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Abstract
Purpose The swift expansion of the BW.1 SARS-CoV-2 variant coincided with a rapid increase of COVID-19 cases occur-
ring in Southeast Mexico in October, 2022, which marked the start of Mexico’s sixth epidemiological wave. In Yucatan, up 
to 92% (58 of 73) of weekly sequenced genomes between epidemiological week 42 and 47 were identified as either BW.1 
or its descendant, BW.1.1 in the region, during the last trimester of 2022. In the current study, a comprehensive genomic 
comparison was carried out to characterize the evolutionary history of the BW lineage, identifying its origins and its most 
important mutations.
Methods An alignment of all the genomes of the BW lineage and its parental BA.5.6.2 variant was carried out to identify 
their mutations. A phylogenetic and ancestral sequence reconstruction analysis with geographical inference, as well as a 
longitudinal analysis of point mutations, were performed to trace back their origin and contrast them with key RBD muta-
tions in variant BQ.1, one of the fastest-growing lineages to date.
Results Our ancestral reconstruction analysis portrayed Mexico as the most probable origin of the BW.1 and BW.1.1 vari-
ants. Two synonymous substitutions, T7666C and C14599T, support their Mexican origin, whereas other two mutations 
are specific to BW.1: S:N460K and ORF1a:V627I. Two additional substitutions and a deletion are found in its descending 
subvariant, BW.1.1. Mutations found in the receptor binding domain, S:K444T, S:L452R, S:N460K, and S:F486V in BW.1 
have been reported to be relevant for immune escape and are also key mutations in the BQ.1 lineage.
Conclusions BW.1 appears to have arisen in the Yucatan Peninsula in Southeast Mexico sometime around July 2022 during 
the fifth COVID-19 wave. Its rapid growth may be in part explained by the relevant escape mutations also found in BQ.1.
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Introduction

As the COVID-19 pandemic approached its third year, 
most countries had undergone major changes in their fight 
against its etiological agent, coronavirus SARS-CoV-2 [1]. 
Stringent health care regulations had shifted to a reactive, 
rather than preemptive, set of measures, whilst major gov-
ernmental surveillance efforts gave way to self-testing and 
restrictions were lifted. Consequently, as 2023 drew near, 
an unprecedented variability of Omicron-only subvariants 
dominated an ever-shifting global landscape [2, 3], which 
highlighted the utmost importance that genomic surveil-
lance had played. The evolution of the SARS-CoV-2 
genome has been described for more than three years 
by an unprecedented global genomic surveillance effort 
(14,941,263 sequences have been deposited into GISAID 
[4] by February 15, 2023). This worldwide cooperation 
towards open data has allowed scientists from all coun-
tries to contribute towards the characterization of major 
evolutionary paths that the virus has transited in response 
to natural and vaccine-acquired immunity [5]. Here, we 
present BW.1 (an alias for BA.5.6.2.1), an Omicron sub-
variant descending from the BA.5.6.2 lineage, that may 
have arisen in Mexico in early July and rapidly became 
dominant in the Yucatan Peninsula (Southeast) in Octo-
ber (Fig. 1), and its descendant, BW.1.1, which spread 
in late September and by late November had a similar 
prevalence to BW.1. The BW.1 variant carries significant 
immune escape mutations that are shared with those found 
in the BQ.1 variant, belonging to one of the most rapidly 
spreading lineages described to date (namely, mutations 
S:K444T, S:L452R, S:N460K, and S:F486V). Instead, 
BW.1.1 variant has the mutation S:F486A.

Surveillance in Mexico

Within Latin America, Mexico has been one of the coun-
tries that have sequenced the most SARS-CoV-2 genomes 
(85,329 as of the time of writing), second only to Brazil 
(217,501). This has been in part thanks to an unprece-
dented collaborative sequencing effort carried out by the 
government (INMEGEN, InDRE) and multiple academic 
institutions (CoViGen-Mex). The resulting sequences have 
enabled the study of the variant turnover in the country 
throughout the three years of the pandemic [6, 7]. As 
pointed out in previous studies [8, 9], the Yucatan Penin-
sula (States of Campeche, Quintana Roo, and Yucatan) is 
one of the primary entry points for SARS-CoV-2 variants 
in Mexico due to its large influx of tourists and commer-
cial activities in the areas surrounding Merida and Can-
cun. During late 2022, the Yucatan Peninsula underwent a 

