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Abstract 

The rhizosphere, meaning the soil volume influenced by the living roots, 
hosts several important ecological processes implicating the soil, the root 
system and active microbiota. These various interactions often impact soil 
carbon (C) content and nutrient dynamics, as well as soil water retention, by 
modifying its biological and physico-chemical properties. Well-known root 
adaptive traits for drought tolerance include deep rooting and increased 
root development, both of which ensure better exploration of the soil volume 
required for greater water uptake. However, the intensity of root-soil-
microbiota interactions shape the size of the rhizosheath (i.e., the soil mass 
that remains attached to roots after plant excavation), which could modulate 
the water retention capacity of soil. Indeed, genotypes with larger 
rhizosheath respond better to drought stress than those with a smaller 
rhizosheath in several plant species. From a breeding perspective, intra-
specific variation in rhizosheath size has recently been demonstrated in two 
important crops in West Africa: pearl millet and maize. Therefore, genotypes 
with large rhizosheath could be considered for varietal selection for 
adaptation to drought. Ongoing genome wide association studies (GWAS) 
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should confirm genetic control of rhizosheath size and map candidate genes 
and investigations should be performed on the mechanisms that support this 
genetically complex trait. 

Keywords: Rhizosphere, Rhizosheath, Root-adhering soil, Drought, Root 
phenotyping 

Introduction 

West Africa faces many challenges to secure sufficient and sustainable food 
production. Indeed, water scarcity and soil nutrient deficiency are among 
the main constraints limiting crop production. Drought stress is considered 
one of the most harmful abiotic stresses limiting crop yields (Fang et al., 2017; 
Praba et al., 2009; Wang et al., 2017). Moreover, drought events are projected 
to be exacerbated by climate change in much of the world including West-
African countries (IPCC, 2018). 

Plants explore the soil for water and for various nutrients they need for 
growth through their roots. They can then develop their root system 
architecture, associate with a beneficial microbiota, and improve the 
biological and physico-chemical conditions of the rhizosphere to face 
drought stress (White et al., 2013a, 2013b). Therefore, it may be possible to 
cope with drought by selecting crop varieties that can better exploit/use the 
soil water for sustainable production. The interactions between plant roots 
and soil that occur in the rhizosphere, defined as the volume of soil affected 
by the exudates secreted by plant roots and colonized by soil microbiota 
(Pinton et al., 2007), are very important to explore. 

An important manifestation of the interactions between plant roots, soil, 
and root-associated microbiota, is the formation of the rhizosheath, or the 
aggregation of soil particles around the root after plant excavation (Brown et 
al., 2017; George et al., 2014; Pang et al., 2017). The rhizosheath is also the part 
of the rhizosphere where the root-soil-microbiota interactions are more 
intense and therefore it presents optimized physico-chemical conditions 
for water and mineral acquisition compared to bulk soil. Many factors 
contribute to its formation, including root physiology (e.g., exudation, 
association with soil microbiota), or morphology (e.g., root architecture, 
length, and density of root hair) (Ndour et al., 2020; Pang et al., 2017). Because 
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of its role in plant growth under abiotic stress (including drought), this trait 
is now gaining attention of plant biologists, especially by those exploring 
the possibility of developing genetic tools for plant breeding, a now widely 
discussed topic regarding various crop species. Importantly, the formation of 
rhizosheath has been studied in pearl millet, the main cereal crop cultivated 
in West Africa (Ndour et al., 2017). 

In this chapter, we will (1) discuss the relationship between plant 
rhizosphere functioning and drought stress; (2) analyse the intra-specific 
variability of the interactions in the rhizosphere for some important crops in 
West Africa and; (3) discuss the opportunity to integrate these root traits in 
plant breeding programs. 

Response of the Rhizosphere to Drought Stress 

Water is a crucial resource for plant development, and drought stress is 
the most damaging constraint for plant productivity (Leng & Hall, 2019). 
Through their roots, plants acquire water and minerals directly from the 
soil. The root system is of great importance in the interaction between crop 
and soil fertility as they are the main interface between the plant and the 
soil (Mommer et al., 2016). Moreover, water uptake depends on the soil’s 
physico-chemical characteristics, the physiology of plant roots and their 
morphological characteristics, as well as on the interactions between soil 
components and plant roots. Drought has several immediate consequences 
on plant physiology, including reduced seed germination rate, stomatal 
closure, reduced relative leaf water content and cell membrane stability, 
increased formation of reactive oxygen species, increased susceptibility to 
diseases, and reduced grain yield and quality (Zia et al., 2021). In the long 
term, plants develop various adaptation mechanisms to access water more 
efficiently. These include the development of several architectural and 
anatomical root traits such as root depth and aerenchyma formation (see
Chapter 10, by Grondin et al. in this book), but also very interesting 
physiological traits which involve the soil matrix and its hosted microbiota 
(Grover et al., 2011; Lynch, 2011, 2019; Rodriguez et al., 2004). 

