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Abstract: In mountainous regions, the scarcity of air temperature (Ta) measurements is a major
limitation for hydrological and crop monitoring. An alternative to in situ measurements could be to
downscale the reanalysis Ta data provided at high-temporal resolution. However, the relatively coarse
spatial resolution of these products (i.e., 9 km for ERA5-Land) is unlikely to be directly representative
of actual local Ta patterns. To address this issue, this study presents a new spatial downscaling
strategy of hourly ERA5-Land Ta data with a three-step procedure. First, the 9 km resolution ERA5
Ta is corrected at its original resolution by using a reference Ta derived from the elevation of the 9 km
resolution grid and an in situ estimate over the area of the hourly Environmental Lapse Rate (ELR).
Such a correction of 9 km resolution ERA5 Ta is trained using several machine learning techniques,
including Multiple Linear Regression (MLR), Support Vector Regression (SVR), and Extreme Gradient
Boosting (Xgboost), as well as ancillary ERA5 data (daily mean, standard deviation, hourly ELR, and
grid elevation). Next, the trained correction algorithms are run to correct 9 km resolution ERA5 Ta,
and the corrected ERA5 Ta data are used to derive an updated ELR over the area (without using in situ
Ta measurements). Third, the updated hourly ELR is used to disaggregate 9 km resolution corrected
ERA5 Ta data at the 30-meter resolution of SRTM’s Digital Elevation Model (DEM). The effectiveness
of this method is assessed across the northern part of the High Atlas Mountains in central Morocco
through (1) k-fold cross-validation against five years (2016 to 2020) of in situ hourly temperature
readings and (2) comparison with classical downscaling methods based on a constant ELR. Our
results indicate a significant enhancement in the spatial distribution of hourly local Ta. By comparing
our model, which included Xgboost, SVR, and MLR, with the constant ELR-based downscaling
approach, we were able to decrease the regional root mean square error from approximately 3 ◦C
to 1.61 ◦C, 1.75 ◦C, and 1.8 ◦C, reduce the mean bias error from −0.5 ◦C to null, and increase the
coefficient of determination from 0.88 to 0.97, 0.96, and 0.96 for Xgboost, SVR, and MLR, respectively.

Keywords: reanalysis; ERA5-Land; air temperature; downscaling; complex terrain; machine
learning

1. Introduction

Access to spatially and temporally consistent climate data at high spatial and temporal
resolutions has progressively turned into a growing need in the 21st century for being
paramount to numerous fields of study that investigate ecological, hydrological, and
climate change processes, among others [1–7]. Using numerical weather models and data
assimilation techniques to produce model-based reanalysis products is one viable strategy
for generating climate datasets in light of this need [8–11]. Several international and local
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meteorological centers and data assimilation offices have collaborated over the past few
decades to make numerous reanalysis products available to the public [12]. Examples of
the most popular reanalysis products are: the ERA5 and ERA5-Land from the European
Centre for Medium Range Weather Forecasts (ECMWF); the second version of Modern-Era
Retrospective Analysis for Research and Applications (MERRA2) [13] produced by NASA’s
Global Modeling and Assimilation Office (GMAO); the second version of Climate Forecast
System Reanalysis (CFSv2) from the National Centers for Environment Prediction and
National Center for Atmospheric Research (NCEP/NCAR) [14]; NCEP/NCAR Global
Reanalysis Products from NCEP and NCAR [15,16]; and the Japanese 55-year Reanalysis
(JRA-55) [17] from the Japanese Meteorological Agency (JMA ) [12,18]. The common key
strength of the numerous existing reanalysis products resides in providing global datasets
devoid of gaps, at high temporal resolution, and over long time periods (generally over
three or more decades). Still, reanalysis data frequently fail to simulate many of the
processes that drive regional and local climate variability. Their limitations lie in their
incapability of accurately depicting sub-km-scale climate variables at the needed timescales
and do not allow for proper representations of the local topography and sub-grid-scale
features that are essential in areas with complex terrain, microclimates or narrow mountain
valleys, as highlighted by Holden et al. [19], Zhang et al. [20], Le Roux et al. [21], Alessi
and DeGaetano [22], and Zhang et al. [23]. When evaluated in contrast to observational
data, the raw output data are regularly found to have systematic biases [24,25], limiting
their usefulness for local applications [26]. There is consequently a need to make local-scale
predictions more skillful by utilizing reanalysis data as input. In this context, a variety of
techniques, such as downscaling methods, have been developed to bridge the gap between
the scale at which data are available and the scale at which they are needed. The commonly
used methods include dynamical downscaling and statistical downscaling [27].

Dynamical and statistical downscaling techniques are frequently used to refine coarser
climate products to higher resolution [28,29]. The former is a widely used methodology to
enhance the spatial information [30], in which a higher-resolution model, such as a regional
climate model (RCM), can be driven by reanalysis data and run at spatial resolutions of
up to a few meter projections (e.g., [31]), at which complex topography and smaller-scale
processes are better represented [32]. This approach can give a very good simulation of
local atmospheric conditions; however, it has significant computational cost [30,31,33,34].
Statistical downscaling methods, on the other hand, use statistical relationships to antici-
pate the evolution of local variables from large-scale variables. They are computationally
less demanding and represent a more flexible alternative to dynamical downscaling. These
methods have been shown to be effective in reproducing the fine-scale temperature variabil-
ity over mountainous regions, particularly when using local observations (e.g., [1,35,36]).