period of high SARS-CoV-2 transmission, which may have 
probably been driven by the BW lineage (Supplementary 
Fig. 1), most prominently in the state of Yucatan. Coin-
cidentally, starting in October 2022, the state registered 
a rapid increase in cases that foreshadowed the onset of 
a new epidemiological surge in the region (Fig. 1a) [10]. 
Other States in the country soon followed, and the BQ 
lineage became dominant in most areas except the Yucatan 
Peninsula (SE in Supplementary Fig. 1), possibly because 
the BW lineage had already occupied this niche. The 
positivity rate (the incidence of positive cases among all 
cases) in the state of Yucatan is presented in Fig. 1a as an 
additional estimator of active transmission, as confirmed 
cases dwindled after the previous wave. During the same 
period, as shown in Fig. 1b, the BW.1 variant managed to 
outcompete every other variant in the region, including its 
parental variant BA.5.6.2. An important limitation of the 
current study is that it encompasses an inter-wave period, 
which had the historically lowest number of total cases, 
resulting in a restricted number of available genomes, 
which impacts prevalence calculations. This pattern was 
observed both in Mexico and throughout the world.
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Fig. 1  Epidemiological and genomic data in the State of Yucatan 
from May 22 to November 26, 2022. a Daily averages of confirmed 
cases (green solid line), positivity rate (dashed blue line), and total 
available genomes (dashed magenta line). Each line is presented with 
its own color coded y-axis. b Variant prevalence of SARS-CoV-2 var-
iants. Variants accounting for less than 1% are collated into “Other 
Omicron”
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Origins of the BW lineage

From a genomic perspective, all BA.5.6.2 sequences col-
lected in Mexico bear two major differences from those 
from the rest of the world that match those in lineage BW: 
the addition of transition C14599T (ORF1b:L378L, present 
in all Mexican [M] BA.5.6.2 genomes but only in 3.06% 
in the rest of the world [W]) and the absence of transition 
T7666C (ORF1a:D2467D: M:0%, W:85.45%), as seen in 
Fig. 2. Most genomic sequences of BW.1 in the world differ 
from their parental BA.5.6.2 by two point mutations: tran-
sition G2144A (ORF1a:V627I) and transversion T22942G 
(S:N460K). By January, 2023, a subset of BW.1 sequences 
were reclassified as BW.1.1, which differs from their paren-
tal BW.1 variant in three additional changes: transition 
T23019C (S:F486A), synonymous transition G29044A 
(ORF9:K257K), and deletion TAT21992–- (S:Y144del), 
all of which were found in > 90% of all BW.1.1 genomes 
worldwide. Most importantly, S:Y144del was detected in 
77.68% of BW.1 genomes from Mexico but only 47.81% in 
those from other countries. A detailed map of all the relevant 
mutations throughout time can be found in Supplementary 
Fig. 2.

The estimated relative growth advantage per week of 
BW.1 over BA.5.6.2 was 40% (95% CI 36–47%) for the 
study period. Similarly, BW.1.1 has an advantage of 28% 
(95% CI 16–41%) over BW.1 for the same period.

To investigate the evolutionary history of the BW line-
age, a reconstruction of ancestral sequences (full phylog-
eny shown in Supplementary Fig. 3), and a reconstruction 
of ancestral regions were carried out to investigate the 

geographical origin of this lineage (Fig. 3). These analyses 
fully supported the hypothesis that BW.1 was originated in 
Mexico (> 0.99 marginal probability) during the fifth epi-
demiological wave (June to September 2022), as it derived 
from BA.5.6.2 viruses circulating in the state of Yucatan 
bearing substitution C14599T (marked with number 1 in 
Fig. 3). BW.1-specific mutations, S:F486A and S:N460K, 
were acquired subsequently (numbers 2 and 3, respec-
tively in Fig. 3) and all BW.1 sequences are then placed in 
a monophyletic clade. The BW.1.1 subclade may have also 
originated in Mexico (> 0.99 probability), derived from the 
acquisition of the three additional changes described before 
(number 4 in Fig. 3).

The BW lineage was most prevalent in Mexico

By November 5, 2022, nearly one month after the onset of 
the sixth wave in the Yucatan Peninsula, 134 out of 161 
(83.22%) reported BW.1 genomes in GISAID had originated 
from Mexico (Supplementary Fig. 4) [4]. By November 
26, 2022, BW.1 may have already been exported (274 of 
386 genomes from Mexico, the rest distributed among 18 
countries). Additionally, the earliest BW.1 sequences were 
collected in Mexico during epidemiological week 31 (early 
August) (Supplementary Fig. 4). In contrast, the earliest 
samples from the rest of the world were collected between 
weeks 37 and 39 (September in the Netherlands and the UK, 
respectively). In Mexico, most samples of BW.1’s paren-
tal variant, BA.5.6.2, were collected in the state of Yucatan 
(83.33% [n = 20]; Fig. 1). Additionally, in Mexico, the first 
gradual increase of BW.1.1 was observed beginning in week 
38 (late September; Supplementary Fig. 4). In the rest of the 
world, this occurred in week 41 (early October).