The different interactions that take place in the plant-soil-microbe 
interface define rhizosphere functioning. These interactions are mediated by 
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the root exudation (i.e., the deposition of organic compounds in the soil by 
plant roots). Root exudates are defined as the substances actively released 
by root in the soil from various mechanisms (Haichar et al., 2014; Nguyen, 
2009; Sasse et al., 2018) and have a strong impact on the functioning of the 
rhizosphere (Cantó et al., 2020). Indeed, several studies have reported the 
influence of root exudation on the microbial composition of the rhizosphere 
in various crop species (Carvalhais et al., 2015; Ge et al., 2017; Haichar et al., 
2008; Iannucci et al., 2021; Ma et al., 2018; Micallef et al., 2009; Neumann 
et al., 2014). Moreover, plant root exudation can be modulated in return by 
the rhizosphere microbiota (Canarini et al., 2019; Korenblum et al., 2020). 
Importantly, these interactions help plants to better withstand the various 
adverse effects of drought stress. 

1. Plant Growth-promoting Microbiota 

Microbial communities in the rhizosphere may be involved in plant response 
to drought. Under drought conditions, plant growth can be promoted by 
the direct response of soil microbiota as well as by indirect effects resulting 
from modification of root exudation (Vries et al., 2020). For instance, drought 
leads to a modification of the microbial community in the rhizosphere, 
including an increase in the relative abundance of Actinobacteria and 
Firmicutes, and a decrease of Proteobacteria and Bacteroidetes (Naylor & 
Coleman-Derr, 2018). In particular, a study on 30 species of angiosperms 
showed a significant correlation between the relative abundance of the root-
colonizing Streptomyces and the drought tolerance of the host plant 
(Fitzpatrick et al., 2018). In this sense, a recent study on sorghum showed 
that drought stress increased the colonization of Streptomyces within the 
root and the rhizosphere, and that this colonization increases root 
development during drought (Xu et al., 2018). Recently, strains of 
Acinetobacter calcoaceticus and Penicillium sp isolated for their P-
solubilization potential have been shown to mitigate the adverse effects 
of drought stress in foxtail millet (Kour et al., 2020). It will therefore be 
interesting to test on crop species cultivated in West Africa and their wild 
relatives, and to verify whether there is a genetic variation of rhizosphere 
and endosphere oligotrophic microbial communities that could help plants 
to better withstand drought conditions. 
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2. Arbuscular Mycorrhizal Fungi (AMF) 

The association between plant roots and arbuscular mycorrhizal fungi is one 
of the most important plant symbiosis with soil microbiota (Cantó et al., 
2020). It is widely recognised that plants associated with AMF have a greater 
water uptake capacity related to increased soil volume explored through the 
hyphal network. The positive effect of AMF on plant water uptake and plant 
drought tolerance was reported in both cereals and legumes. For example, 
inoculation of cowpea with the mycorrhizal fungus Glomus deserticola 
enabled the plant to withstand water stress and produced increased yield 
compared to the uninoculated control treatment (Oyewole et al., 2017). This 
positive effect was also observed in drought-stressed maize after inoculation 
with Glomus versiforme due to an improvement in the deleterious effects 
of drought-induced oxidative damage (Begum et al., 2019). In the case of 
pearl millet, mycorrhizal inoculation mitigated the effects of water deficit 
and helped the plants to maintain their biomass production (Fabbrin et al., 
2015). So, these symbiotic associations are reliable opportunities and should 
be better explored for crop adaptation against drought in the West-African 
context. 

3. Root Exudation and Rhizosheath Formation 

Another striking and complex example of the physiological response of roots 
to drought is the formation of the rhizosheath around the root system. The 
rhizosheath is considered the most active compartment of the rhizosphere. 
The formation of the rhizosheath is an aggregation process responding to 
many factors including root exudation and production of bacterial 
exopolysaccharides (Ndour et al., 2020). Recently, it has been related to 
carbon exudation and dynamics in the rhizosphere at the early stages of 
development in pearl millet (Ndour et al., 2022). Price (1911) first hypothesized 
that plants developed rhizosheath formation as a mechanism to improve 
drought tolerance and root protection under arid conditions, a hypothesis 
that was recently confirmed (Alami et al., 2000; Benard et al., 2016; Pate 
& Dixon, 1996). Several other studies have reported a positive effect of a 
large rhizosheath in the growth of plants subjected to drought, such as 
foxtail millet and wheat (Basirat et al., 2019; T.-Y. Liu et al., 2018). A similar 
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result was also obtained for a drought-tolerant chickpea in which Rabbi et 
al. (2018) showed greater water storage in the rhizosphere soil linked to a 
larger rhizosheath and greater exudation of root mucilage. Indeed, some 
of the factors affecting the rhizosheath, such as root exudation (mainly 
C exudation) and the associated exopolysaccharide production by 
rhizobacteria, increase organic matter content as well as soil aggregation 
in the rhizosphere (Alami et al., 2000; Berge et al., 2009). A recent study 
shows that moderate water stress leads to the formation of rhizsosheath in 
rice, and increased soil porosity and water content in the root-adhering soil 
volume compared to bulk soil (Zhang et al., 2020). 

