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A B S T R A C T   

Rationalizing the use of agricultural water is a key issue in semi-arid areas that face more and more water 
shortages while food security is already threatened by the increasing population. The FAO-56 approach has been 
developed to estimate the crop water requirement. It relies on an accurate estimation of the “basal crop coef-
ficient” Kcb-act that has been shown to be closely related to NDVI. Nevertheless, optical data can be inoperant in 
case of persistent cloud cover. Within this context, the objective of this study is to assess the potentiality of the 
all-weather C-band Sentinel-1 radar observations available with 6-day revisit time at the field scale. To this end, 
the empirical relationships between Kcb-act, on one hand, and the interferometric coherence at VV (ρVV) and VH 
(ρVH) polarizations and the polarization ratio, on the other hand, were assessed on two wheat fields during two 
crop seasons and compared to the classical Kcb-act-NDVI method. It is demonstrated that while good statistical 
metrics are obviously obtained between Kcb-act and NDVI derived from Sentinel-2 (R = 0.77/0.88 and RMSE =
0.14/0.15 for Field 1/Field 2), close results are highlighted with radar data. The best metrics are found with ρVV : 
R = 0.76 and 0.77 and RMSE = 0.18 and 0.28 for Field 1 and Field 2, respectively. Using the calibrated re-
lationships on one season of Field 1, reasonable estimates of ETc-act was found on Field 1 (R = 0.70, RMSE =
0.75 mm/day and bias = − 0.18 mm/days using Kcb-act-ρVV). By contrast, a significant overestimations is high-
lighted both with ρVV (bias = 0.73 mm/day) and NDVI (bias = 1.46 mm/day) over Field 2. Interestingly, the Kcb- 

act-ρVV relationship is more consistent in the estimation of ETc-act when changing from one plot to another. These 
outcomes open new perspectives for the estimation of ETc-act from radar data as a potential substitute of NDVI in 
case of persistent cloud cover.   

1. Introduction 

The global water demand is dominated by the irrigation sector that 
uses up to 90 % of available water in semi-arid catchments (Anapalli 
et al., 2020; Jarlan et al., 2015; Zhang et al., 2017). A rationale and 
sustainable use of the already scarce water resources in this region is 
becoming essential. Anticipation and efficient management of irrigation 
is also fundamental to ensure the global food security (IPCC, 2019; 
MedECC, 2020). This management is mainly based on the 

characterization of soil and vegetation water conditions that govern the 
use of water resources and this requires the estimation of crop water 
requirements which is represented by the evapotranspiration of the 
vegetation cover (ET). 

The accurate estimation of ET constitutes the focus of several ap-
plications, starting from meteorology, since ET represents the process 
that transfers water from soil-plant to atmosphere (Allen et al., 2007; 
Gibelin, 2007; Norman et al., 1995; Soer, 1980), to agronomy, where ET 
defines the water requirements of the crop (Feng et al., 2019; Xiang 
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et al., 2020; Yao et al., 2020). ET estimation can be done using in situ 
measurements such as the eddy covariance system and the lysimeters. 
Such techniques provide reliable estimates but they remain local and 
expensive to implement (Allen et al., 2011). Besides direct measure-
ments, ET is computed using land surface models. Various types of 
models exist in the literature with a wide variety of theoretical back-
ground and required-input variables and can be divided into models 
based on resolving the energy balance and/or the water balance with 
different level of complexity (Ait Hssaine et al., 2021, 2018; Allen et al., 
2011; Annandale et al., 1999; Bigeard et al., 2019; Courault et al., 2005; 
Diarra et al., 2017; Elfarkh et al., 2022; Jarlan et al., 2021; Subedi and 
Chávez, 2015; Zhang et al., 2016). The FAO-56 approach is a widely 
deployed model in the operational tools for irrigation management 
because it is easy to implement through a limited number of inputs 
(Allen et al., 1998). It was applied for several type of vegetation and has 
demonstrated accurate estimation over a wide range of climate and 
growth conditions around the world (Duchemin et al., 2006; Er-Raki 
et al., 2007; Pereira et al., 2021). It consists in multiplying the refer-
ence evapotranspiration (ET0) of a well-irrigated grass derived from 
simple meteorological variables, by an empirical coefficient called the 
crop coefficient Kc that reflects the actual condition of the considered 
plant. Under this form, the determination of Kc is sufficient to obtain an 
estimate of the amount of water needed by the plant to preserve a good 
yield while avoiding waste of water (Pereira et al., 2021). 

Kc varies throughout the agricultural season because of the pheno-
logical stages specific water demand and the changes of the aero-
dynamic and the surface resistances (Allen et al., 2011; Pereira et al., 
2021). For annual crops, Kc is assumed to have a trapezoidal shape with 
four linear segments representing four main growing stages and subse-
quently three Kc values are required to obtain the whole growing season 
evolution. FAO-56 paper provides a large database of these values for a 
wide range of crops, and climates. However, previous work has 
demonstrated strong discrepancies between locally measured and the 
FAO tabulated values (Anapalli et al., 2020; Er-Raki et al., 2013; Howell 
et al., 1995; Irmak et al., 2013; López-Urrea et al., 2016; Pereira et al., 
2021; Sánchez et al., 2015). Indeed, Kc is highly affected by several 
factors such as irrigation technique, crop cover fraction, agricultural 
practices, length of the growing season and local climate. Kc values and 
the duration of the different growth stages should thus be adjusted to 
reflect the actual condition of the considered crop (Allen et al., 1998; 
González-Dugo and Mateos; , 2008; Er-Raki et al., 2008; Pôças et al., 
2020). 

Because local calibration of Kc requires costly and time-consuming 
installations, remote sensing and, in particular, vegetation indices 
derived from optical data have been considered to exploit the high 
sensitivity of Kc to the vegetation cover fraction and to the Leaf Area 
Index (LAI) since the 1980s (Bausch and Neale, 1987; Diarra et al., 2017; 
Er-Raki et al., 2013; Wiegand et al., 1991). Several vegetation indices 
have been assessed (see Pôças et al., 2020 for a review) but the most 
widely used remains the NDVI (Duchemin et al., 2006; Er-Raki et al., 
2013; French et al., 2020; Glenn et al., 2011; Hunsaker et al., 2005; 
Pereira et al., 2021; Pôças et al., 2020). Experience has shown that there 
is no general scientific framework that defines the nature of the rela-
tionship between Kc and NDVI as both linear (Bausch, 1993; Duchemin 
et al., 2006; Gontia and Tiwari, 2010; Hunsaker et al., 2003; Kamble 
et al., 2013) and non-linear relationships (Alam et al., 2018; Er-Raki 
et al., 2013; Pôças et al., 2020) have been established. Several opera-
tional tools based on Kc-NDVI relationships have already been devel-
oped so far: the Satellite Monitoring of IRrigation (SAMIR), a software 
package developed to estimate ET and spatialized irrigation water 
budget over large areas (Le Page et al., 2014; Simonneaux et al., 2009) 
that is part of the MODSPA modeling platform developed at CESBIO 
(http://osr-cesbio.ups-tlse.fr/Satirr/); the SatIrr tool for irrigation 
scheduling at the field scale. Pôças et al. (2020) also provided a number 
of websites for Kc mapping over several countries to support irrigation 
management. 

While good estimates of evapotranspiration where obtained based on 
these Kc-NDVI relationships, optical data may be hampered by atmo-
spheric conditions leading to images unavailability during long periods 
that could be problematic in cloudy regions or for winter crop moni-
toring. Indeed, the SWOT analysis (Strengths, Weaknesses, Opportu-
nities and Threats) of the FAO-56 approach developed by Pôças et al. 
(2020) has clearly highlighted cloud cover as a threat to the application 
of the method when optical indices are used to derive Kc. Within this 
context, the main objective of this work is to assess the potentialities of 
all weather C-band radar data as a substitute to vegetation indices for Kc 
estimates from optical remote sensing. 

