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INTRODUCTION

The island species– area relationship (ISAR) is a well-
established global ecological pattern (Lomolino 2000; 
MacArthur & Wilson,  1967; Matthews et al.,  2021; 
Matthews, Rigal, et al., 2019; Rosenzweig, 1995; Triantis 
et al., 2012; Whittaker & Matthews, 2014). Following the 
increasing recognition in ecology that species richness 
only represents one dimension of diversity, ISAR research 
has expanded to incorporate functional (the island func-
tional diversity– area relationship; IFDAR) and phyloge-
netic (the island phylogenetic diversity– area relationship; 
IPDAR) diversity (e.g. Dias et al., 2020; Ding et al., 2013; 
Leclerc et al.,  2022; Mazel & Thuiller,  2021; Ross 
et al., 2019; Schrader et al., 2021; Si et al., 2016, 2017, 2022; 
Wang et al., 2023; Whittaker et al., 2014; Zhao et al., 2020).

Functional diversity (FD) measures the combina-
tion of functional traits expressed by a set of species 
in a community and can provide a link between spe-
cies composition and ecosystem function (Petchey & 
Gaston, 2006). Phylogenetic diversity (PD) incorporates 
the evolutionary relationships among species in an as-
semblage and measures the amount of evolutionary his-
tory those species represent (Faith,  1992). Collectively, 
the ISAR, IFDAR and IPDAR have been termed is-
land diversity– area relationships (herein IDARs) and 
together their analysis aids in generating a more com-
prehensive understanding of the mechanisms driving the 
scaling of diversity (Ding et al., 2013; Leclerc et al., 2022; 
Mazel & Thuiller,  2021; Wang et al.,  2023). However, 
in comparison with the ISAR, we know relatively lit-
tle about IFDARs and IPDARs, and we lack synthetic 

comparative global analyses of variation in the form of 
these three categories of IDAR.

A wide range of metrics have been proposed for mea-
suring FD and PD. To construct IFDARs and IPDARs 
that compare easily with standard ISARs, FD and PD are 
often expressed as metrics that sum the branch lengths 
(e.g. of a functional dendrogram or phylogenetic tree) 
connecting all species co- occurring on an island (Dias 
et al., 2020; Mammola et al., 2021; Morlon et al., 2011; Si 
et al., 2022). While the use of tree/dendrogram- based FD 
and PD metrics ensures the ISAR, IFDAR and IPDAR 
are comparable, such metrics are generally correlated with 
species richness. For this reason, the calculation of FD 
and PD using tree metrics is often combined with a null 
model to generate (standardized) effect sizes (ES) that are 
independent of richness (Mazel & Thuiller, 2021; Tucker 
et al., 2017). In addition, the analysis of ES values has been 
argued to provide insights into the community assembly 
processes involved (e.g. neutral dynamics vs. competition 
vs. habitat filtering) and how these may change with is-
land area (Matthews et al., 2020; Mazel & Thuiller, 2021; 
Münkemüller et al., 2020; Schrader et al., 2021). Herein, 
we refer to the emergent FD.ES and PD.ES patterns (ran-
dom, overdispersed, clustered) as assembly patterns, and 
the potential mechanisms underlying these patterns (neu-
tral dynamics, competition, habitat filtering) as assem-
bly processes. However, we know very little about how 
FD.ES and PD.ES values scale with island area (rather 
than across continuous scales; see Kraft & Ackerly, 2010), 
and previous authors have called for a greater focus on 
scaling patterns in order to better understand community 
assembly processes on islands (Dias et al., 2020; Leibold 
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Abstract
Research on island species– area relationships (ISAR) has expanded to incorporate 
functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to 
the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global 
analyses of variation in form of these three categories of island diversity– area 
relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs 
at the global scale using 51 avian archipelagic data sets representing true and 
habitat islands. Using null models, we explore how richness- corrected functional 
and phylogenetic diversity scale with island area. We also provide the largest global 
assessment of the impacts of species introductions and extinctions on the IDAR. 
Results show that increasing richness with area is the primary driver of the (non- 
richness corrected) IPDAR and IFDAR for many data sets. However, for several 
archipelagos, richness- corrected functional and phylogenetic diversity changes 
linearly with island area, suggesting that the dominant community assembly 
processes shift along the island area gradient. We also find that archipelagos 
with the steepest ISARs exhibit the biggest differences in slope between IDARs, 
indicating increased functional and phylogenetic redundancy on larger islands in 
these archipelagos. In several cases introduced species seem to have ‘re- calibrated’ 
the IDARs such that they resemble the historic period prior to recent extinctions.
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& Chase,  2018; Münkemüller et al.,  2020; Schrader 
et al., 2021; Si et al., 2022; Zhao et al., 2020).

Analysing variation in IDARs among archipela-
gos can emphasize the (i) form/shape of the relation-
ship (e.g. Mazel et al., 2014) and (ii) slope of the curve. 
The former is important as different relationship forms 
(e.g. asymptotic vs. non- asymptotic or convex vs. sig-
moidal) have different theoretical and conservation im-
plications (Lomolino, 2000; Triantis et al.,  2012). The 
latter tends to be undertaken using the power model, 
of the form S =  c*Az, where S and A are richness and 
area, respectively, and c and z are fitted parameters 
(Matthews et al., 2021; Rosenzweig, 1995). Several stud-
ies have tested for systematic variation in ISAR slopes 
(e.g. Matthews et al., 2021; Matthews, Rigal, et al., 2019; 
Rosenzweig, 1995; Triantis et al., 2012). However, there 
have been no comparable analyses of variation in the z- 
values (slopes) of IFDARs and IPDARs.

Many island systems have been particularly affected 
by extinctions and the introduction of non- native spe-
cies (herein ‘introduced species’) (Blackburn et al., 2016; 
Boyer & Jetz, 2014; Hume, 2017; Matthews et al., 2022; 
Matthews & Triantis,  2021; Whittaker & Fernández- 
Palacios, 2007). Recent work on the impacts of humans 
on island biogeographic patterns has illustrated how the 
exclusion of extinct species and the inclusion of intro-
duced species can affect the form of ISARs (Baiser & 
Li, 2018; Cardoso et al., 2010; Helmus et al., 2014), but 
how these decisions affect other types of IDAR is less 
understood (Li et al., 2018; Whittaker et al., 2014).

