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Abstract

Humans have had a major influence on the dissemination of crops beyond their native range, thereby offering new hybrid-
ization opportunities. Characterizing admixed genomes with mosaic origins generates valuable insight into the adaptive his-
tory of crops and the impact on current varietal diversity. We applied the ELAI tool—an efficient local ancestry inference 
method based on a two-layer hidden Markov model to track segments of wild origin in cultivated accessions in the case 
of multiway admixtures. Source populations—which may actually be limited and partially admixed—must be generally spe-
cified when using such inference models. We thus developed a framework to identify local ancestry with admixed source 
populations. Using sequencing data for wild and cultivated Coffea canephora (commonly called Robusta), our approach 
was found to be highly efficient and accurate on simulated hybrids. Application of the method to assess elite Robusta varieties 
from Vietnam led to the identification of an accession derived from a likely backcross between two genetic groups from the 
Congo Basin and the western coastal region of Central Africa. Admixtures resulting from crop hybridization and diffusion 
could thus lead to the generation of elite high-yielding varieties. Our methods should be widely applicable to gain insight 
into the role of hybridization during plant and animal evolutionary history.
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Significance
Local ancestry inference (LAI) has been widely investigated in humans to decipher genomic and evolutionary history, yet 
it is less commonly used in crops. Here we applied this approach to study mosaic genome origins in cultivated Coffea 
canephora (Robusta) accessions. We have proposed a new method to derive source populations for this analysis based 
on ancestral genotype frequencies estimated from native populations. Validation using simulated hybrids and ancestry 
deconvolution of the cultivated accessions revealed this approach to be promising for genomic studies of C. canephora 
as well as other crops.
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Introduction
Human history and migrations have markedly impacted 
crop dispersal patterns worldwide (Khoury et al. 2016). 
Cultivated plants have gradually, over time, undergone dif-
fusion beyond their centers of origin (Meyer et al. 2012), 
while exchanging genetic material from their original wild 
relatives via hybridization. For example, Australian wheat 
cultivars are the result of a multiway admixture of lineages 
of European, African, and American origins (Joukhadar 
et al. 2017). Intraspecific admixture is a key factor in popu-
lation diversity, adaptation, and evolution (Goetz et al. 
2014; Rius and Darling 2014). Cultivated individuals may, 
therefore, express novel phenotypic variability, for example, 
beneficial ear traits in domesticated emmers (Nave et al. 
2019; Oliveira et al. 2020), or higher antioxidant activity 
in a new litchi cultivar (Zhao et al. 2020; Hu et al. 2022).

Population genetics tools have been widely developed to 
gain insight into admixture (Pritchard et al. 2000; 
Padhukasahasram 2014). STRUCTURE (Pritchard et al. 
2000), ADMIXTURE (Alexander et al. 2009), or other tools 
like sNMF (Frichot et al. 2014) are commonly used to infer 
global admixture proportions and ancestry per individual 
in a population. Yet individuals presenting the same global 
ancestry might differ with respect to admixture patterns at 
the chromosome level. More recent advances in sequen-
cing and the application of statistical and computing tech-
nologies have also enhanced ancestry inference at this 
chromosome level based on LAI approaches. At a fine gen-
ome scale, the local ancestry provides better information on 
the mosaic genetic origin of admixed individuals, that is en-
hancing knowledge of demographic histories, facilitating 
detection of adaptive introgression, deciphering complex 
traits, and mapping underlying genes in admixed popula-
tions (Padhukasahasram 2014; Thornton and Bermejo 
2014; Mani 2017; Shriner 2017; Geza et al. 2019). For in-
stance, admixture mapping based on LAI of a three-way ad-
mixed human population identified a genomic region in 
native American ancestry linked to Alzheimer’s disease 
(Norris et al. 2020; Horimoto et al. 2021).

Numerous LAI tools have been developed. In most of 
them, genotypes from putative ancestral populations 
(so-called “source populations”) are used as a reference 
to infer the local ancestry of admixed individuals or tested 
individuals (Sankararaman et al. 2008). Most LAI models 
are based on hidden Markov models (HMM), including 
SABER (Tang et al. 2006), LAMP-LD (Baran et al. 2012), 
and ELAI (Guan 2014), which predict the classification of 
ancestries in hidden states by monitoring genotypes of 
the source populations (Baran et al. 2012). Other methods 
implement strategies based on principal component ana-
lysis, for example, PCADMIX (Brisbin et al. 2012), Markov 
chain Monte Carlo (Chromopainter, Lawson et al. 2012), 
random forest (RFMix, Maples et al. 2013), K-means 

(EILA, Yang et al. 2013), and other clustering methods 
(Wu et al. 2021). LAI models can also be categorized into 
linkage disequilibrium (LD)-based and non-LD-based mod-
els (Geza et al. 2019). Most LAI software requires phased 
genotypes (Wu et al. 2021), which are not always accurate-
ly estimated with short-read data obtained via next- 
generation sequencing (NGS) technologies (Garg et al. 
2021). Some tools need biological information such as gen-
etic and physical mapping data, recombination rates, and 
admixture generations, or statistical parameters such as 
hidden states and misfitting probabilities (Geza et al. 2019).

