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Abstract—This article proposes the design of an automatic clas-
sifier using the empirical mode decomposition (EMD) along with
machine learning techniques for identifying the five most important
types of events of the Ubinas volcano, the most active volcano
in Peru. The proposed method uses attributes from temporal,
spectral, and cepstral domains, extracted from the EMD of the
signals, as well as a set of preprocessing and instrument correction
techniques. Due to the fact that multichannel sensors are currently
being installed in seismic networks worldwide, the proposed ap-
proach uses a multichannel sensor to perform the classification,
contrary to the usual approach of the literature of using a single
channel. The presented method is scalable to use data from multiple
stations with one or more channels. The principal component anal-
ysis method is applied to reduce the dimensionality of the feature
vector and the supervised classification is carried out by means of
several machine learning algorithms, the support vector machine
providing the best results. The presented investigation was tested
with a large database that has a considerable number of explosion
events, measured at the Ubinas volcano, located in Arequipa, Peru.
The proposed classification system achieved a success rate of more
than 90%.

Index Terms—Artificial intelligence, empirical mode
decomposition, deconvolution, time domain analysis, spectral
domain analysis, cepstral analysis, seismic signal processing.

I. INTRODUCTION

THE recent eruption of the Volcan de Fuego volcano (June
2018, Guatemala) showed the catastrophic effects of a

small volcanic eruption. Cataloged with an index of 3 on the
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Volcanic Explosive Index (VEI 3) scale, this eruption destroyed
a large amount of infrastructure and killed more than 300 people.
Volcanic activities have been a latent threat to humans since the
existence of humanity. Indeed, many cities and towns are located
in areas of impact and high risk, such as the city of Arequipa
and the valleys of the volcanic chain in southern Peru, and the
city of Yogyakarta, Indonesia, close to the Merapi volcano [1].

The magma interacts with the surrounding environment dur-
ing its way to the crater in a system of ducts, causing disturbances
when it is near the surface and generating seismic activity that
can be observed by the seismic sensors. When the volcanic seis-
micity increases, the probability of eruption gets high. Although
it can be just a mild activity, it can also be a catastrophic eruption.
This question can be elucidated by analyzing seismic time
series, through the classification of volcano-seismic patterns.
The volcano-seismic signals can be categorized into five main
classes [2], [3]: long period (LP), tremors (TR), explosion (EX),
volcano-tectonic (VT), and hybrid (HB).

Thanks to the advance of technology, there are currently more
and more volcanoes monitored with seismic networks. A large
amount of seismic data are observed worldwide and the analysis
of these time series can be used to predict or detect the eruptive
state of volcanoes. However, in many places, these data are still
classified manually, which can lead to errors or delays in event
detection.

Many works proposed systems for classifying seismic signals,
such as the work in [4], which uses time–frequency representa-
tions to classify local earthquakes, far earthquakes, and chemical
explosions, and the work in [5], which uses power spectral
density (PSD) spectrograms to classify urban seismic noise.
Moreover, Yildirim et al. [6] used neural networks to classify
earthquakes and quarry blasts, whereas Kislov and Gravirov [7]
presented a method for automatic identification of noisy seismic
events. Also, new techniques are found in the literature for
classifying seismic signals with machine learning models, such
as the use of the cepstral domain with support vector machine
(SVM) in [8] or with a hidden Markov model (HMM) in [9].
Besides, a three-channel seismic signal decomposition using
wavelets with kernel ridge regression is presented in [10].

In the case of volcano-seismic signals, machine learning
classification is also a promising method. For instance, the
works in [11]–[13] use time–frequency features with neural
networks, whereas the works in [14]–[16] use HMM for clas-
sifying volcano-seismic signals. In addition, the work in [17]
uses wavelet decomposition as part of the classifier and the
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work in[18] uses attributes in the temporal, spectral, and cepstral
domains for the extraction of attributes, along with the SVM
classifier.

This work presents the design of a classifier for identifying
the aforementioned five most important types of events of a
volcano, with a methodology that can be easily implemented in
monitoring centers in real-time. The objective is to automatically
classify volcano-seismic signals and generate a catalog of time
series of this type of signals, with the aim of finding a seismic
pattern associated with the magma behavior.