Over the last decade, radar (or SAR for Synthetic Aperture Radar) 
data have become increasingly used for vegetation monitoring at the 
field scale mainly with the launch of the satellites Sentinel-1A in 2014 
and 1B in 2016 as the main driver. Although C-band radar signals 
(wavelengths between 3.75 and 7.5 cm) provide a complex mix of 
ground and vegetation contributions, several authors have proposed 
variables derived from the signal intensity and phase that can be directly 
related to vegetation variables such as biomass, crop height, and cover 
fraction (Gherboudj et al., 2011; Greifeneder et al., 2018; Jacome et al., 
2013; Li and Wang, 2018; Mattia et al., 2003; Ouaadi et al., 2020, 
2021a; Srivastava et al., 2015; Veloso et al., 2017). In particular, while 
the radar backscattering coefficient (σ0), a measure of the backscattered 
signal intensity, is sensitive to both soil and vegetation variables, the 
polarization ratio PR = σ0

VH/σ0
VV, where σ0

VH and σ0
VV stand for the 

backscattering coefficient at cross- (VH) and co- (VV) polarization 
respectively, was introduced to reduce the effects of soil and 
soil-vegetation interaction. Indeed, the PR has been shown to be more 
stable in time than the backscattering coefficient and follows the evo-
lution of biomass during the agricultural season (Ouaadi et al., 2021a; 
Veloso et al., 2017). This ratio is recently used by Chintala et al. (2022) 
to estimate Kc over rice, sugarcane and vegetables. Their investigation 
was directed towards establishing a linear relationship between Kc and 
PR but poor correlations were obtained (correlations range from 0.01 to 
0.31). Beside the signal intensity, the phase information acquired by 
radar sensors has also been shown to be related to the crop cycle through 
the interferometric coherence (ρ). ρ is a measure of the phase stability. It 
can be computed between: (i) two images taken by two antennas 
simultaneously from two different angles that overlook the same scene 
or; (ii) two images acquired by the same sensor over an orbit with exact 
repetition but taken at different times (Coltelli et al., 1996) such as for 
Sentinel-1 data (Frison and Lardeux, 2018). If the characteristics of the 
scatterers including both geometric (at the scale of the radar wave-
length) and dielectric properties within the image does not change, ρ is 
equal to 1 while if the characteristics changes between two acquisitions 
a drastic drop of ρ can be observed. In particular for crops, vegetation 
growth and movement of the scatterers due to weather conditions, such 
as wind and rain, systematically causes ρ to drop (Frison et al., 2018). 
With the high temporal repetitivity provided by Sentinel-1 (6 days), 
research has been conducted to investigate and understand the behavior 
of ρ over annual crops based on the encouraging results of some early 
studies (Blaes and Defourny, 2003; Engdahl et al., 2001; Wegmuller and 
Werner, 1997). In particular, ρ has been used as complementary infor-
mation to optical data for crop mapping and classification (Busquier 
et al., 2020; Mattia et al., 2015; Mestre-Quereda et al., 2020). In addi-
tion, strong relationships were recently highlighted between ρ and 
several vegetation variables, namely biomass, leaf area index, crop 
height and cover fraction by Ouaadi et al., (2020, 2021a). 

Within this context, the objective of this work is to assess the po-
tential of radar observations to estimate the FAO-56 crop coefficient as a 
surrogate to the classically used NDVI derived from optical data. To this 
end, two variables derived from Sentinel-1 data are investigated, namely 
PR and ρ at VV and VH polarizations. The study is carried out over 4 
winter wheat seasons in Morocco. The following section presents the 
study site and the experimental data. Section 3 deals with the 
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presentation of the results and it is organized as follows: (1) the time 
series of Kc derived from the eddy covariance system for the four seasons 
are presented; (2) the relationships between Kc and the radar variables 
are investigated and compared to Kc-NDVI relationship; (3) the cali-
bration and validation of the Kc retrieved from the different variables are 
evaluated; (4) the ET derived from the estimated Kc over the four seasons 
is discussed. The last section is devoted to drawing conclusions. 

2. Materials and methods 

2.1. Study area description 

The study area is located on a private farm in west-central Morocco 
in the Marrakech-Safi region, in one of the most important agricultural 
plains of the country named the Haouz plain (Fig. 1) characterized by a 
semi-arid climate. The air temperature is variable throughout the year, 
ranging from a hot summer with a daily average of about 35 ◦C in July- 
August to a cold winter with an average of 5 ◦C in January (Abourida 
et al., 2008). The average air humidity is about 50 % and the reference 
evapotranspiration ET0 is about 1600 mm/year (Jarlan et al., 2015), 
which far exceeds the annual precipitation amount of 250 mm/year on 
average. Cereals, mainly wheat, represent the major portion of the 
irrigated and non-irrigated agricultural production of the plain. They are 
sown in winter when 85 % of the rainfall falls between October and 
April. 

This study is conducted on two winter wheat fields monitored during 
two consecutive crop seasons 2016–2017 and 2017–2018. Fig. 1 illus-
trates the location of the fields in the Haouz plain. The soil texture is a 
mixture of 37.5 % clay and 32.5 % sand. The fields are drip irrigated and 
cover an area of 1.5 ha each, sown and harvested on the same dates. For 

the two monitored 2016–2017 and 2017–2018 seasons, the agricultural 
season starts with the sowing of wheat in late November (27/11/2016 
and 25/11/2017) until the harvest on 16/05/2017 and 08/06/2018, 
respectively. The fields are sown by the Karim variety using an auto-
matic seed drill with a distance of 15 cm between the sowing lines. In the 
2016–2017 season, a stem density campaign conducted on March 28th 
resulted of an average of 416 and 504 stems/m2 over Field 1 and Field 2, 
respectively. Unfortunately, the accurate value of the field density is not 
determined for the 2017–2018 season but the same tools were used for 
seeding resulting probably in seed densities of the same order of value. 
An estimation of the main crop growth stages starting dates reported 
during the field campaigns from visual inspection are provided in  
Table 1. The GDD (Growing degree days) corresponding to these dates is 
also provided in ◦C for the sake of information (calculated by accumu-
lation of daily average temperatures). The fields are irrigated at a rate of 

Fig. 1. Location of the monitored fields, weather and Eddy-covariance stations (left map) in the Haouz plain in central Morocco (right maps).  

Table 1 
Main growth stages starting dates of wheat crop during the 2016–2017 and 
2017–2018 growing seasons.   

2016–2017 2017–2018  

Date GDD (◦C) Date GDD (◦C) 

Emergence 05/12/2016 93a 08/12/2017 151a 

Tillering 20/12/2016 174 28/12/2017 181 
Extension 20/01/2017 – 25/01/2018 295 
Heading 10/03/2017 620 18/03/2018 567 
Senescence 07/04/2017 424 20/04/2018 469  

a GDD computed between sowing and emergence dates. The GDD value be-
tween tillering and extension of the 2016–2017 season is not available due to the 
unavailability of air temperature data between 01/12/2016 and 08/01/2017. 
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12.5 mm per event and the irrigation scheduling and amounts are 
recorded (Ouaadi et al., 2021b). 

2.2. In situ measurements: weather and Eddy-covariance stations 

In the vicinity of the study sites, a weather station was installed over 
an irrigated alfalfa field (Fig. 1). The station allow a half-hourly mea-
surements of precipitations and other meteorological variables used for 
estimating reference evapotranspiration (ET0), namely solar radiation, 
wind speed and air temperature and relative humidity. Meteorological 
data were quality controlled to detect outliers following Boudhar 
(2009), Chaponnière et al. (2008) and Simonneaux et al. (2008). 

To estimate continuous measurements of the actual crop evapo-
transpiration (ETc-act), two similar eddy covariance stations (Campbell 
Scientific Ltd) are installed at 2.58 m high in the center of each field, as 
shown in Fig. 1. Each station is composed of a CSAT3–3D sonic 
anemometer and a KH2O-Krypton hygrometer, allowing the measure-
ment of the three components of wind speed and the rapid fluctuations 
of atmospheric water vapor, respectively. The sampled raw data at 
20 Hz rate are used to calculate the half-hourly sensible (H) and latent 
heat (LE) fluxes using the ’ECpack’ software to apply all required cor-
rections for planar fit correction, humidity and oxygen (KH20), fre-
quency response for slow apparatus, and path length integration (Ait 
Hssaine et al., 2018; Rafi et al., 2019; Van Dijk et al., 2004). The mea-
surements are representative of the field. To ensure that the flux 
contribution measured by the station is within the field, the calculation 
conducted for the study site conditions shows that 95 % of the flux in-
formation came from 50 × 32.5 m (long x wide) for a mean wind speed 
of 1.95 m/s and a wind direction of 58◦ (Rafi et al., 2019). Finally, the 
daily evapotranspiration (mm/day) is obtained by cumulating the 48 
daily values of LE measurements excluding the negative values, and then 

