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ABSTRACT:

Knowledge of the evolution of the littoral zone over time is paramount for coastal science and coastal zone management. However,
traditional bathymetric surveys using echo-sounding techniques are unsuitable for large-scale applications due to a variety of con-
straints. On the other hand, remote sensing data such as satellite imagery allow for the development and application of bathymetry
inversion models on a large scale. Deep learning is a growing field of artificial intelligence that allows for the automatic construction
of models from data and has been successfully used for various Earth Observation and model inversion applications. In this work,
we develop and apply a deep learning-based depth inversion model combining wave kinematics and water color information from
Sentinel-2 satellite imagery. We present two different satellite image processing methods to augment wave kinematics and color
information as inputs to the proposed deep learning-based models. We show competitive results with a state-of-the-art physical
inversion method for satellite derived bathymetry, Satellite to Shores (S2Shores), demonstrating a promising direction for the use
of deep learning models in Satellite Derived Bathymetry (SDB) and Earth observation in general.

1. INTRODUCTION

Coastal areas around the world are continuously evolving due
to a variety of natural and anthropogenic pressures. Water
depth (i.e. bathymetry) plays a major role in a variety of nat-
ural processes occuring in the coastal zone. Our knowledge
of the evolution of coastal bathymetry is paramount for many
applications such as coastal development, risk monitoring and
management. Traditionally, bathymetric surveys are done us-
ing echo-sounding or Light Detection and Ranging techniques.
However, these techniques are expensive, time-consuming and
are constrained by different environmental and logistical factors
(Jagalingam et al., 2015, Gao, 2009, Salameh et al., 2019). In
recent years, remote sensing tools such as shore-based video
cameras and space-born satellite constellations have emerged
as important tools for the collection of large amounts of earth
observation data. These data products have been used to study
a wide array of natural processes in the coastal zone (Brando
and Dekker, 2003, Yuan et al., 2020, Wei et al., 2021, Schratz
et al., 2021, da Silveira et al., 2021). In the domain of bathy-
metry inversion from satellite imagery, two main methodolo-
gies have been studied and can be identified in the literature
(Al Najar et al., 2022). These can be categorized based on
the natural phenomena or process they exploit to invert water
depth. Namely, the effect of bathymetry on the propagation and
dispersion of surface waves (wave kinematics), as well as the
relation between water depth and light penetration and reflect-
ance in water (water color). Color-based methods can be used
to estimate depth in optically shallow waters and are able to
detect smaller-scale bathymetric features, with an absolute er-
ror order of 10–20% of the target value, and an average RMSE
of 1.5 m (Pacheco et al., 2015, Chénier et al., 2018, Traganos
∗ Corresponding author

