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Abstract – This study introduces the concept of portfolios of distribution maps, which consist of the
reduced set of empirical orthogonal maps that best explain spatial biomass distributions of a given species
over time. The approach is demonstrated for the distributions of common octopus (Octupus vulgaris) off
Mauritania over the last thirty years. The maps in the portfolio are the subset of empirical orthogonal maps
that allowed to recover 60% of the spatiotemporal biomass distribution variance and whose temporal
weights were significantly correlated with abundance. For octopus during the hot season, one single map
explained half of the overall variance of the distribution data, while during the cold season, the portfolio of
octopus distribution maps consisted of four maps, with the temporal weights of the second map being
negatively correlated with upwelling intensity six months before. The size of each portfolio represents the
number of distinct spatial patterns describing octopus spatial distributions. Assuming that specific but
hidden processes explain each biomass spatial distribution of the portfolio, the size of a map portfolio might
be interpreted as a proxy for system resilience. A small portfolio could reflect systems that are more fragile.
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1 Introduction

Ecological monitoring and information systems are
increasing worldwide. They are key to providing long-term
observations, which are particularly important for reference
point determination and investigating tipping points and
regime shifts. Aside from their maintenance, one of the main
challenges associated with these monitoring systems is how to
extract scientific knowledge. For example, how to detect
spatial patterns that are persistent in time from large sets of
georeferenced observations and how to evaluate their temporal
stability in conjunction with abundance variability.

This study aimed to develop a generic approach for
summarizing the overall spatiotemporal information of a long
time series of spatial distributions into a portfolio of
distribution maps with two elements, one time-dependent
and the other, possibly low dimensional, space-dependent. The
approach is based on min-max autocorrelation factors (MAF)
(Switzer and Green, 1984) that can be seen as an extension of
empirical orthogonal functions (EOFs, Lorenz, 1956; Wikle
et al., 2019) to deal with the presence of spatial structure in the
data. MAF have been widely applied in ecology (e.g. Petitgas
et al., 2020; Solow, 1994;Woillez et al., 2009). However, MAF
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were initially designed to filter out small-scale noise from a set
of images. The percentage of variance explained by the
selected factors is thus unknown. A recent paper by Bez et al.
(2022) suggested that MAF can be appropriately reformulated
into Empirical Orthogonal Maps (EOMs) that order the factors
according to the percentage of variance explained. The aim of
the study by Bez et al. (2022) was to identify the main spatial
patterns that shape the dynamics of a stock. The present work
defines how the EOMs are formulated and selected to construct
a portfolio of maps consisting of a set of maps describing the
main spatial patterns governing the biomass distribution of a
species. It then investigates the mutual temporal fluctuations of
the elements of the portfolio.

The ideas developed in this paper are illustrated for
common octopus (Octopus vulgaris) off Mauritania over
the past thirty years. Octopus represents a key species of
the Mauritanian marine ecosystem both in ecological terms
(Boyle & Boletzky, 1996; Caddy, 1983) and in economic
terms. It accounts for more than 70% of cephalopod landings
and one third of demersal catches (Khallahi et al., 2020). In
2019, octopus generated 71% of total export value ($360
million) of fishery products (Société Mauritanienne de
Commercialisation Des Poissons “SMCP”, 2020).

Thecurrentmanagement andconservationofoctopus is based
on biological and ecological knowledge, in particular its short
lifespan of 12–14 months (Guerra, 1979; Hernández-López
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Fig. 1. (a) Spatial distribution of sampling stations during the study period. PNBA=Parc National du Banc d’Arguin. The three latitudinal strata
(North, 20°36N�19°15N; Central, 19°15N�17°45N; and South, 17°45N�16°03N) are represented by dashed lines. (b) Timing of the surveys
(month) for each of the hot and cold seasons. The mean and coefficient of variation of the timing of the surveys by season are given in blue.
(c) Number of surveys per year.
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et al., 2001; Mangold and von Boletzky, 1973), its rapid growth
(Domain et al., 2000; Mangold, 1983; Sanchez et al., 1998), its
high fecundity of 100,000 and500,000 eggs laid by female (O’dor
et al., 1978) and its sedentary lifestyle (Hatanaka, 1979;
Caverivière et al., 1999). Octopus reproduce only once; males
die after mating and females after hatching of offsprings.
Therefore, it is essential to ensure a sufficient proportion of the
stock has the chance to reproduce to ensure stock renewal. The
sedentary nature of the species implies the need for spatialized
management to limit the effects local depletionbyfishing and thus
creates the need for a good knowledge of its spatiotemporal
distribution. InMauritanian waters, two biological rest periods of
1–2 months each have been implemented each year for all
demersal fisheries since 2008. These two rest periods reflect the
existence of two annual octopus cohorts with distinct spawning
seasons (Hatanaka, 1979; Bez et al., 2022). The variability in
abundance of this species is mainly a consequence of
recruitment fluctuations that are partly dependent on environ-
mental conditions, especially the intensity of upwelling
(Caverivière et al., 1999; Otero et al., 2008) and on the two
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spawning periods taking place under distinct environmental
conditions (Faure et al., 2008).