Here, we undertake the first comparative synthetic 
evaluation of IDARs at the global scale using a collection 
of 51 avian archipelago data sets representing different 
island types (true and habitat), encompassing 1051 indi-
vidual islands and 2111 species. True islands are those 
surrounded by water (i.e. oceanic, continental- shelf, 
continental fragments and lake islands), while habitat 
islands are those surrounded by contrasting terrestrial 
matrices (e.g. forest fragments surrounded by pasture; 
Matthews, 2021). True island data sets were further split 
into volcanic oceanic archipelagos, a subset of true island 
data sets comprising archipelagos of mainly volcanic or-
igin never connected to continental land masses (all cur-
rently isolated from the mainland by >100 km), and other 
true island archipelagos (e.g. continental- shelf islands, 
inland islands). For all bird species (extant [native and 
introduced] and extinct), we collected nine continuous 
trait measurements. In combination with phylogenetic 
data, we constructed the ISAR, IFDAR and IPDAR for 
all data sets. We used null models to generate FD.ES and 
PD.ES values and explore how these scale with island 
area. We also provide the largest global assessment of the 
impacts of species introductions and extinctions on the 
IDAR, thus furthering our understanding of the ‘island 
biogeography of the Anthropocene’ (Helmus et al., 2014). 
Figure  1 provides an overview of the methodological 

F I G U R E  1  The analytical workflow followed, linked to 
the four primary research questions. Top row: we used the full 
presence– absence matrix for a given data set (used to calculate 
island species richness, S), alongside a functional dendrogram 
(used to calculate island functional diversity, FD) and a phylogeny 
(used to calculate island phylogenetic diversity, PD). Second row: 
we fit a set of 20 diversity– area relationship (IDAR) models to 
the island area, SR, FD and PD data (here the coloured lines 
represent the fit of the power model; blue = ISAR, red = IPDAR, 
and yellow = IFDAR), and assessed variation in the slope of the 
power model. Third row: for each data set, we used a null model 
to calculate island FD and PD effect sizes (ES) independent 
of richness. For each data set, we fitted a linear model to the 
log10(Area)– ES relationships, comparing it with an intercept 
model. We used the ES values to test the association between 
FD.ES significance and PD.ES significance at the island level 
(+ = significantly positive ES value; − = significantly negative ES 
value; NS, non- significant ES value). Bottom row: for subsets 
of data sets, we ran the analyses three times— the historic fauna 
including extinct species (A), and the current fauna excluding (B) or 
including (C) introduced species.
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framework employed. We used this framework to answer 
four primary questions:

Q1: Do richness, FD and PD scale with area in differ-
ent ways (i.e. do different models provide the best fit to 
the ISAR, IFDAR and IPDAR)?

Q2: Does the power model slope differ between the 
ISAR, IFDAR and IPDAR for a given archipelago, and 
what are the archipelago characteristics that determine 
such variation?

Q3: To what extent does island functional and phylo-
genetic community assembly depart from random expec-
tation and do assembly processes vary with island area 
in a systematic fashion?

Q4: To what extent does the inclusion or exclusion 
of extinct and introduced species affect different IDAR 
properties?

Theoretical expectations

For each of the four primary questions above, we de-
veloped a theoretical expectation based on previous re-
search on IDARs:

Q1: We expect asymptotic models to provide relatively 
better fits to IFDAR and IPDAR data, compared with 
ISAR data, due to the previously reported finding of in-
creasing functional and phylogenetic similarity between 
species (often interpreted as redundancy) with increas-
ing area (e.g. Dias et al., 2020; Mazel et al., 2014).

Q2: For the same reason as in Q1, we expect IFDAR 
and IPDAR power model slopes to be systematically less 
steep than ISARs.

Q3: The Equilibrium Theory of Island Biogeography 
(MacArthur & Wilson,  1967) assumes in its simplest 
form that species are functionally equivalent and thus 
represents a null model of island assembly. By exten-
sion, there should be no relationship between richness- 
corrected FD and PD (ES) values and island area (Ross 
et al., 2019; Si et al., 2017), the increase in FD and PD 
with area being simply a function of richness. However, 
MacArthur and Wilson  (1967) recognized entirely ran-
dom assembly to be simplistic and subsequent work 
suggests that the relative importance of different traits 
and assembly processes could potentially vary along 
the island area gradient, thus influencing the scaling of 
FD.ES and PD.ES values with island area.

In theory, community assembly may depart from 
random towards either clustering or overdispersion of 
traits. Considering true islands, small islands tend to 
contain a limited and simpler array of habitat types and 
more extreme abiotic conditions (Chen et al., 2020; Ross 
et al., 2019; Sfenthourakis & Triantis, 2009). As a result, 
only a subset of closely related taxa with specific traits 
are adapted to these conditions and can persist (Liu 
et al.,  2020; Schrader et al.,  2021; Si et al.,  2017). This 
should lead to a degree of functional and phylogenetic 
clustering on small true islands, consistent with some 

recent empirical analyses (e.g. Matthews et al.,  2020; 
Ross et al., 2019; Schrader et al., 2021; Si et al., 2017; Zhao 
et al., 2020).

Conversely, larger true islands will often sup-
port a broader range of habitats and potential niches 
(Whittaker & Fernández- Palacios,  2007), allowing a 
wider set of species to be able to colonize and persist, 
leading to neutral or overdispersed patterns (Matthews 
et al.,  2020). Should it be general that island assembly 
patterns shift from clustering to random/overdispersion 
along the area gradient, we should then expect a positive 
relationship between FD.ES and PD.ES and area for true 
islands. A similar logic applies to habitat islands, where 
high habitat heterogeneity in large fragments (e.g. due 
to topographical variation or the presence of environ-
mental gradients; dos Anjos et al., 2022) can support a 
broader range of bird guilds (e.g. Willrich et al., 2019). 
However, we predict less consistent patterns for habitat 
islands in general, which tend to be much noisier systems 
(Matthews, 2021).

Q4: Regarding the inclusion of extinct species in oce-
anic true island data sets, we predict that IDAR slope 
will increase from the historic period to the current pe-
riod. This prediction is based on the conceptual model 
of Franklin & Steadman  (2008; see also Steadman, 
2006) that was developed in the context of land birds 
on tropical oceanic islands, whereby, within an archi-
pelago, most species are predicted to have occurred on 
each high elevation island above a minimum size prior to 
human colonization, and contemporary positive ISARs 
are mostly the result of species being harder to drive 
to extinction on larger islands (e.g. due to larger popu-
lation sizes and more refugia). We predict the slope of 
contemporary IDARs should increase with the addition 
of introduced species, as larger islands are known to ex-
perience more introductions (Blackburn et al., 2021). We 
also predict that extinctions and introductions will have 
dampened the theoretically expected slope of the ES– 
area relationships (Q3). This is because extinction and 
introduction are typically non- random processes, in-
volving species with particular traits (e.g. large body size 
in regard to extinct species) and from certain taxonomic 
groups (Boyer,  2008; Fromm & Meiri,  2021; Matthews 
et al., 2022), which together would act to reduce FD.ES 
and PD.ES values (i.e. reduce overdispersion and in-
crease clustering), particularly on the larger islands.

M ETHODS

Data collection

We sourced true and habitat island bird data sets from 
the literature. For most data sets, we used previous syn-
thetic ISAR analyses (e.g. Matthews et al., 2021; Triantis 
et al., 2012) to locate potential data sets and returned to 
the source papers (and subsequent papers by the source 
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paper authors) to obtain the species lists for each is-
land. True island data sets were also supplemented using 
Baiser et al.  (2017) and Sin et al.  (2022), and habitat is-
lands using Chase et al. (2019). For the former, we updated 
some of the data sets using a range of literature sources 
(see Appendix S1). For a number of true island cases (the 
Ryukyus Islands, the Azores, Canaries, New Zealand) we 
created new data sets through comprehensive literature 
and database searches (Appendix S1). For inclusion, data 
sets needed to contain at least seven islands (to enable the 
calculation of AICc, discussed below) and possess an ac-
cessible bird species list for each island. An exception was 
made for a Hawaiian data set (Baiser et al., 2017) which 
only had six islands, as its extreme isolation means it has 
particular value in representing isolated oceanic archipel-
agos. Note that two data sets sourced from Baiser et al. 
(Society Islands and Cook Islands) classify atolls (collec-
tions of small islets connected by sand banks) as individual 
islands (Appendix S1). All island areas were converted to 
km2. For the analyses, it was necessary to impose a crite-
rion of a minimum of one species on an island, leading to 
the removal of a small number of islands with zero species 
(these were only present in a handful of data sets).

