
1. Introduction
Much of what is known about the climate system has been deduced from climate models, instrumental obser-
vations, climate proxies derived from natural archives (corals, speleothems, marine sediments, etc.) and our 
physical understanding of robust identified phenomena. While instrumental observations document climate vari-
ability over a relatively short period subject to anthropogenic forcing, climate proxies covering the Common Era 
(CE) are spatially sparser, less precise with a time resolution of about a year and provide partial information on 
the natural climate variability beyond the instrumental period (PAGES2k Consortium, 2017). Although more 
complicated to use, the increasing availability of climate proxies has led many studies to innovate and develop 
new approaches to reconstruct past climate indices or spatial fields (PAGES2k Consortium, 2019). Most of them 
correspond to statistical approaches which extend the covariance relationships found between proxies and climate 
features over the instrumental period to reconstruct past climate states (Mann et al., 2008; Neukom et al., 2014; 
Smerdon & Pollack,  2016). Since these approaches are only based on statistical relationships without strong 
dynamical constraints, they do not guarantee physical consistency and show important discrepancies depending 
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on the method used especially when it comes to spatial reconstructions (PAGES2k Consortium, 2019; Wang 
et al., 2015).

At the same time, significant advances have been made to improve the physics of General Circulation Climate 
Models (GCMs; Tian & Dong, 2020) and with the increase of computing power, large ensembles (LE) of GCMs 
simulations are now widely used to understand the contribution of external forcings and explore the range of 
climate variability (Boucher et  al.,  2020; Jebri et  al.,  2020; Stevenson et  al.,  2019; Zanchettin et  al.,  2013). 
However, the conclusions drawn from these studies stay incomplete since the simulations are only constrained 
with external forcing and a large part of the climate variability is internal to the climate system. Compared to 
LEs, the field of Paleoclimate data assimilation (PDA) appears as a complementary approach since it optimally 
combines the climate information embedded in proxy records with the dynamical knowledge included in climate 
models.

Among the most commonly used data  assimilation strategies we find the Kalman filters (KFs), variational 
approaches and Particle filters (PFs). Variational methods give a unique solution corresponding to the opti-
mum values that maximize the conditional probability given the observations, while ensemble data assimilation 
approaches such as PF and ensemble KFs (EnKFs) describe the ensemble of plausible states and the evolution 
of the conditional probability density function (Houtekamer & Zhang, 2016; Van Leeuwen, 2009; Whitaker & 
Hamill, 2002). While variational strategies are used to assimilate dense observations and produce reanalysis prod-
ucts (e.g., ERA-Interim; Dee et al., 2011), filters such as EnKFs and PFs are preferred in the field of PDA (Liu 
et al., 2017). Variational approaches are indeed not suitable in the case of PDA due to a much sparser and smaller 
number of observations, and their large uncertainties (Bhend et al., 2012; Hargreaves & Annan, 2002; Widmann 
et al., 2010). Despite recent significant progresses, ensemble data assimilation methods are still confronted with 
stumbling blocks related to the use of computationally expensive GCMs over long periods. Practical solutions 
had to be developed, giving rise, for example, to so-called “offline” approaches based on simulations already 
performed before the analysis (Goosse et al., 2006; Hakim et al., 2016; Matsikaris et al., 2015). While the offline 
approaches use a set of simulations already performed before the analysis to reconstruct the desired field after-
ward (Goosse et al., 2006; Hakim et al., 2016), the online approaches orient the trajectory of the simulations 
during the analysis according to the available observations. In theory online approaches are preferable to allow 
for continuity and physical consistency along the assimilation process (Goosse et  al.,  2010; Liu et  al.,  2017; 
Okazaki et al., 2021). In practice the choice between these two approaches will depend on the system under study 
(Matsikaris et al., 2015). Online approaches are recommended in the case of predictable systems, whereas offline 
approaches are simpler to implement in the case of systems with little or no predictability.

A data assimilation approach can be described by the evolution function 𝐴𝐴 𝐴𝐴  of the system states and by the meas-
urement function 𝐴𝐴 𝐴𝐴 giving the relationships between the system states and the available observations. The 𝐴𝐴 𝐴𝐴  and 

𝐴𝐴 𝐴𝐴 functions can be formalized as follows:

𝑋𝑋𝑖𝑖+1 = 𝐹𝐹 (𝑋𝑋𝑖𝑖, 𝑓𝑓𝑖𝑖+1,ℯ) (1)

𝑌𝑌𝑖𝑖+1 = 𝐺𝐺(𝑋𝑋𝑖𝑖+1, 𝜂𝜂) (2)

Where 𝐴𝐴 𝐴𝐴𝑖𝑖+1 represents the system states at time i + 1 given the system state at the previous time step 𝐴𝐴 𝐴𝐴𝑖𝑖 , 𝐴𝐴 𝐴𝐴𝑖𝑖 a 
possible term of external forcing and 𝐴𝐴 ℯ the model error. The measurement function 𝐴𝐴 𝐴𝐴 specifies the relationships 
between the complete system state 𝐴𝐴 𝐴𝐴 and the available observations 𝐴𝐴 𝐴𝐴  with 𝐴𝐴 𝐴𝐴 representing the measurement 
error. 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 are not necessarily linear functions while 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 ℯ can be non-Gaussian errors and do not need 
to be additive. In the case of offline data assimilation system, since the analysis is produced from an estimated 
distribution that does not depend on the system states at the previous time steps, no dynamical model is used in 
Equation 1. For basic KFs, 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 are assumed linear and the errors 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 ℯ are taken as Gaussian and additive. 
For EnKFs the function 𝐴𝐴 𝐴𝐴  is not assumed linear anymore but the measurement operator 𝐴𝐴 𝐴𝐴 stays linear and the 
measurement noise 𝐴𝐴 𝐴𝐴 is still assumed to be Gaussian. In the case of PFs no assumptions are made on the form of 

𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 functions and on the associated uncertainties.

Other key differences between EnKFs and PFs, is that for the latter the conditional probability density function 
is empirically estimated and the measurement function is defined by the dynamical model itself while for the 
former the prior densities are assumed Gaussian and the measurement function is solved as a linear system of 
equations for the posterior mean and covariance (Kurosawa & Poterjoy, 2021). Both are confronted with the 
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large number of simulations needed to overcome the so-called “curse of dimensionality” problem encountered to 
solve high-dimensional systems and related to the number of particles required to correctly describe the space of 
possible states that increases exponentially with dimension (Snyder et al., 2008). The theoretical solution being 
to increase the number of particles exponentially with the number of degrees of freedom, simplifications have 
been proposed to reduce the size of the problem. Over the past few years, KFs and their ensemble versions have 
been subject to several adaptations such as the inclusion of covariance inflation and covariance localization to 
address the high dimension problem specific to spatial reconstructions with a limited amount of GCMs particles 
(Acevedo et al., 2016; Liu et al., 2017). Another important difference is that for EnKF, each particle is shifted 
toward the observations during the analysis step while in sequential importance resampling particle filter (SIR-
PF) the particles are not moved and no statistical corrections are applied on the particles. Compared to EnKF 
strategies, very LE are therefore needed for PFs in high dimension system to avoid the particles depletion. On the 
other hand, especially when considering multi-layer models, no artificial model shocks are potentially caused in 
PFs, like during the EnKF updates.

Previous works have applied online PFs relying on LOVECLIM intermediate complexity model to successfully 
reconstruct large-scale or regional past climate features averaged over large domains (Goosse, 2017). However, 
due to the large number of particles required, no skillful detailed global spatially resolved climate fields have so 
far been produced with online PFs (Dubinkina & Goosse, 2013; Dubinkina et al., 2011; Goosse, 2017; Goosse 
et al., 2010; Liu et al., 2017). It is also worth noting that the built-in model-dependency in previous EnKF or 
PFs PDA products prevents a thorough quantification of the uncertainties related to both the model physics and 
observational datasets used.