Since 1982, a dedicated monitoring system has been
developed to support scientific advice to octopus management
bodies (Gascuel et al., 2007). It is based on regular scientific
surveys with standardized sampling protocols providing
information on octopus spatial distributions through time.
Using these data, persistent spatial patterns or tipping points of
change in spatial distribution can then be tracked. In this study,
the portfolio of octopus distribution maps in Mauritanian
waters was characterized using data from 63 scientific surveys
covering the period 1987– 2019. The size of the portfolio is
discussed as a potential proxy for ecosystem resilience.

2 Materials and methods

2.1 Scientific monitoring surveys

Between 1987 and 2019, the Mauritanian Institute of
Oceanographic Research and Fisheries (IMROP) performed
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97 scientific demersal bottom trawl surveys on the continental
shelf. However, only 63 surveys covered the entire continental
slope and were therefore kept for analysis in this study
(Fig. 1a). The sampling protocol was standardized over the
entire period and followed a stratified random protocol based
on three latitudinal strata (Fig. 1). The mean number of hauls
was 102 hauls per survey (min = 57, max = 205, but only four
exceed 121 hauls), equally distributed in each strata. The
survey area was divided into five bathymetric strata (<30m,
30–80m, 80–200m, 200–400m and 400–600m). The
sampling covered very coastal areas due to the probable
presence of coastal demersal species. The depth covered
ranged from 10m to around 600m. The area of the Banc
d’Arguin National Park (PNBA) was not covered by the
sampling because it is a marine protected area closed to
motorized fishing. The observations consisted of the octopus
densities expressed in terms of number of individuals per
square meter obtained by dividing the catches by the surface of
the area swept by the trawl. These were considered as indicator
of abundance assuming that gear catchability remained constant.
More details on these data are available in Gascuel et al. (2007),
Meissa et al. (2013) and Meissa and Gascuel (2015).

For each survey, haul positions were randomly selected and
mutually independent. The hauls were thus not performed at
the same locations each year. However, the method used in this
study required that the observations are located at the same
positions (regular or not in space) during the entire time series.
In order to fulfill this requirement, the data were kriged on a
0.1°� 0.1° grid covering the sampling area before analysis
(341 grid cells). Kriging allows estimating the mean octopus
density within each grid cell (Chilès and Delfiner, 2009,
provided that there were enough hauls in the vicinity.
Variogram models were fitted, survey by survey, to the
empirical variograms (for the sake of parsimony they are not
shown). The input data for the analyses were thus 63 kriging
maps and the corresponding abundance indices.

A time series of upwelling strength over the same period
was built from a monthly dataset of the meridian component
(North-South) of composite wind speeds over the Mauritanian
zone, 50–100 km from the coast. This proxy is considered the
best proxy linearly linked to the upwelling index for a North-
South oriented coast (Demarcq and Faure, 2000), which is the
case for the study area.

A spatialized time series of seasonal average sea surface
temperature (two maps per year, one for the hot season and
one for the cold season) on the same spatiotemporal grid as the
survey data was built from the National Oceanic and
AtmosphericAdministration (NOAA) database (NOAA, 2020).

Four climatic seasons are generally distinguished in the
Mauritanian zone (Dobrovine et al., 1991). A cold season from
January to May, a cold-warm transition season from June to
July, a hot season from August to October, and a hot-cold
transition season from November to December. For this study,
these four seasons were aggregated into two main seasons of
five and seven months respectively: a hot season from June to
October, including 28 of the 63 available surveys and a cold
season for the rest of the year (November–May), including the
remaining 35 surveys (Fig. 1). The precise timing of the
surveys within each season was opportunist rather than
following a predefined sampling protocol. The temporal
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spreading of the surveys was however of the same level in each
season (similar coefficients of variation; Fig. 1). A portfolio
of maps was considered for each season. All the calculations
were performed in R using the package RGeostats (MINES
ParisTech / ARMINES (2022)).