et al., 2018, Lyzenga, 1978, Giardino et al., 2012, Legleiter et
al., 2009, Caballero and Stumpf, 2019, Evagorou et al., 2019,
Sagawa et al., 2019). However, these are sensitive to the optical
properties of seawater and are generally limited to clear and
non-turbid waters (Cesbron et al., 2021, Almar et al., 2021).
On the other hand, wave kinematics-based methods study the
interaction between water depth and the propagation and disper-
sion of surface waves. Compared to color-based methods, wave
kinematics-based methods are able to estimate bathymetry in
significantly deeper areas, but with a larger error margin when
applied globally (RMSE between 6–9 m, (Almar et al., 2021)).
The development of a depth estimation method applicable to
satellite data is non-trivial and remains a topic of ongoing re-
search due to the great potential it offers to in-expensively mon-
itor coastal morphodynamics at a large scale. Machine learn-
ing (ML) algorithms are a family of data-driven optimization
techniques that have shown promising performance in a wide
array of application domains. ML algorithms which have been
used in the past to estimate depth from satellite imagery include
multi-layered perceptrons, support vector machines and ran-
dom forests (Sandidge and Holyer, 1998, Vojinovic et al., 2013,
Sagawa et al., 2019). Recently, modern Deep Learning (DL)
algorithms are being used more frequently in Earth observation
and remote sensing applications (Iglovikov et al., 2017, Zhu et
al., 2017, Hoeser and Kuenzer, 2020, Ma et al., 2019), includ-
ing bathymetry estimation (Ghorbanidehno et al., 2021, Collins
et al., 2021, Mandlburger et al., 2021). In the context of satellite
derived bathymetry, DL-based works in the literature mostly ex-
plore the color-based approach, example studies include (Dick-
ens and Armstrong, 2019, Wilson et al., 2020, Lumban-Gaol et
al., 2021). On the other hand, great expectations come from the
combination of different methods, in particular, based on wave
information (Danilo and Melgani, 2016, Benshila et al., 2020,
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Al Najar et al., 2021, Al Najar et al., 2022). In this work, we
develop on our Deep Single-Point Estimation of Bathymetry
method (DSPEB) as presented in our previous works (Al Najar
et al., 2021, Al Najar et al., 2022). Specifically, we train and ap-
ply the DSPEB method using a number of Sentinel-2 L2A im-
ages coupled with bathymetry surveys obtained from the French
Naval Hydrographic and Oceanographic Service. We present
two different satellite image pre-processing techniques to aug-
ment wave kinematics and color information as inputs to two
DSPEB models. In addition, as a continuation of our prelimin-
ary work on hybrid models in (Al Najar et al., 2022), we invest-
igate a multi-headed convolutional neural network architecure
(CNN) named Hybrid-DSPEB (H-DSPEB) with the aim of in-
corporating both color and wave kinematics information into a
multi-input single-output model. We present the performances
of the three DSPEB models and we compare them to a state-of-
the-art bathymetry inversion models based on wave kinemat-
ics, Satellite to Shores (S2Shores) (Bergsma et al., 2021). The
layout of this article is as follows. In Section 2 we present
our satellite image preprocessing chain to augment wave kin-
ematics and water color information, our dataset creation meth-
odology, in addition to presenting the three methods studied
(DSPEB, H-DSPEB, S2Shores). Then, Section 3 documents
the different experiments done during the development of the
H-DSPEB model and presents a performance comparison of the
different models studied. Finally, we present a brief discussion
of the results and we conclude this work in Section 4.

2. METHODS

2.1 Sentinel-2 Data Pre-Processing

As mentioned in Section 1, we make a distinction between two
types of information in satellite imagery that can be used for
bathymetry estimation. Namely, information relating to the
light radiance and reflection in the water column, as well as the
propagation of surface waves in wave kinematics-based SDB.
In this work, we explore a hybrid approach to SDB, named H-
DSPEB, that combines both types of information. After the im-
age date selection based on the performance of S2Shores (we
refer to (Al Najar et al., 2022) for further details on date selec-
tion), our preprocessing workflow is focused on detecting and
separating the signals representing actual ocean waves from the
remaining information found in our Sentinel-2 subtiles. For
each subtile, a pass-band filter in the spectral domain is ap-
plied to retain signals corresponding the range of ocean-specific
wavelengths (periods Tmin = 5 s to Tmax = 25 s).

We apply a pass-band filter to our input subtiles in the range of
ocean-specific wavelengths (periods Tmin = 5 s to Tmax = 25
s). First, we create a frequency filter based on Tmin and Tmax.
Then, a Discrete Fourier Transform (DFT) is applied in two di-
mensions to each band (layer) in the input subtile. For wave
kinematics-based DSPEB (W-DSPEB), we further process our
filtered subtiles by calculating the two-dimensional normalized
cross-correlation (NORMXCORR) of each band, in order to
extract the most consistent and recurring wave signals corres-
ponding to the crests of actual ocean waves. For C-DSPEB,
we subtract the detected ocean-wave signals from the raw input
image in order to retain the remainder of the information, most
importantly the background color. Figure 1 demonstrates our
pre-processing workflow on an example 400× 400 m Sentinel-
2 subtile. For C-DSPEB, we scale all input images such that
the minimum and maximum pixel values over the full dataset
are equal to −0.9 and 0.9, respectively.

(a) (b)

(c) (d)

Figure 1. Pre-processing of a single 400 × 400 m Sentinel-2
subtile band (10 m resolution). (a) Raw subtile. (b)

Passband-filtered subtile. (c) Final NORMXCORR result used
as input to W-DSPEB. (d) Color-augmented subtile.

2.2 Dataset Creation

For the present study, the methods are tested and compared
on the coast of French Guiana. Bathymetry data from the
French Naval Hydrographic and Oceanographic Service have
been coupled with a set of Sentinel-2 L2A images in order to
create a supervised dataset that can be used to train the deep
learning models. Figure 2 shows the location and distribution
of depth points used in this study.