This paper focuses on reanalysis air temperature (Ta) disaggregation over complex
terrain since (i) it is one of the most important input variables in agro-environmental
models and a crucial field for the vast majority of weather and climate applications, in-
cluding climate change studies (e.g., [37,38]), and (ii) this variable is projected to change
significantly in regions with irregular topography, i.e., complex topography of mountain
landscapes known to have a highly variable climate, with microclimates that can differ
significantly from the surrounding area (e.g., [39,40]). Thus, having high-resolution Ta data
over mountains allows for a better understanding of the complex microclimates that exist
within mountain ranges and can be particularly useful for predicting weather patterns
and for understanding the impacts of climate change on these regions. Several studies
describe the spatial interpolation methods used for downscaling in meteorology and cli-
matology [37,41]. These techniques include nearest neighbor methods, splines, regression,
kriging, and cokriging but also machine learning techniques such as Artificial Neural
Networks and Support Vector Machines [42–45]. None of these studies, however, focused
on adjusting reanalysis data to the regional real measured conditions prior to downscaling,
nor worked on the hourly timestep required for hydrological modeling, relying on the
availability of quality meteorological inputs at the simulation time step [46]. Recently,
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Sourp et al. [47] developed a snow reanalysis pipeline using downscaled ERA5 and ERA5-
Land data. The downscaling is based on the MicroMet model [48,49], which performs
spatial interpolation of meteorological variables using 100 m DEM [47]. Particularly, air
temperature is downscaled to an hourly timestep using the DEM and constant monthly
Environmental Lapse Rates (ELRs).

Extending these previous ideas, a machine learning/statistical downscaling scheme
is designed in this study to disaggregate hourly air temperature data with a 30 m spatial
resolution from the 9 km ERA5-Land Ta. The main originality relies on the assumption
that the temporal variability of ELR should be taken into account for improving the spatial
distribution of downscaled Ta estimates. The approach is tested in a steep-sided catchment
in the western part of the High Atlas Mountains in central Morocco, where in situ Ta
measurements are available from 2016 to 2020. The paper is organized as follows: the study
area, datasets, and the methodology are presented in Section 2. Section 3 presents and
discusses the results, while Section 4 outlines the principal conclusions.

2. Materials and Methods
2.1. Study Area

The High Atlas is a large mountain range located in Morocco, stretching for 800 km in
length and 60 km in width. It runs in a northeast to southwest direction and is known for its
diverse range of elevations, from the lowest point of 1060 m above sea level to the highest
peak in North Africa, Mount Toubkal, which reaches an elevation of 4167 m above sea level
(Figure 1) [50,51]. The western part of the High Atlas is particularly notable for being a
vital source of water for the northern plain of the Tensift catchment, specifically around
the city of Marrakech [52].The high-altitude regions of the mountain range are known
for their low temperatures and sparse vegetation cover, with most agricultural activities
concentrated along river valleys [53,54]. The Rheraya sub-basin (Figure 1), which is located
40 km south of Marrakech (between latitudes 30°05′ N and 30°20′ N, and longitudes
7°40′ W and 8°00′ W) and covers an area of 225 km², is one of the most intensely studied
areas of the High Atlas Mountains. It represents a part of the Tensift Observatory in the
frame of the SudMed [52] and the Joint International Laboratory LMI-TREMA [55] (https:
//www.lmi-trema.ma/ last accessed on 26 January 2023) funded by the University Cadi
Ayyad (UCA, Marrakech, Morocco) and the French Research Institute for Development
(IRD, CESBIO Laboratory, Toulouse, France). It is considered to be globally representative
of the western watershed of the High Atlas Mountains. The sub-basin contains four AWSs
and is equipped with a variety of instruments to study the area.

2.2. Dataset
2.2.1. Observed Ground-Based Data

The air temperatures in the Rheraya sub-basin were measured on a semihourly basis
from Automatc Weather Stations (AWSs) positioned throughout the sub-basin: Imskerbour
(1404 m above sea level), Aremd (1940 m above sea level), Neltner (3207 m above sea
level), and Oukaimden (3230 m above sea level). The temperature records for the period
from 2016 to 2020 were converted from their original format to hourly timesteps, and
any half-hour intervals with missing records from one or more AWSs were excluded. In
order to ensure the accuracy of the data, the temperature records were checked for any
excessive amounts of missing values, as outlined in the study of Dodson and Marks [56].
The missing values for the combined stations were ensured to not exceed 100 days per year.
After the preprocessing step, the minimum number of hours kept per day for all years is
22 h/day. The locations of the stations are illustrated in Figure 1, and Table 1 provides
detailed information on the station names, heights, coordinates, yearly mean temperatures,
number of observations, and frequency.

https://www.lmi-trema.ma/
https://www.lmi-trema.ma/
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Figure 1. Location of the Tensift basin and Rheraya sub-basin.

Table 1. Information regarding the four AWSs installed in the Rheraya sub-basin. The data collection
period for all stations extends from 1 January 2016 to 31 December 2020.

AWS Latitude Longitude Elevation
(m.a.s.l)

Tmean
(◦C)

No. of Ob-
servations Frequency

Imskerbour 31.21018° −7.93972° 1404 15.06 40,870 30 min
Aremd 31.12948° −7.91967° 1940 12.1 43,848 30 min
Neltner 31.06579° −7.91389° 3207 6.04 43,829 30 min