2.2 Setting up the portfolio

A portfolio is defined as a selection of relevant empirical
orthogonal maps (EOMs). Below the definition of EOMs is
recalled and the method to select those included in the portfolio
is explained.

2.2.1 Building EOMs

The workflow for creating empirical orthogonal maps (Bez
et al., 2022) is depicted in Figure 2. EOMs are a variation of
min-max autocorrelation factors (Switzer and Green, 1984),
where the factors are ordered according to their percentage of
contribution to the total input variance. The first EOM explains
most of the input variance, and so on down to the last EOM that
explains little of the input variance.

We denote xi, i= 1, ... , S the geographical positions of the S
grid nodes that were systematically informed (isotopy) at time
tj, j= 1, ... , T, withT being the number of input maps (S= 341,
T= 63). Input data can be formatted as an S� Tmatrix denoted
by Z=Z [i, j] = z (xi, tj) where each line in Z corresponds to the
time series of the value of a given grid cell. Computing EOMs
consists of two sequential PCAs. The first PCA, which is
nothing but an EOF based on Z, produces an S� T matrix,
denoted Y, with T uncorrelated columns y (⋅ , tj):

XS

i¼1

y xi; tj
� �

⋅y xi; tj0
� � ¼ 0 8j≠ j0: ð1Þ

In the spatio-temporal context, each column of Y is a set of
georeferenced points, i.e. a map, uncorrelated to each other.
The absence of correlation refers to pointwise correlations,
therefore, to the absence of correlation between map values for
the same geographical point.

The second PCA aims at building T new factors
Fj (xi) =F (xi, tj) , j= 1, ... , T, without mutual spatial correlation
for a given spatial distance r (the unit spatial lag corresponds to
the grid cell size of the input maps), that is, with the following
null scalar products:

XS

i¼1

F xi; tj
� �

;F xi þ r; tj0
� �� � ¼ 0 8j≠ j0: ð2Þ

This second PCA is based on the eigen-decomposition
of the matrix of variogram and cross-variogram values
between standardized EOFs from the first PCA. Finally, we
obtain a set of T new maps called empirical orthogonal maps
(EOMs) ordered by decreasing percentage of explained
variance. This realizes the decomposition of the initial
spatio-temporal variables z (xi, tj) into a product of two
elements, one element purely spatial made up of the EOMs
Fk (xi) and the other element made up of their temporal
weights ck (tj).
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Fig. 2. Workflow of the method. Upper blue block: building T different EOMs from a set of T maps. Lower orange block: selecting the P EOM
entering the portfolio. In this case, the Q-first EOMs explain a given percent of the overall variance. Amongst them, the second EOM is not
retained as its weights are not sufficiently correlated to the temporal fluctuations of abundance.
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z xi; tj
� � ¼ m tj

� �þ
XT

k¼1

ck tj
� �

⋅Fk xið Þ ð3Þ

wherem (tj) is the average abundance of the input map for time
tj. The weights measure the importance of a given EOM for
explaining the survey time series. In other words, the initial set
of maps is decomposed into a weighted linear combination of
maps without correlation at short scale (blue box in Fig. 2). At
this stage, the decomposition is performed with no loss of
information. EOMs can be computed for raw or standardized
maps. The pseudo-algorithm provided in supplementary
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material highlights the main steps for computing EOMs when
the first PCA is applied to standardized maps.

The signs of the values of the EOMs and their weights
are conventional. Therefore, the interpretation of EOMs and
their weights must be established jointly. For example, the
interpretation of an EOM whose weights are all negative in the
decomposition is strictly equivalent to its symmetrywith respect
to 0 when taking the symmetry of both the EOMand its weights.

By construction, EOMs are mutually uncorrelated for
distance 0 and distance r. Assuming that they are also
orthogonal for all distances implies that they are fully spatially
orthogonal, and that they can be considered as basis for map
decomposition. This assumption could be of concern if we
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were interpolating (i.e. kriging) several EOMs obtained from
irregular points in space. In such a case, rigorous interpolation
should be done by cokriging the different EOMs. In this study,
interpolation was done before the decomposition and we were
simply taking linear combinations of the interpolated input
maps. Thus, two contrasting situations can be considered:
“interpolate first and decompose then” (as in the present case
study) where the assumption has no consequence, and
“decompose first and interpolate then”, in which case,
co-kriging should be recommended to provide a spatially
interpolated version of the EOM.