As a first step, for each data set and using either data 
provided by the source paper authors or using species 
range maps provided by the IUCN Red List (IUCN, 2021), 
we classified all species as native or introduced to that ar-
chipelago (or region for habitat islands). We then excluded 
from analysis all introduced species (but for some data 
sets created alternative versions with introduced species 
included; see below). Otherwise, we used the data sets as 
originally published in the source papers, meaning that 
the exact types of species included varied slightly between 
data sets due to the decisions of the original source paper 
authors (e.g. including / excluding marine and nocturnal 
species). However, to roughly standardize the data sets, we 
also created an alternative version of each by removing the 
marine, coastal, wetland and riverine species to produce a 
land birds only version, for which we re- ran the analyses 
(see Appendix S2 for details). This standardization process 
involved removing two data sets when analysing just land 
birds as it resulted in several islands in these archipelagos 
having no or very few species (Appendix S2). We removed 
extinct species (when present) from the data sets, but also 
created alternative versions of certain data sets with ex-
tinct species included (discussed below). For each data set, 
we formatted all species names, including extinct species 
(see Appendix S2), to match the nomenclature in the phy-
logenies provided by Jetz et al. (2012) (see Appendix S1).

Data set characteristics

For each data set (archipelago), and using only the is-
lands/species present in the data set, we recorded a 
number of variables predicted to affect IDAR form 
(see Matthews et al., 2021; Matthews, Rigal, et al., 2019; 

Triantis et al., 2012): (1) number of islands (Ni), (2) the 
ratio between the area of the largest and smallest island 
(AreaScale), (3) archipelago species richness (Gamma), 
(4) total archipelago land area (ArchArea), (5) annual 
mean temperature and (6) maximum island elevation. 
FD and PD Gamma were calculated as the total FD or 
PD of an archipelago. For each true island data set, we 
also calculated (7) isolation (distance) from the main-
land and (8) intra- archipelago isolation (MeanDist). 
Appendix  S2 details how these variables were sourced 
and calculated.

Functional traits

For functional traits, we sourced data for all of the 
world's 9993 species (BirdTree taxonomy) from the 
AVONET trait data set (Tobias et al., 2022), allowing 
us to build a functional space using all of the world's 
birds and ensure distances between species in func-
tional space represented the best estimates of the true 
distances. We used eight continuous morphological 
measurements: (1) total beak length (from the tip to 
the skull), (2) beak length to the nares, (3) beak width 
and (4) depth (at the nares), (5) wing length, (6) second-
ary length, (7) tail length and (8) tarsus length. These 
measurements have been shown to provide accurate 
information on the functional role and trophic status 
of birds at the global scale (Pigot et al., 2020). We also 
sourced body mass estimates (g) for each species from 
AVONET (Tobias et al.,  2022). The four kiwi species 
(Apteryx) represent extreme outliers in terms of the 
wing length, secondary and tail length traits (e.g. for 
wing length, the kiwis had values 267 times smaller 
than the species with the next smallest wing length). 
To avoid these species affecting the functional space 
to an extreme degree (which occurred even when log- 
transforming the traits), for these three traits, we re-
placed the trait values for the four kiwi species with 
the mean values across all extant species excluding the 
kiwis. This approach was preferred to the option of 
simply removing the kiwis, as one of our analysed data 
sets comprised islands in New Zealand.

Four of the extinct species in our data sets were also 
in BirdTree and AVONET. For the remaining 154 extinct 
species in our data sets, we sourced data for the same set 
of traits (described below). Our final trait data set com-
prised 10,147 species. All nine traits were log- transformed 
and then scaled to have a mean of zero and unit variance.

Because the eight morphological traits are correlated 
with body mass, we also re- ran the analyses using body- 
size corrected traits, generated by running eight sim-
ple linear regressions with body mass as the predictor 
and a given morphological trait as the response (both 
log- transformed). Here, the scaled residuals from each 
model were then used as the new trait along with log- 
transformed and scaled body mass.
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Calculating FD, PD and effect sizes

We used FD and PD metrics based on summing branch 
lengths to ensure our diversity metrics shared the same 
mathematical framework and are thus directly compa-
rable (i.e. they incorporate the sum of the differences in 
diversity accumulated between species; Dias et al., 2020; 
Mammola et al., 2021; Tucker et al., 2017). In addition, 
the use of trees allowed us to include islands with few 
species (e.g. one or two), which is not possible with FD 
metrics such as convex hulls when multiple traits are 
used (Jarzyna et al.,  2021; Petchey & Gaston,  2006). 
For FD, we built a global dendrogram comprising all 
10,147 species. A Euclidean distance matrix was gener-
ated using all species and the nine trait axes. We then 
transformed this distance matrix into a dendrogram 
using the agglomerative hierarchical clustering method 
UPGMA (Petchey & Gaston,  2006). We checked the 
dendrogram quality using the tree.quality function in 
the ‘BAT’ R package (Cardoso et al., 2015). The values 
for our dendrograms were relatively high (0.70 and 0.95 
for the dendrogram using the uncorrected and body- 
size corrected traits, respectively; one corresponding to 
maximum quality of the functional representation). For 
each island, we used the global dendrogram to calculate 
Petchey & Gaston's (2006) FD metric (including the tree 
root) using the ‘picante’ R package (Kembel et al., 2010).

For PD, we based our analyses on the BirdTree 
phylogenetic trees from Jetz et al.  (2012) using the 
Ericson backbone tree with 9993 species. We obtained 
a posterior distribution of 3000 trees from BirdTree 
and created a maximum clade credibility tree (node 
heights  =  median heights) including all bird species, 
using the TreeAnnotator program (v1.10.4, Drummond 
& Rambaut, 2007). The resultant consensus tree had a 
small number of negative branch lengths which we re-
solved by converting negative branch lengths to zero, 
while shortening only the two branches immediately 
below by the same absolute amount to ensure the tree 
remained ultrametric and there were no polytomies (we 
have added this functionality to the ‘BAT’ R package; 
tree.zero function). The PD values generated using the 
original consensus tree and the consensus tree with 
the negative branches removed were highly correlated 
(Pearson's r  =  0.999). The 154 extinct species not in 
BirdTree were grafted on to this consensus tree (detailed 
below). We used this global maximum clade credibility 
tree to calculate Faith's PD metric (including the tree 
root; Faith, 1992) for all islands in a data set as outlined 
for FD. As a sensitivity check, we re- ran the analyses 
using a randomly selected tree from the 3000 (grafting 
the extinct species onto this selected tree).

As both FD and PD can be correlated with species 
richness, to calculate standardized FD and PD values we 
created a variant of the ‘taxa. labels’ null model (999 it-
erations) and the ses.pd function in the ‘picante’ R pack-
age. This null model worked by only shuffling the names 

of species found in a given data set on the global tree/
dendrogram (i.e. the null model, for a given data set, uses 
the archipelagic species pool, not the global species pool, 
but does not prune the tree). We did this to ensure a con-
sistent tree (i.e. the global tree) was used for calculating 
FD/PD across data sets, given that pruning the tree was 
found to affect DAR slopes in a small number of cases 
(full details provided in Appendix S2).