(a)

(b)

Figure 2. Water depth distribution of the bathymetry survey
obtained for French Guiana from the French Naval

Hydrographic and Oceanographic Service. (a) Spatial
distribution of the survey used. (b) Distribution of depth points

retained in the dataset.
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To create the supervised dataset, we first discard all points
deeper than 40 meters from the original bathymetry survey.
Then, for each depth point, we extract the surrounding 400 ×
400 meter subtile from each of the selected Sentinel-2 images,
such as the depth point is at the center of each of the extrac-
ted subtiles. These subtiles are first preprocessed according to
the method described in Section 2.1, then recorded on disk for
model training. The recorded data points are randomly shuffled
and split into training and validation sets. The exact same pro-
cess, but using a different set of Sentinel-2 images, is then ap-
plied to create a test set for model performance evaluation and
comparison.

2.3 Deep Single-Point Estimation of Bathymetry

Deep learning is a subfield of machine learning dealing with
(deep) artificial neural networks that has shown impressive per-
formance in a wide array of applications. Training such net-
works is done using Stochastic Gradient Descent (SGD) and the
backpropagation algorithm, where a network’s prediction error
over a batch of samples is calculated according to an objective
function and then propagated backward through the different
layers of the network in order to update the network parameters.
This process is repeated over multiple iterations of the available
data and is stopped according to varying criteria. As part of
the optimization process, a learning rate is employed to control
the scale of parameter updates that are done at each step. The
Deep Single-Point Estimation of Bathymetry method (DSPEB)
(Al Najar et al., 2021) is a bathymetry inversion algorithm that
makes use of ResNet (He et al., 2016) as its neural architecture;
it operates on 40× 40× 4 px multi-spectral input subtiles, cor-
responding to the red, green, blue and near-infrared (RGB-NIR)
bands of the Sentinel-2 satellite constellation at 10 meters resol-
ution (Drusch et al., 2012). DSPEB approximates a single depth
point per input subtile, corresponding to water depth at the cen-
ter of the input. A simple moving window technique can then be
used to map the bathymetry of a complete area. A comprehens-
ive description of the DSPEB method and its development can
be found in our previous works (Al Najar et al., 2022, Al Najar
et al., 2021). In this work, DSPEB is used with two different in-
put subtile pre-processing schemes augmenting wave kinemat-
ics and color information to form two DSPEB-based models
for SDB. Namely, wave kinematics-based DSPEB (W-DSPEB)
and color-based DSPEB (C-DSPEB). These models are then
used to train a Hybrid model that makes use of both types of
inputs as presented in Section 2.4.

2.4 Hybrid-DSPEB Model

Previous work in deep learning for computer vision has pro-
posed multi-input convolutional neural networks to improve
performance on tasks where different views of the same input
are useful for approximating a single output. This can be done
by grouping multiple neural networks, or duplicating a single
network architecture, through an MLP-like architecture near the
output of the merged network (Dua et al., 2021, Oktay et al.,
2016, Cheng et al., 2016). In this work, we propose H-DSPEB
as a variant of DSPEB which merges both of C-DSPEB and W-
DSPEB into a single neural architecture. The architecture of
H-DSPEB can be seen in Figure 3.

The MLP head which we append to the end of the two pre-
trained models is composed of two new fully connected layers
which connect to the last hidden layer of each sub-model, in ad-
dition to the output layer of each of the sub-models. The single

Figure 3. The neural architecture of Hybrid-DSPEB combining
the pretrained C-DSPEB and W-DSPEB models. The blue

arrows represent non-parametric connections (flattening layer).
Dotted lines represent pre-trained layers that are frozen during

H-DSPEB training.

output of the MLP head corresponds to the final output of H-
DSPEB. As presented in Section 3, we tested various network
head architectures however little difference was noted in their fi-
nal performances. During training, all pre-trained weights from
C-DSPEB and W-DSPEB were frozen, as indicated by the dot-
ted lines in Figure 3.

The aim of this architecture is to evaluate whether color and
celerity information can be automatically combined for en-
hanced estimation, due to the different conditions in which
these two model types function. By including higher-level fea-
tures from the final layer, our goal is that the hybrid model
learns to estimate depth using both color and celerity inform-
ation. Because the two approaches are complementary for clear
and turbid waters, contrary to previous deep learning bathy-
metry inversion applications, the combination of the two un-
locks the potential of inversion of the bathymetry from a satel-
lite at any coast worldwide.