The empirical mode decomposition (EMD) [19] is used to
include more physical contrast in the machine learning algo-
rithm, as the EMD is a natural adaptive decomposition method
that is well-suited for nonstationary signals, as in the case of the
seismic signals. The basic idea is to decompose multichannel
seismic signals into components that occupy different frequency
bands, called intrinsic mode functions (IMFs). In this article, the
natural characteristics of the IMFs are exploited to generate the
feature vector using attributes in temporal, spectral, and cepstral
domains, in order to obtain a better representation of the different
types of signals to be classified.

Contrarily to the usual approach of the literature of using only
a single channel, the proposed approach makes use of a mul-
tichannel triaxial sensor to perform the classification. Indeed,
apart from the vertical channel, the east and north channels
are also considered. In order to clarify the importance of the
use multichannel sensors, let us consider that a seismic signal
is recorded by a vertical single-channel sensor. This recorded
signal is, in fact, the projection of the seismic wave in the vertical
channel. In addition, multichannel sensors allow capturing all
the information of the seismic wavefront caused by the magmatic
activity, unlike single-channel sensors, which neglects some
parts of the wavefront.

This kind of triaxial sensors is currently being installed in
seismic networks worldwide. The presented methodology is
scalable to use data from multiple stations with one or more
components, since our database includes data collected simul-
taneously in more than one seismic station. Logically, with
more information added by multiples sensors and channels, the
efficiency of the result is improved. The presented classification
system also proposes to perform of a set of processing and
instrument correction operations in the original seismic signals
captured by the sensors (signal conditioning), in order to trans-
form the signals of each channel in meters per second [20].

The proposed automatic classification system can be summa-
rized in the following steps. First, a signal conditioning is per-
formed on the seismic signals, including offset elimination, in-
strumental correction, among other operations. The EMD is then
calculated, with the three most significant IMFs being selected.
Next, the extraction of the attributes in temporal, spectral, and
cepstral domains is performed. After, the principal component
analysis (PCA) method is applied to reduce the dimensionality of
the feature vector. Finally, the supervised classification is carried
out by means of several machine learning techniques.

This research is developed with a large database collected
from two stations of the Ubinas volcano, located 70-km northeast
of the city of Arequipa, in Peru. The data catalog was made by
experts of the National Volcanological Center of the Geophysical

Institute of Peru (IGP). The catalog of the Ubinas volcano
showed, in the last years, a high number of volcano-seismic
events, half a thousand events per day, which represents a diffi-
cult job for the volcanologist experts. A relevant characteristic
of the database is its relatively high number of explosion events,
when compared with databases of other works.

The main original contributions of this work can be summa-
rized as follows.

1) The inclusion of a multichannel sensor and data from two
seismic stations to model the behavior of the volcano,
contrary to previous works that use only a single channel.

2) The use of instrumental correction in order to make the
volcanic classifier independent of the type of sensors used
and to give to the energy of the signals a physical sense.

3) The use of the EMD along with machine learning to
classify the events of a volcano.

4) The use of database with a high number of explosion
events, which can be considered one of the most important
events to be detected.

Moreover, the simulation showed an excellent performance of
the proposed classifier when compared with other approaches.
Indeed, the proposed classification system achieved a success
rate of more than 90%, when the SVM technique is used.

The rest of this article is organized as follows. Section II
describes the database and the seismic acquisition system of
the Ubinas volcano. Section III presents the methodology of the
proposed automatic classifier, including all the aforementioned
steps. In Section IV, the numerical results of the investigation are
presented. Finally, Section V summarizes the main conclusions
and perspectives of future works.

II. UBINAS DATABASE AND ACQUISITION SYSTEM

In this section, the database and the acquisition system of the
Ubinas volcano, in the city of Arequipa, Peru, are presented.
The seismic database was built by experts of the National
Volcanological Center of the IGP.