2.2.2 Building the portfolio

The selection of EOMs for the portfolio is based on two
nested steps (dashed orange box in Fig. 2). In step one, as it is
standard practice in PCA analyses, the number of selected
EOM is set to ensure a sufficient part of the variance of the
input maps is retained. In the present work, we selected the Q
EOMs explaining at least 60% of the input variance. The 60%
threshold is arbitrary. It is a compromise between complexity
(i.e. the number of EOMs) and explained variance. In our case
study, beyond 60% the number of factors increased consider-
ably without a significant gain in explained variance.

In step two, among the Q EOMs from step 1 only those are
retained whose spatial patterns are connected to the population
dynamics of the stock, that is their temporal weights ck (tj) are
correlated with abundance. This is achieved using three
complementary criteria. The first criterion is a statistically
significant linear correlation between the EOMs’ weights and
abundance (test level 5%). The second criterion is based on a
multivariate time series analysis using auto- and cross-
correlograms to identify EOMs whose weights vary smoothly
over time (auto-correlogram of weights) and in a consistent
manner with regards to the temporal variation of abundance
(cross-correlogram between weights and abundances). For
this, a linear model of co-regionalization (Chilès and Delfiner,
2009; Goulard and Voltz, 1992) consisting of a nugget effect
and a linear part is fitted to the empirical correlograms. This
allows modeling and quantifying in a consistent manner the
random part and the temporally structured part of the
correlations. EOMs to be retained have a small random part
(small percentage of nugget effect in the respective auto-
correlograms). The third criterion is based on maximizing the
covariation in time between abundance and EOM weights.
This criterion is evaluated using the slopes of the cross-
correlograms between weights and abundance. In linear
models of co-regionalization, the (absolute) value of the slope
of the cross-correlogram must be smaller than the square root
of the product of the slopes of the two auto-correlograms
(Chilès and Delfiner, 2009). Thus, the third criterion is that
the ratio between the slope of the cross-correlograms and
this upper limit is near one. The final selected set of P EOMs
(P � Q) constitute the portfolio of maps summarizing the
spatial dynamics of the species for a given season (Fig. 2).
Note that when a portfolio is made up of several maps, their
temporal joint dynamic is accessible through the auto- and the
cross-correlograms that were used for the selection of the
EOMs entering the portfolio.
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For each of the two seasons, this methodology is used to
build portfolio for octopus and for SST separately.

2.2.3 Climatology

A climatological spatial distribution pattern can be
obtained computing weighted averages of the P maps in the
portfolio:

zP xið Þ ¼ m þXP

k¼1
ck⋅Fk xið Þ

XP

k¼1
ck

ð4Þ

where ck is the mean temporal weight of the P selected EOMs
such that:

ck ¼
1

T

XT

i¼1

ck tj
� �

; k ¼ 1; :::;P ð5Þ

and where m is the mean abundance:

m ¼ 1

T

XT

i¼1

m tj
� �

: ð6Þ

3 Results

3.1 Portfolio of distribution maps for the hot season

The hot season is the main octopus breeding period (June to
October). The first EOM alone restored 47% of the variance of
the observed abundance data (Fig. 3), and the first three EOMs
recover 60% of the initial variance. Amongst them, only the first
one was finally selected, the two others ones being not
sufficiently correlated with abundance, both statistically and
temporally (small coordinatevalues inFig. 3), andhavingpoorly
organized temporal evolutions (small feature size in Fig. 3).

The hot season’s portfolio thus consists only of the first
EOM, which is characterized by a north-south gradient, with a
high-density area in the north (especially in its wide part), a
moderately dense area in the center, and a low density area in the
south (Fig. 4, left). The temporal evolution of the weights of the
firstEOMshows threedifferent phases.There is a sharp decrease
over thefirstfiveyears followedbystability at lowlevel for about
15 years and then a slightly higher level. Most of the signal
describing the spatial distribution of octopus abundance is
represented by this pattern. This distribution pattern provides
information on spaceoccupancy of octopus during this season. It
summarizes the historically known pattern of octopus distribu-
tion with decreasing abundance from north to south. The years
where this pattern had a large weight were years of high octopus
abundance during the hot season such as the beginning of the
study period. The spatial distribution represented by this EOM is
linked to the main breeding season of the species, which takes
place at the end of the hot season (September-October). During
reproduction, octopus seems to display an affinity to milder
water temperatures, which occur to the North of the study area
(Fig. 5, left).
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Fig. 3. Criterion used to define the distribution map portfolio for octopus in Mauritanian waters for the hot (left) and the cold (right) season. The
inset panels represent the percentage of variance explained when including progressively more and more EOMs. The threshold of 60%was used
for selecting the candidate EOMs for building the portfolio. The main graph shows the position of EOMS with respect to their relationship with
octopus abundance. The x-axis corresponds to the correlation between EOMweights and abundance (the closer toþ/� 1, the better). The y-axis
represents the relative values of the slopes of the cross-correlograms between each EOM weights and abundance, with respect to the maximum
possible value (the closer toþ/� 1, the better). The size of EOF numbers is inversely proportional to the percentages of nugget effect in the auto-
correlograms of the EOMs’ weights (the larger the better). The EOMs that allow recovering 60% of the input variance are indicated in red and
connected for better visibility.
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3.2 Portfolio of distribution maps for the cold season