2.5 Satellite to Shores

Satellite to Shores (S2Shores) (Bergsma et al., 2021) is a wave
kinematics-based bathymetry inversion model that uses a com-
bined radon transform (RT) and a discrete Fourier transform
(DFT) to detect spectral wave characteristics such as the spec-
tral wave phase shift and the wave number to invert water
depth using the linear dispersion relation for free surface waves
(Equation (2)). The RT is first used to produce a sinogram of
integrated pixel-intensities per direction. A 1D DFT procedure
per direction over the sinogram enables the transformation to
a complex spectral representation of the observed wave signals
in polar space. The wave phase and amplitude per wave num-
ber and per direction can then be determined. The difference
in phase (∆Φ) can be found between (several) pairs of detector
bands. Presuming that the wavenumber (k) is constant or near-
constant over the sub-window, ∆Φ can be seen as representative
of ω(t), and given that the timing between the different detector
bands (∆t) is constant, the wave celerity (c) can be determined
according to Equation (1). For each wavenumber or celerity
pair, Equation (2) can then be solved for depth.

c =
∆Φ

2πk∆t
=

∆Φλ

2π∆t
(1)
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c2 =
g

h
tanh(kh)⇐⇒ h =

tanh−1( c2k
g

)

k
(2)

3. EXPERIMENTS & RESULTS

3.1 Core DSPEB models

We train the wave kinematics-based and color-based DSPEB
models using the Adam optimizer (Kingma and Ba, 2014), with
mean squared error (MSE) loss and a batch size of 256. Adam’s
hyperparameters including lr, ε, β1, and β2 were respectively
set to 1× 10−4, 1× 10−8, 0.99, and 0.999 for W-DSPEB, and
to 1× 10−3, 1× 10−6, 0.5, and 0.9 for C-DSPEB. To stop the
training, an automatic early stopping mechanism (patience) is
used that stops training if no improvement in performance on
the validation set is achieved for 10 consecutive epochs. The
learning curves of the trained models are presented in Figure 4,
showing the models’ errors on the training and validation sets
at each training step.

Figure 4. Training of the W-DSPEB and C-DSPEB models,
showing the MSE losses over the training and validation sets in

French Guiana. Dashed lines represent performance on the
validation set.

Figure 4 shows the MSE training and validation losses of W-
DSPEB and C-DSPEB on the French Guiana study site and
demonstrates the difference in convergence speed between the
two models due to the higher learning rate used for C-DSPEB.
We note that W-DSPEB was unable to converge using lar-
ger learning rates. The training of the W-DSPEB and C-
DSPEB models stopped at 53 and 30 epochs epochs respect-
ively, achieving test RMSE scores of 4.2 and 5.8 meters.

3.2 Hybrid-DSPEB Architectures

In order to create the H-DSPEB model, we study five architec-
ture variants of the neural network’s output head which makes
use of the C-DSPEB and W-DSPEB models in its architecture
in order to produce a single depth estimation. This is done by
merging the last fully connected layers and output nodes of the
two pretrained C-DSPEB and W-DSPEB models into a single
output node. The architectures tested are shown in Figure 5.
The learning curves of the combined architectures can be seen
in Figure 6. Then, Table 1 presents a comparison of the differ-
ent candidate architectures according to the root-mean-squared-
error (RMSE) and the Pearson correlation coefficient.

Figure 5 presents the different neural architectures of the com-
bined network’s head. The main goal behind the different ar-
chitectures in this experiment is to test different mappings and
output paths, while enabling the final output node to make use

(V0) (V1)

(V2) (V3)

(V4) (V5)

Figure 5. Combined neural network architecutres using an
MLP-like head. (V0) Initial W-DSPEB and C-DSPEB output
layers. (V1–V5) Candidate combination schemes forming a
multi-input, single-output neural architecture (H-DSPEB).
Dotted connections represent connections with pre-trained

weights from C-DSPEB or W-DSPEB. The numbers represent
the size of the latent feature space at each layer.

Figure 6. The learning curves of the different H-DSPEB
architectures used in the study.

of the last fully connected layers and the output nodes of each
of C-DSPEB and W-DSPEB.