A. Ubinas Volcano

The Ubinas volcano (16 22’ S, 70 54’ W, altitude 5672 m)
began to erupt on March 25, 2006, after almost 40 years of
inactivity. Located in the Central Volcanic Zone (south of Peru),
the Ubinas volcano is an active andesitic stratovolcano truncated
in the upper part by a caldera with a diameter of 600 m. The
caldera floor is a flat area approximately 5100 m above sea
level. The active crater is located in the southern section and
the bottom is 300 m below the floor of the caldera. Ubinas is
considered the most active Peruvian volcano during the last 500
years, threatening 3 500 people living on the edge of the Ubinas
Valley. The city of Arequipa, located 60 km away from this
volcano, has been affected several times since 2006 due to the
ash emissions [21].

B. Description of the Volcano Classes

Since the eruption of the Ubinas volcano in 2006, a large
number and variety of types of waveforms have been gener-
ated, as presented in the literature [22]–[24]. These varieties of
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Fig. 1. Time series samples of the five classes with their respective PSD.

waveforms are associated with the behavior of magma, whose
physical and chemical effects change depending on the trajectory
and the environment it encounters on its route to the crater. The
five main types of volcano-seismic events are as follows.

1) Volcano-tectonic: They are associated with the break-
age of rocks due to the high pressure produced by the
magma and can even activate internal faults in the volcanic
building.

2) Long period: They correspond to the impact of the fluids
moving in the volcanic system or interacting with the
hydrothermal system.

3) Hybrids: They are caused by fluids in the blocked ducts,
which produce both VT and LP events at almost the same
time.

4) Tremors: These events are generated due to degassing or
to the effect of resonance produced by the disturbance of
the cavities of the duct systems under the crater. This type
of a signal may last from a few minutes to several days.

5) Explosions: These events are originated due to the change
of pressure and temperature of the magma, in conditions
where volatile gases and bubbles explode.

Our simulations showed that a temporal analysis of the seis-
mic signals can give us important characteristics of the classes.
Indeed, many time-domain features have proved to be useful for
distinguishing one type of signal from the others. For instance,
the EX events are characterized by high magnitudes, when
compared to other classes, as illustrated in Fig. 1, which show
one time series sample of each class, with their respective PSDs.
In this example, it can be viewed that the maximum amplitude
of the EX signal in the time domain is more than 200 μm/s,
whereas the signals of the other classes reach less than 1 μm/s.

However, the simulations also showed that certain types of
signals are better distinguished in the spectral domain, such as
HB and VT signals. In Fig. 1, the HB and VT waveforms present
a roughly similar behavior in the time domain. Nevertheless, it
can be viewed that by their PSDs in Fig. 1, the HB signal has
a spectrum much broader than the VT signal, whose PSD is
mainly concentrated around 6.5 Hz.

In the literature, the use of the cepstral domain has provided
a relevant impact in the classification of seismic signals, e.g.,
[8] and [9]. Due to this fact, attributes in the cepstral domain
are also considered in the proposed method. Specifically, the
mel-frequency cepstral coefficients (MFCCs) are used in this
article, as they have given good results in the classification of
volcanic signals, as in [18] and [25].

Fig. 2. Map of the Ubinas volcano with the UB1, UB2, UB3, and UB4
permanent stations.

C. Database

The catalog with the seismic data used in our research was
built by the IGP. In the Ubinas volcano, there is a permanent
seismic monitoring with four seismic stations (with codes UB1,
UB2, UB3, and UB4) distributed on the flanks of the volcano, as
shown in Fig. 2. From 2006 to 2007, the UB1, UB2, UB3, and
UB4 stations were equipped with 1-Hz short-period seismome-
ters with an analog telemetry system for transmitting data to
the observatory (IGP Arequipa). Since 2008, these stations have
been progressively upgraded with broadband three component
sensors and digital telemetry based on Guralp 40T and Reftek
130. The initial catalog was made mainly using the data recorded
by these four permanent stations. However, the UB1 and UB2
stations have more stable instruments in terms of continuity of
the data acquisition without gaps. Therefore, this work uses only
data from the stations UB1 and UB2, located approximately
2 km to the west and north of the crater, respectively. The
database of our research was collected in the year 2014 and, at
that time, the station UB1 had a three component sensor, whereas
UB2 had a single component sensor. This means each event is
characterized by four simultaneous signals in the final database.

