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In civil engineering, one of the crucial problems is the location of buried polyethylene pipes. For this type of
material, electromagnetic waves are less suitable than acoustic waves (e.g. the necessity to introduce a metal
cable into the pipeline making the method invasive, difficulty in differentiating between a gas pipe and a water
pipe). By injecting an acoustic signature into the pipe it possible to estimate the passage of the plumb of the pipe,
by considering the pipe as a secondary vibrating source. Our work aims to estimate the depth of these pipes by
acoustic  method  and  in  a  non-destructive  way.  For  this  we  have  developed  a  system  to  take  real  data
measurements.  From antenna processing methods (MUSIC algorithm called ''high resolution'')  that  we have
adapted to our problematic, we obtain an estimate of the parameters of interest. Promising results have been
obtained on real  data from a semi-controlled test  area by considering a weakly heterogeneous semi-infinite
medium with an average velocity. One of the main problems is that we have, a priori, no knowledge of the
propagation medium. It can change drastically from one place of application to another. The challenge is the
modeling of acoustic propagation, on a meter scale, in heterogeneous soil with vertical (trench). We present here
different  propagation  simulations  applied  to  our  problem.  A  first  modeling  is  to  consider  two  slightly
heterogeneous media, vertically stratified, each with an average speed of propagation, considering the ray theory
(time modeling). The second will be based on finite difference propagation of the complete waves field (Operto
et  al.,  Geophysics,  2009) including the trench.  The goal is  to compare the two models on the scale of our
problem and to study the accuracy of the depth estimate that we can reach (Cramer Rao bound).

1 Introduction

The  detection  and  location  of  buried  pipes  is  an
important  issue,  especially  to  update  the  mapping  of
networks in accordance with new standards.  Our study is
restricted to polyethylene pipes which is a non-conductive
material. Different methods exist to trace and locate pipes
[1,2].  Our  study  focuses  on  an  acoustic  method.  The
principle is to inject an acoustic source signal into the pipe
and to observe the signals received by receivers placed on
the ground surface. The advantage of these methods based
on the acoustic excitation of the pipe is to be able to discern
the pipe of interest in a dense network. Tools based on this
method allow to estimate the passage of the pipe plumb but
do not provide any information on the depth. The objective
of this work is to develop a method to estimate the depth of
pipes in a non-destructive and non-invasive way and with
an  accuracy  of  10  cm.  It  should  be  noted  that  in  this
problem we have different unknown parameters that must
be taken into account to estimate the depth.  We have no
information on the propagation medium. This means that
the propagation speeds in the medium are unknown. It is
interesting to note also the scale at  which we work.  The
distances between the pipe and the receivers are in the order
of meter.

This article follows on from work already presented in
which  the  modeling  of  the  acoustic  wave  propagation
medium is considered as a homogeneous medium [3]. From
the delay times between the sensors we want to estimate the
depth.  We  had  tested  the  depth  estimation  with  the
homogeneous  medium  modeling  on  real  data.  For  a
majority of the measurements performed on the test area we
had, the results were of the desired accuracy (10 cm). These
results were obtained by adapting the MUSIC algorithm to
our problem. However, we are aware that the pipe buried in
this test area is in a trench. There is therefore a change of
medium. In the context of these tests we can imagine that
the two media were close.

Now we want to make the model evolve so that it takes
into account two propagation media, and we will consider
two  strongly  different  media.  We consider  here  a  model
covering  a  larger  number  of  situations,  by  integrating  a

vertical variation of the medium between the inside of the
trench  where  the  pipe  is  buried,  and  the  outside  of  the
trench,  for  two  propagation  models,  one  based  on  a  ray
tracing  code  (time  modeling)  according  to  the  Snell-
Descartes  laws,  the  other  taking  into  account  a  finite
difference model of the complete wave field [4].

2 Geometric configuration of the 
problem

In agreement with studies on vibro-acoustic propagation
in  pipes  [5]  we  consider  the  pipe  as  a  cylindrical  line
source.  From  this  consideration  and  the  resulting
symmetries, we model the problem in a plane radial to the
pipe. The sensors are distributed perpendicular to the pipe
(Figure  1)  and  the  pipe  section  is  considered  as  a  point
source.