converting from W/m2 to mm/day. The stations are also equipped with 
Kipp and Zonen CNR radiometers to measure the net radiation Rn and 
two HFT3-L heat flux plates installed at 5 cm depth to measure the soil 
heat flux (G is computed by a simple average). Considering each field 
and season separately, the energy balance closure is acceptable: the 
correlation coefficient ranges between 0.70 and 0.81 while the slope of 
the linear regression between Rn-G and H+LE is between 0.47 and 0.56. 
These statistical metrics are within the range found in the literature in 
particular concerning the slope (see Elfarkh et al., 2020; Liu et al., 2011; 
Wilson et al., 2002 among others). The lack of closure of eddy covari-
ance measurements was largely discussed in the literature and could be 
related to a combination of several factors (see (Allen et al., 2011)) 
including (i) the attenuation of turbulent signals at sufficiently low or 
high frequencies (Moore, 1986); (ii) the source area of the Rn and G 
sensors that measure the available energy is very small compared to that 
of the Eddy covariance system which can be changed rapidly depending 
on wind speed and direction and surface conditions; (iii) the energy 
storage either in the vegetation (Scott et al., 2003) or in the layer be-
tween surface and the heat flux plate measurements that is not consid-
ered in the energy balance closure (Meyers et al., 2004); (iv) the time 
shift between the irradiation and the turbulent fluxes that can reach up 
to 30 min (Foken et al., 2001, 2006). The modeling studies most 
commonly force the closing of the surface energy balance to correct the 
systematic under-estimation of turbulent fluxes measurements in 
particular because the energy balance is closed for the land surface 
models. The most extensively used method for this purpose is the Bowen 
ratio approach (Twine et al., 2000). This method is closing the energy 
balance by scaling H and LE so that the sum equals Rn-G. Considering 
the low value of the energy balance closure, both raw LE data (i.e. 
without correction) and LE values corrected by the Bowen ration 
approach are considered in this study. More details on this data base 

Fig. 2. Time series of the measured evapotranspiration (ETc-act) and reference evapotranspiration (ET0) over Field 1 and Field 2 and during the two agricultural 
seasons S1 (2016–2017) and S2 (2017–2018). The precipitation and irrigation amounts are also displayed. 
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including meteorological and eddy covariance data can be found in Ait 
Hssaine et al. (2018, 2020) and Rafi et al. (2019) and part of the data set 
has been made available to the scientific community (Ouaadi et al., 
2021a). 

Fig. 2 displays the time series of the raw measured ETc-act and 
computed ET0 (see Section 2.3) over the two fields. For the sake of 
simplicity, the 2016–2017 season is designated by ‘S1’ and the 
2017–2018 season by ‘S2’. The difference between ET0 and ETc-act is 
significant during the growing season characterizing the high climatic 
demand of the semi-arid region. ET0 is higher in S1 than in S2 because of 
wetter conditions in the second season where the amount of rainfall 
recorded from sowing to harvest is 167 mm versus 70 mm during season 
S2 and season S1, respectively (Ouaadi et al., 2021a). The general trend 
is an increase during the agricultural season, with minimum values 
occurring in December and January around 2 mm/day. This period 
corresponds to the start of the season, ET0 is higher than ETc-act because 
most of ETc-act comes from soil evaporation since canopy cover is very 
low (Allen et al., 1998), whereas ET0 is the ET of a well-developed grass 
and will therefore use more water for transpiration (Araya et al., 2011). 
The ETc-act starts to increase with the development of the canopy with an 
average increase of 3 mm/day from the beginning of the season to full 
development. In addition to the higher seed density on Field 2 compared 
to Field 1, irrigation was stopped from 27/02/2017 to 14/03/2017 on 
Field 1 which led to a lower ETc-act of 2.5 mm/day on this field compared 
to Field 2. Moreover, ETc-act reached a maximum of 4.5 mm/day on 
Field 1 while the maximum on Field 2 is about 6 mm/day. The wetter 
2017–2018 season contributed to the increase of the ETc-act of Field 1 to 
reach higher values than the first season and joined the ET0 level in the 
mid-season stage. For Field 2, season S2 was affected by a particular 
growing condition (explained with more details in Ouaadi et al., 2021a). 
The presence of dense weed in the field as well as strong winds that laid 
down the high stems in April may be the reason for the low values 
observed of ETc-act. ETc-act decreases obviously at the end of the season 
from the senescence phase onwards as the vegetation and the underlying 
soil dry out. 

2.3. Actual single and basal crop coefficients 

The reference evapotranspiration ET0 is the evapotranspiration from 
a well-watered grass that totally cover the soil with a uniform height of 
0.12 m, albedo of 0.23 and a surface resistance of 70 s/m. It is a climatic 
variable that account only for the evaporating power of the atmosphere. 
According to the FAO-56 guidelines, ET0 is computed from the meteo-
rological forcing using the Penman-Monteith equation: 

ET0 =
0.408Δ(Rn − G) + γ 900

T+273u2(es − ea)

Δ + γ(1 + 0.34u2)
(1)  

Where Rn (MJ/m2/day) is the net radiation at the crop surface and G 
(MJ/m2/day) is the conductive flux in the soil. u2 (m/s) is the wind 
speed at 2 m above the ground, T (◦C) is the averaged air temperature at 
2 m, γ (kPa/◦C) is the psychrometric constant, es (kPa) and ea (kPa) are 
the saturation and actual vapor pressures at 2 m, respectively. G is 
assumed to be equal to 0 for daily calculation while the other variables 
are computed using the daily meteorological forcing as in Allen et al. 
(1998). 

The crop evapotranspiration ETc− act is computed as introduced in the 
paper 56 of the FAO by Allen et al. (1998): 

ETc− act = Kc− actET0 (2)  

where Kc-act is the crop coefficient that account for the soil evaporation, 
plant transpiration and the effect of water stress via three coefficients: 

Kc− act = KsKcb− act +Ke (3)  

where Ks is the water stress coefficient, Kcb− act is the basal crop coeffi-

cient and Ke the evaporation coefficient. 
This study focuses on the estimation of Kcb-act and ETc-act. To do so, 

the following steps are implemented:  

i) The ratio of ETc-act measurements to the ET0 (resulting in the crop 
coefficient Kc-act) has been filtered from high evaporation and 
water stressed data so that the remaining data correspond to 
Ke~0 and Ks~1 and therefore approximate the basal crop coef-
ficient Kc-act = Kcb-act. The method is adapted from Duchemin 
et al. (2006). First, an initial cleaning of the database was per-
formed by eliminating days corresponding to watering events 
(irrigation and precipitation), as these generally correspond to an 
abrupt increase in Kc-act in response to increased evaporation 
(Torres and Calera, 2010). Specific concern is given thereafter to 
the beginning of the season since the soil is bare and consequently 
Kc-act is dominated by Ke when an irrigation/precipitation event 
occurs. For this period, corresponds to a cover fraction < 0.2, the 
4 days following the watering event are eliminated from the data 
base (Duchemin et al., 2006). Later in the season, Ke is assumed to 
be neglected compared to Kcb-act as the vegetation is well devel-
oped and covers the soil (Allen et al., 1998; Duchemin et al., 
2006). The effect of water stress can also affect the computation 
of the crop coefficient Kcb-act during the period of full develop-
ment (Pôças et al., 2020). The water stressed data are charac-
terized by a drop of Kc-act (Duchemin et al., 2006). In this study, 
the data lower than one standard deviation (of the mid-season 
period data average) is discarded. By this point, we assume that 
the remaining data correspond to Kc-act = Kcb-act.  

ii) The relationships between Kcb-act from one hand and ρVV, ρVH, PR 
and NDVI from the other hand are investigated for both fields and 
both seasons.  

iii) Relationships are first established using data from 2017–2018 
season (S1) over Field 1 and then used to derive Kcb-act and 
consequently ETc-act over the other seasons/fields. 

2.4. Satellite data 

2.4.1. Sentinel-1 data 
Sentinel-1 is a constellation composed of two satellites, Sentinel-1A 

launched in 2014 and Sentinel-1B launched in 2016. Each satellite is 
equipped with a C-band SAR sensor with a frequency of 5.33 GHz. The 
two satellites map the entire world in 175 orbits with a revisit time of six 
days (Torres et al., 2012). The operational mode IW (Interferometric 
Wide-swath mode) allows the acquisition of data in dual polarization 
(VV and VH) with an azimuth resolution of 20 m and a ground range 
resolution of 5 m (European space agency, 2012). 

The Sentinel-1 Data Hub website (https://scihub.copernicus.eu) 
gives free access to two types of products: (i) SLC products (Single Look 
Complex) which are raw images that contain the radar measurement as a 
complex number and; (ii) GRDH products (Ground Range Detected High 
resolution) which are multi looked (to reduce the speckle) and projected 
to ground range to have square pixels that contains only a measurement 
of the intensity of the measured signal. The descending relative orbit 
number 52 maps the study area at 06:30 UTC with an incidence angle of 
about 35.2◦ over both fields. GRD and SLC products are used to compute 
the backscattering coefficient and the interferometric coherence, 
respectively, as described in the following sections. The data availability 
is illustrated in Fig. A1 in the Appendix. Please note that the relation-
ships between radar and vegetation variables are not shown in this 
paper, as they have been already studied in detail in Ouaadi et al. 
(2021a). The reader is invited to consult this reference for more details 
on these relationships during the agricultural season. 