The catalog used in this work consists of records of the five
aforementioned main volcano-seismic events (VT, LP, HB, TR,
and EX) with the corresponding labels assigned by the experts of
the IGP. There are other types of events exhibited in the literature,
such as “Tornillo” and a very long period. However, there are not
enough data found of these types of events. Due to this reason,
they were not considered in this work.

The catalog is used to compare the responses of the automatic
classifier with the ones of the experts, and to calculate the success
rate of the classifier. Results of several temporary experiments,
with other databases of seismic data collected by sensors located
around the Ubinas volcano, were carried out in the years 2006,
2009, 2011, 2014, and 2015, with international participation,
such as in the framework of the EU-VOLUME project [22], a
cooperation between the IGP and the Institut de Recherche pour
le Developpement (France).
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Fig. 3. Simplified block diagram of the proposed classification system.

Fig. 4. Feature extraction block diagram.

Due to the considerable number of volcanic events that oc-
curred in 2014 (about 50000 events), this database has a high
number of events cataloged. In particular, it has a considerable
number of explosion events, when compared with databases of
other works, which can be considered one of the most important
events to be detected. For instance, the database in [18] contains
only 160 EX events. Besides, our database has a continuity in the
data, that is, it has no gaps in the acquisition of the signals. The
complete catalog has 28 140, 11 489, 8108, 1346, and 592 events
of the classes LP, TR, HB, VT, and EX, respectively. However,
in order to maintain a balance among the number of samples in
each class, we decided to use a smaller number of events, as it
will be described in Section IV.

III. CLASSIFICATION SYSTEM

In this section, the proposed supervised classification method
is presented. Fig. 3 shows a simplified block diagram of the
classification system, based on a multicomponent processing
by using four seismic channels from two different stations.
The classifier can be summarized in the following steps, which
will be detailed in the sequel. First, a signal conditioning that
includes offset elimination and instrumental correction, among
other operations, is performed. The extraction of the attributes
in temporal, spectral, and cepstral domains is then carried out,
using the EMD. A simplified scheme of the feature extraction
block diagram is shown in Fig. 4. After this step, the PCA and
SVM techniques are applied.

A. Signal Conditioning

By analyzing the PSD of the signals of the different classes,
it was found that the spectral bandwidth of interest can be
considered lower than 20 Hz. Due to this reason, the sampling
rate of all the signals was set to 50 Hz. In addition, the averages
of the signals were removed with the objective of avoiding
low-frequency artifacts in the PSD.

Fig. 5. Simplified block scheme of the data acquisition system from the ground
motion until the reception system.

The instrumental correction is then carried out, converting
the data from seismic counts into meter per second. As shown
in Fig. 5, which shows a simplified block scheme of the data
acquisition system from the ground motion until the reception
system, the velocity signals are recorded by the digitizers of the
monitoring centers in the unity seismic counts. The instrumental
correction consists in computing the deconvolution associated
with the transfer function of the data acquisition system (sensor
transfer function multiplied by the digitizer sensitivity), bringing
back the seismic signal to its original unity (m/s). This method
for instrumental correction is detailed in [20].

The use of the instrumental correction is due to a specific
reason. By standardizing all the velocity signals to the unit
meter per second, the classifier becomes independent of the
types of sensors used. Otherwise, we would be forced to nor-
malize the signals, as seen in some cases in the literature [18],
[26]. However, when a normalization is performed, valuable
information of the physical energy of the signals is lost. This
is particularly important in our study, as more than one type of
sensor is being used simultaneously. That gives to the energy of
the signals a physical sense, allowing us to use the energy as an
important attribute. In the simulation results, we have shown that
the instrumental correction significantly improves the accuracy
of the classifier.

An example of the importance of the instrumental correction
can be viewed by comparing the LP and EX signals in Fig. 1.
These signals have similar spectra, the main difference between
these two signals being the high energy of the EX signal when
compared to the LP. This characteristic can be reflected in
attributes, such as the energy or the maximum of the temporal
signal. Indeed, in Fig. 1, the maximum of the LP signal is
0.94μm/s, whereas the EX signal has a maximum of 211.7μm/s.