Oukaimden 31.19328° −7.86546° 3230 5.85 42,644 30 min

2.2.2. Reanalysis Data

For this study, the most advanced global reanalysis data produced in Europe, specifi-
cally optimized for land surface applications, was used. The dataset used is the ERA5-Land
enhanced global dataset for the land component of the fifth generation of European Re-
analysis, which is freely available on the website https://cds.climate.copernicus.eu (last
accessed on 26 January 2023) [57]. In comparison with ERA5 and the older ERA-Interim, the
ERA5-Land dataset has the advantage of enhanced horizontal resolution of 9 km (released
on a regular 0.1°× 0.1° grid) compared with 31 km (ERA5) and 80 km (ERA-Interim), while
maintaining the same hourly temporal resolution as ERA5 [18]. The high temporal and
spatial resolutions of ERA5-Land, and the consistency of the fields produced, make it a
valuable dataset for diverse applications related to water resources, land, and environmen-
tal management. The variable of interest in this study is the air temperature at 2 m above
the surface of land, sea or inland waters, which is calculated through interpolation between
the lowest model level and the Earth’s surface, considering atmospheric conditions. Hourly
ERA5-Land temperature data were downloaded and processed to be consistent with the
measured data screening. Additionally, ERA5-Land temperature’s daily mean, minimum,
maximum, and standard deviation were computed as ancillary data for the entire study
period.

https://cds.climate.copernicus.eu
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2.2.3. Digital Elevation Model

To achieve fine-scale disaggregation, we used the Shuttle Radar Topography Mission
(SRTM) 1 Arc-Second Global digital elevation model (DEM) with 30 m resolution (https:
//earthexplorer.usgs.gov/ last accessed on 26 January 2023). The related SRTM 1 Arc-
Second tile (SRTM1N31W008V3) was used to generate a DEM subset of the Rheraya
sub-basin (Figure 1).

2.3. Methodology

In this section, we outline the process for enhancing the spatiotemporal downscaling
of Ta. We first explain the use of machine learning models to correct ERA5-Land Ta
(hereafter referred to as Ta_5) using in situ hourly Ta and ELR readings (Ta_st and ELR_st),
resulting in corrected Ta_5 (Ta_5_corr). Then, we describe the process of using Ta_5_corr to
downscale temperatures at a 30 meter resolution using a DEM, producing Ta_disagg_ML.
This final product is validated against five years of in situ hourly Ta_st readings and
compared with two other downscaling methods (Annual ELR average and MicroMet
model) to evaluate the improvement made. Additional details on each step are provided in
subsequent subsections.

2.3.1. 1st Step: Ta_5 Correction

The process of correcting Ta_5 starts with the creation of a reference Ta (Ta_5_ref) cor-
responding to each 9 km ERA5-Land grid elevation, utilizing only ground data, specifically,
hourly measured Ta_st and ELR_st. The Ta_5_ref is aligned with the measured Ta_st and
ELR and is intended to be more accurate than the one provided by ERA5-Land, serving
as the target to be achieved prior to downscaling. This step is illustrated in Figure 2. In
the second step, using only ERA5-Land Ta_5, a set of variables is derived, which may be
correlated with the local disaggregated temperature that is intended to be produced. This
set of variables is then utilized in the machine learning approaches. In the third step, Ta_5
is corrected to match the Ta_5_ref (9-km spatial resolution) using machine learning models.
In these models, the estimated value is Ta_5_corr, Ta_5_ref is the dependent variable, and
the independent variables include Ta_5 and the selected variables from step 2.

Figure 2. Example of Ta_5_ref estimates for ERA5-Land grid elevations based on observed hourly
ELR_st (slope). The dashed black line represents the regression line of measured temperature to
elevation. The red dashed lines show the difference of ERA5-Land Ta_5 to Ta_5_ref (what it should be).

The Ta_st measured by AWSs are plotted against their corresponding elevations, and
linear regressions are used to calculate the slope hourly ELR_st and the intercept b_st
(representing air temperature at sea-level). These values are then used to interpolate hourly
Ta_5_ref for elevations of ERA5-Land grid points (9 km spatial resolution) over the period

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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of interest (from 2016 to 2020). The equation that governs this interpolation is as follow
(Equation (1):

Ta_5_ref = ELR_st× E5 + b_st (1)

E5 being the elevation of ERA5-Land grid point in meters.
These Ta_5_ref values are then used to calibrate machine learning models as a de-

pendent variable to correct Ta_5. The input variables include Ta_5 and a set of variables
potentially correlated with the local disaggregated temperature that is intended to be
produced. The input features for predicting a specific variable may be highly correlated
with one another, resulting in a processing and computational time loss. In addition, those
input features may not always be correlated with the target variable, which can result
in an overfitting of the constructed model. In other words, the learned model would be
a better fit for training data than test data [58]. To avoid these problems, carrying out a
correlation analysis holds the key to decide which inputs to keep or to exclude. The Pearson
Correlation Coefficient (PCC) can be used to calculate the correlation between candidate
input variables Xi and targeted variable Y. The PCC is by definition the covariance of
Xi and Y over the product of their standard deviations σXi and σY. It ranges from −1 to
+1, where a value of −1/+1 implies that Xi is completely negatively/positively linearly
correlated with Y, and a value of 0 indicates absolute absence of correlation between the
two variables. In most cases, a high absolute value of PCC (often greater than 0.8) indicates
strong correlation [58]. The expression of PCC is given in Equation (2):

PCC =
COV(Xi, Y)

σXi × σY
(2)

The candidate variables selected for conducting the correlation analysis are hourly
Ta_5, hourly ELR calculated using Ta_5 (hereafter referred as ELR_E5), daily Ta_5 means,
minimums, maximums, standard deviations, and ERA5-Land grid points elevations. These
variables are used to examine the correlation with the targeted variable, Ta_5_ref. The
goal is to use the selected input variables, all of which are sourced from ERA5-Land data,
to predict a more accurate corrected Ta_5_corr, which is applied for downscaling. We
chose to test three different models for predicting Ta_5_ref: (1) a basic multiple-input linear
regression method known as MLR, (2) the popular and widely used SVR model, and (3)
one of the newest machine learning methods, the Xgboost algorithm, which is known for
its exceptional predictive abilities. Next is a brief theoretical explanation of the operation
and functioning of the models.