We present here a PF based on a sequential importance resampling particle filter (SIR-PF) that uses LIM as an 
emulator of GCMs (labeled thereafter SIR-LIM), providing dynamical memory from various CMIP-class model 
physics and allowing for spatial reconstructions of the climate variability over the CE. This choice has been 
motivated by the fact that the LIM (Penland & Matrosova, 1994) can approximate the dynamics of GCMs with 
forecast skill comparable and sometimes even better than what is generally obtained with GCMs (Newman, 2013; 
Richter et al., 2020) while allowing for the large ensemble of experiments required to sample the high dimension 
state-space. The LIM is based on a continuous-time Markov chain making the assumption that the predictable 
part of the represented system is substantively linear and that the non-linear processes can be approached by a 
Gaussian white noise with a spatial structure but uncorrelated in time. The LIM is used to forward the particles 
in time to estimate the predictable part of the dynamics and the propagation of the uncertainties associated to the 
non-linear part between the resampling steps. The PF then allows to select the particles closest to the observa-
tions taking in consideration the impact associated to forced unpredictable events and the non-linear dynamics. 
Based on previous works, the LIM can approximate well many features of the climate system and has been shown 
to provide satisfactory forecast skill for both oceanic and atmospheric fields at various lead times (Johnson 
et al., 2000; Newman, 2013; Penland & Matrosova, 1998; Penland & Sardeshmukh, 1995; Winkler et al., 2001). 
It has also been recently used successfully as a forward model in an Ensemble KF PDA approach (Perkins & 
Hakim, 2021).

The present study aims to: (a) assess the LIM skills in reproducing the inter annual to decadal dynamics of surface 
temperatures variability as simulated by expensive CMIP5 and CMIP6-class GCMs, (b) provide a benchmark 
test-bed in a perfect model framework for a SIR particle filter using a LIM as an integration climate model and 
(c) quantify limitations and uncertainties of derived climate reconstructions related to the model used and obser-
vational spatial sampling. The paper is organized as follows: in Section 2 we introduce the model and data used, 
and describe the basic equations for the LIM. In Section 3, we describe the PF implementation and introduce 
the different experiments and metrics used to assess the LIM and SIR-LIM skills. In Section 4, we assess the 
performances of several LIMs trained on various sets of CMIP5 and CMIP6-class models and discuss their skill 
sources. In Section 5, we evaluate the SIR-LIMs reconstructions in a perfect model framework and estimate their 
sensitivity to several parameters. We finally summarize and discuss the results in Section 6.

2. Data Set, Model and Data Assimilation Method
2.1. Data Set

This study relies on a perfect-model framework, which uses as the target to be reconstructed the surface tempera-
tures of the past1000 model experiment covering the 850–1850 CE climate period, performed as part of 4th phase 
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of the paleoclimate modeling intercomparison project (PMIP4; Jungclaus et al., 2017; Kageyama et al., 2017) 
with the IPSL-CM6A-LR CMIP6 model version of the Institut Pierre-Simon Laplace (Boucher et al., 2020). The 
IPSL-CM6A-LR model couples the atmospheric component LMDZ (version 6A-LR; Hourdin et al., 2020) to 
the land surface model ORCHIDEE (version 2.0; d'Orgeval et al., 2008) and to the ocean model NEMO (version 
3.6), which includes other models to represent sea-ice interactions (NEMO-LIM3; Rousset et  al.,  2015) and 
biogeochemistry processes (NEMO-PISCES; Aumont et al., 2015). The atmospheric and land-surface grid have a 
resolution of 2.5° in longitude and 1.3° in latitude with 79 vertical layers. The oceanic component has 75 vertical 
levels with a mean spatial horizontal resolution of about 1° and a refinement of 1/3° near the equator. This model 
reproduces fairly well the El Niño Southern Oscillation (ENSO) seasonality despite the sea surface temperatures 
anomalies extending too westward in the central Pacific during El Niño events. The spatial pattern of the Atlantic 
Multidecadal Variability (AMV) teleconnection in the Pacific is consistent with observations but the Atlantic 
tropical variability is relatively weaker. Unlike most current state-of-the-art CMIP6 models, the IPSL-CM6A-LR 
model simulates a predominant secular variability in the Atlantic with AMV peaks separated by about 200 years 
(Boucher et al., 2020).

We also used a set of independent surface temperature fields from climate model simulations generated as part of 
5th and 6th phase of the Coupled Model Inter-comparison Project (CMIP5 and CMIP6) to built several LIMs. We 
specifically relied on surface temperatures from the pre-industrial control (piControl) and past1000 (850–1849 
CE) experiments from models participating in PMIP3 (Schmidt et al., 2012) and PMIP4 (Jungclaus et al., 2017; 
Kageyama et al., 2017). The complete list of models is given on Table 1.

Finally, we used surface temperatures from NOAA-CIRES 20th Century Reanalysis version 3 (NOAA; Slivinski 
et  al.,  2019) over the 1851–2014 period to evaluate the climate models biases and their influences on our 
reconstructions skills. All surface temperature fields used in this study are interpolated on the same 96 × 96 
latitude-longitude grid and anomalies are calculated by removing the mean annual cycle over the entire period 
before smoothing with a 12-month running mean.

2.2. Linear Inverse Model (LIM)

In this section, we briefly describe the main equations and characteristics of the LIMs that we built to reproduce 
the dynamics of simulated surface temperatures by CMIP5 and CMIP6-class models. The LIM is a multivariate 
linear Markov process that represents the evolution of a dynamical system 𝐴𝐴 𝐴𝐴 by:

𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝐵𝐵𝑑𝑑 + 𝜀𝜀 (3)

Table 1 
List of CMIP5 and CMIP6-Class Models Considered

Models Reference Institution

CMIP5 IPSL-CM5A-LR Dufresne et al. (2013) Institute Pierre Simon Laplace

GISS-E2-R Miller et al. (2014) NASA Goddard Institute for Space Studies

MIROC-ESM Watanabe et al. (2011) Japan Agency for Marine-Earth Science 
and Technology, Atmosphere and 
Ocean Research Institute, and National 
Institute for Environmental Studies

MPI-ESM-P Jungclaus et al. (2013) Max Planck Institute for Meteorology

CCSM4 Gent et al. (2011) National Center for Atmospheric Research

CMIP6 IPSL-CM6A-LR This study; Boucher et al. (2020); Lurton et al. (2020) Institut Pierre Simon Laplace

MIROC-ES2L Ohgaito et al. (2021) Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean 
Research Institute, National Institute 
for Environmental Studies and RIKEN 
Center for Computational Science

MPI-ESM1-2-LR Mauritsen et al. (2019); van Dijk et al. (2022) Max Planck Institute for Meteorology

MRI-ESM2-0 Yukimoto et al. (2019) Meteorological Research Institute
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where 𝐴𝐴 𝐴𝐴 is a vector of dimension P and describes the system state at time t, the linear predictable part of the 
system is represented by the operator B and where all the nonlinear stochastic processes are represented by 𝐴𝐴 𝐴𝐴 
corresponding to a Gaussian white noise with a spatial structure but uncorrelated in time. The solution to Equa-
tion 3 is:

𝑥𝑥(𝑡𝑡 + 𝜏𝜏) = 𝐺𝐺(𝜏𝜏) ∗ 𝑥𝑥(𝑡𝑡) + 𝜎𝜎(𝑡𝑡 + 𝜏𝜏) (4)

where 𝐴𝐴 𝐴𝐴(𝜏𝜏) is the Green matrix equal to:

𝐺𝐺(𝜏𝜏) = exp(𝐵𝐵𝜏𝜏) (5)

and 𝐴𝐴 𝐴𝐴(𝑡𝑡 + 𝜏𝜏) is the forecast error expressed as:

𝜎𝜎(𝑡𝑡 + 𝜏𝜏) = 𝐺𝐺(𝜏𝜏)∫
𝑡𝑡+

𝑡𝑡

𝐺𝐺
(

𝑡𝑡
′
)−1

𝜀𝜀
(

𝑡𝑡
′
)

𝑑𝑑𝑡𝑡
′ (6)

The most probable prediction 𝐴𝐴 𝐴𝐴(𝑡𝑡 + 𝜏𝜏) given the initial condition 𝐴𝐴 𝐴𝐴(𝑡𝑡) for a lead of 𝐴𝐴 𝐴𝐴  months is then:

𝑥𝑥(𝑡𝑡 + 𝜏𝜏) = 𝐺𝐺(𝜏𝜏) ∗ 𝑥𝑥(𝑡𝑡) (7)

and following Equation 5 the linear operator matrix B can be estimated for any lag 𝐴𝐴 𝐴𝐴0 as:

𝐵𝐵 = 𝜏𝜏
−1

0
ln[𝐺𝐺(𝜏𝜏0)] = 𝜏𝜏

−1

0
ln

[

𝐶𝐶(𝜏𝜏0)

𝐶𝐶(0)

]

 (8)

with 𝐴𝐴 𝐴𝐴(𝜏𝜏0) =< 𝑥𝑥(𝑡𝑡 + 𝜏𝜏0), 𝑥𝑥(𝑡𝑡)
𝑇𝑇
> and 𝐴𝐴 𝐴𝐴(0) =< 𝑥𝑥(𝑡𝑡), 𝑥𝑥(𝑡𝑡)

𝑇𝑇
> the covariance matrix at lag 𝐴𝐴 𝐴𝐴0 and 0. The transition 

probability density of a Markov process satisfies the Fokker-Planck equation and assuming that the statistic of 
𝐴𝐴 𝐴𝐴 is stationary, we get from Equation 6 the Fluctuation-Dissipation relationship (Penland & Matrosova, 1994):

𝑄𝑄 + 𝐵𝐵𝐵𝐵(0) + 𝐵𝐵(0)𝐵𝐵𝑇𝑇 = 0 (9)

Given B from Equation 8 and the covariance matrix Q from Equation 9, we can then generate a continuous 
Markov model and perform a sample of stochastic trajectory by integrating Equation 3. The appropriate method 
of integration is a two-step process corresponding to a second order Runge-Kutta method and described in 
Penland & Matrosova, 1994.