Overall, various studies have shown that the rhizosheath trait increased
plant fitness, particularly under drought stress conditions. It can be assumed 
that the combination of better water retention due to the increase in organic 
matter content, particularly microbial polysaccharides, and improved soil 
structuration, which both occur in the rhizosheath, contributes to better 
water storage and availability in the immediate root periphery. Thus, genetic 
variability of these physiological traits on crop species could be very 
interesting from a plant breeding perspective to improve crop management, 
especially in arid regions. The various interactions taking place in the 
rhizosphere and contributing to drought stress tolerance are summarized in 
figure 1. 
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Figure 1 

Figure 1 – Interactions Between Roots, Soil & Microbiota, which Occur in Rhizosphere to 
Help Plants Cope with Drought Stress 

Note: EPS = Exopolysaccharide, PGPR = Plant Growth Promoting 
Rhizobacteria, AMF = Arbuscular Mycorrhizal Fungi 
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Genetic Variation of Rhizosphere Interactions in Crops: 
Example of the Rhizosheath 

It is widely recognized that interactions in the rhizosphere play an important 
role in the response of plants to abiotic stresses and in particular in plant 
drought tolerance (Cantó et al. 2020). However, the relevant plant traits 
that characterize these interactions are often difficult to define due to their 
complexity. Consequently, intra-specific variations in these interactions are 
difficult to demonstrate. Nevertheless, the size of the rhizosheath has been 
used to test the genetic variability of the intensity of rhizosphere 
interactions in various species. 

1. The Specific Rhizosheath Weight as a Proxy to 
Phenotype Rhizosphere Interactions 

Different methods have been used to phenotype for rhizosheath size 
(reviewed in Ndour et al., 2020). The specific rhizosheath weight (i.e., the 
relative mass of dry soil that adheres firmly to the roots after plant has been 
excavated and roots have been shaken) is now widely considered as a reliable 
proxy to evaluate the rhizosheath size (Ndour et al., 2020). Operationally, it is 
defined as the ratio between the mass of dry root-adhering soil and the mass 
of dry root (RAS/RT). This emerging parameter was used to estimate the 
rhizosheath size on wheat (Amellal et al., 1998; Gouzou et al., 1993), sunflower 
(Alami et al., 2000; Sandhya et al., 2009), durum wheat (Kaci et al. 2005), 
barley (George et al. 2014) and on pearl millet (Ndour et al., 2017). Another 
parameter used to estimate the rhizosheath size is the ratio between the 
RAS dry mass and the total root length (RAS/RL), the latter of which was 
reported to be strongly correlated with the RAS/RT ratio (Adu et al., 2017). 
This method of estimating rhizosheath size by calculating the RAS/RT or the 
RAS/RL ratio seems to be effective for high-throughput phenotyping as it 
was used in numerous studies that aim to highlight its genetic determinants. 
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2. Case Study of the Phenotyping of Plant Rhizosphere 
Using the Rhizosheath Size 

The rhizosheath size (RAS/RT or RAS/RL) would be genetically determined 
in many cereal species. First, phenotypic variation has been demonstrated in 
wheat (Delhaize et al., 2012; Haling et al., 2010; James et al., 2016), in barley 
(George et al., 2014; Gong & McDonald, 2017) and maize (Adu et al., 2017). 