• MLR

In MLR, multiple independent variables are used to describe the behavior of the
dependent variable [59]. It is an extension of simple linear regression, and it describes the
relationship between two or more explanatory variables and a response variable by fitting
a linear equation to observed data. Each value of the independent variable corresponds
to a prediction value for the dependent variable. A good MLR model should be able to
explain a majority of the variance in the dependent variable with the smallest number of
independent variables possible. For a more detailed explanation of MLR theory, the reader
is encouraged to refer to the work of Helsel and Hirsch [60].

• SVR

SVR is a branch of Support Vector Machine (SVM) that is widely used as a regression
technique (detailed description of SVM can be found in several works, e.g., [61–63]).
SVR finds a multivariate regression function that predicts a desired output property or
dependent variable Y based on a set of input independent variables X (NxM) and Y (M).
The main difference between SVR and MLR is that, in SVR, the original input space (which
is usually nonlinearly related to the targeted variable) is mapped onto a higher-dimensional
feature space using a kernel function (such as Linear, Radial Basis Function, Polynomial, and
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sigmoid) to find an optimal hyperplane to separate the sample points. The full description
of SVR equations is not included here but can be found in works such as [64–66].

• Xgboost

Xgboost, proposed by Chen et al. in 2015 [67], is an alternative method for predicting
a response variable based on certain covariates. It is similar to the well-known Random
Forest method: it builds classification and regression trees one by one, but instead of
making a decision based on a final vote, each subsequent model (tree or base learner) is
trained using the mistakes of the previous one. This technique is becoming increasingly
popular due to its design and ability to speed up training time using various techniques
such as parallel computing and sparsity-aware split-finding. For more details, the reader is
referred to the following [34,67,68]

All the previously mentioned algorithms were implemented using the Python library
“Scikit-learn” developed by Pedregosa et al. in 2011 [69]. Scaling was performed prior to
using SVR kernel methods, as they are based on distance; this was performed to facilitate
learning and prevent features with the largest range from dominating the computations.
The “RobustScaler” method was used, as it can handle outliers. The performance of the
machine learning models heavily depends on the hyperparameter values; therefore, a
significant step was determining the optimal values for the model through hyperparameter
tuning. This was conducted using the “Scikit-learn” library’s Grid Search function, which
considers multiple hyperparameter combinations and chooses the one that returns the
lowest error score. Since MLR model does not have any hyperparameters to tune, only
SVR’s and Xgboost’s hyperparameters were tuned. The Grid search function also includes a
predefined k-fold cross-validation method [70–74], where each fold serves as a single hold-
out test fold, and the model is built using the remaining k-1 folds. Grid search methodology
with 5-fold cross-validation was applied to obtain the optimal model parameters for SVR
and Xgboost, meaning that during the cross-validation process, 4 years of data were used
for calibration and 1 year of data for validation.

2.3.2. 2nd Step: Disaggregation

Climate impact studies frequently use a constant Ta lapse rate at specific locations,
which we hereafter refer to as ELR_cst and which is equal to −6.5 ◦C · km−1 (e.g., [75–78]).
However, this rate can vary significantly depending on factors such as location, season, and
time of day. Studies have shown that the temperature ELR can range from −9.8 ◦C · km−1

to −10 ◦C · km−1 in dry conditions (the dry adiabatic lapse rate), and values that are shal-
lower or equal to −6.5 ◦C · km−1 generally represent moist adiabatic conditions [28,79–81].
This variability was measured in our study area, as shown in Figure 3.

Figure 3. Pronounced ELR’s hourly temporal variability, measured using AWS records over the
period of interest (from 1 January 2016 to 31 December 2020).

To account for this variability, the correction of ERA5-Land Ta_5 on an hourly basis
enables tracking actual local ELR values. Once the models predict corrected temperature
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values Ta_5_corr, new hourly temperature lapse rates (ELR_corr) are computed through
linear regression, and then the Ta_5_corr (9 km) is downscaled to the DEM of the area of
interest (30 m) using those corrected values instead of the original ones. The equation used
for this downscaling process is shown in Equation (4), and the classic constant Ta lapse rate
method’s formula is displayed in Equation (3).

Ta_disagg_cst = Ta_5 + ELR_cst× (DEM − E5) (3)

Ta_disagg_ML = Ta_5_corr + ELR_corr× (DEM − E5) (4)

In addition to using machine learning and the constant Ta lapse rate approach to
downscale Ta_5, the MicroMet model was also applied for comparison. The MicroMet
model is a high-resolution meteorological distribution model designed to produce high-
resolution meteorological data such as air temperature, humidity, wind, radiation, and
precipitation for use in running spatially distributed terrestrial models over a variety of
landscapes. It uses established relationships between meteorological variables and the
surrounding landscape to distribute those variables in a computationally efficient and
physically plausible way. Specifically for air temperature, the MicroMet model first adjusts
the Ta_5 values to sea level using the formula (Equation (5)):

Ta_0 = Ta_5 + ELR_month× (E5 − E0) (5)

Ta_0 and ELR_month being the Ta adjusted to sea level and the monthly values of
the ELR, respectively (see Table 2), where the ELR_month values vary depending on the
month of the year [82] or are calculated based on data from nearby stations. The sea-level
Ta_0 values are then interpolated to the model grid using the Barnes objective analysis
method [83]. The gridded topography data and ELR_month are then utilized to adjust the
sea-level gridded temperatures to the elevations provided by the DEM, using the equation
provided in Equation (6):

Ta_disagg_MM = Ta_0 + ELR_month× (DEM − E0) (6)

Table 2. Air temperature ELR (◦C · km−1) variations for each month of the year in the Northern
Hemisphere [82].