According to previous studies comparing the perform-
ance of several commonly used software programs 
(Cottin et al. 2019; Schubert et al. 2020; Molinaro et al. 
2021), ELAI (Guan 2014) has proven to be one of the 
most efficient ancestry inference tools for dealing with un-
phased data. This two-layer HMM and LD-based method 
use source populations to predict the classification in two 
hidden state layers—haplotypes in the lower-layer and an-
cestries in the upper-layer. Therefore it does not require 
haplotype phasing, but only prior assumptions regarding 
the number of haplotype clusters and admixture genera-
tions, which are needed for hidden state modeling. ELAI 
has been applied in studies of different plants. For instance: 
in perennial plants such as aspen, local ancestry signals ob-
tained using ELAI have generated insight into the local 
adaptation and demographic history of European varieties 
(Rendón-Anaya et al. 2021). In annual crops such as wheat, 
ELAI has also been applied to analyze gene flow from wild 
emmers to bread wheat (Zhou et al. 2020).

LAI tools perform more accurately when using source 
populations with a large sample size and high differenti-
ation level (Cottin et al. 2019), whereas small, unbalanced 
structure or admixed source populations might cause erro-
neous ancestry assignment (Shringarpure and Xing 2014; 
Molinaro et al. 2021). In practice, it is often challenging 
to have a perfect sampling design across source popula-
tions (Hübner and Kantar 2021). Here we propose a solu-
tion to this problem of unbalanced and admixed 
individuals from source populations.

Coffea canephora Pierre ex A. Froehner, or so-called 
Robusta coffee, is an allogamous diploid species with 
high genetic and phenotypic differentiation (Berthaud 
1986; Montagnon et al. 1992; Gomez et al. 2009; Cubry 
et al. 2013; Mérot-L’Anthoëne et al. 2019; Kiwuka et al. 
2021; de Aquino et al. 2022). This species originates from 
central and western Africa (Davis et al. 2006), correspond-
ing to two major genetic groups, that is Congolese and 
Guinean groups, respectively (Montagnon et al. 1992, 
1998a; Cubry et al. 2013). The Congolese group consists 
of five well-described subgroups: group A in Benin and 
Gabon, group E in the Democratic Republic of the Congo 
(DRC), group C in Cameroon and the western Central 
Africa region, group B in eastern Central African Republic 
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(CAR), and group O in Uganda; and two recently described 
groups, G in Angola and R in southern DRC 
(Mérot-L’Anthoëne et al. 2019). The Guinean group corre-
sponds to group D (Mérot-L’Anthoëne et al. 2019).

While most of the crop species were domesticated dur-
ing the Neolithic period, over the past 12,000 years 
(Harlan 1971; Larson et al. 2014), Robusta coffee cultiva-
tion and diffusion is much more recent. Robusta coffee 
has attracted interest as a potential cash crop since the 
late 19th century (Berthaud 1986), and the species has 
only become globally widespread since 1900 (Montagnon 
et al. 1998b). Coffee research stations and breeding cen-
ters have been set up since the early 20th century, in 
Java, Indonesia (1900–1930), and then DRC (1930– 
1960), and Central Africa (1960 onward) (Cramer 1957; 
Montagnon et al. 1998b). Coffea canephora breeding pro-
grams for varietal improvement have mainly been based on 
heterosis of crosses between the Congolese subgroup E 
and subgroup A or the Guinean group D (Leroy et al. 
1993; Montagnon et al. 1998a; Oliveira et al. 2018).

Due to the gametophytic self-incompatibility of Robusta 
and its intense breeding history, cultivated populations 
might have experienced a high level of admixture, resulting 
in hybrids with complex mosaic genomes. The local ances-
try deconvolution approach to cultivated Robusta varieties 
could help gain insight into their genetic makeup and trace 
back their origins. This novel approach would facilitate the 
development of admixture mapping—that is, associating 
the phenotype with ancestry segments in coffee—a tech-
nique that is sometimes more powerful than conventional 
genome-wide association studies (GWAS) (Horimoto et al. 
2021). Several key traits for coffee breeding, such as 
drought tolerance, that is, a polygenic trait that is also con-
sidered to be a feature in the Congolese group A 
(Marraccini et al. 2012; Vieira et al. 2013).

