent 
space dimensions. In fact, the grid search for w and the number of latent space dimensions was run 
simultaneously, but there seemed to be little interaction between w and the number of latent space 
dimensions. For the training set containing only An. gambiae, An. coluzzii and An. arabiensis, adding 
a third or fourth dimension did not add to the visible structure, so in this case we opted for two latent 
space dimensions for visualisation purposes. However, for the full training set GCref v1, in the two-
dimensional projection, several species clusters are very close to each other, making this hard to use 
for species assignment. Adding a third dimension resolves this problem, even though the second 
and third dimensions are strongly correlated (see Figure 4). The benefit of the strong correlation is 
that we can visualise the structure in two dimensions.

https://doi.org/10.7554/eLife.78775
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Appendix 5

Geographic stability
Here we test the robustness of our VAE projection by removing all samples collected in one 
geographic location from the training set and then projecting those samples and the validation 
set and comparing these results to those obtained using the VAE trained on the full training set. In 
particular, we will pay attention to the separation of the species clusters, the classification accuracy 
of the validation set and the visible structure within the species clusters.

For this analysis, we use a subset of the reference dataset GCref v1 and the validation set GCval 
v1, containing only the species An. coluzzii, An. gambiae and An. arabiensis, because for the other 
species in the An. gambiae complex we have very few samples, the samples in this dataset are 
collected at only one or two locations and the species have more limited geographic ranges than 
An. coluzzii, An. gambiae and An. arabiensis. With only these species, two latent space dimensions 
are sufficient to exhibit the relevant structure, so that is what we will use here. We have performed 
these drop-outs for a subset of the geographic locations, selecting for those we thought would be 
most likely to affect the structure of the projection.

Below, we discuss the drop-out experiments in more detail, but to summarise: overall, the 
separation of the species clusters remained intact and the ability to classify species of the samples 
in the training set and in the validation set was not significantly affected. Samples from The Gambia 
and Guinea-Bissau could be less accurately classified when no samples from this geographic 
region were included in training the VAE, but for all other locations we tested, the ability to classify 
species remained the same. The degree to which geographic structure is visible within the species 
clusters was somewhat affected for certain collection countries. However, the visible structure never 
completely disappeared, nor did we see a considerably different geographic structure, it was merely 
that the structure became a bit more blurred or more condensed than in the original projection.

Angola
We removed 10 An. coluzzii samples from the training set, see Appendix 5—figure 1. The separability 
of species clusters is similar compared to the projection of the VAE trained on the full dataset. The 
geographic structure within the An. gambiae and An. arabiensis clusters remains intact, but the An. 
coluzzii cluster loses some of its visible structure. Angola is on the edge of the geographical range 
of the An. coluzzii samples in this dataset and these samples are also on the very top of the VAE 
projection, suggesting that they are responsible for a considerable amount of the structure within 
An. coluzzii.

Appendix 5—figure 1. VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 
locations. Left: samples from Angola included in VAE training. Right: samples from Angola excluded from VAE 
training. Samples are coloured by country of collection. Squares are validation samples (not used in VAE training), 
triangles are An. coluzzii individuals, circles are An. gambiae individuals and crosses are An. arabiensis individuals. 
Samples from Angola are highlighted with a blue edge, all other validation samples have a black edge.

https://doi.org/10.7554/eLife.78775
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Cameroon
We removed 10 An. coluzzii and 66 An. gambiae from the training set, see Appendix 5—figure 2. 
The separability of the species clusters is similar compared to the projection of the VAE trained on 
the full dataset. The geographic structure within the An. coluzzii and An. arabiensis clusters remains 
intact, but the An. gambiae cluster loses some visible structure in its main subcluster, while the 
structure in the other four subclusters (formed by samples from The Gambia and Guinea-Bissau; 
by samples from Nigeria and Gabon; by samples from Madagascar and by samples from various 
East African countries respectively) remains largely intact. This is probably due to the fact that the 
samples from Cameroon form a large proportion of the samples in the main An. gambiae cluster.

Appendix 5—figure 2. VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 
locations. Left: samples from Cameroon included in VAE training. Right: samples from Cameroon excluded from 
VAE training. Samples are coloured by country of collection. Squares are validation samples (not used in VAE 
training), triangles are An. coluzzii individuals, circles are An. gambiae individuals and crosses are An. arabiensis 
individuals. Samples from Cameroon are highlighted with a blue edge, all other validation samples have a black 
edge.