Month January February March April May June July August September October November December

ELR 4.4 5.9 7.1 7.8 8.1 8.2 8.1 8.1 7.7 6.8 5.5 4.7

2.3.3. 3rd Step: Validation and Results Assessment

The quality of the final products (i.e., the downscaled Ta_disagg_ML) was evaluated
through in situ validation and comparison with the other two scenarios (Ta_disagg_MM
and Ta_disagg_cst) using statistical parameters. Three simulation evaluation scores were
used: Root Mean Square (RMSE), coefficient of determination (R²), which is the square of
the previously described PCC (Pearson’s Correlation Coefficient), and the Mean Bias Error
(MBE) [84]. The scores were computed for each AWS for validation. The mathematical
expressions of the above scores are presented in Equations (7) and (8) (R² is the square of
PCC in Equation (2)).

MBE =
1
N

N

∑
i=1

(Predi −Obsi) (7)

RMSE =

√√√√ 1
N

N

∑
i=1

(Predi −Obsi)2 (8)
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Predi being the predicted value and Obsi the measured one. The above-mentioned steps
and methodology description are summarized in the following flowchart (Figure 4). It
provides a clear and concise summary of the method and can serve as a guide to understand
and replicate the study’s methodology.

Figure 4. Flowchart of the methodological approach.

3. Results
3.1. Ta_5 Correction

• Reference temperature Ta_5_ref

The obtained hourly reference Ta_5_ref values were compared with the Ta_5 values
sourced directly from ERA5-Land data. The comparison was carried out over all ERA5-
Land grids and the entire study period (2016 to 2020). The results of this comparison are
shown in Figure 5. The mean R², RMSE, and MBE of Ta_5_ref and Ta_5 were found to be
0.88, 2.51 ◦C, and −0.48 ◦C, respectively. The results indicate that the predicted values
closely follow the reference values, however, the difference between the two can reach up
to approximately 10 ◦C.

The next figure (Figure 6) illustrate a temporal comparison of Ta_5_ref to the original
Ta_5 for two ERA5-Land grids. The lines are plotted on top of each other, and the difference
between the two temperatures can be easily observed. The figure shows an example of the
comparison for two ERA5-Land grids over the first two and a half months of 2016, and
similar behavior is observed throughout the study period.
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Figure 5. Comparison of ERA5-Land’s original Ta_5 and reference Ta_5_ref air temperatures.

Figure 6. Hourly Comparison of Ta_5 and reference Ta_5_ref over time (as dashed red line and black
line, respectively). Example of the ERA5-Land grid situated at (a) 7.9° W and 31.1° N, and (b) 7.9° W
and 31.2° N.

The plot indicates that the trend of the two variables is similar, meaning that they both
increase or decrease at the same rate over time. However, the amplitude of the Ta_5_ref
variable is less than the amplitude of the original reanalysis Ta_5, meaning that the range of
temperatures it covers is smaller. This suggests that the reanalysis Ta has higher amplitude
of Ta variations than what it should be over the study area. The corrections to be applied to
the Ta_5 are then to adjust for the bias that may present in the reanalysis dataset. This bias
can be caused by errors in the input data, topographical effects, the modeling approach, or
in the assimilation of observations. The bias can also be caused by the lack of representation
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of the complex topography or urbanization of the study area in the reanalysis dataset. At
first, we attempted to debias/correct the Ta_5 using simple linear regression, modeling
daily temperature changes as a sinusoidal function, and constant (positive or negative)
bias correction prior to downscaling. However, these methods did not yield significant
improvement and were not practical for the study area, hence the choice of the machine
learning approaches. As we stated in the methodology section, a correlation analysis was
carried out to select proper input variables prior to Ta_5 correction, and is thus based
only on a set of variables independent from in situ data (Ta_5 and its derivates, as well as
ERA5-Land grid points elevations).

• Correlation analysis and feature selection

Figure 7 depicts the results of the correlation analysis. To test for correlated input
variables, the independent targeted variable Ta_5_ref was also introduced to the correlation
matrix. The latter shows that Ta_5, Ta_5’s daily minimum, Ta_5’s daily maximum, and
Ta_5’s daily mean are all highly correlated, with PCCs of 0.95, 0.87, 0.88, and 0.89, respec-
tively. Moderately low to low correlations are found for standard deviation (PCC = 0.44),
ELR_E5 (PCC = −0.18), and E5 (ERA5-Land’s grid elevation) (PCC = −0.26). Nonetheless,
given our emphasis on finer resolution and higher precision, keeping those inputs appears
to be very appropriate, as long as they are not very close to null (under 0.05 for instance).

Figure 7. Correlation matrix results. PCC value of each two variables is shown in the boxes corre-
sponding to their “coordinates”. ELR_E5, Std and E5 being the hourly ELR issued from Ta_5, the
daily standard deviation, and ERA5-Land grids elevation, respectively.

The correlation matrix also shows that the daily mean of Ta_5 has almost perfect
correlation with both the daily minimum and maximum values, with correlation coefficients
of 0.97 and 0.99, respectively. Additionally, among the three, the daily mean showed the
best correlation to the targeted variable Ta_5_ref (correlation coefficient of 0.89), thus only
the mean was kept. The final set of retained input variables for predicting Ta_5_ref values
(i.e., correcting Ta_5) consisted of five variables: Ta_5, Ta_5’s daily mean and standard
deviation, and hourly ELR_E5 and E5 (ERA5-Land’s grid elevation). It is worth noting that
while elevation remains constant over time, it varies from one ERA5-Land grid to the next,
hence its inclusion was entirely justified.