Robusta coffee was first introduced to Vietnam in the 
early 20th century, probably from the Congo via France 
(Nogent-sur-Marne acclimation gardens) or via Java (coffee 
breeding center) (Vanden Abeele et al. 2021). In cultivated 
coffee, it takes 5–8 years to reach the maximum productive 
stage (Wrigley 1988), and it has been estimated to be even 
up to 20 years (Moat et al. 2019, Nab and Maslin 2020). 
Therefore, given 100 years of cultivation, the number of 
generations is not expected to be higher than 20. Even 
though the current Vietnamese Robusta varieties are mostly 
supposed to have originated from Java, their ancestral gen-
etic groups are still largely unclear. Since materials of the 
Javanese breeding program mainly come from DRC, 
Uganda, and Gabon (Montagnon et al. 1998b), the acces-
sions historically introduced in Vietnam may have 
Congolese origins and putatively some extent of intergroup 
admixture.

In this study, we implemented the ELAI approach on cul-
tivated C. canephora with unbalanced and admixed native 

reference populations. We inferred ancestral genotypic fre-
quencies for these native populations to build perfect 
source populations for ELAI. We assessed and validated 
our new approaches with simulated hybrids. We finally ap-
plied an optimal framework to a set of elite accessions cul-
tivated in the Central Highlands of Vietnam to determine 
their mosaic genome origins.

Results

Characterization of Genetic Groups

A total of 11,919,576 high-quality biallelic SNPs were ob-
tained in all of the 55 African and 10 Vietnamese indivi-
duals. We assessed the structure of African native groups 
by performing genetic structure analysis using sNMF on a 
set of 1,191,957 randomly picked SNPs.

The African individuals were classified into five groups 
(supplementary figs. S1 and S2, Supplementary Material
online) that could be linked to geographical origins: a 
West African group with accessions from Guinea, Ghana, 
and Côte d’Ivoire (group D), a group with accessions from 
Cameroon (group C), a group with accessions from 
Gabon and Angola (group AG), an East African group 
with accessions from Uganda and CAR (group OB), and fi-
nally the last group consisted of DRC accessions (group ER). 
Most pairwise FST values between the five genetic groups 
were high and ranged from 0.39 to 0.55, except for the 
FST = 0.22 between ER and OB (supplementary table S1, 
Supplementary Material online). This strong structuring 
was also confirmed by principal component analysis (PCA) 
analysis (supplementary fig. S3, Supplementary Material
online).

ELAI Accuracy Assessment

The size of the African reference set was small, with an un-
equal number of individuals (unbalanced structure), while 
15 individuals presented some extent of admixture 
(>20% admixture) (supplementary fig. S2, Supplementary 
Material online). We built near-perfect source populations 
for the five groups based on ancestry genotype frequen-
cies. All of them had perfect ancestry coefficients (>97%) 
relative to their respective groups, as expected 
(supplementary fig. S4, Supplementary Material online). 
The artificial source populations were then used for the as-
sessment of ELAI performance in detecting simulated hy-
brids (supplementary fig. S5, Supplementary Material
online).

Using simulated hybrids, we found that our approach 
achieved accurate inferences with high correlations (r2) ran-
ging from 0.859 to 0.997 (fig. 1), regardless of the set of 
parameters used. The lowest squared correlation (r2 =  
0.859) corresponded to ELAI runs using all SNPs with c 
(number of lower clusters) = 5 and mg (number of 
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admixture generations) = 30. All other ELAI runs had r2 va-
lues >0.9. The number of lower clusters and admixture 
generations did not have marked impacts on the ELAI ac-
curacy, except when all SNPs were used. Conversely, the 
use of higher parameter values and SNP numbers increased 
the ELAI run time and memory usage (supplementary table 
S2, Supplementary Material online).

Among the four SNP sets tested, the overall accuracy was 
higher for ELAI runs with the 100 K SNP set, while slightly de-
creasing with the other SNP sets, 10 K SNPs, evenly distribu-
ted 1 SNP/5 kb SNPs, and all SNPs (when mg = 20 and 30), 
respectively. These results were in line with the fact that 
ELAI accounts for the background LD when detecting the 
haplotype structure, so a higher number of SNPs provides 
more haplotype information and thus greater ancestry as-
sessment accuracy. However, using whole-chromosome 
SNPs did not improve but instead slightly reduced the ELAI 
accuracy as it might cause background noise or false infer-
ence with short segment lengths (<500 kb).

Despite the high r2 values, some false dosages were 
observed in the simulated introgression segments where 
the ancestry switched on both alleles compared to the 
flanking sequence. We computed the root mean square 
error (RMSE) between true and estimated dosages in 
the homozygous introgressed regions and compared it 

among a range of introgression sizes (0.05, 0.5, 1, 2, 
and 5 Mb).