All H-DSPEB architectures shown in Figure 5 were trained us-
ing the same training configuration used for W-DSPEB. Spe-
cifically, the models are trained with mean squared error (MSE)
loss and a batch size of 256, and the learning hyperparameters
lr, ε, β1, and β2 were respectively set to 1× 10−4, 1× 10−8,
0.99, and 0.999. Interestingly, using fixed hyperparameters, we
note no significant difference in performance between architec-
ture variants 2-5 (Figure 6). On the other hand, variant 1 goes
through a significantly larger number of training steps before
early stopping due to patience, but achieves similar perform-
ance after training.
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Variant RMSE [m] r
V1 3.57 0.9
V2 3.47 0.91
V3 3.81 0.9
V4 3.86 0.89
V5 3.6 0.91

Table 1. Performance comparison of the different candidate
H-DSPEB architectures.

Table 1 compares the different architectures presented in Fig-
ure 5 according to each model’s RMSE and correlation (r) score
on the test set. All models are able to achieve a correlation of
' 0.9 and an RMSE score in the range ' [3.5, 3.8] meters. For
the remainder of this study, architecture variant (V2) has been
used to evaluate and test the H-DSPEB model due to its superior
correlation and lower RMSE score.

3.3 Hybrid-DSPEB Input Masking

In this experiment, parts of the inputs to the H-DSPEB model
were masked in order to better understand the model’s reli-
ance on its two different types of inputs (color and wave in-
formation). To mask part of the input, the wave kinematics-
augmented inputs to H-DSPEB were replaced with zeros (de-
activated), such that the model would have access to the color
inputs only during the forward pass. Then, the reverse was ap-
plied, where the color inputs were masked and the model was
applied using the wave inputs only. Table 2 presents the results
of this experiment.

Mask RMSE [m] r
Masked color 14.32 0.88
Masked waves 9.23 0.88
No mask 3.47 0.91

Table 2. Performance comparison of the H-DSPEB architecture
after masking parts of the inputs.

When masking parts of the input, the model’s performance de-
teriorates significantly, achieving an RMSE score of 14 and 9
meters when hiding the color inputs and the wave inputs re-
spectively. We note that the majority of the difference is in
terms of RMSE; the correlation score does deteriorate though
not as drastically. This result shows that H-DSPEB relies on
both types of inputs and submodels in order to construct its fi-
nal estimations. In the following subsection, the performance
of the full H-DSPEB model is compared to S2Shores as well as
its original submodels C-DSPEB and W-DSPEB.

3.4 Performance Comparison

This section presents a full comparison of the models included
in this study. Namely, S2Shores, W-DSPEB, C-DSPEB and
H-DSPEB. Table 3 first compares the different models numer-
ically by considering the Pearson correlation coefficient and the
RMSE score over the test set. Then, a visual evaluation of the
estimated profiles is presented in terms of correlation (Figure 7)
and absolute error (Figure 8).

Table 3 compares H-DSPEB to S2Shores, W-DSPEB and C-
DSPEB according to their correlation and RMSE scores. A
comparison of H-DSPEB to C-DSPEB shows the ability of H-
DSPEB to make use of its wave kinematics sub-model to cor-
rect the estimations of C-DSPEB.

Figures 7 and 8 present a visual comparison of H-DSPEB to
S2Shores, W-DSPEB and C-DSPEB. Compared to the wave

Model RMSE [m] r
S2Shores 3.63 0.93
W-DSPEB 3.26 0.91
C-DSPEB 3.96 0.89
H-DSPEB 3.47 0.91

Table 3. Comparison of the performance of H-DSPEB to
W-DSPEB, C-DSPEB and S2Shores.

(a) (b)

(c) (d)

Figure 7. Pearson correlation score comparison of S2Shores (a),
W-DSPEB (b), C-DSPEB(c) and H-DSPEB (d).

(a) (b)

(c) (d)

Figure 8. RMSE score comparison of S2Shores (a), W-DSPEB
(b), C-DSPEB(c) and H-DSPEB (d).

kinematics-based methods, C-DSPEB and H-DSPEB show
clear sensitivity to the effect of turbidity on background color
and the error of the resulting model estimates. A compar-
ison of the distributions of absolute errors between H-DSPEB
and C-DSPEB suggests that, surprisingly, H-DSPEB is strongly
biased towards the color-based section of the model. This res-
ult is counterintuitive due to the nature of the site chosen for
this study, French Guiana, which normally is not suitable for
color-based approaches due to high turbidity (Figure 9).
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Figure 9. Example image of the test area in French Guiana
showing the edge of high water turbidity.