• Machine learning outcome

The three scatterplots of Figure 8 compare the predictions of temperature made by the
tested machine learning algorithms, MLR, SVR, and Xgboost, with the reference Ta_5_ref.
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Overall, the results show a good level of agreement between the predictions of the three
models and the targeted reference Ta_5_ref.

The MLR-based model had an RMSE of 1.34 ◦C, an R² of 0.97, and a quasi-null MBE.
The fitting parameters of the MLR model are the coefficients of the regression equation
used to predict the reference Ta_5_ref. They represent the contribution of each input feature
in the linear equation. The specific values found for these fitting parameters are as follows:
0.507 for hourly Ta_5, 0.477 for daily mean, −3.17 ×10−3 for ERA5-Land grids elevation,
−186.71 for hourly ELR_E5, −0.329 for daily standard deviation, and 6.27 for the intercept.

Figure 8. Comparison of Machine Learning predictions for Ta_5_ref temperature.

The SVR model used the Radial Basis Function (RBF) kernel, which is known to
provide good general performance, as reported in previous studies such as Zaidi (2015)
and Parveen et al. (2016). The grid search methodology along with 5-fold cross-validation
was utilized to find the best values for the SVR model parameters, such as C, ε, and γ. A
wide range of permutations were tried and tested, such as C [2−2 ,212], γ [2−12, 22] and
ε [2−12, 24]. The statistical evaluation mean parameters for the best fitted SVR model were
found to be RMSE = 1.20 ◦C, R² = 0.97, and MBE=0 ◦C using the Python package scikit-learn
and the rules of “Lesser is better” for the RMSE and MBE and “Greater is better” for R².
The best parameters found were C = 1, γ = “scale”, and ε = 0.02.

The grid search methodology was also applied to the Xgboost algorithm to find the
best evaluation metrics (lowest RMSE and MBE and highest R2). An analysis of Aarshay’s
(2016) work was used as a reference to determine typical values of learning rate, maximum
depth, minimum child weight, gamma, subsample, and colsample by tree, such as [0.01,0.2],
[3,10], [1,6], [0.1,0.2], [0.5,0.9], and [0.5,0.9]. The best fit was found when the following
settings were used: learning rate = 0.4, maximum depth = 6, minimum child weight = 1,
subsample = 1, colsample by tree = 1, and a “number of estimators” of 2000. The results
from the Xgboost model are superior to those from the SVR model and MLR model,
with an RMSE of 0.83 ◦C, R² of 0.99, and MBE of 0 ◦C, respectively. Table 3 displays the
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specific outcomes for the three scoring parameters from the various cross-validation folds.
Overall, we see a consistent pattern of model behavior throughout each fold change process,
indicating that the models are well-calibrated and are not overfitting.

To sum up, exceptional Ta_5 correction performance of the Xgboost model in predicting
the reference Ta_5_ref was observed. The high R² value and low RMSE and MBE values
indicate a better fit compared with the MLR and SVR models. Additionally, the Xgboost
model stands out for its combination of both speed and accuracy, which is a significant
advantage.

Table 3. Detailed cross-validation results.

Cross-Validation (Years)
MLR SVR Xgboost

RMSE R2 MBE RMSE R2 MBE RMSE R2 MBE

2016 1.3878 0.9500 0.3740 1.2213 0.9690 0.2622 0.8411 0.9877 0.0240
2017 1.3542 0.9584 −0.1944 1.2456 0.9654 −0.2187 0.8232 0.9874 −0.0123
2018 1.2935 0.9670 −0.0129 1.1828 0.9733 −0.0112 0.7891 0.9870 −0.0116
2019 1.3310 0.9654 0.1079 1.2174 0.9696 0.1109 0.8260 0.9872 −0.0031
2020 1.3234 0.9660 −0.2734 1.1789 0.9750 −0.1608 0.8139 0.9871 −0.0104

Mean 1.34 0.97 0.002 1.21 0.97 −0.004 0.83 0.99 −0.003

3.2. Ta_5_corr Downscaling

In this section, we present the results of our study on downscaling the 9 km ERA5-
Land’s Ta_5 using three different scenarios. As a reminder, the three scenarios explored
are our own method, the machine-learning-based method, and a comparison with classic
downscaling approaches, the MicroMet model, as well as the often used constant ELR
method (ELR_cst). As previously stated, the machine learning method was used to correct
the Ta_5 values, and new values for ELR were calculated from the corrected Ta_5_corr
values. These ELR_corr values are then used for the downscaling of the latter temperature.
The results of each scenario are discussed in detail, and the comparison between them is
highlighted.

Figure 9 highlights improvements made on ELR_corr estimations posterior to Ta_5
correction. The first subplot is a scatterplot of the ELR issued from noncorrected Ta_5
against the measured ELR_st from AWSs. The second subplot is a scatterplot of the
machine-learning-based corrected ELR_corr against the measured ELR_st from AWSs (we
are only showcasing the ELR_corr based on Ta_5_corr corrections made using Xgboost
model, as it had the most favorable outcome).

Figure 9. Comparison of noncorrected and corrected Ta_5 resulting ELRs.
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The scatterplots show that there is a significant improvement in the agreement with
the measured ELR_st when using the machine-learning-based approach ELR_corr. The R²
value for the ELR_corr is 0.78, which is significantly higher than the R² value of 0.41 for
the noncorrected ELR_E5. This indicates that the ELR_corr model has a better ability to
accurately predict the measured ELR_st values from the AWSs. The constant ELR_cst and
Micromet models’ monthly values (ELR_month) were not compared, as we would only
obtain horizontal lines, given the fact that they are constant and the measured value ELR_st
exhibits huge spatial temporal variability.