Our preliminary phenotyping study evaluated the impact of pearl millet 
genotypic variation on rhizosheath size using the RAS/RT ratio. Briefly, we 
grew 86 different inbred lines of pearl millet in MW pots filled with an 
arenosol sampled at the Centre National de Recherches Agronomiques 
(CNRA) of Bambey (Senegal), and each pot watered to its water holding 
capacity. After 28 days of growth, the plants were harvested and the root-
adhering soil mass (RAS) and the root biomass (RT) were weighted and used 
to calculate the RAS/RT ratio, which was used as an estimator of rhizosheath 
size (Ndour et al., 2017). The results showed genotypic differences in pearl 
millet rhizosheath size. Subsequently, we replicated this experiment using 
the same protocol with a larger panel comprising 181 pearl millet lines for 
GWAS purposes. The results confirmed the genetic control of this trait 
within this larger panel of pearl millet lines with a 3-fold variation of the 
RAS/RT ratio between the more contrasting phenotypes (Ndour et al., 2021) 
and a broad heritability of 0.72 (Fig. 2). 
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Figure 2 

Figure 2 – Rhizosheath Size (RASRT Ratio) of 181 Pearl Millet Lines Grown in 
Greenhouse Conditions. n = 8 repetitions for each line. 

3. Microbial Diversity Phenotyping in the Rhizosphere 
of Pearl Millet 

As mentioned above, this rhizosheath size variation can be explained by 
many factors. However, in a study we conducted in a set of 9 pearl millet 
inbred lines selected for their contrasting rhizosheath size (RAS/RT), we 
focused on the microbiota component and compared the diversity of 
bacterial communities in the rhizosphere. This study concluded that the 
size of this rhizosheath was related with bacterial diversity since, based on 
16S rDNA sequences data, the relative abundances of some taxa including 
Proteobacteria and Firmicutes varied significantly between lines 
characterized by small and large rhizosheath (Fig. 3). Moreover, the 
-diversity indices (e.g., Shannon, Chao1, Richness) calculated from these 
sequences are higher for large rhizosheath lines compared to those with 
small rhizosheath. This finding confirmed the response of this trait to 
rhizosphere microbiota (Alami et al., 2000; Bezzate et al., 2000; Fernández 
Bidondo et al., 2012) and suggested its genetic control by the host plant, 
probably through root exudation, and its effect on root-soil-microbiota 
interaction. 
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Figure 3 

Figure 3 – Relative Abundance of 15 Major Bacterial Phyla in Rhizosphere of 9 
Contrasted Pearl Millet Lines and in Unplanted Control Soil (T) (Ndour et al., 2017) 

Another study we performed with contrasting rhizosheath pearl millet lines 
grown in the field showed that some enzymatic activities (e.g., chitinase, acid
phosphomonoesterase, FDA hydrolysis) were higher in the root-adhering 
soil of the large rhizosheath lines compared to that of small rhizosheath lines 
(Ndour et al., 2021), suggesting that plant genetics (through root exudation 
variation) control not only the structure of the microbial community but 
also their enzymatic activities. This finding confirms the importance of root-
soil-microbiota interactions, notably the importance of rhizosheath 
formation in C, nutrient dynamics in the rhizosphere, and consequently in 
plant nutrition under abiotic stress such as drought. 

Opportunities for Plant Breeding for Drought Stress 
Tolerance 

The potential of targeting root functioning for plant improvement against 
abiotic stress is well documented (Cantó et al., 2020; Lynch, 2019). This is 
particularly relevant in arid and semi-arid regions of West Africa where 
plants face multiple constraints including drought stress (Dossa et al., 2017; 
Drabo et al., 2019). Genetic variations in these root traits could be studied for 
the major crops of the region in order to ensure sustainable crop production. 
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For the rhizosheath trait for which genetic variations have been found in 
various crops, QTLs have been already detected in wheat (Delhaize et al., 
2012; James et al., 2016; M. Liu et al., 2017) and barley (George et al., 2014; 
Gong & McDonald, 2017), although the molecular mechanisms explaining 
these phenotypes remain unknown. Adu et al. (2017) showed that rhizosheath 
was larger in maize improved varieties compared to landraces; based on 
these results, one may hypothesize that GWAS with a larger collection could 
therefore be used to detect QTLs and controlling genes in this important 
cereal for West-African countries. This trait should be further investigated 
for the other common cereals in West Africa such as sorghum. For pearl 
millet, the QTLs controlling this rhizosheath trait remain to be detected. 
However, the availibity of a reference pearl millet genome which was 
recently sequenced (Varshney et al., 2017) should make possible the rapid 
determination of the candidate genes related to this trait. 

Conclusion 

Drought is the main abiotic stress negatively affecting crop yield via plant 
growth, health, and reproduction (Fahad et al., 2017; Lamaoui et al., 2018; 
Leng & Hall, 2019). In response to this constraint, plants adapt their root 
morphology but also develop complex interactions with the soil and the 
root-associated microbiota. In the case of root interactions, the formation 
of rhizosheath improves plant drought tolerance through the combination of 
(1) exploration of a larger soil volume and (2) better water retention capacity 
due to increased organic matter content. The genetic variability of these root 
traits observed in pearl millet opens new opportunities for genetic selection 
to support crop and food production resilience in West Africa. 
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