During the cold season the spatio-temporal complexity
and thus the size of the portfolio was larger than during the
hot season (Fig. 3, right). No single EOF spatial pattern was
found to be dominant. Indeed, the first EOM explained only
14.7% of the variance of the input distribution data, while the
first nine EOMs restored 60% of the variance. Four of these
top nine EOMs, respectively the 1st, 3th, 4th and 5th, were
linked to the spatiotemporal dynamic of the observed mean
gridded survey abundance (density). Their weights depicted
significant temporal cross correlation with mean abundance.
Together, the four finally selected EOMs to build up the
portfolio represented 35.4% of the initial spatiotemporal
variance.

The spatial pattern of the first EOM for the cold season
was similar to that of the hot season, characterized by an
overall north/south gradient with a slightly different temporal
evolution (Fig. 4, left). However, this EOM showed a denser
abundance off the northern area with a more pronounced
southward expansion of moderately dense areas. The second
EOM of the portfolio (EOM3) indicated a higher abundance
in the center with a concentration of abundance south of
Nouakchott and two lower density areas in the far south and off
the Banc d’Arguin. The EOM4 displayed across-shelf gradient
patterns, opposing low density coastal areas to denser offshore
areas, particularly in the north and center but also, to a lesser
extent, in the south. The last EOM in the portfolio (EOM5)
showed two hot spot areas in the north and center. This spatial
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pattern reinforced, in the north, the spatial pattern of the first
EOM but complemented it in the central and southern zones.

Given the criteria used for their selection, i.e. correlation
with abundance, the EOMs selected for the portfolio had
similar long-term temporal variations in their weights (Fig. 4,
right). The weights decreased at the beginning of the period,
then flattened and slightly increased during 2010–2015. This
pattern was reflected in the slope of the respective correlo-
grams (Fig. 6). However, as indicated by the (quasi systematic)
absence of nugget effects in the cross-correlograms, their
fluctuations at short temporal scales were not correlated
(Fig. 6). A noticeable exception concerned the short term
negative cross-correlation between EOM1 and EOM3. This
reflected the opposite fluctuations of the empirical time series
in the middle of the period.

The model used in this study quantified the joint temporal
dynamics of the EOMs of the portfolio and mean seasonal
abundance. It decomposed their mutual temporal correlation
into two parts: a nugget effect and a slope. The nugget effect
quantified short-term joint fluctuations (e.g. the average
variations between two consecutive cold seasons). The slope
characterized long-term (multi-annual) joint evolutions. In this
context, a change in the overall correlation can be due to either
short or long-term processes, or both. However, by construc-
tion, the EOMs of the portfolio have been selected because
they shared long-term dynamics with that of abundance. By
consequence, it remains that within the portfolio the various
levels of correlation between EOM weights and abundance
rely strongly on the short term. This was consistent with the
f 14



Fig. 4. Portfolio of octopus during the hot (left � red) and the cold (right � blue) seasons over the entire study period. Each plot is made of an
EOMwith the temporal evolution of its weights, smoothed by a loess method with a span parameter value of 0.5 and associated 95%-confidence
interval. Pie chart indicate the percentage of variance explained by the EOM (arrows represent the cumulative percentage of variance explained
by the current EOM and the previous ones and the percentage of variance explained by the portfolio). The EOMs that were not selected for the
portfolio are represented in grey.