B. Feature Extraction

In this section, the feature extraction procedure is described.
A simplified scheme of the feature extraction block is shown in
Fig. 4. As earlier explained, the proposed classifier is based on a
multicomponent approach by using four seismic channels from
two different stations, i.e., each volcano-seismic observation is
represented by four simultaneous seismic signals: three signals
observed by a station with a triaxial sensor (UB1) and one signal
observed by a station with a single-channel sensor (UB2).

After the preprocessing steps described in Section III-A, each
of the four signals are decomposed with the use of EMD, the
three most significant IMFs being selected and the others being
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neglected. A large number of attributes is then calculated for
each IMF of each signal. These steps of the feature extraction
block are detailed in the sequel.

1) Empirical Mode Decomposition: The EMD is a self-
adaptive filter developed by Huang in 1998 for analysis of
nonlinear and nonstationary signals [19]. This method has been
applied in the study of gravitational waves [27], noise analysis
[28], acoustic signals [30], image processing [31], etc. The use of
EMD method is relatively new in seismology. For instance, the
works in [21], [29], [32], and [33] recently applied the EMD for
this type of signal. Up to now, the use of EMD for classification of
volcano-seismic signals using machine learning was not found
in the literature.

The principle of the EMD is to decompose a signal, through
a sifting process, into different modes called IMFs. The term
IMF is due to the fact that the EMD does not use a fixed type
of basis function to compute the decomposition, as it usually
happens in signal transforms, such as, for instance, the wavelet
and Fourier transforms. On the contrary, the EMD performs the
decomposition based on natural or intrinsic characteristics of
the signal. The IMFs occupies different frequency bands, the
first IMFs containing roughly high frequencies and the last ones
containing roughly low frequencies. In this article, the natural
characteristics of the IMFs are exploited to generate the feature
vector, in order to obtain a better representation of the different
types of signals to be classified.

The steps of the EMD of a discrete-time signal x[n] are
illustrated in Fig. 6, with the following remarks.

1) In this work, we used cubic spline to interpolate the upper
envelope and lower envelopes.

2) The conditions for h1[n] to be an IMF are the following.
a) The number of extrema and the number of zero-

crossing points must be equal or differ at most by one.
b) mk[n] must be 0 at some point.

3) The standard deviation (SD) is defined as

SD =
N∑

k=1

|hk−1[n]− hk[n]|2
h2
k−1[n]

. (1)

4) Im[n] is the mth IMF of x[n].
5) The original signal x[n] can be represented as follows:

x[n] =

M∑

m=1

Im[n] + r[n] (2)

where M is the number of IMFs and r[n] is the final
residual signal.

2) Choice of the Number of IMFs: After computing the
EMD, one must decide how many IMFs will be used for gener-
ating the attributes. Indeed, as the EMD method is a natural
decomposition method, the number of IMFs is not fixed, it
depends on each signal. It is then essential to fix a number
of IMFs to perform the extraction of attributes. Otherwise, the
number of attributes would be variable. In this work, the variance
contribution ratio (VCR) is used for this purpose. The VCR
represents the variance of each IMF with respect to the total

Fig. 6. Flowchart of the EMD.

variance, that is

VCRIm =
var(Im[n])

∑M
m=1 var(Im[n])

(3)

where var(·) is the variance operator. We have calculated all
the VCRIm for a sample space of 2000 events (400 events
per class), obtaining as a result that the first three IMFs from
the three highest VCRs provide a VCR of at least 93%, i.e.,
VCRI1 + VCRI2 + VCRI3 ≥ 0.93. This means that the sum
of the remaining IMFs represents, on average, less than 7% of
the total energy. These remaining IMFs can then be considered
noise, which means that the first three IMFs together account
for most of the energy of the original signal. Due to this reason,
we choose to use the first three IMFs that represent the highest
amount of VCR. As a result, for each seismic event, we have four
seismic signals, each one with three IMFs, leading to a total of
12 IMFs for each event.