Compared with the larger introgression tracts, RMSE va-
lues were higher for introgression tracts  <1Mb, except for 
some runs using 100 K SNPs and the whole SNP set (fig. 2
and supplementary fig. S6, Supplementary Material online).

RMSE values of around 0.5 in some cases indicated that 
it was likely that only one haplotype had been correctly as-
signed along the introgression tracts. For introgression sizes 
500 kb, 1 Mb, and especially 2 Mb, ELAI runs using whole- 
chromosome SNPs had the lowest RMSE values (<0.03), 
thereby indicating that the estimation was highly accurate. 
We observed an RMSE increase in larger introgressions (5 
Mb) associated with false inferences of small fragments in-
side longer introgressed fragments. For 5 Mb admixture 
tracts, the least erroneous inferences (RMSE ranging from 
0.01 to 0.04) were obtained in runs using the even SNPs 
set with c = 5 or 25, and in all, SNP sets with c = 15 
(supplementary fig. S6, Supplementary Material online).

In summary, the ELAI method was highly accurate in as-
sessing the ancestry deconvolution of the artificial hybrids 
using the simulated source populations, with good confi-
dence for admixture tracts of >1 Mb length. The required 
parameters (number of lower clusters and admixture gen-
erations) only had a minor effect on the detection, while 

FIG. 1.—ELAI accuracy in inferring local ancestry in simulated hybrids. The plot shows correlations between the true local ancestry dosage and ELAI do-
sages with different parameter numbers: number of lower clusters (c = 5, 15, and 25), number of admixture generations (mg = 5, 10, 20, and 30), and dif-
ferent SNP sets (10 K SNPs, 100 K SNPs, evenly distributed SNPs—1 SNP/5 kb, and all SNPs—1 M SNPs). Each point represents an average of correlations 
computed for the three simulated hybrids, and error bars represent the standard deviation.
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the SNPs chosen for analysis had more marked impacts on 
the admixture segment inference accuracy. The validation 
enabled us to define the parameters for the application of 
the method on cultivated Robusta individuals.

Optimized Framework and Application for Inference of 
the Local Ancestry of the Tested Vietnamese Robusta 
Cultivated Accessions

Based on our validation and optimization results using si-
mulated hybrids, we developed an LAI framework that en-
compassed ELAI to efficiently study the admixture origin in 
Robusta coffee (fig. 3). For each chromosome, we per-
formed ELAI using two SNP datasets (a set of evenly distrib-
uted SNPs, and another of whole-chromosome SNPs), with 
simulated ancestral groups serving as source populations. 
The lower cluster number was set at five as this factor did 
not influence the detection but did reduce the run time 
and memory usage (supplementary table S2, 
Supplementary Material online). We set the number of ad-
mixture generations at 20, which reflected the maximum 
possible number of generations of the cultivated acces-
sions. Common results between the two datasets (evenly 
distributed SNPs and whole-chromosome SNPs) were 
then considered as the final LAI.

The results of the two SNP sets were pooled in three 
steps. First, as the theoretical dosage of a given ancestry 
at an SNP locus is either 0, 0.5, or 1 but the dosage inferred 
by ELAI can be any value between 0 and 1, we approxi-
mated the ELAI-inferred dosage at each SNP with respect 
to the theoretical values, that is the dosage was set at 0 if 
the inferred dosage was in the [0, 0.1) range, at 0.5 if it 
was in the (0.4, 0.6) range, at 1 if it was in the (0.9, 1] range, 
or classified as “undetermined” otherwise. Second, the ap-
proximated dosages in the two SNP sets were compared 

locus-wise and also classified as “undetermined” if they 
were not equal. Finally, ancestry blocks were determined 
if contiguous positions had the same dosage and the dis-
tance between adjacent positions was not  >1 Mb; and   
<1 Mb segments were also classified as “undetermined”.

This framework was then applied for LAI of the 
Vietnamese accessions.

A total of 94% to >100% of the genome could be as-
signed (supplementary fig. S7, Supplementary Material on-
line) for all of the ten tested Vietnamese accessions. 
Undetermined regions were due to disagreement between 
the results of the two datasets, or the uncertainty in the 
ELAI inferred dosage (ancestry dosages within 0.1–0.4 or 
0.6–0.9 ranges, or ancestry tracts  <1 Mb were treated as 
uncertainties). Some accessions represented the same un-
determined region on chromosome 10 (supplementary 
fig. S7, Supplementary Material online) because this region 
was assigned with a dosage of 1 to the ER group by the 
even SNPs set but with a dosage of 0.5 for both ER and 
AG groups by the whole-chromosome SNP set.