⎧

⎪

⎨

⎪

⎩

𝑧𝑧𝑖𝑖(𝑡𝑡 + Δ𝑡𝑡) = 𝑧𝑧𝑖𝑖(𝑡𝑡) +
𝐻𝐻
∑

𝑗𝑗=1

𝑏𝑏𝑖𝑖𝑗𝑗 𝑧𝑧𝑗𝑗(𝑡𝑡)Δ𝑡𝑡 +
𝐻𝐻
∑

𝑘𝑘=1

𝑞𝑞𝑖𝑖𝑘𝑘

√

𝑛𝑛𝑘𝑘Δ𝑡𝑡 r𝑘𝑘

𝑥𝑥𝑖𝑖

(

𝑡𝑡 +
Δ𝑡𝑡

2

)

=
1

2
(𝑧𝑧𝑖𝑖(𝑡𝑡) + 𝑧𝑧𝑖𝑖(𝑡𝑡 + Δ𝑡𝑡))

(10)

where 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is the kth eigenvector of the matrix Q and 𝐴𝐴 𝐴𝐴𝑘𝑘 its corresponding eigenvalue. The 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 are the coefficient 
of the matrix B and 𝐴𝐴 𝐴𝐴  is a P-dimensional vector of independent random numbers drawn at each time step from 
a Gaussian distribution with unit variance. Since we work with monthly data, in the following section the time 
step 𝐴𝐴 Δ𝑡𝑡 is chosen equal to 1/120 month, that is, 6 hr (Penland & Matrosova, 1994). As it is generally the case, our 
LIMs are built using the main climate modes of variability retained in the first Empirical Orthogonal Functions 
(EOFs) (Penland, 1989; Penland & Matrosova, 1994). Before the EOFs analysis, each grid cell is normalized by 
its root-mean-square amplitude and weighted according to its surface area in order to take into account the grid 
cell area variations.

2.3. Sequential Importance Resampling Particle Filter

The PDA approach adopted in this study is an online sequential importance resampling particle filter (SIR-PF; 
Doucet et al., 2001; Van Leeuwen, 2009). The SIR-PF is a Bayesian filter using a set of particles 𝐴𝐴 𝐴𝐴

0

𝑘𝑘
, 𝐴𝐴

1

𝑘𝑘
. . . , 𝐴𝐴

𝑁𝑁

𝑘𝑘
 and 

weights 𝐴𝐴 𝐴𝐴
0

𝑘𝑘
, 𝐴𝐴

1

𝑘𝑘
. . . , 𝐴𝐴

𝑁𝑁

𝑘𝑘
 to recursively estimate at each time step k, the unknown model state probability density 

𝐴𝐴 𝐴𝐴𝑥𝑥(𝑥𝑥𝑘𝑘|𝑦𝑦1∶𝑘𝑘) :

𝑝𝑝𝑥𝑥(𝑥𝑥𝑘𝑘|𝑦𝑦1∶𝑘𝑘) =

𝑁𝑁
∑

𝑖𝑖=1

𝑤𝑤
𝑖𝑖

𝑘𝑘
∗ 𝛿𝛿𝑥𝑥𝑘𝑘

(

𝑥𝑥
𝑖𝑖

𝑘𝑘

)

 (11)
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with 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑘𝑘
 the particle i at the time step k, 𝐴𝐴 𝐴𝐴𝑥𝑥𝑘𝑘 (⋅) a delta function centered at 𝐴𝐴 𝐴𝐴𝑘𝑘 and 𝐴𝐴 𝐴𝐴

𝑖𝑖

𝑘𝑘
 the weights associated to this 

particle. The SIR-PF is a recursive approach initialized by drawing a set of particles 𝐴𝐴 𝐴𝐴
𝑁𝑁

0
 according to the common 

probability density 𝐴𝐴 𝐴𝐴(𝑥𝑥0) with the 𝐴𝐴 𝐴𝐴
𝑁𝑁

0
 all fixed equal to 1/N. Given the probability density function 𝐴𝐴 𝐴𝐴𝑥𝑥(𝑥𝑥𝑘𝑘|𝑦𝑦1∶𝑘𝑘) , 

a dynamical model is used to integrate the set of particles from the time step k to k + 1 following the transitory 
probability density function 𝐴𝐴 𝐴𝐴𝑥𝑥(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘) . With the Chapman-Kolmogorov formula we get the probability density 
function:

𝑝𝑝𝑥𝑥(𝑥𝑥𝑘𝑘+1|𝑦𝑦1∶𝑘𝑘) = ∫ 𝑝𝑝𝑥𝑥(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘) ∗ 𝑝𝑝𝑥𝑥(𝑥𝑥𝑘𝑘|𝑦𝑦1∶𝑘𝑘)𝑑𝑑𝑥𝑥𝑘𝑘 (12)

The Bayes theorem is then used to estimate the model state probability density:

𝑝𝑝𝑥𝑥(𝑥𝑥𝑘𝑘+1|𝑦𝑦1∶𝑘𝑘+1) =
𝑝𝑝𝑦𝑦(𝑦𝑦𝑘𝑘+1|𝑥𝑥𝑘𝑘+1) ∗ 𝑝𝑝𝑥𝑥(𝑥𝑥𝑘𝑘+1|𝑦𝑦1∶𝑘𝑘)

𝑝𝑝𝑦𝑦(𝑦𝑦𝑘𝑘+1)
(13)

where 𝐴𝐴 𝐴𝐴𝑥𝑥(𝑥𝑥𝑘𝑘+1|𝑦𝑦1∶𝑘𝑘) is called the prior distribution, 𝐴𝐴 𝐴𝐴𝑦𝑦(𝑦𝑦𝑘𝑘) corresponds to the observational probability density func-
tion and 𝐴𝐴 𝐴𝐴𝑦𝑦(𝑦𝑦𝑘𝑘|𝑥𝑥𝑘𝑘) is generally called the likelihood and corresponds to the conditional probability of the observa-
tions given the model state. Since the observational probability density function 𝐴𝐴 𝐴𝐴𝑦𝑦(𝑦𝑦𝑘𝑘) = ∫ 𝐴𝐴𝑦𝑦(𝑦𝑦𝑘𝑘|𝑥𝑥𝑘𝑘) ∗ 𝐴𝐴𝑥𝑥(𝑥𝑥𝑘𝑘)𝑑𝑑𝑥𝑥𝑘𝑘 
is just a normalization constant, we do not need to estimate it and we can just consider the following relation of 
proportionality:

𝑝𝑝𝑥𝑥(𝑥𝑥𝑘𝑘+1|𝑦𝑦1∶𝑘𝑘+1) ∝ 𝑝𝑝𝑦𝑦(𝑦𝑦𝑘𝑘+1|𝑥𝑥𝑘𝑘+1) ∗ 𝑝𝑝𝑥𝑥(𝑥𝑥𝑘𝑘+1|𝑦𝑦1∶𝑘𝑘) (14)

given the posterior probability density function:

𝑝𝑝𝑥𝑥(𝑥𝑥𝑘𝑘+1|𝑦𝑦1∶𝑘𝑘+1) =

𝑁𝑁
∑

𝑖𝑖=1

𝑤𝑤
𝑖𝑖

𝑘𝑘+1
∗ 𝛿𝛿𝑥𝑥𝑘𝑘+1

(

𝑥𝑥
𝑖𝑖

𝑘𝑘+1

)

 (15)

with:

𝑤𝑤
𝑖𝑖

𝑘𝑘+1
=

𝑝𝑝𝑦𝑦

(

𝑦𝑦𝑘𝑘+1|𝑥𝑥
𝑖𝑖

𝑘𝑘+1

)

𝑁𝑁
∑

𝑗𝑗=1

𝑝𝑝𝑦𝑦

(

𝑦𝑦𝑘𝑘|𝑥𝑥
𝑗𝑗

𝑘𝑘

) (16)

Since the likelihood 𝐴𝐴 𝐴𝐴𝑦𝑦

(

𝑦𝑦𝑘𝑘|𝑥𝑥
𝑖𝑖

𝑘𝑘

)

 is often assumed to be Gaussian, we get:

𝑤𝑤
𝑖𝑖

𝑘𝑘+1
=

exp

(

−1

2

[

𝑦𝑦𝑘𝑘+1 − 𝑇𝑇
(

𝑥𝑥
𝑖𝑖

𝑘𝑘+1

)]𝑇𝑇

𝐶𝐶
−1
[

𝑦𝑦𝑘𝑘+1 − 𝑇𝑇
(

𝑥𝑥
𝑖𝑖

𝑘𝑘+1

)]

)

𝑁𝑁
∑

𝑗𝑗=1

exp

(

−1

2

[

𝑦𝑦𝑘𝑘+1 − 𝑇𝑇
(

𝑥𝑥
𝑗𝑗

𝑘𝑘+1

)]𝑇𝑇

𝐶𝐶−1
[

𝑦𝑦𝑘𝑘+1 − 𝑇𝑇
(

𝑥𝑥
𝑗𝑗

𝑘𝑘+1

)]

) (17)

where C is the error covariance matrix which describes the discrepancy between the observations and the model 
variables (we dedicate a detailed discussion in Section 3.1 on the way we estimated this matrix C for our exper-
iments), and T is a simple function that maps the model states into the observation phase space by selecting in 
the model state 𝐴𝐴 𝐴𝐴

𝑖𝑖

𝑘𝑘
 , the locations where the observations 𝐴𝐴 𝐴𝐴𝑘𝑘 are available. Given this new set of 𝐴𝐴 𝐴𝐴

𝑖𝑖

𝑘𝑘+1
 the particles 

are resampled to generate a new set of equally likely particles 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑘𝑘+1
 in order to drop out the particles far from 

the observations and duplicate (according to their likelihood) the ones close to the observations (Kuptametee 
& Aunsri, 2022; Liu & Chen, 1998). The weights 𝐴𝐴 𝐴𝐴

𝑖𝑖

𝑘𝑘+1
 of these particles are then all fixed equal to 1/N and the 

procedure is repeated over time taking at each iteration the new set of particles and weights as the new starting set.

3. Experimental Design and Skill Metrics
3.1. SIR-LIM Implementation

The implementation of the SIR-LIM, described in Figure 1, is performed in the following way: (a) we first sample 
randomly, N particles 𝐴𝐴 𝐴𝐴

0

0
, 𝐴𝐴

1

0
. . . , 𝐴𝐴

𝑁𝑁

0
 according to the initial model density probability 𝐴𝐴 𝐴𝐴(𝑥𝑥0) ; which in our case is 

done by pooling randomly N initial states from a long past1000 simulation; (b) each particle is then propagated 
for 1 year with the LIM (Equation 4) according to the model distribution 𝐴𝐴 𝐴𝐴𝑥𝑥(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘) ; (c) available observations 
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𝐴𝐴 𝐴𝐴𝑘𝑘+1 are then used to estimate 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑘𝑘+1
 following Equation 17. Based on these new weights we resample the set of 

particles following the residual resampling approach proposed by Liu & Chen, 1998, which ensures a good dupli-
cation of the particles close to the observations by first allocating to each particle the integer part of its expected 
resampling, and then draw randomly the rest of the particles following the distribution given by the decimal part 
of the expected resampling. Since the LIM includes by construction a stochastic component, no sampling noise 
needs to be added after the resampling step unlike what is usually done with deterministic models (Dubinkina 
et al., 2011; Liu et al., 2017). The weights of the particles are then all fixed equal to 1/N and the procedure is 
repeated over time with the new sets of weight and particles.

As the set of particles is propagated in time in the EOFs space, some components of the surface temperature 
variability are not considered. To take into account this source of uncertainty, we assumed the error matrix C to 
be, as proposed by Keeler and Ellis (2000) and Dubinkina et al. (2011), the addition of an observational error 
Cobs corresponding to the uncertainty associated to the proxies, plus a representativeness error Cr corresponding 
to uncertainties associated to the partial representation in the EOFs space of the real un-truncated variability:

𝐶𝐶 = 𝐶𝐶𝑟𝑟 + 𝐶𝐶obs (18)

As the instrumental errors are supposed to be uncorrelated, the coefficients of the matrix 𝐴𝐴 𝐴𝐴obs are non-zero on 
the diagonal and zero elsewhere. For its part, the representativeness error 𝐴𝐴 𝐴𝐴𝑟𝑟 is taken to be equal to the mean 
square error between the partial representation of the surface temperature in the EOFs space with the real surface 
temperatures.

3.2. Sensitivity Experiments

The SIR-LIM reconstruction performances are evaluated in a perfect model framework by taking as a target the 
IPSL-CM6A-LR model surface temperature from the past1000 experiment and by adding a Gaussian white noise 
to simulate pseudo-proxies. An independent IPSL-CM6A-LR last millennium simulation (not employed for LIM 
and SIR-LIM calibration) is used to assess the LIM and SIR-LIM scores. In contrast with previous pseudo-proxies 
experiments (e.g., Dubinkina et al., 2011; Liu et al., 2017) that add a constant noise with a standard deviation 
of 0.5 regardless the location and variance of the target signal, we consider here a white noise representing 50% 
of the pseudo-proxy standard deviation in order to avoid giving too much weight to regions with the strongest 
variability. Several experiments are then setup (see Table 2):

1.  To assess the influence of the proxies spatial distribution on the quality of the reconstructions (e.g., Comboul
et  al.,  2015). To do so, we performed two experiments with different spatial sampling (Figure  2). In the
first experiment (labeled Pages2k) the pseudo-proxies are sampled according to the location of proxies
for surface temperatures available at the year 1000 in the multi-proxy PAGES2K-v2 database (PAGES2k
Consortium,  2019). This experiment is representative of the real problem with an under-sampling of the

Figure 1. Conceptual representation of the SIR-LIM. The particles integration of an ensemble of N particles by the linear inverse modeling is done in the Empirical 
Orthogonal Functions space. The notation 𝐴𝐴 𝒑𝒑𝒑𝒑

𝑖𝑖

𝑘𝑘
 stands for the vector of PCs considered at the time step k for the particle i. The resampling step is done at the time step 

k + 1 according to the ensemble of reconstructed spatial fields 𝐴𝐴 𝒙𝒙
𝑖𝑖

𝑘𝑘+1
 and the observations available 𝐴𝐴 𝒚𝒚

𝑘𝑘+1 .
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oceans relative to the continents and an under-sampling of the Southern Hemisphere (SH) relative to the 
Northern Hemisphere (NH). A second experiment (called Dense) is also performed with a regular sampling 
of 167 proxies across the globe in order to assess the limitations in the reconstruction skills induced by the 
sparse and uneven spatial distribution of Pages2k experiment (Figure 2).

2.  To evaluate the influence of climate model biases on obtained reconstructions. With that aim, we rely on
4 SIR-LIMs based on LIMs derived from different model physics (see Figure A1): two mono-model LIMs 
constructed from the CMIP5 and CMIP6 versions of the IPSL model and called thereafter IPSL-CM5-LIM 

Figure 2. Pseudo-proxies spatial distribution showing the location of the 69 and the 167 surface temperature pseudo-proxies used in the Pages2k (red dots) and Dense 
experiments (black dots) respectively.

Table 2 
Experimental Protocol and Climate Indices

Benchmark experiments

Pages2k Experiment relying on pseudo-proxies spatial distribution similar to the actual location of surface temperature proxies available in the PAGES2K-v2 
database at the year 1000AD (Figure 2).

Dense Same as Pages2k but with a regular sampling of 167 pseudo-proxies considered across the globe (Figure 2).

Persistence Conservative experiment used to evaluate the predictive capabilities of the LIM and consists in predicting for the future the same value as the present.

SIR-0 Particle filter similar to the SIR-LIM but where the LIM is replaced by a Gaussian white noise.

noDA Case without data assimilation used as a reference score.