Fig. 7 shows the three selected IMFs of an LP signal, as well
as their respective PSDs. It is known that a signal of the LP type
has a spectrum with energy concentrated at low frequencies,
generally less than 5 Hz. It can be viewed from this figure
that the first IMF has a considerable energy in frequencies
between 3 to 5 Hz, and each subsequent IMF has a spectrum
concentrated around a lower frequency. Indeed, the second IMF
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Fig. 7. Sample of an LP signal, its three selected IMFs, and their PSD.

has a high energy concentration around 3 Hz, and the third
IMF has considerable energy around 1 and 3 Hz. From the
fourth IMFs onward, the energies are not considerably high.
In comparison to the original signal, there are now three signals
(IMFs) that reinforce that the signal is LP type. This nature of
IMFs helps to differentiate between one class and another. The
attributes used by the classifiers will be extracted from the 12
IMFs that represent a volcano-seismic event to take even more
advantage of the natural characteristics of these signals, in order
to generate a feature vector that represent efficiently each class.

3) Calculation of Attributes: As explained in Section II-B,
our simulations showed that certain types of classes are better
distinguished in the time domain, whereas other signals are
better distinguished in spectral or cepstral domains. A good suc-
cess rate using the three aforementioned domains was obtained
in [18]. Due to this reason, the proposed classification system
performs the extraction of the attributes in temporal, spectral,
and cepstral domains in the following way.

1) In the temporal domain, we used attributes obtained di-
rectly from the IMFs Ii[n].

2) In the spectral domain, we used attributes calculated from
the PSDs of the IMFs, using Welch’s method [34] with an
FFT length of N = 512, 75% overlapping, and a Hanning
window function.

3) In the cepstral domain, we used attributes obtained from
F−1{log |F{Ii[n]}|}, where F{·} is the Fourier trans-
form, with 13 MFCC being used.

A total of 54 attributes are extracted per IMF. Table I
lists some of the used attributes, where s[n] is the signal
from which the attributes are extracted, and Fs is the sam-
pling frequency. For time-domain attributes, s[k] = Ii[k], s[k] =
I2i [k], or s[k] = |H{Ii[k]}|, where H{·} is the Hilbert trans-
form and | · | is the absolute value. For frequency-domain at-
tributes, s[k] = PSDk(Ii[n]), where PSDk(·) is the kth compo-
nent of the PSD. For attributes in the cepstral domain, s[k] =
F−1
k {log |F{Ii[n]}|}, whereF−1

k {·} is thekth component of the
inverse Fourier transform. Moreover, the function count(a < b)
returns the number of components for which a < b.

As 12 IMFs are used per event, each seismic signal has a
feature vector with 12× 54 = 648 attributes. Moreover, one
additional attribute was calculated directly from the raw time
series: the duration of the observation. That leads to a total of
649 attributes per event. Most of these attributes were used in

TABLE I
ATTRIBUTES EXTRACTED FROM THE IMFS

[18] and [36], they have proved to be useful in distinguishing
signals in classification problems.

C. Principal Component Analysis

The very high dimensionality of the aforementioned feature
vector (649 dimensions) may cause a dispersion of the data and
the well-known problem of “curse of dimensionality” [37]. To
avoid this issue, the PCA is used for dimensionality reduction.
The use of PCA also reduces the computational complexity,
improving the response time of the classifier by representing
the feature vector in a smaller dimensional subspace. Moreover,
the PCA removes redundant information by using uncorrelated
components.

It was found that the first 200 components obtained with PCA
account for 99.7% of the feature vector variance. The number
of PCA components was then set to 200, leading to a feature
vector with 200 dimensions at the input of the classifier. Besides
avoiding these problems, the PCA also decreases considerably
the processing time, which is very important because in our
case, as the proposed classification system should be able to be
implemented in seismic monitoring centers in real time.

D. Classification

The last step of the proposed classification system is to design
a classifying algorithm, for performing the separation of the
five classes in a space of 200 dimensions given by the PCA
components. Four classification techniques were initially tested:
as multilayer perceptron (MLP), linear discriminant analysis
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TABLE II
SUCCESS RATE FOR SEVERAL CLASSIFICATION

TECHNIQUES—SINGLE-CHANNEL AND MULTICHANNEL CASES

(LDA), random forest (RF), and SVM. These methods have
already been tested in the context of seismic events. For instance,
MLP was used to classify three classes of the Stromboli volcano,
in Italy [38]. The LDA was tested for classifying seismic signals
with the goal of differentiating earthquakes from man-made
explosions [39]. The RF was used in the classification of earth-
quake and nonearthquake signals [40] and the SVM was used to
perform classification of volcanic events [18].