Based on these ancestry blocks, the global ancestry infer-
ence of the tested individuals could be estimated as follows: 
for each ancestry, the overall proportion was the sum of all 
block dosages/genome assembly size (≈585 Mb), with the 
block dosage being the length of an ancestry block × ances-
try inference for the block. The global ancestry coefficients 
detected by our ELAI framework were generally similar to 
the results estimated by sNMF (supplementary fig. S2, 
Supplementary Material online). Nine accessions presented  
>99% ancestry in the DRC-native ER group (supplementary 
fig. S7, Supplementary Material online). Two of these ac-
cessions, that is TR5 and TR15, had minor admixture pro-
portions in one haplotype, that is 1.6 Mb of group AG on 
chromosome 4 and 1.2 Mb of group C on chromosome 
10, respectively.

FIG. 2.—Error in detecting simulated introgression tracts of different lengths in simulated hybrids. RMSE was calculated between the true dosage and ELAI 
dosages of the simulated hybrids, for different homozygous introgressed segment lengths (0.05, 0.5, 1, 2, and 5 Mb). Each panel shows, for each tested 
length, the RMSE values (y-axis) for ELAI runs with the numbers of lower clusters (c = 5), different numbers of generations (mg = 5, 10, 20, and 30) on 
the x-axis, and four different SNP sets (10 K SNPs, 100 K SNPs, evenly distributed SNPs—1 SNP/5 kb, and all SNPs—1 M SNPs).
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FIG. 3.—Framework for LAI of cultivated C. canephora. ELAI was performed for each individual chromosome and involved three main steps. Step 1: ana-
lyzing the genetic structure of the ancestral group, by performing sNMF on the reference set and tested set. Step 2: simulating source populations based on 
sNMF-estimated ancestral genotypic frequencies. Step 3: running ELAI on the tested individuals using two marker sets, that is whole-chromosome SNPs and 
evenly distributed SNPs. Step 4: merging the ancestry dosages inferred in the two SNP sets to determine the final consensus inference of the target 
chromosome.
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The TR6 accession genome consisted of segments from 
two ancestral groups, that is, ER and AG, with 72% and 
22% of the genome, respectively (supplementary fig. S7, 
Supplementary Material online and fig. 4). The admixture 
patterns varied in different parts of genome: chromosomes 
3, 7, 8, and 11 were completely heterozygous (excluding 
the undetermined segments); chromosomes 4, 9, and 10 
had a single admixture tract at the terminal end of the 
chromosome; chromosome 1, 2, and 5 had admixture seg-
ments separately distributed along the chromosome; while, 
exceptionally, chromosome 6 did not present any admix-
ture signal. A small haplotype fragment of 2.8 Mb length 
on chromosome 8 was assigned to group OB, which ac-
counted for only 0.2% of the genome. The local ancestry 
pattern suggested that TR6 resulted from recombination 
events between individuals of the two main Congolese 
AG and ER subgroups, backcrossed with the ER group.

Discussion

An Optimized Framework to Infer Local Ancestry in 
Robusta Coffee

In this study, we developed an LAI framework implement-
ing the ELAI method, which was performed with high ac-
curacy for ancestry deconvolution of admixed individuals 
using derived source populations and with good confi-
dence for admixture tracts of >1 Mb length.

In particular, we implemented a simple method to over-
come the lack of bias in native reference individual sam-
pling, which was efficient for ELAI on both simulated and 
real data inference. Our method was based on ancestral 
genotype frequencies, which can be directly obtained 
from unphased genotypic data using sNMF. To our knowl-
edge, this is the first time that such an approach has been 
proposed for unphased data. Another method combining 
WINC-ChromoPainter with the non-negative least squares 
approach has been developed to analyze LAI when there 
are very few reference individuals and no source population 
simulations (Molinaro et al. 2021). A test of this method on 
real data showed that WINC was comparable to or could 
outperform ELAI in certain admixture scenarios when only 
two individuals per source population were used. 
However, WINC requires phased data and recombination 
maps, which are not always available for other datasets, es-
pecially our dataset. ELAI was later adapted to use a large 
number of admixed samples (a cohort set) to compensate 
for the lack of a pure source population (Zhou et al. 
2016). The cohort set was down-weighted to not outweigh 
other training source sets. This method could be applicable 
if a large cohort sample size is available. We acknowledge 
that our simulation method did not preserve LD in the 
native populations, which might explain the misassign-
ment or uncertainty in the inference of small ancestry tracts 
in admixed individuals. However, the uncertainty only 

FIG. 4.—LAI of the Vietnamese TR6 accession. Each bar presents the consensus local ancestry dosage (y-axis) along the positions (x-axis) of each chromo-
some. The x-axis labels are in the Mb unit. The inferred ancestral groups—ER (from DRC), AG (from Benin, Gabon, and Angola), and OB (from Uganda and 
Central Africa), are denoted by colors. The gray portions are undetermined regions.
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accounted for a minor portion of the genome (<10%) and 
the global ancestry findings of our approach were close to 
the global ancestry obtained by sNMF.