2.4.1.1. Backscattering coefficient. The backscattering coefficient is 
computed from the GRDH products using the Orfeo toolbox (CNES, 
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2018) with a processing chain that consists of three modules applied to 
each image for each polarization (Frison and Lardeux, 2018): Thermal 
noise removal, Calibration and Terrain correction. The last aims to project 
the images on the surface of the Earth using the digital terrain model 
SRTM (Shuttle Radar Topography Mission) at 30 m resolution. The ob-
tained products are the backscattering coefficient at VV (σ0

VV) and VH 
(σ0

VH) with a spatial resolution of 10 m. Finally, the radar backscattering 
coefficient is obtained from averaging all the pixels values within a field. 
Details of the processing steps are provided in Ouaadi et al. (2021a). 

The polarization ratio (PR) is calculated as the ratio between σ0
VH and 

σ0
VVand then converted to dB for a better visualization of the data dy-

namics. 

2.4.1.2. Interferometric coherence. The interferometric coherence (ρ) is 
a complementary information to σ0 and well correlated with vegetation 
development. Since it contains the phase information, the SLC products 
allows computing ρ by exploiting the repeated orbits of Sentinel-1: 6 
days between two consecutive acquisitions using Sentinel-1 A and B of 
the same orbit. The combination of the two successive images allows 
measuring the change occurred to the scene between these two dates. 
The result is a scalar ranging between 0 when there is no correlation 
between the two images and 1 when the correlation is perfect. Over an 
agricultural area, the main cause of ρ decrease is the temporal decor-
elation caused by the change in orientation, size and position of the 
scatterers (canopy components). Indeed, it was found that the coherence 
is almost constant at high values (0.9 at VV) in summer when the soil is 

bare (Ouaadi et al., 2020) while the natural movement of vegetation 
components (leaves, stems.) under the effect of wind and rainfall in 
addition to the change caused by the growth of vegetation induce a 
gradual decrease in ρ to reach levels down to 0.2 during the agricultural 
season. It is worth mentioning that soil moisture change has also been 
shown to impact ρ in some cases (De Zan et al., 2014; Morrison et al., 
2011; Scott et al., 2017) and does not highlight high impact on others 
(Ouaadi et al., 2020). 

The Sentinel SNAP application platform is used to calculate the 
interferometric coherence at VV (ρVV) and VH (ρVH) based on a five steps 
processing chain: Apply-Orbit-file, Back-geocoding, Coherence, TOPSAR- 
Deburst and Terrain-correction. As for σ0, ρ is obtained from averaging all 
the pixel values within a plot. For more details on the processing chain, 
the reader is referred to Ouaadi et al. (2021a). 

2.4.2. Sentinel-2 NDVI 
The Sentinel-2 is an optical constellation of two satellites Sentinel-2A 

launched on 2015 and Sentinel-2B launched on 2017, providing data on 
13 spectral bands in the visible, near and medium infrared domains with 
a spatial resolution ranging from 10 to 60 m and a revisit time of 5 days. 
Over the study area, the data are atmospherically corrected using the 
MAJA chain developed at CESBIO (Hagolle et al., 2015). The products 
are freely distributed by the National Centre for Space Studies (CNES) 
via two platforms: PEPS (https://peps.cnes.fr) and Theia (https://theia. 
cnes.fr). Among the 45 available images over the two agricultural sea-
sons, only 28 are free of clouds (less than 30 % of clouds) over the study 

Fig. 3. Time series of crop coefficient Kc-act over Field 1 and Field 2 for both seasons S1 and S2 (2016–2017 and 2017–2018, respectively). The red and black points 
correspond to points removed because of soil evaporation or vegetation water stress (see text for further details) and the remaining data correspond to Kc-act = Kcb-act. 
The Kcb-act segmented curve obtained from the observations (blue points) is plotted in magenta. The Kcb curve using the FAO-56 tabulated values is also plotted in 
black for comparison purposes. 
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area (see data availability in Fig. A1 in the Appendix). The 28 images are 
downloaded and processed to extract the NDVI (using the red and near 
infrared bands: bands 4 and 8) and finally an average per field is 
computed. 

3. Results 

The first section is devoted to crop coefficients analysis over the 
agricultural season. The second section is dedicated to the investigation 
of the relationships between Kcb-act and remote sensing variables. 
Finally, the third section is dealing with the estimation of Kcb-act and ETc- 

act. The raw LE data are used but the results of Kcb-act and ETc-act esti-
mation with corrected LE are also reported. 

3.1. Time series of the crop coefficients 

Fig. 3 displays the time series of the crop coefficient obtained from 

the measured ETc-act over the two fields, during the two seasons S1 and 
S2. Sowing and harvest dates for each season are marked with arrows in 
the figure. For the season S1, data are available only from January 9. 

The Kc-act shape is a trapezoidal shape with low values at the start of 
the season when the soil is almost bare, increasing values during the 
development stage, a plateau of maximum values during the full 
development and then the Kc-act decreases progressively at the end of the 
season with the senescence of the vegetation. The first values of Kc-act 
around the sowing dates are very low probably because the soil is almost 
dry at this time. Thereafter, Kc-act can reach high values in response to 
high evaporation (i.e. the red points in Fig. 3) because of rainfall and 
frequent irrigation (see Fig. 2 for rainfall and irrigation distribution) 
applied by the farmer to accelerate wheat emergence and development 
(Ouaadi et al., 2021b). Likewise, the Kc-act values corresponding to water 
stress during the period of full development are presented in black. The 
red and black points are removed and it is assumed that the remaining 
data correspond to Ks~1 and Ke~0 and therefore Kc-act = Kcb-act. 
Considering the mean value for each stage (initial Kcb,init, mid-season 
Kcb,mid and late season Kcb,end), the Kcb-act segmented curve is con-
structed (magenta curve in Fig. 3) for each field and each season. For 
comparison purposes, the Kcb curve obtained using FAO-56 tabulated 
values, with crop stages duration adjusted based on the field observa-
tions and NDVI cycle is also displayed in black in Fig. 3. Table 2 reports 
the default FAO-56 and adjusted lengths of the crop growth stages 
(initial Linit, crop development Ldev, mid-season Lmid and late season 
Llate). Significant discrepancies are observed between the tabulated 
FAO-56 values and the adjusted values for the fields. This highlights the 
need for local calibration of FAO-56 as reported by many authors 
(Er-Raki et al., 2008; Pôças et al., 2020 among others, see Introduction). 

Table 2 
Default FAO-56 and adjusted lengths of the crop growth stages over Field 1 and 
Field 2 and both seasons S1 (2016–2017) and S2 (2017–2018).   

FAO-56 Field 1 Field 2  

S1 S2 S1 S2 

Lini 30 20 30 20 26 
Ldev 140 23 21 23 26 
Lmid 40 81 72 81 84 
Llate 30 47 62 47 60 
Total 240 171 185 171 196  

Fig. 4. Time series of the remote sensing variables including optical NDVI and radar PR, ρVV and ρVH over Field 1 and Field 2 and both seasons S1 (2016–2017) and 
S2 (2017–2018). The shaded area represents the period when Kc-act points were removed due to soil evaporation (see red dots in Fig. 3). 
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A value of Kcb,init = 0.15 is given in FAO-56 assuming that there is 
always some moisture in the soil, while in this study Kcb,init is ~0.07 
probably because the tilling is not deep and the soil surface is very dry 
(surface soil moisture average ~0.03 m3/m3 on 27/11/2017 over both 
fields). This is also the reason why the obtained Kcb at the end of the 
season (about 0.1–0.17) is lower than the FAO-56 value (0.23). For mid- 
season period, FAO-56 Kcb,mid is equal to 0.9 which is close to the Kcb,mid 
obtained over Field 1 during season S2, while the values obtained are 
lower for Field 2 and Field 1 S1. This is related to the combined effect of 
the meteorological conditions with cropping system and vegetation 
physiological properties (see the Introduction section). Indeed, the 
average of Kcb-act reached at mid-season is different between the fields. 
During season S1, the average Kcb,mid for both fields are close with 0.7 
over Field 1 and 0.6 over Field 2. By contrast, noticeable differences 
between the two fields are observed during season S2, with significantly 
lower values of Kcb-mid on Field 2. The higher Kcb-mid over Field 1 during 
S2 compared to S1 could be attributed to the wetter conditions of the 
2017–2018 growing season compared to the 2016–2017 season, 
resulting in much more vegetation as illustrated by the difference in the 
amount of biomass between the two seasons presented in Ouaadi et al. 
(2021a). On the other hand, the low values of Kcb-mid on Field 2 are 
probably the result of the particular growing conditions of this field 
during S2 with a mixture of barley and wheat in addition to the high 
presence of adventices (see above). Indeed, ETc-act is highly affected by 
the specific canopy characteristics (geometric and physiological) such as 
the leaf arrangement, the height of the vegetation and stomata proper-
ties (Araya et al., 2011). 