Climate indices

 Global Globally averaged surface temperature

 NH Mean surface temperature between 25°N and 90°N

 Tropics Mean surface temperature between 25°S and 25°N

 SH Mean surface temperature between 25°S and 90°S

 ENSO Defined with the Niño 3.4 index, as the mean sea surface temperature between 5°N–5°S and 120°–170°W

 AMV Mean sea surface temperature between 0°–60°N and 75°–7.5°W

 IPO Defined with the filtered Tripole Pacific Index (describe in Henley et al. (2015)), as the central equatorial Pacific 
sea surface temperature (10°S–10°N, 170°E−90°W) minus the average of northwest (25°–45°N, 140°E−145°W) 
and southwest (15°–50°S, 150°E−160°W) Pacific sea surface temperature, smoothed using a 13-yr Chebyshev 
low-pass filter.
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and IPSL-CM6-LIM, and two multi-model LIMs derived from respectively 5 CMIP5 and 4 CMIP6 models 
and called thereafter MM-CMIP5-LIM and MM-CMIP6-LIM (Table 1).

3.  To evaluate the use of the LIM as a dynamical predictive model, we compare the LIM’s forecast at various
lead-times (considering only the system state at the present time with no additional information) with a very
conservative approach called Persistence. This approach simply consists in predicting for the future the same
value as the present, giving for any field x at any horizon h and any time step t the following prediction
xt+h = xt. The comparison of the predictions of the LIM with Persistence allows evaluating the predictive
capabilities of the LIM. The EOFs Persistence is also introduced and corresponds to the Persistence for the
components of the surface temperature represented in the EOFs space.

4.  To establish a baseline for the internal climate variability and the influences of the resampling on the scores.
We therefore introduced two additional experiments called noDA and SIR-0. The noDA experiment represents 
the case without data assimilation and corresponds to an other past1000 simulation of the IPSL-CM6A-LR
model sharing the same external forcing as the target but starting from different ocean initial conditions, and
therefore with its own internal variability. The SIR-0 experiment corresponds on the other hand to a SIR-PF
where we use a Gaussian white noise in space and time instead of a LIM. It is indeed obvious that in the
SIR-LIM, the resampling alone accounts for parts of the scores obtained during the reconstructions regardless 
of the integration model used. The SIR-0 allows to measure this so-called “re-sampling” score due to the
selection of particles close to the observations and which depends on many parameters such as the resampling 
frequency, the size of the problem and the number of particles.

3.3. Climate Indices and Skill Metrics

In addition to assess the reconstruction skill of the spatial surface temperatures field, we consider 7 main sets of 
climate indices: the global mean surface temperature, three large scale indices corresponding to the area-averaged 
surface temperatures in the Tropics, the NH and SH, and three indices for the main modes of climate variability 
namely the AMV (Ting et al., 2009), the ENSO (McPhaden et al., 2006) and the Interdecadal Pacific Oscillation 
(IPO, Folland et al., 1999; Power et al., 1999). Note that for ensemble reconstructions, the ensemble-mean index 
refers to the average of indices previously calculated from outputs across the set of particles. To quantify the 
uncertainty associated with the reconstructions, the spread of the ensemble is indicated with the 2.5th and 97.5th 
percentiles. To assess the LIMs and SIR-LIMs skills, we relied on the root-mean-square error (RMSE), the Pear-
son correlation coefficient (Corr) and coefficient of efficiency (CE). Frequently used, the RMSE gives a measure 
of the differences between the target and the predicted values. The correlation estimates the similarity between 
two signals phases while the CE takes into account the phase, amplitude and bias between the two considered 
signals (Nash & Sutcliffe, 1970). Finally, for ensemble forecasts we also assess the quality of the ensemble spread 
by plotting the histogram of the target position in the forecast spread.

The detailed and complete list of sensitivity experiments and climate indices described in this section are summa-
rized in Table 2.

4. The LIM as a GCM Emulator
4.1. LIM Skills

The LIM projection in the first EOFs allows reducing the dimensionality of the system and is therefore well 
suited for PFs that tends to degenerate. The SIR-LIMs performances will however depend on the number of 
EOFs considered, which has to be large enough to preserve as much variance as possible and describe the evolv-
ing field pattern, but also small enough to eliminate much of the unpredictable noise. As shown on Figure 3a, 
the truncation of the first 30 EOFs explains more than 65% of the variances of surface temperature inter-annual 
variability for the different models. In terms of local variance explained, we find a pretty similar uneven spatial 
distribution between the different models, with a higher percentage of variance explained in the tropics than in the 
extra-tropics and in the Pacific than in the Atlantic (Figures 3b–3e). The first and second EOFs mainly describe 
the external forcing and ENSO variability and account for more than 30% of the total variance while the variabil-
ity described by the third EOFs will depend on the model considered (Figure A2). Since the first 30 EOFs explain 
a large part of the surface temperature inter-annual variability, the LIM and SIR-LIM in the following sections are 
built considering the first 30 EOFs.
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If the dynamics of the surface temperatures can be approximate by Equation 3 then the noise matrix Q, as for 
any covariance matrix, should be positive definite and its eigenvalues should indicate the amount of variance 
explained by each “EOFs of the noise” (Penland & Matrosova, 1994). This is the case in our experiment with 
noise matrix Q positive definite for all the LIMs used in the following sections. Figure 4 shows the different LIMs 
linear component local skill in predicting the surface temperatures simulated by the IPSL-CM6A-LR model at 
a lead-time of 1 year. Since the climate models possess a wide range of dynamical interactions and variability 
patterns (see Figure A1), the forecast obtained by the IPSL-CM6-LIM illustrates the sources of linear predictabil-
ity specific to the IPSL-CM6A-LR model. On the other hand, the forecast skills of the LIMs derived from other 
models give useful information about the linear predictable dynamics shared by the GCMs and the confidence 

Figure 3. Percentage of variance explained by the first 30 Empirical Orthogonal Functions (EOFs). (a) Cumulative percentage of the total variance explained according 
to the number of EOFs retained. (b)–(e) Percentage of local variance explained by the first 30 EOFs of the (b) IPSL-CM5A-LR, (c) IPSL-CM6A-LR, (d) MM-CMIP5 
and (d) MM-CMIP6 models.
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we should have in the current CMIP5 and CMIP6-class models as forecast tools. As we could expect, we get the 
highest scores for the LIM derived from the host model (IPSL-CM6-LIM, Figures 4a and 4b), followed by the 
MM-CMIP6-LIM (Figures 4c and 4d). All the LIMs show high correlations and CE scores in the North Atlantic 
and in the tropics specifically in the Indo-Pacific region (Figures 4a–4h). The forecasts are also in general better 

Figure 4. Linear inverse modeling forecast scores at lead 12 months. Correlations (left column) and Coefficient of Efficiency (CE, right column) for (a and b) the 
IPSL-CM6-LIM, (c and d) MM-CMIP6-LIM, (e and f) MM-CMIP5-LIM, (g and h) IPSL-CM5-LIM and (i and j) Persistence.
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over the sea than over continental regions (Perkins & Hakim, 2020). In most regions, all the LIMs outperform the 
Persistence (Figures 4i and 4j), especially in terms of amplitude (CE). The Persistence shows comparable skill 
and even sometimes performs better than some LIMs in the extra-tropical North Atlantic which may be due to 
the strong low frequency variability simulated by the target model in this region. The dynamics in the tropical 
Pacific being zonally asymmetric, the LIMs get better forecasts in the western tropical Pacific than in the eastern 
tropical Pacific where the variability is more non-linear (Shin et al., 2020). We also found for the IPSL-CM6-LIM 
higher forecast skills in the tropical Pacific than in the tropical Atlantic (Figures 4a and 4b) probably related to the 
higher ENSO predictability (Perkins & Hakim, 2020; Richter et al., 2020). This is however not the case anymore 
when using the others LIMs, with a larger deterioration of the LIM forecast skill in the Pacific than in the Atlan-
tic (Figures 4c–4h and Figure A3), which suggests that the predictability could be more model dependent in the 
tropical Pacific than in the tropical Atlantic Ocean.