Generally, standardized values of FD and PD are cal-
culated using standardized effect sizes (SES). However, 
SES assume a normal distribution of null values, an as-
sumption that is often violated, particularly where some 
samples contain most, or very few, of the species in the 
pool. Thus, we instead used the effect size (ES) approach 
used in Matthews et al. (2020 ). This works by calculating 
the empirical probability (P) that the observed value is 
less than expected using the formula:

where null is the vector of null distribution values, obs is 
the observed value and n is the number of null model it-
erations (here n = 999). This probability was then probit 
transformed to obtain the ES value (see Appendix S2 for 
further details). This process was done using both FD and 
PD, resulting in FD.ES and PD.ES values for each island 
in each data set. Positive ES values >1.96 were considered 
to represent cases of significant functional/phylogenetic 
overdispersion, and negative ES values < −1.96 were taken 
to represent significant clustering. Non- significant ES val-
ues (−1.96 < ES <1.96) were considered to represent random 
community structure.

IDAR multimodel comparison

For each data set, we fitted twenty SAR models (see 
Table S2 in Appendix S2) to our three diversity variables 
(species richness, FD and PD) using least squares non- 
linear regression and the ‘sars’ R package (Matthews, 
Triantis, et al., 2019). These models represent a range of 
curve shapes (linear, convex- upward, sigmoidal), number 
of model parameters (2– 4) and properties (asymptotic 
and non- asymptotic) (see Triantis et al., 2012 for a review).

We designed a grid search method for selecting model 
starting parameter values to be used in the non- linear 
regressions; this method has now been added to the 
‘sars’ package (version 1.3.5; available from CRAN) 
(see Appendix  S2 for details). For each twenty- model 
set, models were compared and ranked using Akaike's 
information criterion corrected for small sample size 
(AICc) (Burnham & Anderson, 2002). As the denomina-
tor in AICc must not be negative, for the Hawaii data 
set (with only six islands) it was necessary to exclude the 
two four- parameter models from the model set. For each 
data set and diversity metric, we stored the model ranks, 
and a multi- model curve was constructed using the AICc 
weights from all converged model fits (see Matthews, 

P=(length(null<obs)+(length(null=obs)∕2))∕(n+1),
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Triantis, et al., 2019). In each case, we also extracted the 
z- value and c- value from the non- linear power model fit; 
this model converged in all cases. To ensure the same 
models were fitted in all cases, we did not remove model 
fits based on residual assumption checks (e.g. normality). 
However, given that the least square parameter estimates 
equal the maximum likelihood estimates only under the 
assumption of normal errors with constant variance (see 
discussion in the ‘sars’ package vignette), and given we 
are using AICc, we re- ran the model selection includ-
ing checks for both these properties. As an additional 
sensitivity test, we also re- ran the various power model 
z- value analyses using the z- value from the log10– log10 
(linear) power model.

The majority of these twenty models were originally 
chosen to fit SAR data (Matthews et al., 2021; Triantis 
et al., 2012) based on the expected shape of the SAR (e.g. 
convex- upward or sigmoidal). However, the work on is-
land FD.ES– area and PD.ES– area relationships to date 
(e.g. Diaz et al.,  2020; Matthews et al.,  2020; Schrader 
et al.,  2021) has shown that they are not well charac-
terized by such model shapes and thus it is not neces-
sarily appropriate to fit the same set of models to these 
data. Instead, based on our theoretical expectations, we 
compared the fit of a linear regression model with an 
intercept- only null model in semi- log space (i.e. log area 
but not richness) using AICc. We used a semi- log trans-
formation (log10) as there is no a priori reason to log- 
transform ES values and it has previously been shown 
to be an effective method for assessing ES– area relation-
ships (Matthews et al., 2020; Schrader et al., 2021).

Exploratory modelling of IDAR slope variation

First, we tested whether there were significant differences 
between the z- values of the ISAR, IFDAR and IPDAR. 
As the IDAR z- values within a data set were not independ-
ent, we compared the z- values between data sets using a 
generalized linear mixed effects model (beta family and 
logit link; fit using restricted maximum likelihood) and 
the ‘glmmTMB’ R package (Brooks et al., 2017), with di-
versity type (i.e. richness, FD, PD) as a categorical fixed 
effect, and the data set as a random effect. We used the 
same approach to compare the slopes from the FD.ES 
and PD.ES– area relationships, except here we used the 
Gaussian family as many of these slopes were negative.

Second, we assessed what archipelago characteris-
tics drove variation between data sets in the (i) z- value 
of the ISAR, IFDAR and IPDAR, and (ii) slope of the 
ES– area relationships. Following Marx et al. (2017), we 
undertook an exploratory modelling approach using 
Pearson's correlations, which were preferred over regres-
sion analyses due to the relatively small size of our data 
set. The z- values of one of the ISAR, IFDAR or IPDAR 
were correlated against each of our archipelago- level 
predictor variables in turn, using log- transformations 

when necessary to meet assumptions. As the IFDAR and 
IPDAR z- values were correlated with the ISAR z- value, 
we also ran a series of partial correlations with these two 
variables, allowing us to control for the ISAR z- value. We 
ran the modelling using all data sets (i.e. true and habitat 
islands) and using as predictor variables: Ni, Gamma (or 
FD / PD Gamma), AreaScale, ArchArea, (maximum) el-
evation, temperature and the power model c- value. We 
then re- ran the modelling using just the true island data 
sets and adding in as predictors both MeanDist and iso-
lation from the mainland. We then re- ran these correla-
tion tests but instead used the slope of the linear model 
fitted to the FD.ES– area and PD.ES– area relationships 
as variables.

The effect of including extinct and introduced 
species on diversity scaling relationships

For ten true island data sets (Canaries, Cook Islands, 
Hawaii, Lesser Antilles, Marianas, Society Islands, 
Cape Verde, New Zealand, Azores, and Ryukyu 
Islands), there were a relatively large number of species 
introduced to each archipelago (ranging from 11 to 60% 
[median  =  19%] of the total contemporary archipelago 
bird fauna). For these data sets, we also created alter-
native versions representing the current faunas with in-
troduced species included (we only considered currently 
established introduced species; see Appendix  S1). For 
the first eight of those, we were also able to build data 
sets representing the historic fauna, that is, the island 
composition around 1500 CE, including extinct species 
and extirpated extant species. For five data sets where 
(coarse) data were available (Hawaii, Marianas, Cook 
Islands, New Zealand, Canaries), we also built data sets 
representing the prehistoric fauna (i.e. prior to human 
colonization of the islands; including all species known 
to have gone extinct in the last ~125,000 years) exclud-
ing marine species (Appendix S2). For the Marianas and 
Cook Island prehistoric data sets, we removed a number 
of islands as we decided to focus on islands where more 
fossil data were available.