We also assessed the number of haplotype clusters and 
admixture generations required by ELAI to predict the an-
cestry model. The Robusta coffee breeding program was 
launched about 100 years ago, which could be considered 
as relatively recent compared to most other crops, and 
therefore the maximum number of Robusta generations 
out of Africa and especially in Vietnam was estimated at 
most 20. We tested the methods with 5, 10, 20, and 30 
generations. Guan (2014) found that a higher number of 
admixture generations improved the inference smooth-
ness. In many studies using ELAI, the number of haplotype 
clusters is often set at 5-fold the number of source popu-
lations. These parameters were shown to have an impact 
on inference in human genomes (Guan 2014), but we did 
not clearly observe such an effect in our simulations. Even 
when the number of lower clusters was set at the number 
of source populations, so each source population was 
linked to only one haplotype in the higher clusters, we 
could still quite accurately infer the ancestry source. Our 
approach to generate ideal source populations will only 
keep LD linked to population structure. As we observed 
high genetic differentiation in C. canephora, we certainly 
had high LD linked to the population structure. Lower dif-
ferentiation between ancestral populations might lead to 
lower performance of the approach we have proposed 
here.

ELAI has been shown to be a highly robust LAI tool 
(Cottin et al. 2019; Schubert et al. 2020; Molinaro et al. 
2021). Indeed, our results obtained using simulated C. ca-
nephora hybrids also illustrated its high accuracy for detect-
ing >1 Mb ancestry blocks, even with a small portion (1%) 
of whole-genome SNPs, that is 10 K SNPs out of the 1.1 M 
whole-genome SNPs on chromosome 1. Yet in our frame-
work, we combined inferences obtained with SNP sets of 
two densities (whole-chromosome SNPs and evenly distrib-
uted SNPs, i.e., 203 and 1.8 SNPs per 10 kb, respectively) to 
enhance the inferred ancestry confidence.

Robusta Origin, Diffusion, and LAI

The native African Robusta individuals were classified into 
five groups that could be linked to geographical origins, 
and this genetic structure was perfectly congruent with 
previous study findings (Tournebize et al. 2022). The latest 
classification of C. canephora using 8.5 K SNP arrays 
(Mérot-L’Anthoëne et al. 2019) led to an eight-group clas-
sification, but the differentiation between groups O and B, 
E and R, and A and G was low, so they were clustered in this 
study and our previous study (Tournebize et al. 2022). The 
clustering of individuals of closely related groups was also 

due to bias toward one group when the other contained 
a small number of individuals.

Using source populations derived from these native 
groups, we ran our optimized framework method on a 
sample of ten elite cultivars from Vietnam. Inference of 
these test Robusta accessions revealed that all of them ori-
ginated from the Congolese groups ER and AG. Nine acces-
sions shared a common ancestry of group ER, and one likely 
came from a hybrid between the two Congolese ER and AG 
groups, backcrossed with ER. Previous studies on other 
Robusta accessions in Vietnam also identified their 
Congolese origin (Garavito et al. 2016; Akpertey et al. 
2021). Garavito et al. (2016) used DArTseq SNPs and found 
six Vietnamese accessions from the Congolese E group (in-
cluded in our ER group). Akpertey et al. (2021) used KASP 
(Kompetitive Allele Specific PCR) SNPs and found 33 
Vietnamese accessions distinguished from Côte d’Ivoire 
and Togo accessions (putatively the Guinean group), but 
no reference for the Congolese groups was used in that 
study. These inferences are in line with historical coffee 
breeding data.

These accessions, which are recognized elite Robusta ac-
cessions in Vietnam, could serve as potential breeding ma-
terials for varietal improvement. The TR6 accession genome 
was found to be composed of two ancestral ER and AG 
groups, accounting for 72% and 22% of the genome, re-
spectively. The Congolese genetic group E was previously 
found to present advantageous phenotypic characteristics 
such as good aroma and low acidity, high leaf rust resist-
ance, but with susceptibility to drought and twig borers 
(Montagnon et al. 1998a). In contrast to group E, genetic 
group A has very high twig borer resistance and drought 
tolerance, but is only moderately resistant to leaf rust, 
and sometimes exhibits lower cup quality (Montagnon 
et al. 1998a). Hybridization of these two groups might pro-
duce accessions with heterosis characteristics combining 
these advantageous agronomic traits.