Fig. 5. Portfolio of SST during the hot (left� red) and the cold (right� blue) seasons over the entire study period. Each plot is made of an EOM
with its weights (smoothed by nonparametric loess with a span parameter value of 0.5 and associated 95%-confidence interval) and a pie
indicating the percentage of variance explained by the EOM (arrows represent the cumulative percentage of variance explained by the current
EOM and the previous ones).
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Fig. 6. Analysis of the temporal dynamics of the principal spatial patterns (EOM 1, 3, 4, 5) and of the abundance for the cold season. Diagonal
panels: auto-correlograms; Lower triangle panels: cross-correlograms. For all panels, the x-axis represents time lags in years (from 0 to 30 years)
and the y-axis represents correlations. The horizontal black dashed line is at 1. For off diagonal panels, the horizontal dotted lines represent the
correlations. The panels of the last line concerns the cross-correlograms of EOM weights with abundance and the auto correlogram for
abundance (last panel). The horizontal red dashed lines represents the correlation between EOM weights and abundance. The linear model of
coregionalisation is represented as a continuous line (nugget effectþ slope). The isolated panel represents the correlation between abundance
and EOM weights as a function of the nugget effect in the model.
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strong correlation found between EOM’ weights and
abundance and the value of the nugget effect (Fig. 6). In
particular during the cold season, the weights of EOM3 were
the most strongly correlated to abundance of octopus
specifically because, in addition to the fact that they shared
Page 8 o
similar long-term variations, their short-term fluctuations were
also correlated. The cross-correlogram between EOM3 and
abundance was indeed proportional to the auto correlogram of
abundance (Fig. 6). This means that the residual from the
regression of the weights of EOM3 against abundance was
f 14



Fig. 7. Cold season. Time series of the abundance (black) and
temporal weights of EOM3 (red).

Fig. 8. Climatology for the cold season. This corresponds to the mean
of the EOMs selected in the portfolio weighted by their mean weights.
The scale is consistent with the input octopus densities (i.e. nb of
individual per m2).

Fig. 9. Portfolio for the cold season. Distribution of the EOMs’
weights as a function of the EOM numbers for March and December
surveys. The weights for the surveys carried out in March (N = 10) are
represented in black. The weights for surveys performed in December
(N = 10) are given in red. The average values are superimposed. For
the two instances where a December survey is followed by a March
surveys three months later, the evolutions of the weights are
represented by doted segments.
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pure noise, i.e., residuals with no temporal auto-correlation
(self-krigeability; Chilès and Delfiner, 2009). In practice, this
means that the weights of EOM3 were proportional to
abundance over time with some uncorrelated noise (Fig. 7).
The third EOM represents thus a central spatial pattern of the
Page 9 o
spatio-temporal dynamic of octopus. It explained around 7%
of the spatial distribution of octopus that is density dependent.

The climatological spatial pattern associated with the cold
season was characterized by two dense areas rather offshore
in the northern zone and coastal in the central zone (Fig. 8).
A northern zone off Cape Blanc had its epicenter located
between the bathymetric lines of 80 and 200m. A second zone
was found south of the Cap Timiris (in the middle of the central
zone) with an extension to a bathymetric level close to that of
the northern zone.

The weights of the EOMs that were part of the portfolio
were not statistically different (Student p-value = 0.008) for
surveys carried out in December and in March (Fig. 9). The
ranges of fluctuation and the mean densities appeared
smaller for December surveys. However, for the two
instances where a December survey was followed by a
March surveys the following year, the evolutions of the
weights were mixed up (increasing for EOM5, decreasing for
EOM3, one increasing and the other one decreasing for
EOM1 and EOM4).

During the cold season, the two months with the largest
number of surveys were December and March (Fig. 1b).
Although not significant, the temporal weights for EOM 1 to 5
were larger in March compared to December (Fig. 9). March
was the month used for analyzing relationships with the
upwelling intensity index. Correlations with the upwelling
index for the same month (i.e. considering EOM weights
during the months of the surveys and the upwelling indices for
the same month during the period 1987–2019) and with a time
f 14



Fig. 10. Portfolio of the cold season. Correlation between the weights of EOM3 and the upwelling index. Left: lagged correlations between
EOM3 weights in March and the upwelling index 6 months earlier. Right: boxplot of upwelling indices for all months except September and
September (i.e. 6 months before March). In red the values for the nine years when a survey was performed in March with concomitant upwelling
observations.
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lag of one to seven months before showed similar behavior
for each of the EOMs of the portfolio. The correlation
is significantly negative only for EOM3 for a 6 months delay
(5% level test; Fig. 10 left). The upwelling indices in
September belonged to the lower part of the interval of
fluctuation and corresponded to low upwelling intensity
(Balguerías et al., 2002). The eight instances available for this
study (octopus survey in March and upwelling index available
six months before) covered the full range of possible values
observed in September from 1988 to 2019. In particular, they
were not distributed in the tails and hence did not represent a
particular situation.
4 Discussion