As it will be viewed in simulation results, the SVM technique
provided the best results. Due to this reason, the most part of the
simulation results were generated using this method. The SVM
classifier performs the separation of the classes through hyper-
planes that are optimized for generating the greatest possible
distance between the classes. Several simulations were carried
out in order to compare different SVM kernels and penalty
parameters. The best results were obtained with a radial basis
function (RBF) kernel, for a Gaussian parameter of γ = 0.002,
and a penalty parameter equal toC = 10. These parameters were
used as the default configuration of the SVM.

IV. SIMULATION RESULTS

This section presents simulation results that evaluate the
performance of the proposed method. The database used in the
experiments is described in Section II-C, with 800 observations
from each class, excepting the EX class that has only 592
samples, which leads to a total of 3792 samples. Hold out
cross-validation is used for the machine learning techniques,
with 70% of data used for training and 30% for testing.

A. Multichannel Versus Single Channel, and Machine
Learning Model Choice

The first experiment carried out has the objective of compar-
ing the performances of several classification algorithms, as well
as to evaluate the impact of using multiple channels. Table II lists
the success rates obtained by the proposed methodology with the
MLP, LDA, RF, and SVM classification techniques, for one and
four channels. Many simulations were carried out to adjust some
parameters of these classifiers. For the MLP, the best results were
found with 2 layers, 100 neurons in the first layer and 50 in the
second, and rectified linear units as activation functions. For the
RF method, 750 trees provided the best success rates. For the
SVM, as mentioned earlier, the best results were obtained with
an RBF kernel, for a Gaussian parameter of γ = 0.002, and a
penalty parameter equal to C = 10.

TABLE III
CONFUSION MATRIX WITH THE TRUE AND PREDICTED CLASSES, USING

MULTIPLE CHANNELS AND SVM—WITHOUT EMD AND WITH EMD
(IN PARENTHESES)

It can be viewed in Table II that for all the tested cases, the
multichannel approach provides a higher success rate than the
single-channel approach. The main difference between these two
approaches is observed when the SVM technique is used. In this
case, the use of the multiple channels improves the success rates
in 7.3%. It can also be viewed in Table II that the SVM provided
the best results, for both the single-channel and multichannel
cases. The best success achieved by the proposed classification
system, obtained with the SVM and multiple channels, is equal
to 90.5%. Due to the high success rate presented by the SVM
model, this technique will be used as the training model for the
next simulation results.

B. EMD Performance

The next simulation results have the objective of evaluating
the impact of the use of the EMD. Table III lists the confusion
matrix obtained by the proposed classification system using the
SVM and multiple channels, using the EMD (in parentheses)
and without using the EMD. When the EMD is not used,
the attributes are directly calculated from the raw time series,
using all the three aforementioned domains. First, it can be
concluded from this table that all the classes have balanced
success classification rates, the EX and TR classes presenting
the best results and the LP providing the worst performance.
The best success rate is obtained by the EX class with the use of
the EMD (98.8%). This comes from the fact that the EX class
can be easily distinguished from the other classes due to its high
energy. On the other hand, the LP class is sometimes mistaken
with the VT class.

It can also be viewed from Table III that EMD increases the
success rate of 4 of the 5 classes, the LP class being the most
impacted by the use of the EMD. Indeed, the success rate of the
LP is improved by 4.2% when the EMD is used. In contrast,
the classification rate of the HB class is slightly worse when
EMD is used. This is due to the fact that the signals of the
HB class share characteristics of the VT and LP classes. As
the LP class has generally low-frequency components and the
VT signal is characterized by high-frequency components, the
HB class contains considerable energies at both high and low
frequencies. As a consequence, the EMD of an HB signal has
significant energy at first IMFs (high frequencies), as well as the
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TABLE IV
CONFUSION MATRIX WITH TRUE CLASSES AND PREDICTED CLASSES, USING

MULTIPLE CHANNELS AND SVM—WITHOUT INSTRUMENT CORRECTION

last IMFs (low frequencies). This means that the IMFs of the
HB class are often similar to those of the LP and VT classes,
which may cause a classification error when an HB event occurs.
This behavior is illustrated in Table III that shows a significant
number of errors from the true class HB to the estimated class
VT and, to a lesser extent, to estimated class LP.