The results presented in Figure 10 show the performance of the three followed ap-
proaches for downscaling temperatures at 30 m resolution. The scatterplots compare the
downscaled temperatures from each approach with the measured validation temperatures
(Ta_st) from the four AWSs, Imeskerbour, Aremd, Neltner, and Oukaimden. The AWSs are
displayed in columns, while the rows indicate the approach followed.

Figure 10. Performance evaluation of machine-learning-based ERA5-Land’s temperature downscal-
ing against traditional Methods using In Situ measurements.
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The first approach, using ELR_cst, the constant elevation-based lapse rate, and Ta_5,
the original ERA5-Land’s temperature data, performed poorly, as expected, yielding an
RMSE of 3.11 ◦C, a coefficient of determination R² of 0.81, and an MBE of −0.55 ◦C. Using
the MicroMet model, the second approach did not improve the predictions either, although
it outperformed the constant lapse rate model, with overall performance estimates of
2.71 ◦C, 0.85, and −0.40 ◦C for RMSE, R², and MBE, respectively.

The new machine-learning-based approach, which corrects Ta_5 temperature and lapse
rate data prior to downscaling (Ta_5_corr and ELR_corr), showed a satisfying improvement
in the match between the downscaled and measured temperatures. The intercomparison of
the three machine learning models (Xgboost, SVR, and MLR) revealed that the Xgboost
model had the best performance, with an RMSE of 1.61 ◦C, an R² of 0.97, and an MBE of
0 ◦C. The SVR model had a slightly worse performance with an RMSE of 1.75 ◦C, an R² of
0.96, and an MBE of 0 ◦C, but it took significantly more time to compute. The MLR model
had the lowest performance, with RMSE = 1.8 ◦C, R² = 0.96, and MBE = 0 ◦C, but it still
presents a satisfying improvement compared with constant elevation-based lapse rate and
MicroMet models. The next table (Table 4) provides further details on the downscaling
performance metrics by station and approach. The table shows that, overall, the constant
lapse rate elevation-based approach and the MicroMet model present consistent RMSE for
all the stations, however, the MBEs differ. These differences in relation to the measurements
can be considered quite important, especially if the downscaled product is intended to be
used as input for fine-scale models.

Table 4. Downscaling performance metrics by station and approach.

AWS
RMSE R2 MBE

Cst
ELR MicroMet ML Models Cst

ELR MicroMet ML Models Cst
ELR MicroMet ML Models

MLR SVR Xgboost MLR SVR Xgboost MLR SVR Xgboost

Imskerbour 2.45 2.71 1.82 1.86 1.75 0.90 0.88 0.95 0.94 0.95 −0.43 0.28 0.34 0.42 0.34
Aremd 3.09 2.47 2.05 1.95 1.77 0.84 0.9 0.93 0.94 0.95 −2.14 −0.70 −0.50 −0.45 −0.49
Neltner 3.29 3.00 1.61 1.55 1.41 0.76 0.81 0.94 0.95 0.95 −0.49 −0.67 0.10 0.02 0.08

Oukaimden 3.47 2.67 1.68 1.62 1.47 0.75 0.82 0.94 0.94 0.95 0.86 −0.54 0.10 0.00 0.08

On the other hand, it is noted that all metrics are improved for all stations when using
machine learning approaches. Additionally, it can be observed that the metrics for higher
elevations (Oukaimden and Neltner) are better than those in lower elevations (Imskerbour
and Aremd). This could be explained by several factors, such as the larger differences
in temperature between the high and low elevations, or a better alignment to regression
lines, and hence better corrected Ta_5_corr values. It could also be due to the fact that the
machine learning models are able to capture the complex interactions between temperature
and the ERA5-Land grid’s elevation in these regions more effectively.

In conclusion, the results of this study indicate that the present machine-learning-based
downscaling technique has great potential for disaggregating ERA5-Land Ta_5 coarse 9 km
resolution to the DEM’s 30 meter resolution, particularly in harsh and difficult-to-access
mountainous regions. The use of machine learning models improved the performance
of the downscaling process and the match between predicted and measured Ta. This
approach outperforms the traditional constant elevation-based lapse rate and MicroMet
model. Additionally, the Xgboost model was found to be the best option for reproducing
this methodological approach, as it performed better and faster than the other two models
(MLR and SVR).

The illustration presented in the next figure (Figure 11) depicts an example of mapping
across the study region and summarizes the strategy followed to create a high-resolution
downscaled air temperature based on 9 km ERA5-Land’s Ta_5 maps once the models
are calibrated.
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Figure 11. High-resolution temperature mapping of mountainous regions using machine-learning-
based downscaling of ERA5-Land’s T2m data. Example showing Xgboost in action across the Rheraya
basin on 10 October 2021, at 11 a.m., after the initial calibration of the model.

4. Discussion

The correction of ERA5-Land Ta_5 data through the application of machine learning
techniques resulted in an enhanced spatial distribution of downscaled Ta estimates. The
improvement was demonstrated through comparison with two classical downscaling
methods: the annual average and the MicroMet model. To summarize, the process began
with the creation of Ta_5_ref temperatures calculated for each ERA5-Land grid point’s
elevation to match the observed local temperature–elevation relationship. In simpler
terms, Ta_5_ref is a 9 km adjusted version of the ERA5-Land Ta_5 and a more accurate
representation of the actual measurements of Ta_st and ELR_st. Hence, Ta_5_ref served as
the desired outcome for the correction of Ta_5.