The approach of portfolios of distribution maps proposed
in this paper relies on a set of criteria to select the empirical
orthogonal maps to be included in the portfolio. These criteria
may be case specific and it is hard to avoid subjective choices.
First, similarly to any PCA analysis, one has to choose a
threshold for the variance to be explained by the set of selected
maps. For a target value of 60% of explained variance, it can
happen, as in our case that three and nine maps can be enough
for summarizing spatial distributions of octopus in two
seasons. The aim of the study being to identify the spatial
patterns which were correlated with abundance, we then
selected those EOMs whose weights had significant temporal
cross-correlations with abundance. This resulted respectively
in one and four spatial patterns in each seasonal portfolio
explaining 47% and 35% of the overall variance observed over
the past thirty years. In other words, this analysis demonstrated
for the first time that half of the information brought by the
initial twenty-eight maps recorded between 1987 and 2019
during the hot season could be summarized by a single
distribution map whose temporal evolution increased and
decreased with octopus abundance. During the cold season, the
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situation was more complex and the variability could be less
easily reduced. Four maps madee up the portfolio for that
season and their recombination based on their respective
weights allowed recovering only a third (35%) of the initial
variance. There was thus a more clear and persistent signal for
connecting spatial pattern and stock abundance during the hot
season, and thus more possibilities for efficient spatial
planning during this season.

Despites its importance for explaining the overall variance
of the distribution maps observed during the cold season,
EOM2 was not selected for the portfolio. Its weights were too
variable over time and not sufficiently correlated with
abundance, both in the short and in the long term (Fig. 3).
In other words, EOM2 represented a spatial pattern that was
important for explaining the variance of the original set of
distributions (hence its rank in the decomposition) but without
temporal coherence and without connection to abundance.
EOM2 was symptomatic of a coastal hotspot of abundance
south of Cap Timiris (Fig. 11) that pulses at random from time
to time without contributing much to the abundance. The
portfolio of the cold season explained not more than a third of
the overall variance, which indicates that the spatial distribution
of octopus during the cold season were highly variable and
poorly linked to abundance variations.

The derived climatology aimed at representing the average
spatial distribution of octopus over the study period accounting
for the effects of abundance variations on the spatial
distribution. The two seasonal climatologies based on one
map for the hot season and on the average of four maps
weighted by their average weights for the cold season, showed
similar spatial patterns (not shown). This confirms the known
yearlong persistence of a gradient of octopus density from
north to south (Pease, 1973) whose intensity is related to
abundance (stronger in years with higher densities). However,
during the cold season, abundance tended to be more offshore
with a secondary area of distribution in the middle of the
Mauritanian EEZ. The fact that the portfolio was larger during
of 14



Fig. 11. Left: Empirical Orthogonal Map EOM2 of octopus for the cold season. This EOM was not selected for the portfolio. Right: temporal
evolution of its weights smoothed by a loess method with a span parameter value of 0.5 and associated 95%-confidence interval.
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the cold season could be linked to an affinity to optimal water
temperatures.

The spatio-temporal decomposition of the time series of
thirty-four SST maps covering the period 1986–2020 for each
season provided interesting insights on the spatial distribution
of octopus and on the two portfolios generated in the present
study. First, during the hot season, 88% of the variance of the
SST input maps was represented by a single map. During the
cold season, the signal was more blurred. Four maps were
needed to recover 67% of the variance (the first one
incorporating 38%). This difference in number of maps was
similar to the difference between the two portfolios obtained
for octopus even though the levels of variance explained by the
portfolio (48% and 35%) were notably smaller than the
percentage of variance explained by the first x EOMs of SST
(? %). Second, the main spatial patterns in both seasons was a
north-south gradient. However, the gradient did not mean the
same thing in both seasons. According to the literature, an
optimal window for octopus would likely be centered on 21 °C
(Villanueva, 1995). The observed mean SSTwas around 24 °C
and 19.5 °C during the hot and the cold seasons respectively
so that the optimal window is respectively below and above the
mean during the two seasons. Values around 21 °C corre-
sponded to negative areas in SST EOM1 for the hot season
(Fig. 5). More precisely, the SST in the northern area of EOM1
during the hot season represented an area that was�2 °C below
the seasonal average. Weighted by 1.5 in the decomposition of
the true SST distributions, this area was thus precisely where
one finds systematically SST values around 21 °C during the
hot season. There was thus a very strong match between
octopus densities and SST main spatial patterns during the hot
season. In the cold season, this gradient was complemented by
other patterns accounting for more than 10% each, that were
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consistent with the patterns observed in the octopus portfolio
(more southern, more offshore). Indeed, given the mean SST,
the optimal window, if relevant, corresponded to positive areas
in the main maps. In particular, the fourth most important
pattern presented in the cold season time series corresponded
to a clear and strong westwards cross-shelf gradient that can be
connected to a similar medium signal found in the octopus
portfolio.