The time series of PR, ρVV, ρVH and NDVI over the four growing 
seasons are presented in Fig. 4. The evolution of these variables illus-
trates a seasonal evolution following the development of wheat. Early in 
the season, the values are low/high and start to increase/decrease with 
the development of the vegetation until a maximum/minimum value is 
reached in full development for NDVI/PR and interferometric co-
herences, respectively. With the onset of senescence, a progressive 
decreasing/increasing trend is observed until harvest. It can be pointed 

out that, for low values of ρ (≤ 0.4), corresponding to full development 
of vegetation, ρVV and ρVH are quite identical. However, for high values 
(≥ 0.4), corresponding to low vegetation, i.e. when vegetation is at early 
stage of development or during senescence, ρVV ≥ ρVH, traducing the 
higher sensitivity of VH polarization to small amounts of vegetation. It 
should be kept in mind, however, that high values of the interferometric 
coherence (> 0.5) are more significant than the low values that are 
contaminated by noise. 

3.2. Relationships between Kcb-act and satellite variables 

The relationships between Kcb-act and the different radar data, 
including PR, ρVV , and ρVH (with the same x-axis scale 0.15–0.7 for ρVV , 
and ρVH) are presented in Fig. 5 for Field 1 and Field 2. The relationship 
between Kcb-act and NDVI is also displayed to compare the performance 
of the radar variables with this commonly used optical index. Using the 
complete wheat cycle from sowing to harvest, the best fit is found to be 
exponential between Kcb-act and all the satellite variables. The regression 
equation, R and RMSE calculated between the predicted variable using 
the fitted relationship (in red) and the observations are displayed in each 
subplot. 

Results show that the best fitting is obtained between Kcb-act and ρVV 
(hereafter named Kcb-act - ρVV) and between Kcb-act and NDVI (Kcb-act - 
NDVI) regarding data from both fields. In contrast, the relationships are 
more scattered using ρVH (Kcb-act - ρVH) and PR (Kcb-act - PR). The problem 
is due to a significant dispersion of the data, in particular during the 
transition phase between the low/high plateaus values (see Fig. 4). PR 
was introduced to describe vegetation development while reducing the 
effect of soil variables on the backscattered signal, yet it seems to contain 
some of these effects. This may be related to a combined effect of wheat 
geometry and soil drying. After heading σ0

VH is still high because of the 
volume contribution from the head layer while σ0

VV is low and quite 
constant as the soil is dry. Consequently, the PR remained high late in 
the season. 

Fig. 5. Relationships between the satellite indices PR, ρVV, ρVH and NDVI with Kcb-act for the two wheat fields Field 1 and Field 2. Each subplot contains data of the 
two agricultural seasons S1 (2016–2017) and S2 (2017–2018). 
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The weak relationship with ρVH is not surprising due to the low 
overall values (≤ 0.4) which are less significant than ρVV (≤ 0.65). This is 
due to the highest sensitivity of VH polarization to low vegetation, 
leading to lowest coherence values at VH (Fig. 4). It is the reason why 
better relationship is observed for ρVV which show an amplitude of 0.45 
(0.2 ≤ ρVV ≤ 0.65). It is interesting to note that ρVH and ρVV (when ≤
0.35) are less scattered for Field 2 than for Field 1. Indeed, Kcb-act is more 
scattered on Field 1, in particular, around mid-season when ρVH is at its 
lowest level (ρVH < 0.33). In general, the statistical metrics using the 
radar variables are better for Field 2 than for Field 1 because of the 
scattering of Kcb-act around mid-season (Fig. 3). In contrast, the best 
metrics are obtained on Field 1 for Kcb-act - NDVI, which are also the best 
metrics obtained for the 8 subplots investigated in this study with an 
RMSE limited to 0.15. This Kcb-act - NDVI relationship is compared to 
similar relationships previously published: (1) Duchemin et al. (2006) 
have used a linear relationship: Kcb− act = 1.64 ∗ NDVI − 0.14; (2) 
Hunsaker et al. (2005) have fitted Kcb-act to NDVI using a third-order 
regression model: Kcb− act = 0.18+1.63NDVIn − 2.57NDVI2

n +1.93NDVI3
n 

with NDVIn = NDVI− NDVImin
NDVImax − NDVImin

; (3) Er-Raki et al. (2007) derived Kcb-act from 

NDVI using an exponential relationship: Kcb− act =1.07
(
1 − NDVI0.84/0.54

m
)

with NDVIm = NDVImax − NDVI
NDVImax − NDVImin

. Fig. A2 displays our observations and the 
different relationships including ours in red over Field 1. The different 
relationships provide with quite close results, the closest being provided 
by Duchemin et al. (2006) for wheat fields also grown in the Tensift 
catchment near Marrakech with similar climate conditions. Considering 
all the results of this study, Kcb-act - NDVI provides good performance but 
the statistics of Kcb-act - ρVV , comparable with those of Kcb-act - NDVI, are 
also promising. 

3.3. Kcb-act and crop evapotranspiration estimation 

In this section, Kcb-act is estimated from different Kcb-act - satellite 

variables relationships, and then the estimated Kcb-act is used to calculate 
the ETc-act. First, the data from one season (Field 1 season S2) was chosen 
to calibrate the 4 relationships (using the four variables PR, ρVV , ρVH and 
NDVI). This relationship is then used to estimate Kcb-act over all fields/ 
seasons. This season is chosen because the 2016–2017 season is not 
complete as previously mentioned. The results obtained are presented in  
Fig. 6 for both fields and both seasons. 

As expected, the best results are obtained with Kcb-act - NDVI and Kcb- 

act -ρVV . Over Field 1, the retrieved Kcb-act from radar data is limited to 
almost 1 because of the quick saturation of the C-band data while the 
Kcb-act - NDVI can reach up to 1.2 and thus reproduce well the Kcb-act. 
This advantage is reflected on the good statics on this field with R =
0.88, slope = 0.91, RMSE = 0.16 and a bias limited to 0.02. However, 
this can also be a drawback from another point of view, obviously when 
the canopy is very dense and consists of a mixture of several vegetation 
types as is the case in Field 2. On this field, a significant overestimation 
(up to Kcb-act = 2) is observed with a reduction in statistical metrics to R 
= 0.70, slope = 1.66, RMSE = 0.52 and bias = 0.35. This can be 
explained by Fig. 4 and Fig. 3 where NDVI is higher in Field 2 than in 
Field 1 while Kcb-act is lower in Field 2 than in Field 1. In fact, the low Kcb- 

act values are obviously due to the lower ETc-act of season S1 of Field 2 
compared to Field 1. This is due to the presence of adventices with two 
possible scenarios: (i) adventices do not transpire much which leads to a 
reduction in ETc-act; (ii) adventices lead to a reduction in soil evapora-
tion as they cover the entire soil. Indeed, the measured canopy cover (fc, 
not shown) shows high values since the beginning of the season where fc 
has reached 0.9 on 31/01/2018 on Field 2 versus 0.7 on Field 1 and had 
only reached 0.9 52 days later (13/03/2018). In contrast, the higher 
cover fraction of green vegetation (adventices and wheat) is obviously 
driven at a much higher NDVI than Field 1 and thus Kcb-act is 
overestimated. 

In contrast, similar statistical metrics are obtained between Field 1 
and Field 2 using the radar variables. The statistical metrics of Kcb-act - 

Fig. 6. Estimated versus measured Kcb-act over Field 1 and Field 2 using the relationships Kcb-act - PR, Kcb-act - ρVV, Kcb-act - ρVH and Kcb-act - NDVI calibrated on Field 1 
season 2017–2018 (S2). 
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Fig. 7. Estimated versus measured ETc-act over Field 1 and Field 2 using the different relationships Kcb-act - PR, Kcb-act - ρVV , Kcb-act - ρVH and Kcb-act - NDVI.  