The historic and pre- historic data sets (i.e. including 
extinct species) were built using a range of literature 
sources (see Appendix  S2 for details). The functional 
traits of extinct species were initially sourced through 
measurements made on specimens in various museums 
and literature searches. For 135 of the 158 extinct spe-
cies, we were able to acquire at least one measurement 
from skin or skeleton (or both) specimens in museums, 
with body mass being estimated for the remaining spe-
cies (see Appendix  S2). All gaps were then imputed 
using Bayesian Hierarchical Probabilistic Matrix 
Factorization (Schrodt et al., 2015). We ran the impu-
tation ten times, averaging the imputed values across 
the ten runs. As a sensitivity test, we re- ran the anal-
yses using a randomly selected individual imputation 
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run rather than averaging. Extinct species were also 
grafted onto our consensus phylogeny. Appendix  S2 
provides a detailed description of the extinct species 
data collection, trait inference and phylogeny grafting.

We then re- ran the power and linear model fitting for 
the historic and introduced species data sets, storing the 
power model z- values for the ISAR, IFDAR, IPDAR and 
the slopes (of the linear model) of the two ES– area rela-
tionships. We compared the values with those from our 
main analyses (i.e. current fauna excluding introduced 
species) using paired Wilcoxon signed- rank sum tests. We 
also re- fitted the models using the prehistoric data sets.

Unless otherwise stated, all analyses were undertaken 
in R (Version 4.2.0; R Core Team, 2019), and the analy-
ses were run on a 500GB cluster using 51 cores (~2000 
core- hours).

RESU LTS

In total, we sourced 51 data sets (26 true island and 25 
habitat island archipelagos), incorporating 1051 islands 
and 2111 species (1953 extant and 158 extinct species) 

(Appendix S1). The size of habitat islands ranged from 
0.004 to 1592 km2, and true islands from 0.001 to 
150,437 km 2. A map of the locations of these data sets 
is provided as Figure  S1 in Appendix  S3. All best fit 
models, and the power and linear model parameters, for 
all five relationships across all data sets are provided in 
Table S3 in Appendix S3.

Q1 and Q2: ISAR, IFDAR and IPDAR 
model form

The non- asymptotic convex- upward Kobayashi, power 
and logarithmic models were always the three models 
with the highest mean AICc weight values for the ISAR, 
IFDAR and IPDAR (but not always in the same order), 
across the 51 data sets (Figure  2). Inspecting the plots 
of model fits provided further evidence for the convex- 
upward nature of most of the ISARs, IFDARs and 
IPDARs (e.g. Figure 3). In terms of the number of best 
fits (i.e. cases of lowest AICc for a given IDAR and data 
set), the top model was always the power model, with the 
linear, logarithmic and Kobayashi models alternating in 

F I G U R E  2  Generally, the shape of IDARs consistently had a convex– upward nature with some variation in exact model shape between 
the ISAR, IFDAR and IPDAR. Regarding the ES– area relationships, the intercept model had the higher mean AICc weight for both FD 
and PD, meaning a lack of relationship between FD.ES and PD.ES and area for many data sets. The bar charts show the mean model AICc 
weights across all data sets in which a model fit converged, for the five IDARs. The total number of data sets is 51. Full model names can be 
found in Table S2. For the FD.ES– area and PD.ES– area relationships, the two models were fitted in semi- log space, for the other IDARs in 
untransformed space.
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second and third position (Figure S2). The results were 
similar when looking at true and habitat islands sepa-
rately (Figures S3– S6 in Appendix S3).

The power model provided a reasonable approxima-
tion of the form of the three IDARs (mean R2 across 
all data sets and the three IDARs = 0.62). In general, 
for a given data set, the z- value of the ISAR was larger 
than that of the IPDAR, which was slightly larger than 

that of the IFDAR, and these differences became more 
pronounced the steeper the ISAR was (Figure 4). Using 
a mixed- effect model with the diversity type as a fixed 
effect and the data set as a random effect revealed that 
the z- values significantly differed between the ISAR 
(mean z  =  0.19), IFDAR (mean z  =  0.14) and IPDAR 
(mean z = 0.16) (Type II Wald χ2 test for the categori-
cal fixed effect, χ2 = 163.5, P < 0.001). This was also the

F I G U R E  3  Some island systems exhibited positive FD.ES and PD.ES– area relationships, and others negative relationships. The top two 
rows show the IDARs of a data set of birds (number of species = 54) in 11 true islands in the Galápagos, generated using five diversity metrics: 
species richness (ISAR), functional diversity (IFDAR), phylogenetic diversity (IPDAR), and the FD (FD.ES– area) and PD (PD.ES– area) effect 
sizes. The bottom row shows the two ES– area relationships for a data set of birds (number of species = 101) in 77 true islands in the Aegean 
(Simaiakis et al., 2012). In the top row plots, the different coloured lines represent the fits of up to twenty competing models, and the thick 
black line represents a multi- model averaged curve generated using the AICc weights of the individual model fits. In the middle and bottom 
row plots (left and middle), the dark green line is the fit of a standard linear model, while the light grey line is the fit of an intercept- only model. 
For the FD.ES– area and PD.ES– area relationships, the two models were fitted in semi- log10 space, for the other IDARs in untransformed 
space. Increasing ES values from zero denote greater overdispersion, while decreasing values from zero denote greater clustering. The two bird 
photographs show example species from each archipelago: the middle right plot shows a lava gull (Larus fuliginosus), the rarest gull in the world 
and a species endemic to the archipelago, and the bottom right plot shows a Rüppell's warbler (Sylvia rueppelli), a species that breeds in Greece, 
Turkey and the Aegean Islands. Middle row photograph by Andy Morffew and under licence (https://creat iveco mmons.org/licen ses/by/2.0/); 
bottom row photo by Mick Sway and under licence (https://creat iveco mmons.org/licen ses/by- nd/2.0/).

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by-nd/2.0/
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case when considering only true islands or only habitat 
island data sets.

Figure 5 provides the results of the exploratory mod-
elling of correlations between IDAR slopes and archi-
pelago features. When considering all data sets, ISAR, 
IFDAR and IPDAR slopes were significantly positively 
correlated with Ni (number of islands), and significantly 
negatively correlated with (maximum) elevation and 
temperature. When considering only the true island data 
sets, there was still a significant negative correlation be-
tween elevation and the slopes of the three IDARs. There 
were also negative correlations with ArchArea, although 
for the ISAR this was not significant. When controlling 
for ISAR slope, there were no significant correlations, 
either for all data sets or just true island data sets.

Q3: Avifaunal community assembly: FD and PD 
effect sizes and their scaling relationships

The avifauna of most islands (87% for FD, and 79% for 
PD) exhibited random structure regarding FD.ES and 
PD.ES values, with a small proportion being charac-
terized as significantly clustered (11% for FD and 19% 
for PD). Very few island avifaunas were significantly 
overdispersed (2% for both metrics). Mean ES values 
were −0.51 for FD and −0.89 for PD, indicating a slight 
tendency toward clustering (Figure  S7a). FD.ES and 
PD.ES significance results were equivalent for most 
islands, but there were notable exceptions (Figure  6); 
for example, 126 of the islands had significantly 

negative PD.ES values, but non- significant FD.ES val-
ues (Figure 6).

Across all data sets, the intercept- only model had the 
higher mean AICc weight and provided the best fitting 
candidate model the most times, for both the FD.ES and 
PD.ES– area relationships (i.e. lowest AICc in 34 and 37 
out of 51 data sets, respectively). However, there were 
notable exceptions, with some FD.ES and PD.ES– area 
relationships exhibiting positive and negative linear re-
lationships (Figure 3). When looking at true and habitat 
islands separately (Figures S3– S6 in Appendix S3), it was 
apparent that, for true islands, the relative performance 
of the linear model, regarding both ES– area relation-
ships (but particularly PD.ES), improved.