In this paper, we propose to focus on a model with two
propagation  media.  The  idea  is  to  take  into  account  the
change of medium between inside and outside the trench.
We therefore consider a vertically stratified medium, with
an average propagation velocity V1 inside the trench and an
average velocity V2 outside.

We assume weakly heterogeneous environments, but it
is  obvious  that  the  propagation  environment  is  more
complex  in  an  urban  context,  particularly  due  to  the
presence of a layer of bitumen covering the ground or the
protective layer of sand (granular environment) surrounding
the  pipe.  The  objective  is  to  obtain  a  parametric  model
allowing, from travel time estimate, to estimate the depth.

Figure 1 : Scheme of model
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3 Reasoning on signal traveling times
from ray theory

In this part we reason in travel time between the source
and the receivers by considering the Snell-Descartes law at
the interface between the two media.

3.1 Description of the model

The  principle  is  to  determine  the  travel  time  of  the
signal between the source S and the receiver Ri. To do this
it is necessary to calculate the point of interface between
the  two  media  Mi which  respects  the  law  of  Snell-
Descartes.

sin (ϕ1)=
V1

V2

 sin (ϕ2) (1)

With ϕ1 the  angle  of  incidence, ϕ2 the  angle  of
refraction, V1 the velocity in medium 1 (inside the trench)
and V2 the velocity in medium 2 (outside the trench).

For each receiver Ri corresponds an interface point Mi.

3.2 Cramer-Rao bound

The Cramer-Rao bound gives an idea of the accuracy of
depth estimation in relation to our time modeling [6].

In order to calculate this bound we need to express the
coordinates  of  the  interface  point  Mi in  terms  of  our
parameters of interest : SX the X coordinate of the source, SZ

the Z coordinate of the source, V1 the velocity inside the
trench and V2 the velocity outside the trench. We note θ

the vector of these parameters of interest.
θ  =  [SX  SZ  V1  V2]

T (2)

We consider that the position of the interface between
the two media along the X axis, MX is known. We therefore
have to express MiZ the Z coordinate of Mi.

Taking  equation  (1)  again,  we  have  as  a  starting
equation

SZ  −M iZ

∣  SM i  ∣
 = 

M iZ

∣  Mi R i  ∣

V1

V2

 (3)

This  is  equivalent  to  solving  the  following  4th  order
equation :

MZ
4  [ V2

2  −V1
2 ]

+MZ
3 [−2R Z V2

2  −2SZ V 2
2  +2SZ V1

2]
+MZ

2  [ SZ
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2  +RZ
2 V2

2  + V2
2
(RX  −MX)

2  + 4RZ SZ V2
2  −SZ
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2  −V1

2
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2]   (4)

+MZ  [−2R ZSZ
2 V 2

2  −2SZ RZ
2 V 2

2  −2SZ V2
2
(RX  −MX)

2 ]
+ [ RZ

2 SZ
2 V2

2  +SZ
2 V2

2
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2]    =   0

By identification, we can write
M iZ

4  m1  +MiZ
3  m2  +M iZ

2  m3  +MiZ  m 4  +m5  = 0  (5)

Solving the equation, we obtain

M iZ  =  
√ A −√ A  −2(p  +A  + q

√ A
)

2
−

m2

4 m1

   (6)

with

A  =  (−R  +√ R2  +
4Q3

27
2 )

1/3

−
Q

3( −R  +√ R2  +
4 Q3

27
2

)
1/3

−
2 p
3

 (7)

Q  =  −p 2

3
−4 r   (8 ) R  =  8r p

3
−

2 p3

27
−q2   (9)

p  =  
m3

m1

 −
3m2

2

8m1
2

(10) q  =
m4

m1

 −
m2 m3

2 m1
2

 +
m2

3
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3

 (11)

r  = 
m5

m1

 −
m2 m4

4 m1
2

 +
m2

2 m3

16 m1
3

 −
3 m2

4

256 m1
4

 (12)

We also need to calculate the gradient of M iZ as a function
of  our  parameters  of  interest  which  we  will  note

∇θ  (MiZ) .  We will express the Cramer-Rao bound in
terms of ∇θ  (MiZ) .
The  Cramer-Rao  bound,  noted  here  CRB,  is  calculated
according to the Fisher information matrix, noted F.