Fig. 8. Time series of estimated ETc-act using Kcb-act derived from PR, ρVV , ρVH and NDVI superimposed to measured ETc-act and ET0 (Kcb-act is denoted by Kcb in the 
figure for simplification). Irrigation and precipitation amounts are also displayed. 
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ρVV are lower than Kcb-act - NDVI for Field 1 but they are better for Field 
2. In addition, Kcb-act - ρVV demonstrates a more stable performance 
between the two fields where R = 0.76 and 0.77 for Field 1 and Field 2, 
respectively. Nevertheless, the bias is higher for Field 2, indicating a 
slight overestimation (y-intercept = 0.44). This was mainly attributed to 
the end of the season when the estimated Kcb-act does not decrease 
enough to reach the lowest measured Kcb-act values (not shown). The Kcb- 

act - ρVH and Kcb-act - PR provides with less accurate estimates with a 
better performance on Field 2 due to a lower scattering of Kcb-act on this 
field as discussed in the previous section (Fig. 5). 

Using the estimated Kcb-act, the ETc-act is then calculated and the re-
sults obtained for both fields are presented in Fig. 7. The outcomes with 
Kcb-act - NDVI and Kcb-act - ρVV are encouraging because of the good es-
timates of Kcb-act (Fig. 6). Consequently, similar comments can be drawn. 
The Kcb-act - NDVI has yielded very good estimate of ETc-act over Field 1 
with R = 0.80 and RMSE = 0.65 mm/day for ETc-act values up to 
4.5 mm/day. 

As expected, the performance drops to R = 0.53 and bias = 1.46 mm/ 
day over Field 2 and the RMSE increased from 0.65 to 2.15 mm/day due 
to the overestimation of Kcb-act, knowing that the maximum ETc-act is 
around 6 mm/day on Field 2. The stable estimate of Kcb-act by the Kcb-act - 
ρVV is reflected in the ETc-act estimation metrics where R is equal to 0.7 
for both fields. However, the overestimation of Kcb-act at the end of the 
season led to a higher RMSE on Field 2 (1.15 mm/day on Field 2 versus 
0.75 mm/day on Field 1). Interestingly enough, Kcb-act - PR and Kcb-act - 
ρVH methods provided with similar metrics as Kcb-act - NDVI and Kcb-act - 
ρVV in estimating ETc-act even that the relationships used to estimate Kcb- 

act are of poor quality (see Fig. 5 for Kcb-act - PR and Kcb-act - ρVH re-
lationships). For instance, Kcb-act - PR provided an estimate of ETc-act 
with R = 0.63, slope = 0.89, RMSE = 1.02 mm/day and bias =
0.38 mm/day over Field 2. This is probably related to the quasi-absence 
of water stressed period that could lead to strong discrepancies between 
ETc-act and ET0 on these irrigated fields. Within these conditions, the 
inter-daily dynamics of ETc-act is mainly governed by ET0 explaining the 
acceptable correlation coefficients for all the methods assessed in this 
study. To summarize, when passing from Kcb-act - NDVI to Kcb-act - radar 
variables, R was decreased by 12.5 % using ρVV and more than 27 % 
using PR and ρVH for Field 1. In contrast, R is improved on Field 2 using 
radar variables over NDVI with 24 % using ρVV and more than 18 % 
using PR and ρVH. 

When corrected LE values are considered, the estimation of Kcb-act 
and ETc-act over Field 1 and Field 2 yielded the statistical metrics sum-
marized in Table A1 in the Appendix. The same approach as for raw LE 
values is adopted: (1) The relationships between Kcb-act and different 
remote sensing variables are first computed using data of Field 1 S2; (2) 
Kcb-act is estimated from these relationships and used to compute ETc-act. 
The statistical metrics are close to those obtained with the raw data. The 
best relationships with Kcb-act are obviously obtained with NDVI but 
using ρVV also provided with acceptable metrics. The main differences 
are related to higher biases leading to higher RMSE mainly on Field 1 
while bias is lower on Field 2 when using NDVI. 

For a temporal inter-comparison of the ETc-act estimated from 
different methods, Fig. 8 presents the time series of ETc-act estimated 
over Field 1 and Field 2 for the two agricultural seasons considering raw 
LE data. The ET0, the measured ETc-act, rainfall and irrigation are also 
displayed. 

Results show good reproduction of the ETc-act time series especially 
using Kcb-act - NDVI and Kcb-act - ρVV for the Field 1 both seasons and Field 
2 season S1. For Field 2 season S2, the presence of weed as well as the 
wind that laid down the high stems in April may be the reason for the 
low values obtained especially since the ETc-act estimated by the 
different methods is high. This highlights the effect of different growing 
conditions for the same crop planted in the same soil, in the same 
climate and with the same irrigation technique. Overall, the studies that 
have used NDVI (and other optical variables) so far have been conducted 

on fields with similar crop characteristics. The question of the generality 
of the relationships established to estimate Kcb-act is still raised in pre-
viously published work. It has been reported that the effect of geometric 
properties, plant structure and development on ETc-act varies not only 
between crops but also between varieties of the same crop (Araya et al., 
2011; Campos et al., 2017; Pôças et al., 2020) and thus may change if the 
crop is mixed with another type of vegetation such as adventices in our 
case. 

By comparing the estimated ETc-act from the Kcb-act retrieved from 
different satellite data, a slight underestimation is observed at the 
beginning of the season for the radar variables, which is due to the low 
estimated Kcb-act compared to the NDVI that seems to estimate correctly 
the start of the season but then switches to a slight overestimation 
(clearly visible in Field 2 S1). This is in agreement with the results of 
French et al. (2020) using Kcb-act estimated from Sentinel 2 and Venus 
(Dick et al., 2022) NDVI where they found that the performance is less 
accurate during the first 60 days after sowing. The authors who con-
ducted their study at 7 different wheat fields in USA have reported ac-
curate ET estimates from mid-season onwards. The significant 
overestimation observed on Field 2 (Fig. 6) is illustrated in Fig. 3. Even 
though Field 2 during season S2 presents some specific growing condi-
tions as already mentioned, the estimated ETc-act is much higher than the 
ET0 and this is due to the high Kcb-act values caused by high NDVI values 
as discussed earlier. However, many shortcomings are highlighted in the 
literature concerning NDVI even though it is widely used (Huete, 1988; 
Huete et al., 2002; Huete and Liu, 1994; Pôças et al., 2020). 

Among ρVV , ρVH, and PR, it appears that Kcb-act - ρVV provides better 
results for ETc-act estimation until senescence. At this time of the season, 
even though the change in cover structure has stopped and the water 
content of the vegetation is low (water content is about 27 % of total 
biomass in Field 1 season 1), the coherence is generally still low due to 
the movement of scatters (wheat components), which leads to high Kcb- 

act values and, consequently, high ETc-act values. This sensitivity of 
coherence to scatterers motion explains also the underestimation of ETc- 

act by ρVV and ρVH between 22/03/2018 and 06/04/2018 where an in-
crease in ρVV and ρVH is observed (Fig. 4). Such anomalies could be 
avoided in future works by a simple smoothing. 

Fig. 9. Time series of ETc-act estimated from hybrid Kcb-act over Field 1 and 
Field 2 season S1. The estimated ETc-act from Kcb-act - NDVI and Kcb-act - ρVV in 
addition to measured ETc-act, rainfall and irrigation amounts are also displayed. 
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4. Discussion 

So far, the research and efforts in estimating Kcb-act have been 
focused only on using optical data. This is mainly due to the intrinsic 
simplicity and ease of interpretation and understanding of these indices 
(Pôças et al., 2020) that have made their use widespread for irrigation 
assessment; in particular, they can be used by technicians and farmers 
(Allen et al., 2011). In addition, they demonstrated good results in the 
estimation of ETc-act. However, the continuous availability of optical 
time series throughout the agricultural season is prevented by cloudy 
conditions. This has led some researchers to seek alternative solutions 
for estimating vegetation indices when significant data gaps are pre-
sented. One of the most prominent approaches has been the consider-
ation of radar data to fill these gaps (Filgueiras et al., 2019). Our results 
in this study show encouraging prospects for using radar data instead of 
optical indices for ETc-act estimation. Yet, it is also feasible to use the 
radar as a complement to the optics. For instance, Sentinel-2 images for 
the period from 11/02/2017–02/04/2017 are not useful due to cloud 
cover. Therefore, Kcb-act is estimated from ρVV for this period and the rest 
is estimated from NDVI (hereafter called hybrid Kcb-act). Fig. 9 shows the 
estimated ETc -act from the hybrid Kcb-act for Field 1 and Field 2. For 
comparison, the estimated ETc-act from Kcb-act - NDVI, Kcb-act - ρVV and the 
measured ETc-act are also shown in the figure. The corresponding sta-
tistical metrics are presented in Table 3. The results show an obvious 
improvement in the estimation of ETc-act using the hybrid Kcb-act where 
an improvement of 6.7 % and 15.9 % on Field 1 and Field 2, respectively 
in the correlation is obtained. Interestingly, the bias is reduced by 63.6 
% on Field 1 and the RMSE and bias are reduced by 21.8 % and 27 %, 
respectively, on Field 2 when using the hybrid Kcb-act. The use of Kcb-act 
estimated from ρVV for the cloudy period reduced the overestimation by 
the Kcb-act - NDVI over Field 2, clearly observed in the ETc-act time series 
between 05/02 and 15/03 in Fig. 9. 