The Gambia and Guinea-Bissau
We removed 33 An. coluzzii and 19 An. gambiae from The Gambia and 24 An. gambia from Guinea-
Bissau from the training set, see Appendix  5—figure 3. Considering the training samples, the 
separability of the species clusters is very clear. However, the classification accuracy of the projected 
samples from The Gambia and Guinea-Bissau is only 70%. This is probably due to the fact that these 
samples form the border between the An. coluzzii and An. gambiae clusters in the projection of the 
VAE trained on the complete dataset. So by leaving those samples out, we miss the important label 
information necessary to classify the edge cases. The subclusters of the An. gambiae cluster are 
arguably more pronounced than in the original projection, but the structure within the subclusters of 
the An. gambiae cluster and in the entire An. coluzii cluster reduces.

https://doi.org/10.7554/eLife.78775


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Boddé et al. eLife 2022;11:e78775. DOI: https://doi.org/10.7554/eLife.78775 � 38 of 40

Appendix 5—figure 3. VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 

locations. Left: samples from The Gambia and Guinea-Bissau included in VAE training. Right: samples from 

The Gambia and Guinea-Bissau excluded from VAE training. Samples are coloured by country of collection. 

Squares are validation samples (not used in VAE training), triangles are An. coluzzii individuals, circles are An. 

gambiae individuals and crosses are An. arabiensis individuals. Samples from The Gambia and Guinea-Bissau are 

highlighted with a blue edge, all other validation samples have a black edge.

Madagascar
We removed 20 An. arabiensis and 18 An. gambiae from the training set, see Appendix 5—figure 
4. The separability of the species clusters is similar compared to the projection of the VAE trained 
on the full dataset and the geographic structure within the three species clusters remains largely 
intact. When the Madagascar samples are included in training the VAE, they form a tight subcluster, 
both for An. gambiae and An. arabiensis. When they are not included in training, these clusters 
stand out less, due to the fact that the VAE does not recognise the features that make them stand 
out.

Appendix 5—figure 4. VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 

locations. Left: samples from Madagascar included in VAE training. Right: samples from Madagascar excluded 

from VAE training. Samples are coloured by country of collection. Squares are validation samples (not used in VAE 

training), triangles are An. coluzzii individuals, circles are An. gambiae individuals and crosses are An. arabiensis 

individuals. Samples from Madagascar are highlighted with a blue edge, all other validation samples have a black 

edge.

https://doi.org/10.7554/eLife.78775
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Mali
We removed 57 An. coluzzii and 43 An. gambiae from the training set, see Appendix 5—figure 5. 
The separability of the species clusters is similar compared to the projection of the VAE trained on 
the full dataset. The visible geographic structure within the three species clusters reduces a bit. This 
could be because we removed such a large number of samples.

Appendix 5—figure 5. VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 
locations. Left: samples from Mali included in VAE training. Right: samples from Mali excluded from VAE training. 
Samples are coloured by country of collection. Squares are validation samples (not used in VAE training), triangles 
are An. coluzzii individuals, circles are An. gambiae individuals and crosses are An. arabiensis individuals. Samples 
from Mali are highlighted with a blue edge, all other validation samples have a black edge.

Nigeria
We removed 6 An. coluzzii and 20 An. gambiae from the training set, see Appendix 5—figure 6. 
The separability of the species clusters is similar compared to the projection of the VAE trained on 
the full dataset and the geographic structure within the three species clusters remains largely intact. 
When the Nigerian samples are included in training the VAE, the An. gambiae individuals are more 
separated from the main An. gambiae cluster than when they are projected using the VAE excluding 
them from training. This is because the VAE has not been trained to recognise the features that 
distinguish these Nigerian An. gambiae individuals from the other samples.

https://doi.org/10.7554/eLife.78775
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Appendix 5—figure 6. VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 
locations. Left: samples from Nigeria included in VAE training. Right: samples from Nigeria excluded from VAE 
training. Samples are coloured by country of collection. Squares are validation samples (not used in VAE training), 
triangles are An. coluzzii individuals, circles are An. gambiae individuals and crosses are An. arabiensis individuals. 
Samples from Nigeria are highlighted with a blue edge, all other validation samples have a black edge.

Tanzania
We removed 37 An. arabiensis and 20 An. gambiae from the training set, see Appendix 5—figure 
7. The separability of the species clusters is similar compared to the projection of the VAE trained on 
the full dataset. The subclusters of An. gambiae and An. arabiensis remain well separated, but the 
visible geographic structure within the (sub)clusters reduces a bit.

Appendix 5—figure 7. VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 
locations. Left: samples from Tanzania included in VAE training. Right: samples from Tanzania excluded from VAE 
training. Samples are coloured by country of collection. Squares are validation samples (not used in VAE training), 
triangles are An. coluzzii individuals, circles are An. gambiae individuals and crosses are An. arabiensis individuals. 
Samples from Tanzania are highlighted with a blue edge, all other validation samples have a black edge.

https://doi.org/10.7554/eLife.78775
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