Such results demonstrate that the CMIP5 and CMIP6 models share some predictable linear dynamics that are 
reproduced by the LIMs. For ENSO, all the LIMs outperform the Persistence below 3 years with correlation 
at lead time 2-year greater than 0.4 for the IPSL-CM6-LIM and around 0.2 for the others LIMs (Figure S1 in 
Supporting Information S1). For the AMV, the Persistence alone shows correlations around 0.7 at 1-year lead 
and greater than 0.5 even at 4-years lead (Figure S1 in Supporting Information S1). Since the AMV corresponds 
to a lower frequency variability mode compared to ENSO, it is not surprising to get better forecast skills for the 
AMV. All in all, these results demonstrate that the LIMs add useful information to predict spatial surface temper-
atures fields for most of the globe and especially in the tropics including the tropical Atlantic and Pacific oceans. 
However, in the North Atlantic and for the AMV, a sizable part of the LIMs forecast skill is due to the persistence 
and ocean dynamical memory effects.

4.2. Ensemble Forecast and Non-Linear Dynamics

It is well known that the predictability of the climate varies over time and will depend on the initial conditions, 
especially when considering non-linear systems (Borchert et al., 2019; Brune et al., 2018; Planton et al., 2018). 
The deterministic LIM component is based on linear dynamics and the confidence in these forecasts also depends 
on the climate initial state due to the presence of some non-linear processes at work (see Figures S2 and S3 in 
Supporting Information S1). The LIM gives an estimation of the forecasts uncertainties caused by the influ-
ence of these non-linear dynamics and also the influence of the external forcings 𝐴𝐴 𝜺𝜺 . This non-linear part of the 
LIM allows for ensembles forecasts following the two step stochastic integration described in Equation 10. In 
Monte-Carlo approaches, like PFs, the ensemble spread is essential to get the range of possible future system 
states and quantify the uncertainties associated to these predictions. To assess the ability of the LIM to produce 
appropriate forecasts range, we performed 100-members LIMs ensembles for several global indices at lead 
12-month over the 850–1850 period. In Figure 5, we illustrate this with ENSO ensemble forecasts skill over the 
1200–1300 period chunk, for neutral ENSO conditions (case 1), strong ENSO transition from a positive to a nega-
tive phase (case 2), a neutral to a negative phase (case 3), a negative to a positive phase (case 4) and a negative 
to a neutral phase (case 5) as simulated by the target model. The IPSL-CM6-LIM shows the best performances 
(Figure 5b) when the other LIMs tend to underestimate the target variability and struggle to predict the amplitude 
of large ENSO events (Figures 5c–5e). This is especially true for the strong La Niña visible in the case 3 with a 
target outside the forecast ensemble spread for the IPSL-CM5-LIM and MM-CMIP5-LIM (Figures 5d and 5e).

The skill of these ensemble forecast is a key factor for the success of PDA and especially when considering 
PFs. However, since it may change according to the model used, we show on Figure 6, the histograms of the 
target positions within the ensemble forecasts spread at lead 12-month over the whole 850–1850 CE period, 
for the global mean surface temperatures, the AMV and ENSO indices for the different LIMs. When using the 
IPSL-CM6A-LR and MM-CMIP6 derived-LIMs, the histograms display overpopulated middle ranks for global 
mean temperature (Figures 6a and 6b) indicating an over-dispersive spread, with the target falling more often in 
the middle deciles of the ensemble spread. The other LIMs also perform very well at lead 12-month with a target 
more than 95.7% of the time in the ensemble spread (Figures 6c and 6d). All the LIMs tend however to miss some 
rare extreme temperature anomalies but with asymmetrical probabilities. For example, with the IPSL-CM6-LIM, 
the target falls 2.3% of the time outside the lower edge and 0.6% of the time above the upper edge of the spread 
(Figure 6a red bars). These results indicate that the forecasts tend to underestimate more often rare extreme cool-
ing events associated with, for example, unpredictable strong volcanic eruptions.
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Figure 5. El Niño Southern Oscillation (ENSO) ensemble forecast over the 1200–1300 simulated period by the IPSL-CM6A-LR model. (a) ENSO index of the target 
simulation (black curve) and its projection in the base of the first 30 Empirical Orthogonal Functions (black dashed curve). The blue vertical lines show the starting date 
of different forecast experiments noted from 1 to 5. For the 5 starting dates the (b) IPSL-CM6A-LR, (c) MM-CMIP6, (d) IPSL-CM5A-LR and (e) MM-CMIP5 derived 
LIMs are used to produce forecast ensembles with the integration of 100 particles over a period of 2 years. The ensemble mean is shown by the color dashed lines and 
the envelope by the fine dotted black lines. The gray shadings indicate the quantiles.
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For ENSO, we get a well calibrated spread for the IPSL-CM6-LIM and MM-CMIP6-LIM with a flat histogram 
and a target respectively 97.4% and 96.2% of the time within the ensemble envelop (Figures 6e and 6f). The 
U-shape histograms visible with the IPSL-CM5-LIM and MM-CMIP5-LIM are on the other hand characteristic 
of under-dispersive spreads, the target being more often in the border deciles than the middle ones (Figures 6g 
and 6h). This is not the case anymore when looking at the training error obtained with LIMs forecasting their 
own GCM-parents (Figures  A4d–A4f) indicating that the U-shape distributions are due to dynamical differ-
ences across GCMs rather than to LIM errors. Similar results are found for the AMV (Figures  6i–6l), with 
the IPSL-CM5-LIM and MM-CMIP5-LIM that tend to underestimate the forecast uncertainties when predict-
ing the IPSL-CM6A-LR AMV but describe well the forecast uncertainty associated to their own GCM-parents 
(Figures A4g–A4i). Such features emphasize the importance of relying on various sets of GCMs to better assess 
the uncertainties that may be related to model-dependent physics in real PDA derived reconstructions.

All in all, despite some limitations concerning rare unpredictable extreme cold events that may be underesti-
mated, we demonstrate that the LIM produces skillful ensemble forecasts. The LIM is able to capture useful 
information on the dynamics of the system at leads up to 1 year and these results motivate the use of the LIM 
as a GCM-emulator to propagate at low cost a large ensemble of particles with a resampling every year in data 
assimilation analysis such as our PF.

5. Pseudoproxy Climate Reconstruction
5.1. SIR-LIM Scores

We now assess the SIR-LIM performances as part of the Pages2k and Dense experiments relying on an ensemble of 
900 particles over 850–1850 CE. The scores for several reconstructed climate indices with the 4 SIR-LIMs and the two 
benchmark experiments are listed in Table 3 and local scores for surface temperatures are shown in Figure 7. In both 
Dense and Pages2k experiments, the IPSL-CM6-SIR-LIM reconstructs very well the global mean surface temperature 

Figure 6. Probability histograms of the target position within 100-members ensemble linear inverse modeling (LIM) forecast spread at 12-month lead. Each blue bar 
indicates the percentage of the times the target is in the spread by bins of one decile. The red bars show the percentage of time the target is below (for the left red bar) 
and above (for the right red bar) the ensemble spread edges. The distributions are shown for the (a–d) the global mean surface temperature, (e–h) El Niño Southern 
Oscillation, and (i–l) Atlantic Multidecadal Variability indices using the (first row) IPSL-CM6-LIM, (second row) MM-CMIP6-LIM, (third row) MM-CMP5-LIM and 
(fourth row) IPSL-CM5-LIM. The cumulated percentage of times the target is within the spread envelope is indicated at the top of each panel. In the case of a perfectly 
well calibrated spread we should get a flat blue histogram with a target 98% of the time within the ensemble spread.



Journal of Advances in Modeling Earth Systems

JEBRI AND KHODRI

10.1029/2022MS003094

15 of 26

variability at inter-annual to decadal timescale. It tends however to underestimate large cooling anomalies caused by 
super eruptions such as Samalas (1257CE) or the Kuwae (1452–1453 CE) as illustrated on Figure 7a. Even though 
the LIMs are not directly driven by external forcing, such unpredictable events are still in some way captured by the 𝐴𝐴 𝜺𝜺 
parametrization which underestimates the amplitude only for rare extreme cases (see Section 4.2).