Moreover, the overall success rate is improved by 1.5% when
the EMD is used, compared with the case where it is not used.
This means that the use of the EMD decreases the error rate from
11% to 9.5%. Although the gain provided by the EMD in the
overall success rate is not very high, it should be highlighted that
the EMD yielded more significant gains for LP and EX classes
(2.7% and 4.2%, respectively). Indeed, the detection of these
classes can be considered more relevant for the classification
system, as the most violent volcanic events generally fall into
the EX class, and the LP is very relevant for the forecast of
eruptions [2], [41], [42].

C. Performance of Instrumental Correction

The next experiment evaluates the impact of the instrumen-
tal correction described in Section III-A. Table IV lists the
confusion matrix obtained without the instrumental correction.
Comparing the results of Tables III and IV, it can be viewed
that the instrument correction has a great impact on the success
rate. Indeed, without the preprocessing, all the classes showed
a reduction in the success rate in relation to the classification
using the instrumental correction. The overall success rate falls
to 87.1% without the instrument correction. This is due to the
fact that, as earlier mentioned, without the signal conditioning,
valuable information of the physical energy of the signals is lost.
On the other hand, the instrumental correction gives to the energy
of the signals a physical sense, providing valuable information.

D. Performance of the Temporal, Spectral,
and Ceptral Domains

The last experiment carried out evaluates the success rate
when the attributes are extracted from different domains, using
the SVM with the EMD and multiple channels. Table V lists
the success rates obtained using seven different combinations of
domains. When only one domain is used, the cepstral domain
provided the best result, reaching 85.0% of success rate, and
the worst performance is obtained by the spectral domain, with

TABLE V
SUCCESS RATE USING ATTRIBUTES FROM DIFFERENT DOMAINS

a success rate of 78.2%. As expected, using only one domain
of attributes leads to worse success rates than using more than
one domain. It can also be observed that the use of the three
domains together generates the best success rate (90.5%), with
a 3% gain over the second-best case (temporal–cepstral), which
corroborates with the use of the three domains in the proposed
classification system.

V. CONCLUSIONS AND PERSPECTIVES

An automatic classification system for identifying the five
most important types of events of a volcano was presented
in this article, using the EMD in the feature extraction block.
This decomposition, in conjunction with machine learning tech-
niques, has shown to be a promising tool for classification of
volcanic-seismic signals. Although the gain provided by the
EMD in the overall success rate is not very high, it yielded more
significant gains for the LP and EX classes, whose detection can
be considered more relevant than the other classes.

Another contribution of this work is the use of multiple seis-
mic channels to perform the classification, contrary to previous
works that use only a single channel. The multichannel approach
has provided much smaller error rates when compared to the
single-channel case, due to the valuable information added to
the classifier. The presented system also performs an instru-
ment correction that helps significantly in the recognition of
the classes. This preprocessing standardizes the signals of the
seismic sensors to their real values in meter per second, making
the proposed system independent of the types of sensors used
and giving a physical sense to the data. Concerning the classi-
fication algorithm, four classification techniques were tested in
conjunction with PCA, the SVM providing the best results.

This investigation used a large database from the Ubinas
volcano located in Arequipa, Peru. This database is particularly
rich in explosion events, when compared with other volcano
databases. The simulation showed a good performance of the
proposed classifier, with a success rate of 90.5%.

In future works, a complexity analysis of the proposed method
will be carried out, as well as some variants of the EMD might
be considered, such as the ensemble EMD (EEMD), complete
EEMD, among others. Moreover, the presented classification
system will be implemented in real time in the volcano moni-
toring center of the IGP.
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