Inference of wild ancestry segments in the cultivated ac-
cessions could also enable downstream analyses such as 
admixture mapping of important traits, or genomic selec-
tion for breeding programs. Breeding strategies could 
now also be tailored for different purposes. Reciprocal re-
current selection between the Congolese group and 
Guinean group (group D) has been used to improve yield 
and vegetative vigor (Leroy et al. 1993; Montagnon et al. 
1998b; Oliveira et al. 2018), while recurrent selection with-
in hybrid populations was more effective for enhancing dis-
ease resistance (Alkimim et al. 2021). Therefore, studies on 
the genetic origin, especially the LAI of Robusta materials 
available in collections, could also boost the efficiency of 
coffee breeding programs.

This approach could also be adapted to other species 
when studying admixed populations with a low number 
of reference individuals.
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Materials and Methods

Materials

We used two sets of accessions: (1) 55 previously se-
quenced wild C. canephora accessions from Africa 
(Tournebize 2017; Tournebize et al. 2022); and (2) ten new-
ly sequenced cultivated C. canephora accessions from 
Vietnam. The wild African samples are representative of 
the native range of C. canephora. The cultivated samples 
from Vietnam are recognized as elite plants and conserved 
in the germplasm bank of the Western Highlands 
Agriculture & Forestry Science Institute (WASI).

Sequencing, Mapping, and SNP Calling

The ten Vietnamese individuals were sequenced using 
Illumina Hiseq X Ten PE 150 bp. The 55 samples from 
Africa were obtained from GenBank and analyzed with 
the new ten Vietnamese genomes. Variant calling was per-
formed according to GATK Best Practices recommenda-
tions for germline short variant discovery using the 
TOGGLE framework (Monat et al. 2015). The reads were 
first mapped against the v1.8 reference genome (de 
Kochko and ACGC 2018) using BWA mem 0.7.2 (Li 
2013), then sorted using Picard Tools 1.83 (https:// 
broadinstitute.github.io/picard/) and SAMtools 0.1.3 
(Danecek et al. 2021). Variants per sample were called in in-
dividual GVCFs (Genomic Variant Call Format) using GATK 
HaplotypeCaller 3.6, and consolidated using GATK 
CombineGVCFs, and then final variant calling was jointly 
performed in the whole GVCF set using GATK 
GenotypeGVCFs (Poplin et al. 2017). High-quality biallelic 
SNPs were obtained by applying the following filtering cri-
teria: remove indels, consider only biallelic SNPs, remove 
clusters of at least 4 SNPs in 10 bp sliding windows, remove 
SNPs with QUAL <200, MQ0 > 4 & MQ0/DP >0.1, mean 
depth >100 or <10, and missing data >15%, by using 
GATK 4.0.0.0, BCFtools 1.9 (Danecek et al. 2021), and 
VCFtools 0.1.16 (Danecek et al. 2011).

Characterization of Population Structure

We characterized the genetic groups present in the native 
African Robusta coffee populations via genetic structure 
analysis with sNMF (Frichot et al. 2014), using the R pack-
age LEA (Frichot and François 2015). 10% randomly chosen 
SNPs were used to assess the number of genetic groups. 
The optimal number of ancestral groups (K) was deter-
mined using cross-entropy criteria over ten iterations with 
K ranging from 1 to 10. Individuals were assigned to a given 
cluster at an 80% ancestry threshold.

Pairwise FST between the genetic groups (restricted to in-
dividuals with >80% ancestry) was computed using the R 
package StAMPP (Pembleton et al. 2013). Hundred boot-
straps across loci were performed to assess the significance. 

We also performed a PCA in the R package LEA (Frichot and 
François 2015).

Inference of Local Ancestry

We inferred the local ancestry of cultivated Robusta using 
ELAI (Guan 2014), which was suitable for our unphased 
data and did not require any additional biological informa-
tion. The source populations must be specified when using 
ELAI. To overcome limitations due to the unbalanced struc-
ture of wild populations that include admixed individuals, 
we tested an alternative method using population structure 
analysis. This new method was validated by simulation of 
known hybrids, while the ELAI accuracy was assessed and 
optimal parameters determined. Based on these results, 
we built a framework to detect the local ancestry in 
Vietnamese-cultivated Robusta accessions.