When looking at spatial scale, the IPSL-CM6-SIR-LIM provides positive scores in Pages2k for both the phase 
and amplitude in most of the tropical regions and in the NH (Figures 7b and 7c). We get the highest scores in 
the sub-polar regions bordering the Atlantic and Arctic Oceans while the lowest scores are obtained in the SH 
due to the scarce availability of pseudo-proxy in this hemisphere. Considering the quite limited observational 
sampling in the Pacific Ocean, we found however quite satisfactory scores for ENSO and IPO reconstructions 
(Table 3), illustrating the role of dynamical teleconnections with pseudo-proxies available in remote regions. 
With a uniform and denser pseudo-proxy distribution, we get globally better scores over most of the globe and 
especially in the tropical Pacific, Indian Ocean and in the SH (Figures 7d and 7e). We can however notice higher 
scores in some regions for Pages2k such as in Southern Alaska and in the North Atlantic near Iceland where we 
have a higher density of pseudo-proxies as compared to Dense (Figure 2 and Figures 7b–7e). The noDA baseline 
experiment (which corresponds to another IPSL-CM6A-LR model past1000 simulation) shows correlation larger 
than 0.2 near the maritime continent and Indian Ocean, illustrating a relatively larger contribution of external 
forcings in this area (Figures 7f and 7g). We also get pretty high correlation for the global and hemispheric indices 
but very bad CE scores for all the indices and most of the regions (Table 3; Figure 7g). In SIR-0 PF experiment, 
which uses an integration model that does not propagate climate information over time, the scores are very low 
indicating the relatively low importance of the “resampling score” alone in the SIR-LIMs performances.

For the other SIR-LIMs, we found relatively similar results in the Pages2k experiment with again the best 
scores in the NH and for the AMV (Figures 8a–8f and Table 3). We get globally better performances for the 
multi-model SIR-LIMs than the IPSL-CM5-SIR-LIM. The difference of skill between the SIR-LIM derived 
from the IPSL-CM6A-LR model and the other ones illustrates the impact that GCMs biases may induce (𝐴𝐴 Δ CE in 
Figures 8g–8i) and show the confidence we should have in PDA reconstructions based on CMIP5 and CMIP6-class 
models. For example, in Figure 8h the differences visible in the Western Pacific between the IPSL-CM6-SIR-
LIM and the MM-CMIP6-SIR-LIM near the maritime continent is related to different ENSO teleconnection 
spatial fingerprints among models with anomalies that extend too far into the Western Pacific along the equator 
in the IPSL-CM6A-LR model as compared to the MM-CMIP6 models (Figure A1). We could therefore expect 
better ENSO reconstructions with the MM-CMIP6-SIR-LIM than the IPSL-CM6-SIR-LIM in the case of a real 
PDA since the MM-CMIP6-LIM exhibits weaker biases in the tropical Pacific with a more faithful ENSO spatial 
pattern with the observations (Figure A1). Another example is the negative 𝐴𝐴 Δ CE visible in the Southeast Tropical 
Atlantic region and the Angola-Benguela front (Figures 8g–8i) that may be due to significant bias and discrepan-
cies in the current CMIP5 and CMIP6-class model in these regions (Richter & Tokinaga, 2020; Xu et al., 2014).

Figure 9 shows that the SIR-LIM can also capture well the frequency content with peaks between 2 and 4-years 
for ENSO, 8 to 32-years for IPO and 120 to 200-years for AMV. It may however underestimate the frequency 

Table 3 
Correlation and Coefficient of Efficiency (Within Brackets) Between the Reconstructions Obtained by the Different 
Experiments Over the 850AD-1850AD and the Target

Experiments

Indices

Global NH SH ENSO IPO AMV

IPSL-CM6-SIR-LIM Pages2k 0.89 (0.79) 0.89 (0.79) 0.52 (0.25) 0.61 (0.37) 0.61 (0.36) 0.87 (0.76)

IPSL-CM6-SIR-LIM Dense 0.91 (0.82) 0.90 (0.81) 0.75 (0.56) 0.81 (0.66) 0.83 (0.68) 0.80 (0.64)

IPSL-CM5-SIR-LIM Pages2k 0.88 (0.76) 0.89 (0.71) 0.35 (0.08) 0.56 (0.31) 0.60 (0.35) 0.86 (0.74)

MM-CMIP5-SIR-LIM Pages2k 0.89 (0.79) 0.90 (0.81) 0.50(−0.04) 0.57 (0.33) 0.67 (0.45) 0.86 (0.74)

MM-CMIP6-SIR-LIM Pages2k 0.89 (0.79) 0.90 (0.80) 0.48 (0.21) 0.57 (0.32) 0.60 (0.31) 0.87 (0.74)

SIR-0 Pages2k 0.13 (−0.17) 0.12 (−0.19) 0.07 (−0.18) 0.06 (−0.21) 0.20 (0.04) 0.12 (−0.17)

noDA 0.57 (0.1) 0.49 (−0.05) 0.36 (−0.22) 0.03 (−0.97) 0.04 (−0.66) 0.31 (−0.37)

Note: The bold values correspond to the scores obtained in the Pages2k experiment with the SIR-LIM derived from the target 
model.
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Figure 7. Reconstructions skill for the different experiments. (a) IPSL-CM6-SIR-LIM global mean reconstructed surface temperature over 1200–1600 in the Pages2k 
(in blue) and Dense (in red) experiments. The target is shown by the black curve and the blue and red shading indicate the 2.5th and 97.5th percentiles of the Pages2k 
and Dense reconstructions ensemble spreads respectively. The global mean Aerosol Optical Depth (AOD, in gray) is also shown to indicate the timing of volcanic 
eruption with red circles when the global mean AOD is higher than 0.1. (b)–(i) Correlations (left column) and CE (right column) local scores for the period 850–1850 
for the IPSL-CM6-SIR-LIM in (b and c) the Pages2k and (d and e) Dense experiments. The same scores are displayed for (f and g) the noDA and (h and i) SIR-0 
benchmark experiments.
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content in the real case especially for ENSO and IPO with an underestimated amplitude in all cases, including 
the experiments with IPSL-CM6-SIR-LIM (Figures 9a, 9b, 9d, and 9e). However, this problem can be over-
come by providing a stronger constrain with more available pseudo-proxy in ENSO and IPO-sensitive regions 
as shown by the smaller underestimated amplitude in ENSO and IPO frequency peaks in Dense as compared 
to Pages2k experiments (Figures 2, 9a, 9b, 9d, and 9e). The larger number of pseudo-proxies in the regions 
surrounding the North Atlantic Ocean especially in the Pages2k experiment (Figure 2) explains also the better 
representation of the characteristic 200-years peak specific to the IPSL-CM6-LR model (Boucher et al., 2020) in 
all SIR-LIMs reconstructed AMV (Figures 9c and 9f). It is worth pointing out that even if none of the CMIP5 and 
CMIP6 GCMs exhibit the same bicentennial low frequency variability in the Atlantic as the target model, all the 
SIR-LIMs reproduce this low frequency variability. These results demonstrate that when a model simulates pretty 
well the spatial fingerprint and amplitude of the climate variability, a regular resampling of the particles allows 
reproducing a range of frequencies present in the observations but not freely simulated by the model. This feature 
is particularly interesting when considering past climate reconstructions guided by real proxy records with GCMs 
that might not spontaneously reproduce the observed ranges of the natural climate variability.

5.2. Sensitivity to the Number of Particles and EOFs Truncation

To complete our analysis, we also evaluated the SIR-LIM sensitivity to the number of EOFs and particles used. 
Figure  10 shows the sensitivity of the IPSL-CM6-SIR-LIM to these parameters for the Pages2k experiment. 
As we could expect we see that for a small number of particles (<100), it is preferable to drastically reduce the 
dimension of the problem by taking in consideration a few EOFs (<10, Figure 10a). When considering 30 EOFs 
and 900 particles we get among the best results with no improvements when increasing the number of particles 
given the uncertainties associated to the instrumental error, lack of proxies and LIM approximations (Figure 10a). 
By increasing the number of EOFs we reduce the representativeness error especially in the NH but increase 
the dimensionality of the system with a larger number of particles required to avoid the PFs degeneracy. Since 
the first EOFs explain a large part of the variability in the tropics we find good results in the tropics with the 
small number of 5 EOFs (Figure 10b) while in the NH hemisphere a number of at least 10 EOFs is required to 
get skillful reconstructions (Figure 10c). Our results show that using more than 30 EOFs does not improve the 
reconstruction skills since the SIR-LIMs reconstruct mainly large-scale dynamics and that a set of 900 particles 
is sufficient to prevent the filter degeneracy (Figure 10 and Figure S4 in Supporting Information S1).

Figure 8. Spatial reconstructions skill for the different SIR-LIMs in the Pages2k experiment. (a–c) Correlations and (d–f) coefficient of efficiency (CE) for the 
IPSL-CM5-SIR-LIM (left column), MM-CMIP6-SIR-LIM (middle column) and MM-CMIP5-SIR-LIM (right column). (g–i) Difference between the CE obtain by each 
SIR-LIM and the IPSL-CM6-SIR-LIM.