The gap between Ta_5 and Ta_5_ref values was filled through machine learning.
Three different machine learning techniques, MLR (simple), SVR (relatively complex), and
Xgboost (recent), were selected to make the prediction of Ta_5_ref. A correlation analysis
was performed to determine the input variables that could be correlated with Ta_5_ref.
These candidate input variables were all derived from the ERA5-Land data, meaning that
once the models were calibrated, the Ta_5 temperature was corrected using its own data
to align with the observed local temperature–elevation relationship before downscaling.
The results of the correlation analysis show that the set of input variables is includes in
addition to hourly Ta_5: hourly ELR_E5, the mean and standard deviation of daily Ta_5,
and the elevation of the ERA5-Land grid points. The predicted/corrected values at 9 km
spatial resolution, referred to as Ta_5_corr, were validated against Ta_5_ref and showed
significant improvement. The original gap between Ta_5 and Ta_5_ref was quantified
as having an RMSE of 2.51 ◦C, an R² of 0.88, and an MBE of −0.48 ◦C. The MLR-based
model showed a correction with an RMSE of 1.34 ◦C, an R² of 0.97, and a near-zero MBE.
The best fit SVR model had an RMSE of 1.20 ◦C, an R² of 0.97, and an MBE of 0 ◦C. The
Xgboost model performed even better, with an RMSE of 0.83 ◦C, an R² of 0.99, and an
MBE of 0 ◦C, surpassing the results from the SVR and MLR models. The Ta_5_corr values
at 9 km spatial resolution, more aligned with local measurements than the original Ta_5,
were then used to calculate ELR_corr values. The resulting ELR_corr values were plotted
against measurements and showed an R² of 0.78 and an RMSE of 0.001 ◦C/km. The final
product, the disaggregated Ta_5_disagg, was obtained by using Ta_5_corr and ELR_corr in
conjunction with a 30 m DEM.

The downscaling results show a satisfying improvement in the match between down-
scaled Ta_5_disagg and measured Ta_st. The intercomparison of the three machine learning
models (Xgboost, SVR, and MLR) revealed that the Xgboost model had the best perfor-
mance, with an RMSE of 1.61 ◦C, an R² of 0.97, and an MBE of 0 ◦C. The SVR model had a
slightly worse performance with an RMSE of 1.75 ◦C, an R² of 0.96, and an MBE of 0 ◦C, but
it took significantly more time to compute. The MLR model had the lowest performance
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with RMSE = 1.8 ◦C, R² = 0.96, and MBE = 0 ◦C, but it still presents a satisfying improve-
ment compared with the constant elevation-based lapse rate and MicroMet models. These
differences in relation to the measurements can be considered quite important, especially if
the downscaled product is intended to be used as input for fine-scale models.

The limitation of this method is that it needs a starting point, i.e., the machine learning
models must be first calibrated accordingly to the reference temperature Ta_5_ref that
is calculated through in situ measurements and ERA5-Land grid point elevations. The
primary benefit, however, is that this is one of the few works that successfully downscales
ERA5-Land Ta_5 to an hourly timestep, is applicable throughout all seasons, and captures
both diurnal and regional temperature fluctuations. Moreover, once the models are cali-
brated over a specific area, they can be used independently of any knowledge of in situ
measurements; as was previously mentioned, the inputs consist solely of ERA5-Land Ta_5
and its derived products (hourly ELR, daily mean, and standard deviation), in addition to
ERA5-Land grid point elevations.

5. Conclusions

The ERA5-Land Ta_5 data were improved through the use of machine learning tech-
niques in downscaling. The correction process started with the creation of Ta_5_ref, which is
a 9 km adjusted version of the ERA5-Land Ta_5, better representing the actual temperature
measurements. The gap between Ta_5 and Ta_5_ref was filled through machine learning
using three models: MLR, SVR, and Xgboost. The results show that the Xgboost model
performed the best, surpassing the SVR and MLR models. The downscaled product showed
significant improvement compared with the one obtained through classic downscaling
approachs (constant ELR and MicroMet model). The primary benefit of this method is that
it can accurately downscale to an hourly timestep, is applicable throughout all seasons,
and captures diurnal and regional temperature fluctuations. However, the models must be
calibrated for a specific area before use. Overall, this method presents a promising solution
for improving the accuracy of temperature data downscaling and can be used for other
climate studies.

In perspective, assessment of the added value of this novel machine-learning-based
method for hydrological applications is considered (e.g., reference evapotranspiration over
mountains). Another avenue would be the extension of the use of machine learning models
to downscale other meteorological variables (e.g., wind speed and relative humidity, etc.).
Finally, although the time window would be more restrained, we can also consider the use
of machine-learning-based methods on ERA5-Land’s Land Surface Temperature (LST) to
reproduce high-resolution satellite products such as the thermal-based Landsat-8 LST.
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Abbreviations and symbols
The following abbreviations are used in this manuscript:

ELR Environmental Lapse Rate
DEM Digital Elevation Model
AWS Automatic Weather Station
MLR Multiple Linear Regression
SVR Support Vector Regression
Xgboost Extreme Gradient Boosting
Ta Air temperature
Ta_5 ERA5-Land’s air temperature
Ta_st Mesaured air temperature
Ta_5_ref Reference air temperature based on ERA5-Land’s grid points elevation
Ta_5_corr Machine learning based corrected ERA5-Land’s air temperature
ELR_cst Constant ELR of a value of −6.5 ◦C/km
ELR_E5 Corresponding ERA5-Land ELR
ELR_st Measured ELR
ELR_corr Corrected ELR based on ERA5-Land corrected air temperature
Ta_disagg_cst Downscaled ERA5-Land air temperaure based on constant ELR
Ta_disagg_MM Downscaled ERA5-Land air temperaure based on MicorMet model
Ta_disagg_ML Downscaled ERA5-Land air temperaure based on Machine learning models
MBE Mean Bias Error
RMSE Root Mean Squared Error
PCC Pearson Correlation Coefficient
E5 ERA5-Land grid point elevation
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