4. DISCUSSION & CONCLUSION

In this work, we have shown that deep learning can be used
for SDB by showcasing the ability of the DSPEB method to
estimate bathymetry using two different satellite image pre-
processing schemes representing two intrinsically-different ap-
proaches to SDB. This work also presented the H-DSPEB
model, a deep learning-based hybrid approach to SDB mak-
ing use of both wave kinematics and color information. The
DSPEB models are shown to be competitive with a state-of-
the-art physics-based SDB method, S2Shores, achieving RMSE
performance of 3–4 m over areas reaching 30 m depths.

While our results show that the different variants of DSPEB are
competitive deep learning-based methods for SDB, there are
limitations to the current workflow of DSPEB. Specifically, we
highlight the current limitations of satellite image pre-selection
based on dates and the requirement of local training in applica-
tion sites.

The accuracies of satellite derived bathymetry methods that
make use of optical satellite products are constrained by the
practical limitations of these products including cloud cover for
example. In this work, the models were found to be sensitive to
the dates of the satellite images selected, especially in the case
of W-DSPEB and S2Shores, due to their high reliance on the
observability of waves in the input images. Currently, S2Shores
is used to pre-select the dates where the wave conditions are
suitable for the W-DSPEB submodel. A possible solution to
this limitation could be the use of a separate CNN as a classi-
fier to dictate whether an image contains useful wave kinematic
information for estimating water depth. Such a model would
greatly minimize the amount of computing power required for
date selection, in addition to potentially providing insight into
this issue. On the other hand, we believe that further develop-
ment of the H-DSPEB model, although non-trivial, could help
in resolving this issue due to it having access to both types of
information used to estimate water depth. Moreover, the emer-
gence of modern agile satellite constellations such as the Airbus
CO3D constellation, currently being developed for the French
Space Agency (CNES), are expected to mitigate some of these
limitations (Turner et al., 2021).

Another limitation of the DSPEB workflow is that it currently
requires local training at each application site prior to model de-
ployment, limiting the usability of the model to sites with exist-
ing bathymetry survey data. A possible path for future develop-
ment is the use of models pre-trained on different sites and fine-
tuning them to previously unsees application sites, minimizing
the computational resources required for model training and
possibly minimizing model overfitting to any site-specific char-
acteristics. Applying a pre-trained deep learning-based SDB

model to a site for which no survey data is available is another
path for future work requiring further development in zero-shot
learning (Xian et al., 2017).

Our experiments with H-DSPEB demonstrate that inputs which
represent different information can be combined for bathymetry
inversion, even if there is a strong tendency towards reliance
on color information in the studied cases. While we separate
the information into color and wave kinematics from the same
satellite source, Sentinel-2, other works have shown that the fu-
sion of different satellite products can be beneficial in estimat-
ing high resolution bathymetry maps (Le Quilleuc et al., 2021).
As such, another direction for H-DSPEB would be to use dif-
ferent satellite products, for example Pléiades as used in (Almar
et al., 2019), and combine them in similar architectures to those
presented in 3.2.

This work presented first steps towards a generalized bathy-
metry estimation model that combines wave and color inform-
ation to achieve local estimates with high accuracy. This
is desirable as areas with different characteristics are more
suited for bathymetry estimation through wave kinematics, such
as turbid areas, while others are more suited for color-based
methods, such as areas with low wave activity. The results
from our experiments show that the current hybrid DSPEB
model relies heavily on the color-based submodel C-DSPEB,
but we strongly believe that a combined model incorporating
both types of methods (color-based and wave kinematics-based
methods) is the way forward to unlock the applicability of SDB
to a global scale covering all types of coastal environments.
While the H-DSPEB model is a deep leaning architecture-based
attempt at engineering such a model, other possibilities ex-
ist, such as traditional or deep learning-based data assimilation
techniques (Arcucci et al., 2021). H-DSPEB represents a first
step in this direction of trained bathymetry inversion models
which incorporate both color information and wave kinematics.
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