Considering cases where the linear model provided 
the best fit, there were nine positive and eight negative 
relationships for the FD.ES– area, and eight and six re-
spectively for the PD.ES– area relationship. The major-
ity of significant linear cases were true island data sets 
(11 cases for both the FD.ES and PD.ES relationships) 
(see Appendix S3). The median slope of the linear model 
across all data sets was 0.02 (−0.03 and 0.03 for true and 
habitat island data sets, respectively) for the FD.ES– area 
and 0.15 (0.13 and 0.15) for the PD.ES– area relationship 
(Figure  S7b). Interestingly, when only focusing on the 
ten volcanic oceanic island data sets, the median linear 
slope values were higher: 0.35 and 0.55 for the FD.ES and 
PD.ES– area relationships, respectively (see Figure S8 in 
Appendix S3).

The slope values from the FD.ES and PD.ES– area 
relationships significantly differed according to a 

F I G U R E  4  The difference between the ISAR z- value and the IPDAR and IFDAR z- values increases with increasing ISAR z- value. The 
figure shows the relationships between the z- values of three IDARs, plotted as a function of the ISAR z- value rank (higher rank = steeper 
ISAR): the ISAR (black lines and points), the IPDAR (blue lines and points) and the IFDAR (red lines and points). Different symbols are used 
for habitat (circles) and true island (triangles) systems. The z- values were generated from fitting the non- linear power model to the bird IDARs 
of 51 island data sets.
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mixed- effects model when considering all data sets to-
gether (χ2  =  4.5, p  =  0.03), but not true and habitat is-
lands separately. Considering all data sets, there were 
significant positive correlations between the FD.ES and 
PD.ES– area relationship slopes and (maximum) eleva-
tion (Figure  5). Considering only the true island data 
sets, there were significant positive correlations between 
both slopes and MeanDist, isolation and elevation, and 
a significant negative correlation between PD.ES– area 
slope and AreaScale (Figure 5).

Q4: The effect of including 
extinct and introduced species on diversity 
scaling relationships

The power model z- value for the ISAR, IFDAR and 
IPDAR followed an interesting and relatively consist-
ent pattern across the three data set types: historic 
fauna (A), current fauna excluding introduced species 
(B) and current fauna including introduced species (C) 
(Figure 7). For these three IDAR types, z decreased or 
remained roughly constant between A and B, and then 
generally increased between B and C. This pattern 
was stronger for certain data sets (e.g. Society Islands, 
Marianas) compared to others (Figure 7). The (paired) 
Wilcoxon signed- rank tests indicated that the differ-
ences between A and B were significant for the ISAR 
(p = 0.03), IFDAR (p = 0.02) and IPDAR (p = 0.02). The 
differences between B and C were also significant for 
all three IDAR types (p =  0.02, 0.02 and 0.04 for the 
ISAR, IFDAR and IPDAR, respectively), while the 

differences between A and C were non- significant. For 
the FD.ES– area and PD.ES– area relationship slopes, 
there were significant decreases in slopes between A 
and B (p = 0.01 and 0.04) and A and C (p = 0.04 and 
0.01), but the differences between B and C were not sig-
nificant (p > 0.05) (Figure 7).

Comparing models for the prehistoric and current 
avifaunas (excluding introduced and marine species) for 
five data sets, the z- values decreased or remained rela-
tively constant for the ISAR, IFDAR and IPDARs, with 
the exception of Hawaii, for which z- values increased 
(Figure  8). For the FD.ES and PD.ES– area relation-
ships, with two exceptions (Marianas for FD.ES and 
New Zealand for PD.ES) the slope of the relationships 
decreased between the two time periods (Figure 8).

Sensitivity analyses

The full results of all sensitivity analyses are presented 
in Appendices  S4– S7. First, re- running the analyses 
using body- size corrected traits to construct the func-
tional dendrogram resulted in very similar findings 
(Appendix  S4). Second, re- running the analyses after 
subsetting the data sets to only include land birds also 
generated mostly similar results (Appendix  S5). The 
main differences here related to the exploratory cor-
relations (e.g. no significant associations involving the 
number of islands or isolation), and the introduced and 
extinct species analysis: while some data sets followed 
the same pattern as the main results, the general pattern 
was less clear and none of the ISAR, IFDAR or IPDAR 

F I G U R E  5  Some characteristics of archipelagos are correlated with IDAR slopes. The figures show Pearson's rank correlation heatmaps, 
with IDAR slope on the x- axis and various archipelago- level predictors on the y- axis. For the ISAR, IFDAR and IPDAR, slope was measured 
as the power model z- value. Correlations for IFDAR and IPDAR z- values were also undertaken using partial correlation using ISAR z- 
values as a covariate. For the ES– area relationships, the slope was the slope of a linear model fitted in semi- log10 space. Correlations were 
undertaken twice, once using all 51 data sets (a), and once using only the 26 true island data sets (b). Significant coefficient values (p < 0.05) 
are indicated using black circles. Cell colour indicates correlation strength. Grey cells indicate a correlation was not undertaken for that 
variable combination. Predictor acronyms are GA, Gamma; C, power model c- value; AA, ArchArea; AS, AreaScale; NI, number of islands; 
MD, MeanDist; IS, isolation; EL, elevation; and TP, temperature. Note that for the IFDAR and IPDAR correlations, Gamma was the total 
functional or phylogenetic richness.
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paired Wilcoxon tests were significant, although this is 
perhaps expected given the smaller number of data sets 
involved (Appendix  S5). Third, undertaking the model 
selection using residual assumption checks resulted in 
very similar results (Appendix  S6). The power model 
passed the assumption checks for 41, 41 and 45 data sets 
for the ISAR, IFDAR and IPDAR, respectively. Using 
the z- values from the linear (log10– log10) power model 
also generated similar results (Appendix  S6). Fourth, 
using a randomly selected trait imputation run in com-
bination with an individual Jetz et al.  (2012) phylogeny 
resulted in very similar findings (Appendix S7).

DISCUSSION

Q1 and Q2: The form of island diversity– area 
relationships

In general, and in contrast to our prediction (Q1) that 
asymptotic models would provide a better relative fit 
to the IFDAR and IPDAR, the three island diversity– 
area relationships (IDARs; i.e. the island species– area 
relationship [ISAR], the island functional diversity– 
area relationship [IFDAR] and the island phylogenetic 
diversity– area relationship [IPDAR]) were all best mod-
elled by non- asymptotic convex- upward models, al-
though the linear model provided the best fit in certain 

cases (see also Triantis et al.,  2012). Inspection of the 
model fit plots (Figure 3) also showed that the form of 
the three primary IDARs was generally convex- upward. 
This matches the recent findings of a study on habitat is-
lands by Dias et al. (2020), but for a much larger number 
of data sets and broader range of island types.