In addition to a hybrid approach that uses the radar and optical 
variables separately, it can be expected that combining both through 
multiple linear regression or machine learning algorithms would be a 
promising way to improve the estimation of Kcb-act. 

However, it is worth mentioning that radar data are relatively more 
complicated to process and interpret than optical data, which can be a 
problem for direct applications by managers, although these difficulties 
are decreasing thanks to the rapid evolution of electronic equipment and 
platforms that can process radar data on a large scale and make them 
available to users. For example, the CNES platform (https://peps.cnes. 
fr) can now offer σ0 maps on demand. Google earth Engine also pro-
vides large-scale products using free scripts found on the internet. It is 
hoped that these efforts will increase and make the processed data easily 
available to users who are not primarily radar data specialists. 

This work is the first step in its concept and further research is 
obviously required. Here, the simple Kcb-act approach is used as a first 
step to check the accuracies and potential use of different radar vari-
ables. The simple Kcb-act approach is generally preferred because it al-
lows for rapid analysis and rough quantification of ETc-act with relatively 
moderate accuracy of vegetation water stress and soil evaporation. On 
one hand, it is an approach well suited for large-scale agricultural water 
management. For instance, it can be used for irrigation scheduling by 
estimating Kcb from the proposed approach and the water stress coeffi-
cient Ks estimated, typically, from a water balance model such as the 

two-layer soil budget of the FAO-56 double coefficient approach. 
However, for operational irrigation management at large scale, the 
estimation of Ks from the water balance model is limited by the un-
availability of irrigation data at the field scale over most irrigated areas 
as well as the difficulty in modeling the root zone soil moisture because 
of uncertain root depth and soil texture (Olivera-Guerra et al., 2018). 
Consequently, several studies have assessed the potentialities of thermal 
infrared data to estimate Ks (e.g. Ihuoma and Madramootoo, 2017; 
Kullberg et al., 2016; Olivera-Guerra et al., 2018). On the other hand, a 
better description of physical processes is beneficial. Our current work 
focuses on the partition of evaporation from the soil and the transpira-
tion component. This approach, which is based on the resolution of the 
soil water balance, should also be corrected using Ks. This application 
would be very interesting and compatible with the resolution of Senti-
nels 1 and 2 with the upcoming availability of high spatio-temporal 
resolution of thermal data with the launch of future missions such as 
HyspIRI (2022), Sentinel-8 (2024), TRISHNA (2025) and LSTM (2028). 

The transferability of the obtained relationships between Kcb-act and 
remote sensing variables is a key issue. The FAO-56 been a very con-
ceptual model, the relationships between Kcb-act and NDVI (as NDVI is 
the most commonly used variable to estimate Kcb-act in the literature), 
are well known to be specific to the site/region where they have been 
established. This is because Kcb-act take into account all factors that make 
a specific crop different from the reference grass including development 
stage, density, geometry and health. It also depends on climate and on 
agricultural practices, as discussed in the introduction. As such, the 
domain of application of the Kcb-act relationships with radar variables 
presented in this study should be limited to wheat under similar semi- 
arid climate and agricultural practices. To extend the genericity of the 
method by developing relationships for other conditions, a larger data 
base should be used. 

From another perspective, the study should be extended to include 
other annual crops such as tree crops where the seasonal evolution of ρ 
and σ0 (hence PR) is limited (Frison et al., 2018). Also, the investigation 
should be extended to other sites with different irrigation techniques 
such as flooding and sprinkling. Some studies have shown sensitivity of ρ 
to soil moisture such as Morrison et al. (2011) who demonstrated a 
relationship between ρ and soil moisture on bare soil in C-band. Simi-
larly, De Zan et al. (2014) found a loss of ρ in response to increasing and 
decreasing soil moisture levels using L-band data on bare fields. For our 
database, no significant sensitivity to soil moisture is observed (details 
on Ouaadi et al., 2020). On one hand, this could be related to the low 
fraction of wetted soil surface (fw) as the fields are drip irrigated (fw =
0.3 (Allen et al., 1998)) compared to other techniques such as flooding 
where fw is equal to 1. On the other hand, it is most likely that in the 
presence of vegetation, the effect of soil moisture is negligible compared 
to the decorelation (or loss of ρ) caused by the vegetation. Indeed, 
Moeremans and Dautrebande (2000) reported that some ρ changes can 
be related to soil moisture variations on bare soils but these changes 
become negligible when the soil is vegetated. Similarly, Barrett et al. 
(2012) found that the effect of soil moisture variation is suppressed by 
the predominant effect of vegetation, particularly for C-band which is 
sensitive to both soil and vegetation characteristics (Ulaby et al., 1986). 
Using C- and L-band data, Molan and Lu (2020) also revealed that ρ is 
not related to changes in soil moisture over agricultural fields. However, 
it should be kept in mind that ρ is calculated in these studies, as in ours, 
with a minimum of 6 days between the two images (baseline), which is 
largely sufficient for agricultural cover to grow and, in most cases, 
weather conditions change, which will be the main sources of ρ loss. 
Stated differently, soil moisture could have an observable impact if ρ is 
calculated with a short baseline where the temporal development of 
vegetation is limited. Indeed, the experiment conducted by Albinet et al. 
(2016) on a tree demonstrated that watering the tree leads to an abrupt 
decrease in ρ that requires between 30 min and 6 h (depending on po-
larization) to recover the previous level before watering. From another 

Table 3 
Statistical metrics of the estimated ETc-act using the Kcb-act - NDVI relationship 
and using the hybrid Kcb-act over Field 1 and Field 2 season S1.   

Kcb-act - NDVI Hybrid Kcb-act  

Field 1 – S1 Field 2 – S1 Field 1 – S1 Field 2 –S1 

R 0.69 0.53 0.74 0.63 
RMSE (mm/day) 0.71 1.83 0.71 1.43 
Bias (mm/day) 0.11 1.11 -0.04 -0.81  
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perspective, the results of Albinet et al. (2016) shows that the presence 
of water on the surface of vegetation components, due to watering 
events such as artificial or natural rainfall or due to dew, disrupts ρ. This 
was highlighted in the tropical forest by Hamadi et al., (2014). The 
further investigation of these different circumstances is necessary for a 
better evaluation of the Kcb-act - ρ relationships since the degradation of ρ 
will automatically induce a degradation of the Kcb-act - ρ relationships. In 
this context, sub-daily measurements of radar data over annual crops are 
needed to understand the impact of soil moisture on ρ. An experiment is 
currently installed in Morocco to measure ρ and σ0 over a wheat field 
with a step of 15 min. The data are being processed and will be used in 
our future work. 

5. Conclusions 

This work seeks to evaluate the potential use of SAR data to estimate 
the crop coefficient Kcb-act and crop evapotranspiration ETc-act. The 
commonly used NDVI is also considered for comparison purposes. The 
study was conducted over four agricultural seasons of irrigated winter 
wheat in Morocco. Radar variables are estimated from the C-band 
Sentinel-1 sensor with a revisit time of 6 days and a resolution of 10 m. 
The NDVI is derived from Sentinel-2 with similar resolutions. First, the 
relationship between Kcb-act on one hand and PR, ρVV and ρVH on the 
other hand is studied for the whole agricultural season. Second, the 
relationships Kcb-act - PR, Kcb-act - ρVV Kcb-act - ρVH and Kcb-act - NDVI are 
calibrated using an agricultural season and the derived relationships are 
used to estimate Kcb-act and ETc-act over the four seasons. 