CRB(θ)  =  F−1
(θ/ τ1i) (13)

with τ1i the  relative  delay  time  between  the  sensors  1
and i.
To express the τ1i two cases are possible :

• If Ri is inside the trench this returns us to the case
of a homogeneous medium.

τ1i  = 
∣ SR i  ∣−∣ SR1  ∣

V1

(14)

• If Ri is outside the trench

τ1i  = 
∣ SMi  ∣−∣ SR1  ∣

V1

+
∣ Mi R i  ∣

V2

(15)

Here we are interested in the case of equation (15).
We express the Fisher information matrix

F (θ/τ1i)  = ∑
i=2

N
1

Var (τ1i)
∇θ(τ1i)  ∇θ

T(τ1i) (16)

with N the number of sensors and Var ( τ1i) the variance
of the relative delay time between sensor 1 and i.

Let's  focus  on  the  calculation  of  the  gradient  of  a
relative delay time. From equation (15) we have

∇ θ (τ1i) =  ∇ θ( ∣ SMi  ∣
V1

)  −∇θ( ∣ SR 1  ∣
V1

)  +∇θ( ∣ Mi R i  ∣
V2

)  (17)

By decomposing the  calculation we obtain  the  following
expressions

∇ θ(
∣ SR1  ∣

V1
)=[ SX  −R1X

V1  ∣ SR1  ∣

SZ  −R1Z

V1  ∣ S R1  ∣

−∣ SR1  ∣

V1
2

0]
T

 (18)
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∇ θ( ∣ SMi  ∣
V 1

)=[
(SX  −MiX)  −(SZ  −MiZ)  ∂

∂SX

MiZ

V 1  ∣ SMi  ∣
 

(SZ  −MiZ)  (1  − ∂
∂SZ

 MiZ)

V 1  ∣ SMi  ∣
 

−V1(SZ  −MiZ)
∂
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∂

∂ V2

 MiZ
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]  (19)

∇ θ( ∣ Mi R i  ∣
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)=[
(MiZ  −R iZ)

∂
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V 2  ∣ Mi R i  ∣
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∂
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2

V 2
2  ∣ Mi R i  ∣

]  (20)

In our case the receivers are all placed on the ground so
the RiZ = 0.

Now that we have calculated the Cramer-Rao bound we
can  vary  our  parameters  and  observe  the  impact  on  the
depth estimation accuracy.

For example we consider the following case: the sensors
are spaced of 0.2 m, the X coordinate of the source SX =0,
the  Z  coordinate  of  the  source  SZ =  0.8  m,  the  velocity
inside  the  trench  V1 =  500 m/s,  the  velocity  outside  the
trench V2 = 700 m/s, the X coordinate of the interface points
between the media MX = 0.35 m.

We note (Figure 2) that to obtain an accuracy of 10 cm
on the depth estimation we must, with 5 sensors, have an
accuracy on the relative delay times of the order of 10 -7 s,

with 6 sensors
1
2

 10−6 s and with 7 sensors 10-6 s. The

more sensors we add, the more error we can tolerate on the
estimation of relative delay times.

4 Comparisons of arrival times 
estimate with finite difference 
modeling of the full wave field

In this section, we compare the time estimates obtained
with  the  method  presented  in  section  3  with  a  finite
difference wave propagation simulation in a simple model.
Firstly, we recall the basis of the classic approach of wave
propagation based  on of  the  acoustic  and  isotropic finite
difference approach, then we present a test of propagation
in simple models to perform comparison of arrival times.

4.1 Finite Difference Modeling of Acoustic 
Isotropic Wave Propagation

In this study we used the acoustic and isotropic version
of the code developed by Operto et al. [4] from the original
formulation proposed by Jean Virieux [7].