Important mutations found in lineage BW

Interestingly, the Yucatan Peninsula was the only region in 
Mexico where variants from the BQ lineage (derived from 
Omicron BA.5.3) failed to reach a clear dominance dur-
ing the sixth wave (Supplementary Fig. 1). This is likely 
due to the fact that BW variants had already spread in this 
region and cases peaked weeks earlier [10]. In the State of 
Yucatan, the BW lineage was most likely responsible for the 
early onset of the sixth wave, whereas in other parts of the 
country, cases increased later and were dominated by BQ 
lineages. The BW lineage descends from Omicron lineage 
BA.5.6 and shares some mutations with BQ.x variants as 
they both descend from the BA.5 lineage (Fig. 2). From this 
parental lineage, BQ and BW inherited over 54 changes, 
including key mutations S:L452R (known to confer spike 
stability, viral fusogenicity, and increased infectivity [11]) 
and S:F486V (shown to decrease the effectivity of multiple 
monoclonal antibodies [12]), in the receptor binding domain 

Fig. 2  Prevalence of mutations acquired by BW variants and 
BA.5.6.2 and comparison with BQ.1. World sequences exclude Mex-
ico. BQ.1 sequences include all available sequences from that variant



 R. García-López et al.

1 3

(RBD) of the spike protein (S), a crucial region for antibody 
recognition [13].

Since the second half of 2022, immune selection has 
seemingly become one of the major driving forces behind 
the fixation of additional key genomic mutations through 
parallel and convergent evolution, particularly of those in the 
RBD. Due to the pressure of the incremental immunity in the 
population, both the BQ.1 and BW.1 variants have indepen-
dently fixed two additional key RBD mutations: S:K444T 
and S:N460K (arising from different nucleotide changes). 
It has been reported that mutation S:K444T enhances viral 
resistance to bebtelovimab and P2G3 in Delta and hinders 
antibody recognition in Omicron BA.4 subvariants [14], 
as well as neutralization resistance, and evasion of Class 
3 antibody recognition in BQ.1 and BQ.1.1 [15]. Muta-
tion S:N460K, has been suggested as a driver for enhanced 
fusogenicity [15], syncytia formation, enhancement of S 
processing in S1 and S2 subunits on BA.4 and BA.5 Omi-
cron variants, as well as enhanced neutralization resistance 
with subvariants BQ.1, BQ.1.1, BA.2 and BA.2.75 [15, 16]. 

Immune escape has been shown to be more efficient when-
ever S:K444T and S:N460K co-occur, as in BQ.1 and BW.1, 
impairing the effectiveness of monoclonal antibodies Evush-
eld [3] and bebtelovimab [14].

Of note, other phylogenetically distant lineages have also 
independently acquired these two mutations, such as the 
highly transmissible recombinant XBB, which is derived 
from BA.2.75.3 and BA.2.10.1 variants, whose genomes 
include the mutation S:N460K. Similarly, multiple phylo-
genetically distant subvariants of the BA.2 (such as BR.4 
and CH.1), BA.4 (BA.4.6.3, CS.1), and BA.5 (CK.1, DB.1) 
clades have acquired different substitutions, resulting in vari-
ations in the S:K444 amino acid (in the case of BA.5.6.2 and 
descendants, S:K444T). Ultimately, predicting the dynamics 
of future outbreaks remains nearly impossible as it depends 
on very specific regional conditions. However, genomic sur-
veillance allows for preemptively tracking important muta-
tions which may contribute towards enhanced viral pheno-
types that might pose an actual threat to human health, as 
the current study suggests for BW.1.

Fig. 3  Phylogenetic reconstruction of BW linage and BA.5.6.2 
genomes collected in Mexico and the rest of the world with ances-
tral sequence reconstruction and coloured according to the maximum 
likelihood estimation of ancestral country of origin. The figure shows 
a subtree from the complete reconstruction, clipped at a node defined 
by mutation C8605T (midpoint root), a key mutation in BA.5.6.2 and 
descendants. Each bullet represents a genome and each color a vari-
ant. The outer circle indicates the assigned lineage for each sequence 

and matches variant color. The inner circle shows the sampling loca-
tion of each virus. Branches are coloured according to the country of 
origin with the highest likelihood (> 0.99) for ancestral states. North 
America stands for Canada and Puerto Rico. Mexico includes other 
states besides Yucatan. The zoom on the right shows the mutational 
events associated with each ancestral state of the BW lineage. Num-
bers 1–3 show BW.1 key mutations. Number 4 shows three key muta-
tions in BW.1.1
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Conclusions