As expected (Q2), we observed that, for a given data 
set, the ISAR was generally steeper than the IPDAR, 
which was in turn steeper than the IFDAR. These re-
sults indicate that as island area increases, more species 
are sampled from the archipelagic pool. These addi-
tional species initially add novel traits and phylogenetic 
branches to the island communities, but this process 
slows down with increasing richness as an increasing pro-
portion of these species are functionally and to a slightly 
lesser extent phylogenetically, redundant (see also dis-
cussion in Karadimou et al., 2016; Schrader et al., 2021; 
Ferreira- Arruda et al., 2022).

Our exploratory correlation modelling indicated 
that IDAR slope was significantly negatively associated 
with elevation, when focusing on all data sets and true 
islands data sets separately. For true islands, this may 
seem counterintuitive as many of the relatively isolated 
(mostly oceanic) archipelagos (e.g. Hawaii, Cape Verde, 
New Zealand) have high elevation, and previous stud-
ies have theorized and shown that ISAR slope increases 
with isolation (Whittaker et al., 2017). This pattern could 
be specific to birds: due to their relatively high dispersal 
ability and the fact that many of the oceanic archipelago 
data sets are lacking very small islands, it is possible that 
many bird species are present on most islands, thus low-
ering IDAR slope. There could also be an effect of an-
thropogenic extinctions given that these archipelagos are 
also those that have likely experienced the most extinc-
tions, and our results indicate that in many cases (when 
excluding introduced species) these extinctions have 
lowered IDAR slope. For the true island data set cor-
relations, while few associations were significant, OLS 
regression models including all predictors explained a 
relatively large proportion of the variation in the slope 
of the ISAR, IFDAR and IPDAR (R2 values: 0.72– 0.76; 
adjusted R2 values: 0.56– 0.63). This matches the results 
of previous studies (e.g. Matthews, Rigal, et al.,  2019; 
Triantis et al., 2012) and suggests that the lack of signifi-
cant correlations here may be due to smaller sample sizes 
and thus a lack of power.

Q3: Island community assembly 
patterns and processes

Overall, we found that the majority of island avifau-
nas were classified as being randomly assembled in 
terms of functional diversity (FD) and phylogenetic 
diversity (PD), although a sizable minority were sig-
nificantly clustered (11– 19%). This could indicate that 
neutral dynamics predominate on most islands, as 

F I G U R E  6  The relationship between FD.ES values and PD.ES 
values for 1051 islands varied from a 1:1 relationship, but most values 
were not significantly different from the null expectation. ES values 
were generated using a null model (999 iterations; see main text for 
details). The solid black line is the fit of a standard linear model, 
while the dashed line is a line with intercept of zero and slope of one. 
Points are coloured based on a pairwise comparison of significance 
for FD.ES and PD.ES values and match the inset grid. Within the 
inset grid, a ‘- ’ sign indicates significantly negative ES values, and ‘+’ 
indicates significantly positive values; ‘NS’ indicates non- significant 
values.
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assumed within the core model of island biogeography 
(MacArthur & Wilson,  1967). It should be noted that 
our null model used the archipelago species list as the 
pool rather than a wider (mainland) species pool, as we 
were not focused on testing for the effects of mainland 
to island filters (Santos et al., 2016; Triantis et al., 2022). 
Nonetheless, if these results were viewed in isolation, it 
would be tempting to conclude that there were no pat-
terns of interest beyond the ‘null’ observation that most 
islands had random functional and phylogenetic struc-
ture. However, analysis of the scaling of these assembly 
patterns (effect size [ES] values) reveals a more complex 
picture, at least in certain cases. For many data sets, 
the relationships between ES values (assembly patterns) 
and island area are indeed relatively flat. This indicates 
that, for these data sets, the convex- upward scaling of 
unstandardized FD and PD with area was primarily 
a result of increasing richness with island area, rather 
than changes in the dominant community assembly 
processes. However, there were numerous exceptions to 
this pattern, particularly regarding the FD.ES– area re-
lationship, where the linear model provided a better fit 
for a third of the 51 data sets.

Based on previous work (e.g. Chen et al.,  2020; 
Matthews et al., 2020), we had hypothesised that, owing 
to limited habitat availability, smaller true islands would 
be characterized by functional and phylogenetic cluster-
ing. In contrast, larger true islands, with a wider range 
of habitat types, were expected to display functional 
and phylogenetic neutrality or overdispersion (Carvajal- 
Endara et al., 2017; Matthews et al., 2020). Together, this 
would result in a positive linear relationship between 
richness- corrected FD and PD and island area (i.e. less 
clustering with increasing area). However, approaching 
half of the data sets where the linear model provided the 
best fit exhibited a negative relationship (i.e. more clus-
tering with increasing area). This is the opposite of our 
theoretical prediction (Figure 3), but has been observed 
previously, such as for exotic plants in US National 
Parks (Li et al., 2018) and mammals on oceanic islands 
(Si et al., 2022). One explanation for this pattern can be 
found in Diamond's (1975; for a review see Whittaker & 
Fernández- Palacios, 2007) work on assembly rules, which 
argues that very small islands can only support one bird 
species per guild (e.g. one fruit pigeon) due to limited 
niche space and increased interspecific competition. As 

F I G U R E  7  Species extinctions and introductions change IDAR slopes in a variety of ways across different island systems. The figure shows 
the effects of including vs. excluding extinct and introduced species on the power model slope of the ISAR, IFDAR and IPDAR (top row), and 
on the slope of the linear model fitted to the (semi- log10) FD.ES and PD.ES– area relationships (bottom row), for ten true island data sets. Each 
trio of the same- coloured circles joined by the same- coloured line represents three different data sets for the same archipelago: (A) historic 
fauna including extinct species, (B) current fauna excluding introduced species, and (C) current fauna including introduced species. For two 
data sets (Azores and Ryukyu Islands) there is no historic data set (i.e. period A). Note the different y- axis scales in the different plots.
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island area increases, the number of species per guild or 
habitat type (which will be relatively functionally redun-
dant) able to coexist on an island also increases. If the 
amount of niche space and number of guilds increases 
with area at a slower rate than for the number of species, 
this will increase the amount of functional and to a lesser 
extent phylogenetic redundancy on islands. Following 
this logic, smaller island assemblages would be expected 
to be overdispersed, with clustering increasing with is-
land size, ultimately resulting in a negative relationship 
between richness- corrected FD and PD and island area 
(see also Si et al., 2017). Future research could test this 
theory by analysing the density of species per guild or 
habitat type for archipelagos that have negative ES– area 
relationships. The scaling of speciation rate with island 
area (see Whittaker & Fernández- Palacios, 2007) could 
theoretically also result in this pattern, at least for archi-
pelagos where speciation is a source of new bird species. 
Specifically, if a small number of colonizers radiate on 
the larger islands into numerous closely related species 
without substantial trait disparification, this could result 
in increased clustering on the larger islands.

Interestingly, boxplots of the linear slope values 
across island types indicate that the average slope of 
both the FD.ES and PD.ES– area relationships was 

larger on oceanic islands (relative to other true islands 
and habitat islands; Figure S8), particularly for PD.ES, 
and, in our exploratory correlations restricted to true 
islands, isolation, elevation and MeanDist had positive 
correlations with the slope. Thus, it could be the case 
that our theoretical prediction is more applicable to 
large isolated oceanic island systems, than to other is-
land types. However, it should be noted that, while the 
median slope was relatively high, for most of the oceanic 
data set ES– area relationships the best model was in fact 
the intercept- only model. This could partly be because 
most of these data sets have relatively few data points (a 
characteristic of many oceanic archipelagos), reducing 
the power of the test and increasing the effect of noise in 
the data (e.g. due to anthropogenic impacts). For habitat 
islands, there was a larger proportion of cases where the 
intercept- only model provided the best fit. This likely re-
flects the fact that they are often relatively noisy systems 
(Matthews, 2021) and can vary substantially in terms of 
various properties. For example, large forest fragments 
may contain a range of habitat types or be relatively ho-
mogenous (e.g. see Figure 1 in Willrich et al., 2019; dos 
Anjos et al., 2022).