The 2D velocity-stress (21) is expressed as an equation
of order one in the following form

{
∂υx (x , t)

∂ t
=  b(x)

∂ p(x , t )
∂x

+ f x

∂υz (x , t )

∂ t
 =  b(x)

∂ p(x , t )
∂ z

+ f z

∂ p(x , t)
∂ t

 =  κ(x)(
∂υx(x , t)

∂x
 +

∂υz(x , t)
∂ z )

 (21)

In this system υ and p are the velocity and the pressure

respectively, b  =  1
ρ is  the  buoyancy  of  the  medium

(with ρ the density)  and κ  =  ρc2 is  the
compressibility. fx and fz are the components of the vertical
and horizontal forces and correspond to the source terms.
The density ρ is  estimated from the velocity model by
using the empirical Gardner law [8] which is valid for short
offset  data  [9].  To  solve  numerically  this  system  of
equations the time and space are discretized by using a step

Δ t , Δx and Δ z respectively. The index are  n for
time and i and j for the directions x and z. The discretization
is  performed  on  a  cartesian  grid Δx  =  Δ z  = h .  As
usual, to optimize the computational cost the velocity field

is discretized over grid shifted in time Δ t
2

and a half step

in space along x and z.
The discretized system of equations is

Figure  2 : Depth error as a function of relative delay time
error
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{
υxi+1/2, j

n+1 /2  −υxi+1 /2,j

n−1 /2

Δ t
 = 

bi+1 /2, j

h
( pi+1, j

n − pi , j
n )  + f x i+ 1/2, j

n

υz i , j+1 /2

n+1 /2
−υz i , j+1/2

n−1/2

Δ t
 = 

bi , j+1/2

h
( pi , j+1

n
− pi , j

n
)  + f z i , j+1 /2

n

pi , j
n+1

− pi , j
n

Δ t
 =  

κ i , j

h ( υxi+1/2, j

n+1 /2
−υxi−1 /2, j

n+1 /2
+υz i, j+1 /2

n+1 /2
−υz i , j−1 /2

n+ 1/2
)

(22)

From a practical point of view, the spatial discretization
is  of  order  4,  which  is  a  good  compromise  between
accuracy  and  efficiency.  Indeed,  the  sampling  step  h
depends  on  the  wavelength  and  the  order  of  the
discretization.  By  dispersion  analysis,  a  numerical
anisotropy  is  highlighted  [10,11].  In  the  simulation,  the
numerical  phase velocity depends on the incidence angle

ϕ of the plane wave. According to [4,10], the choice of
5 points per wavelength in the order 4 corresponds to the
limit  for  the  speed  to  be  independent  of  the  angle ϕ

(precision). In addition, this number of points satisfies the
Shannon-Nyquist theorem without exceeding too much the
required number of points (efficiency) [10] and the grid h of
the model satisfies

h  ≤ 
cmin

5 f max

(23)

where cmin is the minimum velocity and  fmax the maximum
frequency of the wave.

The  stability  analysis  gives  a  criterion  on  the  time
sampling  step Δ t also  dependent  on  the  discretization
order. In the case of order 4, the time step is conditioned by
[10]

Δ t  ≤ √ 3
8

h
cmax

(24)

where cmax is the maximum velocity.
In reality, the waves propagate outside the study area. In a
numerical  model,  it  is  then necessary to define boundary
conditions that prevent side effects. The most used method
for this is the definition of an absorbing edge around the
digital grid. This PML (Perfectly Matched Layer) is defined
by  two  functions γx and γz which  play  the  role  of
attenuating  factors  for  propagation  in  directions  x  and  z
[12].  In  general,  the  number  of  PML  points  NPML is
determined by

NPML  = 
2λmin

h
(25)

where λ min is the minimum wavelength.
The boundary conditions at  the surface are that  of a free
surface :

{
p(x ,z=0, t)  =  0

υx(x,z=0− , t)  = υx(x,z=0+ , t )

υz(x,z=0− , t)  = υz (x ,z=0+ , t )

(26)

The  symmetry  of  the  velocity  around  the  free  surface
ensures that  the pressure is  0 at  any time t and the anti-
symmetry  of  the  pressure  ensures  the  symmetry  of  the
velocity.