The coordinated effort on Mexican genomic surveillance 
of SARS-CoV-2 has identified and characterized vari-
ants in the BW lineage bearing four prominent RBD key 
mutations S:L452R, S:F486V, S:K444T, and S:N460K. 
These are the same mutations that provide BQ.1 and its 
descendants with enhanced infectious and immune eva-
sion capabilities. BW.1 appears to have originated from 
Mexican BA.5.6.2 variants in Yucatan (a buoyant inter-
national tourist destination), as these parental variants 
had already diverged from BA.5.6.2 variants in the rest of 
the world and inherited their genomic composition verti-
cally to BW.1 and BW.1.1. The incorporation of mutations 
S:N460K and ORF1a:V627I kickstarted BW.1 into a dis-
tinct clade, which has since been detected in other coun-
tries but has not become widespread. In Mexico, BW.1 
emerged during the previous epidemiological surge and 
has since become a major player in the Yucatan Penin-
sula, where BW.1 and BW.1.1 cases may have dominated 
during the sixth wave. BQ variants, which predominated 
elsewhere in Mexico, failed to spread in this region, pos-
sibly because they share a similar set of mutations and 
cannot outcompete one another. Future studies will tell if 
the advance of both lineages might be halted by the arrival 
of variants in the XBB lineage that have become the major 
driving force of the pandemic in early 2023.

Methods

Data collection and sequence alignments

From the period spanning weeks 21 to 47 (May to Novem-
ber 2022), all SARS-CoV-2 genomes from variants BQ.1 
(12,367), BA.5.6.2 (1,101), BW.1 (388), and BW.1.1 
(308) available on February 15, 2023 were downloaded 
with their associated metadata from GISAID [4], includ-
ing lineage information based on PANGO v.4.2.0[17]. 
The ending day was selected as there was a large gap 
in genome sequencing in Yucatan starting in Decem-
ber. Nucleotide contents were analyzed in the 14,164 
genomes, and those containing 10% or more ambiguous 
sequences (Ns) were removed from the study. Sequences 
from samples with no identifiable collection date were 
also ignored. Filtered sequences (BA.5.6.2 = 1,077, 
BQ.1 = 12,118, BW.1 = 386, and BW.1.1 = 301) were then 
aligned with Nextclade’s Nextalign default procedure (part 
of the Nextstrain pipeline) v2.11.0 and v.2.3.0 [18] using 
Wuhan-Hu-1 (NC_045512.2) as the reference genome, and 
BQ.1 variants were extracted from the alignment. Next, 

UShER v.0.6.2 [19] was used to retrieve relevant refer-
ence sequences (~ 2000 sequences were selected out of 
14,028,940 on February, 17), and these were downloaded 
from NCBI and GISAID on the same date and appended to 
our dataset (a full list of IDs is reported in Supplementary 
Table 1). These were aligned again using Nextclade’s Nex-
talign with default parameters and a maximum parsimony 
reconstruction was carried out, using iqtree v2.1.2 [20] 
with the GTR + R4 + F evolutionary model. The resulting 
tree was used for an ancestral state reconstruction with 
TreeTime v0.9.5 [21] by parsimony, using default param-
eters (the resulting tree is shown as Supplementary Fig. 3), 
and then clipped at a node defined by mutation C8605T 
(midpoint root). Metadata on the sampling location were 
used to determine the putative origin of the BW.1 clade 
with a maximum likelihood ancestral region reconstruc-
tion made with PastML v1.9.34 [22] using the Marginal 
Posterior Probabilities Approximation (MPPA) method. 
Tree visualization and edition were carried out with iTOL 
[23] (the resulting tree is included in Fig. 3).

Using the MSA, in-house R scripts (see Data Avail-
ability) were used to identify and compare mutations by 
their nucleotide position in relation to longitudinal data 
and lineage, obtaining the prevalence in each subgroup of 
genomes (weeks/lineage) using R programming language 
R.4.2.2 [24]. The mutation prevalence at each week was 
summarized in a heatmap constructed with clustermap 
(seaborn v.0.11.2 [25]; matplotlib 3.5.2 [26]) in Python 
3 [27].

The estimated relative growth advantage was calculated 
according to the calculation by Chen, et al., 2021 [28] 
from covSPECTRUM for the study period. GISAID [4] 
was used to identify prevalence of particular mutations in 
the different SARS-CoV-2 lineages.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s15010- 023- 02034-7.
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