Source Population

Genotypes from ancestral groups of wild accessions must 
be defined for the purpose of ELAI analysis (Guan 2014). 
Given the small and unbalanced sample size of the wild po-
pulations and some evidence of admixed ancestry between 
groups in the wild accessions, we generated new synthetic 
populations exhibiting genotypic frequencies similar to 
those estimated in the ancestral pools. To this end, we 
used ancestral genotypic frequencies inferred using the 
sNMF analysis (Frichot et al. 2014). For each chromosome, 
we ran sNMF on whole-chromosome SNPs of all the African 
and Vietnamese individuals, with ten iterations and the op-
timized K value. The best run over the ten iterations was 
chosen based on cross-entropy criteria. We applied the G 
function (R package LEA) on the result of the best run to re-
trieve a G matrix containing genotype frequencies inferred 
in each different ancestral group for all diploid SNPs. This G 
matrix was then used as a probability matrix for randomly 
choosing genotypes at each site by groups using the sample 
function in R (R Core Team 2022).

We checked if the generated genotypes were represen-
tative of the ancestral groups by performing a further sNMF 
analysis jointly on simulated and real accessions using ran-
dom 100 K SNPs on chromosome 1 (with optimal K and ten 
iterations). The ancestral proportion of each simulated indi-
vidual was obtained from the run with the lowest cross 
entropy.

Simulated Hybrids

We simulated hybrids with known admixture levels in order 
to determine optimal parameters and assess the accuracy 
of the ELAI approach with the simulated source populations 
in our C. canephora model. We chose two accessions from 
the wild African set (BGQ07 and 20738) representative of 
two divergent genetic groups to simulate three different 
hybrids with different admixed segment sizes. Each hybrid 
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had admixture segments of different lengths (50 kb, 
500 kb, 1 Mb, 2 Mb, and 5 Mb), and in homozygous 
(both alleles originating from one of the ancestral groups) 
and/or heterozygous form (one allele from each of the 
two ancestries). In the homozygous regions, the hybrid 
genotypes were copied from one respective progenitor, 
while at heterozygous loci each of two alleles was drawn 
randomly from the alleles of the two parents. Simulations 
were based on chromosome 1 SNPs.

Sets of ELAI Parameters

We determined the optimal ELAI parameters by running the 
software with varying parameter values, including the num-
ber of haplotype clusters (c), that is lower clusters, the num-
ber of admixture generations (mg), and the set of SNPs used 
for the analysis. We tested three values (5, 15, and 25) for 
the number of haplotype clusters, and four values (5, 10, 
20, and 30) for the number of admixture generations. We 
also used four different sets of SNPs: (1) randomly selected 
10 K SNPs, (2) randomly selected 100 K SNPs, (3) about 
11 K SNPs resulting from randomly selecting one SNP in 
every nonoverlapping 5 kb window (referred to as the 
“even SNP set”), and (4) whole-chromosome SNPs, that is 
the “all SNP set” comprising 1,133,736 SNPs. The average 
SNP densities in the four datasets were 1.5, 15.1, 1.8, and 
203.0 SNPs per 10 kb, respectively.

In summary, we performed 48 ELAI runs with different 
combinations of parameters, and each run used 20 expect-
ation maximization (EM) steps (Guan 2014). To reduce the 
computational cost, for the run with whole-chromosome 
SNPs, the analysis was performed by splitting the chromo-
some into consecutive SNP chunks so that each subset con-
tained a maximum of 100 K SNPs. The ELAI results obtained 
on the SNP subsets were then concatenated.

Assessment of the ELAI Inference Accuracy based on 
Simulated Hybrids

Each ancestry group was defined for the simulated hybrids 
as ancestry dosage = 1, where the two alleles were copied 
from the first parent (first genetic group); ancestry dosage  
= 0, where both alleles were from the second parent (se-
cond genetic group); and ancestry dosage = 0.5, where 
the alleles were derived from both parents (50% admix-
ture). As we knew the true allelic dosages of the simulated 
hybrids, we could compare them to those inferred via ELAI.

The ELAI performance was assessed by correlation and 
root mean square error (RMSE) metrics. A correlation was 
the average Pearson’s correlation between the estimated 
and true dosages. The RMSE between the estimated and 
true dosages of each admixture tract was calculated and 
averaged for different segment lengths (50 and 500 kb, 
and 1, 2, and 5 Mb).

Framework to Infer Local Ancestry in 
Vietnamese-Cultivated Robusta Coffee

Based on the ELAI validation data, a workflow (fig. 3) was 
developed to detect local ancestry in cultivated Robusta ac-
cessions and applied to the ten Vietnamese Robusta acces-
sions. ELAI was performed for each chromosome, with the 
simulated ancestral populations as the ancestry source 
using the whole-chromosome SNP set and the evenly dis-
tributed SNP set. Three independent ELAI runs with 20 
EM steps were conducted for each individual and SNP 
was set to obtain average results. The ELAI inferences of 
these sets were then combined to obtain the final ELAI.

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online, Supplementary Material online.
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