Journal of Advances in Modeling Earth Systems

JEBRI AND KHODRI

10.1029/2022MS003094

18 of 26

6. Conclusions
The PDA field offers a way to extend back in time the relatively short period of instrumental observations by assim-
ilating available proxies in state-of-the-art climate models. However, the use of efficient online ensemble-based 
data assimilation techniques with costly models to reconstruct spatial fields over long period stays until today 
prohibitively expensive and difficult. Because of the high-dimensional system state space, PDA techniques such 

Figure 9. Power spectrum for (a) El Niño Southern Oscillation, (b) Interdecadal Pacific Oscillation and (c) Atlantic Multidecadal Variability indices in the 
IPSL-CM6A-LR target simulation in black and in reconstructions derived from the Pages2k experiments with the IPSL-CM6-SIR-LIM (blue curve), IPSL-CM5-SIR-
LIM (red curve), MM-CMIP5-SIR-LIM (green curve) and MM-CMIP6-SIR-LIM (purple curve). (d)–(f) Same as (a)–(c) but deduced from the Dense experiments.

Figure 10. SIR-LIM sensitivity to the number of Empirical Orthogonal Functions (EOFs) and particles considered in the Pages2k experiment. The scores are for the 
SIR-LIM derived from the IPSL-CM6-LR model for a period of 100 years. The curves correspond to the root-mean-square error (RMSE) divided by the RMSE of 
noDA for (a) the Global, (b) Tropical and (c) Northern Hemisphere RMSE. Each curve corresponds to a fixed number of EOFs and is expressed as a function of the 
number of particles used. The RMSE of noDa is shown in the top right corner and allows to retrieve the original RMSE value by multiplying the standardized RMSE by 
the RMSE of noDA.
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as KFs and their ensemble versions are nowadays preferred since PFs encounter problems of degeneracy when 
the number of particles is limited (Liu et al., 2017). Here we promote the use of a low cost online PF able to give 
skillful spatial reconstructions by relying on LIMs derived from different GCMs-physics allowing to overcome 
the “curse of dimensionality” problem.

To assess the influence of the proxies spatial distribution and get an estimation of the influence of the dynamical 
model used on obtained reconstructions, we conduct different experiments with different spatial pseudo-proxies 
sampling and build 4 LIMs derived from different models physics. We found that the dynamics associated to the 
surface temperatures of the first 30 EOFs is substantively linear, and is relatively well approximated by a LIM. 
The LIM is able to capture predictable information from its GCM-parents and gives skillful forecasts at lead 
1-year for different large-scale indices and spatial fields. For most of the globe, the LIM shows good regional 
forecasts with higher skills in the tropics, North Atlantic and Pacific Ocean and highlight the common source of 
linearly predictable dynamic shared by different GCMs. The LIMs give also a representation of the uncertainties 
associated to their forecast, the non-linear dynamics being approximated by a stochastic process which provide 
useful information on the system nonlinearities needed to generate faithful large ensemble of possible future 
climates at 1-year lead time. In all cases, the SIR-LIMs clearly outperform the benchmark experiments only 
driven by external forcing (noDA experiment), even though the amplitude of extreme short-lived cooling events 
caused by strong volcanic eruptions are underestimated. However, the use of a LIM as a dynamical model still 
limits the full potential of PFs and future work with more sophisticated models with non-Gaussian and even addi-
tive noise (Bianucci & Mannella, 2021; Martinez-Villalobos et al., 2019) and/or with other non-linear forecast 
models (Nadiga, 2021) could help improve the reconstructions of extreme anomalies.

Our pseudo-proxies experiments provide a convincing validation of the SIR-LIM approach as a PDA technique. 
For spatial reconstructions, we found better skill in regions with high pseudo-proxy sampling, although the 
SIR-LIMs exploit spatial teleconnection to reconstruct areas with quite limited observational constrains. When 
assimilating a more regular and denser pseudo-proxies set as compared to the real spatial sampling at the begin-
ning of the millennium, we get globally better reconstructions in most of the globe and especially in the tropical 
Pacific, Indian Ocean and in the SH indicating that more proxies in these regions would improve the reconstruc-
tions quality. The scores show overall comparable skills for the global mean surface temperature across the vari-
ous GCMs derived-LIMs, but with important differences at regional scale. Our results are less model-dependent 
for climate modes and regions that are well constrained by observations availability in sensitive areas such as the 
AMV and in the NH as compared to ENSO, IPO and in the SH especially in term of amplitude (CE).

These results increase the confidence we may have in the AMV and NH real reconstructions that could be 
derived with our PDA approach from the Pages2k database, while the SH, IPO, and ENSO reconstructions may 
be considered cautiously. We found high correlations and CE scores for the global mean surface temperature in 
the Pages2k experiments despite the pseudo-proxies scarceness. These results increase the confidence we may 
have in the current reconstructions for the global mean surface temperature variability at decadal timescale and 
suggest, in agreement with (Parsons & Hakim,  2019), that the variability of the global mean temperature at 
decadal to inter decadal time scale is mainly driven by the North Hemisphere low frequency variability. Thanks 
to the particles regular resampling, the SIR-LIMs also allow reproducing a range of frequencies present in the 
“observations” but not necessarily simulated spontaneously by the GCMs considered. These results are encour-
aging and show that as long as a model simulates a fairly similar variability in terms of spatial fingerprint and 
amplitude, the SIR-LIM can reconstruct a range of low frequency variability not produced by the host climate 
model while still ensuring dynamical consistency.

The quality of the reconstructions achieved here are nevertheless model dependent mostly because of CMIP-class 
model classical biases such as the cold tongue bias in the equatorial Pacific or the imperfect spatial fingerprints of 
global climate modes. The translation of these perfect model skills for real reconstructions have to be discussed 
cautiously considering the biases of the considered model used to build the LIM and the spatial variability of 
available proxies throughout the last 2000 years. For example, the skill observed in the North Atlantic and for the 
AMV may be model dependent and due to the strong secular variability present in the IPSL-CM6A-LR model. 
The question about the real existence of this centennial variability in the Atlantic is all the more important that 
in our pseudo-proxies experiment, it corresponds to a significant part of the SIR-LIMs scores in the Atlantic. 
Unfortunately, the instrumental period appears to be too short to easily dissociate this range of low-frequency 
variability from the external forcing trends during the instrumental period but stay potentially real since the 
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proxies analysis tends to suggest the existence of this kind of Atlantic centennial variability in the past (Gray 
et al., 2004; Thirumalai et al., 2018). Finally, our results also suggest that the SIR-LIM PDA can be considered 
a tool to allow the production of low-cost reconstructions following dynamical constraints deduce from different 
GCMs that will help shed some light on the discrepancies found among currently available reconstructions for 
the last 2000 years (PAGES2k Consortium, 2019). Such differences could be attributed to the network of proxy 
assimilated, the statistical methodology employed and, when it comes to PDA, the dynamical model considered 
(e.g., PAGES2k Consortium, 2019; Perkins & Hakim, 2021; Wang et al., 2015).

Appendix A
See Figures A1, A2, A3, and A4.

Figure A1. Spatial pattern of the main modes of surface temperatures variability. Regression of the standardized AMV (left column), ENSO (middle column) and 
IPO (right column) indices on the surface temperature anomalies. These patterns (in °C/std) have been estimated from NOAA-CIRES 20th Century Reanalysis version 
3 (NOAA; Slivinski et al., 2019) surface temperature over the 1900–2015 period (upper panels) and on 500 years piControl simulations for the IPSL-CM6A-LR, 
IPSL-CM5A-LR, CMIP5, and CMIP6 models respectively. The CMIP-class models and methods used to compute the AMV, ENSO, and IPO indices are summarized in 
Tables 1 and 2.
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Figure A2. Percentage of variance explained by the first three leading Empirical orthogonal functions (EOFs) for the different set of model simulations. EOFs are 
multiplied by the square-root of their eigenvalues and the total fraction of the variance explained is given on top of each panel.
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Figure A3. Difference of forecast skill between the IPSL-CM6-LIM and the scores obtained with the others derived LIMs. The difference of correlation (left 
column) and coefficient of efficiency (CE, right column) at lead-time 12 months are given for the (a and b) IPSL-CM5-LIM, (c and d) MM-CMIP5-LIM and (e and f) 
MM-CMIP6-LIM.
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Data Availability Statement
The functions used to produce the analyses as well as the PMIP3 and PMIP4 data, pre-processed data, 
pseudo-proxies used and the reconstructions obtained with the different LIMs used are available at: https://doi.
org/10.5281/zenodo.6364619.
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