The fact that the arrangement of maps in terms of the
percentage of variance explained (EOM) strongly matched
the arrangement based on the strength of their spatial
structures (MAF) is worth mentioning (Fig. 12). The situation
could be that the EOMs explaining most of the variance could
be maps without spatial structure, i.e. with hot spots
appearing here and there from EOM to EOM. This would
be the case for systems with strong spatiotemporal fluctua-
tions and poor persistence of their spatial distribution over
time. In this study, the maps explaining the most of the
variance of octopus spatial patterns are indeed also those with
the strongest spatial structures.

In an ideal situation, one would work with a regular spread
of scientific surveys over time. This was not the case in the
present study as the timing of the surveys was somewhat
opportunistic. For instance, during the cold season, surveys
took place mainly in December (N= 10) or in March (N= 10)
and April (N= 8). However, the weights of the EOMs were not
associated with specific months and their differences were not
statistically significant. Therefore, the four EOMs selected for
the portfolio of the cold season (November–May) were
considered together as the set of principal spatial patterns that
best summarized octopus spatiotemporal distributions during
that season. However, the analysis of the joint temporal
dynamics of the weights of the different EOMs highlighted the
of 14



Fig. 12. Comparison between the MAF and the EOM arrangements for the hot (left) and the cold (right) season for octopus in Mauritanian
waters. The green connections concern the Q first EOMs explaining 60% of total variance.
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particular characteristics of EOM3. While all EOMs of the
portfolio shared their long-term trends with that of abundance,
the short-term (i.e. year-to-year) variations of the weights of
EOM3 were also correlated with abundance. EOM3 repre-
sented thus a major spatial pattern of the spatiotemporal
dynamics of octopus. It captured a part of the spatial
distribution of octopus that is density dependent. The particular
role played by EOM3 was reinforced by the analysis of the
correlation with the upwelling intensity index. Amongst the
four EOMsmaking up the portfolio of the cold season, this was
the only one whose temporal weights showed significant
correlation with the upwelling index when considered six
months before. Even though to be interpreted with care given it
was based on only eight observations, this result is interesting.
While the phenology between upwelling and primary and
secondary productions is well documented, the demonstration
of a delayed impact on octopus distribution is new. The March
surveys caught individuals that weight on average one
kilogram (data not shown). These individuals mostly corre-
spond to pre-spawning adults of 9-10 months. They come from
the spawning that took place around May the year before.
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Given the duration of larvae and para-larvae developments
(Otero et al., 2007, Domain et al., 2000), the end of the pelagic
phase for these individuals falls around August-September.
Thus September during which upwelling is usually not intense
(Fig. 10), coincides with the period of settlement for the
individuals spawned in May. Our results suggest that the less
intense the upwelling is in September, the more spatially
concentrated the octopus recruitment is in the following
March, with highest occurrence of octopus off the coast in the
central Mauritanian ZEE as indicated by the spatial pattern of
EOM3 (Fig. 4).

The present study suggested that a portfolio of distribution
maps and in particular its size can provide novel insights.
During the hot season, only one EOM was needed to
summarize the set of observations for octopus compared to
four EOMs for the cold season. The two seasons are of similar
durations (five and seven months respectively) and surveys
data were spread across both. Thus, the difference in portfolio
size between the two seasons is not attributable to variations in
the timing of the monitoring. Instead, the difference in map
portfolio size could be considered a consequence of a real
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difference in the spatial dynamics of octopus during the two
seasons. The portfolio size quantified the effective number of
spatial patterns of octopus seasonal distributions. It was
reduced to a single spatial pattern during the hot season in the
present study. In contrast, the spatial distribution of octopus
during the cold season was a mixture of four principal maps,
with the importance (weight) of one being strongly related to
the fluctuation of abundance.

Ecological considerations arising from portfolio size can
be of two kinds. Portfolio size measures the complexity of
spatial occupancy patterns and the associated complexity of
possible external parameters governing them over time. On the
one hand, a large portfolio can characterize systems where one
process governing biomass distribution can decrease without
impacting the overall system if other processes offset it. On the
other hand, systems associated with a small portfolio size have
fewer buffer effects and could be more sensitive to external
changes (putting all the eggs in one basket is risky). Following
these lines, a general perspective of this work could be to
quantify the size of many species distribution portfolios and
relate them to knowledge about the resilience of the ecosystem
the species belong to.
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