The outcomes of this study showed that the variables derived from 
the SAR data can also be successfully used to estimate Kcb-act and ETc-act, 
in particular, ETc-act is estimated using Kcb-act - ρVV with an RMSE =
0.75 mm/day which is close to the RMSE obtained using Kcb-act - NDVI 
(RMSE = 0.65 mm/day) over Field 1. In contrast, RMSE values have 
increased to 1.15 mm/day versus 2.15 mm/day using Kcb-act - ρVVand 
Kcb-act - NDVI, respectively on Field 2 due to the specific growing con-
ditions of this field with a high presence of adventices. However, based 
on our results, the radar variables and in particular ρVV demonstrates 
good performance and, in particular, a stability of the statistical metrics 
from one field and one season to another in the estimation of ETc-act over 
the two fields. This opens new perspectives for robust and operational 
applications at large spatial scales, especially in regions where optical 
data are inoperable or for crops grown in winter usually characterized 
by frequent cloudy conditions. Most importantly, the shortcomings ob-
tained for ETc-act estimation using radar data are at the end of the season, 
a period that is not important for ETc-act applications and crop water 
requirement management since vegetation dries out at this time and 
irrigation is already stopped. The results also show that radar can be 

used as a complement to optics; in particular, the use of Kcb-act-derived 
from ρVV during the period of unavailability of optical images improved 
the correlation coefficient of ETc-act estimate by 7–16 % and reduced the 
bias by over 27 %. Our study presents the first attempt at estimating Kcb- 

act and ETc-act from SAR data but further work is required for additional 
validation of the results as well as for a better and deeper investigation of 
the behavior of the Kcb-act-radar and Kcb-act-optical variables relation-
ships and their robustness in estimating ETc-act when the geometrical 
and physiological properties of the canopy change as for example the 
case presented by season S2 of Field 2. 
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multifrequency multipass interferometry: a new tool for geological interpretation. 
J. Geophys. Res. E Planets 101, 23127–23148. https://doi.org/10.1029/96JE01301. 

Courault, D., Seguin, B., Olioso, A., 2005. Review on estimation of evapotranspiration 
from remote sensing data: from empirical to numerical modeling approaches. Irrig. 
Drain. Syst. 19, 223–249. 

De Zan, F., Parizzi, A., Prats-Iraola, P., López-dekker, P., 2014. A SAR interferometric 
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Une proposition de modification du modèle FAO-56. Hydrol. Sci. J. 55, 303–315. 
https://doi.org/10.1080/02626661003683249. 

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., 
Rommen, B., Floury, N., Brown, M., Navas, I., Deghaye, P., Duesmann, B., Rosich, B., 
Miranda, N., Bruno, C., Abbate, M.L., Croci, R., Pietropaolo, A., Huchler, M., 
Rostan, F., 2012. GMES Sentinel-1 mission. Remote Sens. Environ. 120, 9–24. 
https://doi.org/10.1016/j.rse.2011.05.028. 

Twine, T.E., Kustas, W.P., Norman, J.M., Cook, D.R., Houser, P.R., Meyers, T.P., 
Prueger, J.H., Starks, P.J., Wesely, M.L., 2000. Correcting eddy-covariance flux 
underestimates over a grassland. Agric. For. Meteorol. 103, 279–300. https://doi. 
org/10.1016/S0168-1923(00)00123-4. 

Ulaby, F.T., Moore, R.K., Fung, A.K., 1986. Microwave remote sensing: Active and 
Passive, Volume III-from theory to applications. 

Van Dijk, A., Moene, A.F., de Bruin, H.A.R., 2004. The principles of surface flux physics: 
theory, practice and description of the ECPACK library, Internal Report 2004/1, 
Meteorology and Air Quality Group. the Netherlands. 

Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.F., Ceschia, E., 
2017. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2- 
like data for agricultural applications. Remote Sens. Environ. 199, 415–426. https:// 
doi.org/10.1016/j.rse.2017.07.015. 

Wegmuller, U., Werner, C., 1997. Retrieval of vegetation parameters with SAR 
interferometry. IEEE Trans. Geosci. Remote Sens. 35, 18–24. https://doi.org/ 
10.1109/36.551930. 

Wiegand, C.L., Richardson, A.J., Escobar, D.E., Gerbermann, A.H., 1991. Vegetation 
indices in crop assessments. Remote Sens. Environ. 35, 105–119. https://doi.org/ 
10.1016/0034-4257(91)90004-P. 

Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., 
Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., et al., 2002. Energy balance 
closure at FLUXNET sites. Agric. For. Meteorol. 113, 223–243. 

Xiang, K., Li, Y., Horton, R., Feng, H., 2020. Similarity and difference of potential 
evapotranspiration and reference crop evapotranspiration – a review. Agric. Water 
Manag. 232, 106043 https://doi.org/10.1016/j.agwat.2020.106043. 

Yao, N., Li, Y., Xu, F., Liu, J., Chen, S., Ma, H., Chau, H.W., Liu, D.L., Li, M., Feng, H., 
Yu, Q., He, J., 2020. Permanent wilting point plays an important role in simulating 
winter wheat growth under water deficit conditions. Agric. Water Manag. 229, 
105954 https://doi.org/10.1016/j.agwat.2019.105954. 

Zhang, G., Liu, C., Xiao, C., Xie, R., Ming, B., Hou, P., Liu, G., Xu, W., Shen, D., Wang, K., 
Li, S., 2017. Optimizing water use efficiency and economic return of super high yield 
spring maize under drip irrigation and plastic mulching in arid areas of China. Field 
Crop. Res 211, 137–146. https://doi.org/10.1016/j.fcr.2017.05.026. 

Zhang, Y., Peña-Arancibia, J.L., McVicar, T.R., Chiew, F.H.S., Vaze, J., Liu, C., Lu, X., 
Zheng, H., Wang, Y., Liu, Y.Y., Miralles, D.G., Pan, M., 2016. Multi-decadal trends in 
global terrestrial evapotranspiration and its components. Sci. Rep. 6, 1–12. https:// 
doi.org/10.1038/srep19124. 

N. Ouaadi et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.agwat.2005.02.013
https://doi.org/10.1109/TGRS.2011.2132137
https://doi.org/10.1109/TGRS.2011.2132137
https://doi.org/10.1016/0168-1923(95)02265-Y
https://doi.org/10.1016/0168-1923(95)02265-Y
https://doi.org/10.1016/j.agwat.2018.06.014
https://doi.org/10.1016/j.rse.2020.112050
https://doi.org/10.5194/essd-13-3707-2021
https://doi.org/10.5194/essd-13-3707-2021
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref73
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref73
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref73
https://doi.org/10.1016/j.agwat.2020.106466
https://doi.org/10.1016/j.agwat.2020.106081
https://doi.org/10.1016/j.agwat.2020.106081
https://doi.org/10.1016/j.agrformet.2018.11.031
https://doi.org/10.1016/j.agrformet.2018.11.031
https://doi.org/10.1007/s00271-015-0476-2
https://doi.org/10.1007/s00271-015-0476-2
https://doi.org/10.1038/s41598-017-05123-4
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref79
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref79
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref79
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref79
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref80
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref80
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref80
https://doi.org/10.1016/0034-4257(80)90045-0
https://doi.org/10.1109/IGARSS.2015.7326012
https://doi.org/10.5539/jas.v7n6p50
https://doi.org/10.1080/02626661003683249
https://doi.org/10.1016/j.rse.2011.05.028
https://doi.org/10.1016/S0168-1923(00)00123-4
https://doi.org/10.1016/S0168-1923(00)00123-4
https://doi.org/10.1016/j.rse.2017.07.015
https://doi.org/10.1016/j.rse.2017.07.015
https://doi.org/10.1109/36.551930
https://doi.org/10.1109/36.551930
https://doi.org/10.1016/0034-4257(91)90004-P
https://doi.org/10.1016/0034-4257(91)90004-P
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref89
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref89
http://refhub.elsevier.com/S0378-3774(23)00141-5/sbref89
https://doi.org/10.1016/j.agwat.2020.106043
https://doi.org/10.1016/j.agwat.2019.105954
https://doi.org/10.1016/j.fcr.2017.05.026
https://doi.org/10.1038/srep19124
https://doi.org/10.1038/srep19124

	Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of  ...
	1 Introduction
	2 Materials and methods
	2.1 Study area description
	2.2 In situ measurements: weather and Eddy-covariance stations
	2.3 Actual single and basal crop coefficients
	2.4 Satellite data
	2.4.1 Sentinel-1 data
	2.4.1.1 Backscattering coefficient
	2.4.1.2 Interferometric coherence

	2.4.2 Sentinel-2 NDVI


	3 Results
	3.1 Time series of the crop coefficients
	3.2 Relationships between Kcb-act and satellite variables
	3.3 Kcb-act and crop evapotranspiration estimation

	4 Discussion
	5 Conclusions
	Declaration of Competing Interest
	Data Availability
	Acknowledgements
	Appendix
	References