It is important to note that there are several limitations 
associated with the community assembly framework 

F I G U R E  8  The figure shows the effect of including vs. excluding all known extinct species (prehistoric and historic extinctions) on the 
power model slope of the ISAR, IFDAR and IPDAR (top row), and on the slope of the linear model fitted to the FD.ES and PD.ES– area 
relationships (bottom row), for five true island data sets (Mar. = Marianas; NZ= New Zealand; Haw. = Hawaii; Cook = Cook Islands; Can. = 
Canaries). Each pair of coloured circles joined by a black line represents two different data sets for the same archipelago: pre- historic fauna 
including extinct species, and current fauna excluding introduced species. In this analysis, all marine species were removed from the data sets 
prior to model fitting and some islands were removed due to a lack of fossil data (i.e. the Modern z- values may differ from those in Figure 7). 
Note the different y- axis scales in the different plots.
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used here (see Münkemüller et al.,  2020, for a review). 
These include (i) a focus on specific patterns ignores the 
reality that a given FD / PD pattern can be produced 
by multiple processes (Mayfield & Levine, 2010); and (ii) 
that, as mentioned above, defining the species pool as 
the archipelago species list can only underestimate filter-
ing by excluding species unable to reach or persist on the 
archipelago (Carvajal- Endara et al., 2017; Si et al., 2022), 
but (iii) also underestimates competition by ignoring 
‘dark diversity’ (i.e. species excluded from the archipel-
ago due to past competition will not be present in the 
pool; Münkemüller et al., 2020).

Q4: The effect of anthropogenic 
introductions and extinctions on IDARs

Humans have introduced hundreds of species to islands 
(Blackburn et al., 2021). Our results supported our pre-
diction (Q4) that the inclusion of introduced species 
would generally lead to steeper IDARs. These increases 
in z- values were relatively modest in absolute terms but 
were statistically significant. It is known that larger is-
lands tend to have higher rates of anthropogenic coloni-
zation pressure and thus experience more introductions 
(Baiser & Li, 2018; Blackburn et al., 2021), which will, all 
else being equal, have the effect of steepening the ISAR.

Particularly on certain oceanic island archipelagos, 
human colonization precipitated a wave of avian ex-
tinctions (Boyer,  2008; Boyer & Jetz,  2014; Matthews 
et al.,  2022; Sayol et al.,  2021; Triantis et al.,  2022; 
Whittaker & Fernández- Palacios, 2007). However, while 
recent work has started to look at the effects of species 
extinctions on island diversity and FD (e.g. Boyer & 
Jetz, 2014; Matthews et al., 2022; Si et al., 2022; Sobral 
et al., 2016; Triantis et al., 2022), how these extinctions 
have affected IDARs has not been fully evaluated. 
Interestingly, and in contrast to our theoretical predic-
tion (Q4), we found that the slopes of the ISAR, IFDAR 
and IPDAR significantly decreased between the historic 
and current period (excluding introduced species). This 
could indicate (i) that extinctions were more prevalent 
on the larger islands due to greater human impact, or 
(ii) that there is a bias resulting from greater knowledge 
of the historic fauna on larger islands. One other caveat 
is that Franklin & Steadman's (2008) conceptual model 
was based on all extinctions, but for most archipelagos 
we lack adequate data at the island- level for species that 
went extinct prior to 1500 CE. However, many archi-
pelagos are known to have suffered numerous extinc-
tions prior to 1500 CE (Hume,  2017; Sayol et al.,  2021; 
Steadman, 2006). Our analysis of five data sets that did 
include pre- 1500 extinct species (Figure 8) broadly con-
firmed the decrease in the ISAR, IFDAR and IPDAR 
slope between the pre- human colonization avifauna and 
the current avifauna excluding introduced species, al-
though Hawaii was an exception (Figure 8).

Taking both the above findings together, it appears in 
several cases that introduced species have ‘re- calibrated’ 
the IDARs such that the slopes are more like the historic 
period including extinct species; indeed, there were no 
significant differences in the z- values between the his-
toric and current (with introduced species) assemblages. 
A similar pattern is observed with the power model 
R2 values, with higher values observed for the historic 
(average R2 of power model across ISAR, IFDAR and 
IPDAR  =  0.66) and introduced data sets (0.63), with 
lower values for the current fauna without introduced 
species (0.53), for all three IDARs. Interestingly, Hawaii 
again provides an exception to this pattern, with the in-
clusion of introduced species lowering or not changing 
IDAR slopes. This could indicate that introductions to 
that archipelago (or at least the islands in the archipel-
ago that comprise our data set) are occurring more inde-
pendently of island area.

We also observed that extinctions resulted in a sta-
tistically significant decrease in slope for the FD.ES 
and PD.ES– area relationships (Figure 7), a pattern also 
apparent in the analysis of the five pre- 1500 data sets 
(Figure 8). One interpretation of this is that anthropo-
genic extinctions are leading to more random patterns 
of community assembly, or even greater clustering 
due to the selective extinction of certain types of spe-
cies (e.g. large- bodied; Boyer, 2008; Boyer & Jetz, 2014; 
Hume, 2017; Matthews et al., 2022).

A notable caveat is that the prehistoric and historic 
data sets analysed here likely underestimate the true is-
land composition at these time periods. First, there are 
known biases in the (sub)fossil record, such as large- 
bodied species being more likely to leave material ev-
idence than small- bodied species. Second, the fossil 
record is likely incomplete for almost all islands. Third, 
several studies present data on which islands extinct 
species occurred on, with fewer presenting data on the 
past distributions of extant species. Finally, the trait es-
timation and imputation, and phylogeny grafting, proce-
dures obviously involve a certain degree of uncertainty. 
Appendix  S2 provides a more detailed discussion of 
these issues.

Concluding remarks

Overall, we have shown that increasing richness with 
island size is the main driver of the IPDAR and IFDAR 
for most data sets, although there are numerous excep-
tions to this pattern. We also find that archipelagos 
with the steepest ISARs exhibit the biggest differences 
between ISARs and the IFDAR/IPDAR. These results 
indicate that, within a given archipelago, there is an 
increasing amount of functional and phylogenetic re-
dundancy on larger islands. As a next step, it is nec-
essary to test whether the patterns observed here are 
consistent across taxonomic groups, particularly those 
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with lower dispersal ability compared to birds, given 
that ISAR slope has been shown to vary between taxa 
(Triantis et al., 2012). In addition, as more data on ex-
tinct island species distributions become available, it 
will be necessary to evaluate further how anthropo-
genic extinctions, in combination with introductions, 
have affected IDAR form and slope, and whether this 
re- calibration effect is a general pattern. This will ulti-
mately improve our knowledge of the ‘island biogeog-
raphy of the Anthropocene’.
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