4.2 Numerical tests

In the first  test,  we consider  a  homogeneous medium
characterized  by  constant  velocity  v  =  500  m/s  of
dimensions  x  =  0.7  m and  z  =  1.5  m.  We consider  the
Ricker function (Figure  3.a) with the central frequency of
500 Hz (Figure 3.b). Then we shifted this function in order
to obtain the maximum at time t = 0 s. We use this function
as a source for our numerical experiment (Figure 3.c). A set
of 30 receivers is located at the bottom of the model at z =
1.5 m. The first receiver is located at x = 0.35 m and z = 1.5
m, the distance between receivers is 0.01 m. The vertical
velocity wavefield recovered at the receivers is presented in
Figure 3.d. The estimated arrival times computed by using
the method presented in section 3 are plotted on Figure 3.d
(blue dashed curve).  We can observe a very good fit  for
short offsets and acceptable fit for long offsets because of
the  broadening  of  the  signal  associated  with  the
propagation.

Now  that  we  have  verified  that  in  the  case  of  a
homogeneous medium, the arrival times estimated with the
model  presented  in  section  3  fit  well  with  the  signals
calculated with finite differences, we can examine the case
of vertical stratification. In a second numerical test, we are
interested in an extreme case where the depth is 1.5 m and
where  the  difference  in  propagation  velocity  in  the  two
media varies very strongly.

Figure  3 : Simulation results with finite differences in the
case  of  homogeneous  medium; a)  Ricker  function;  b)
Ricker function spectrum; c) Source signal  used in finite
difference simulations;  d)  The vertical  velocity wavefield
recovered  at  the  receivers.  The  estimated  arrival  times
computed by using the method presented in section 3 are
plotted dashed curve

a)

b)

d)

b) Ricker spectrum

a)
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We consider two homogeneous media characterized by
constant  velocity  v1 =  500  m/s  and  v2 =  1000  m/s  of
dimensions x = 1.5 m and z = 1.5 m. The source is a Ricker
function with the maximum at time t = 0s (Figure 5.a) like
the previous simulation. A set of 15 receivers is located at
the bottom of the model at z = 1.5 m. The first receiver is
located at x = 0.75 m and z = 1.5 m, the distance between
receivers is 0.05 m and the change of media is at x= 0.4 m
and then at x= 1.1 m. We observe the propagation of the
wavefront on the figure 4. The vertical velocity wave-field
recovered at the receivers is presented in Figure  5.a. The
estimated  arrival  times  computed  by  using  the  method
presented  in  section  3  are  plotted  on  Figure  5.a  (dashed
curve).

In order to compare the travel times accurately, we need
to estimate the arrival times on the signals from the finite
difference simulation. When we look at the signals in detail,
we see a distortion, especially at x= 1.1 m at the boundary
of the two media. Following this observation, the question
is how to calculate precisely the arrival times of distorted
signals from the finite difference simulation. The answer is

not  obvious.  Here,  we  decide  to  pick  the  first  arrival
breaking point to get an idea of travel times (Figure 5.b).
We find that  both models fit  well  for the sensors closest
away  from the  source,  and  also  for  the  sensors  farthest
away from the  change of  medium outside  the  trench.  In
contrast, in the proximity of the boundary of the two media
we observe differences. For the model of section 3 there is a
brutal variation whereas on the finite difference data there
is a continuous variation.
The objective would be to understand these differences in
order  to  improve  the  simplified  modeling  presented  in
section 3, maybe by considering multiple paths. This is the
subject  of  our  current  work.  The  goal  is  to  obtain  a
simplified formulation of the analytical travel time estimate
but sufficiently accurate for our problem at the meter scale.
The next step of our work is to test the model of section 3
on real data in a controlled test area.

5 Conclusion

Following our results obtained on real data considering
a  homogeneous  propagation  medium,  presented  in  a
previous work [3], we presented here, an evolution of our
time modeling, and we compared it to a finite difference
modeling of the full-wave field. In this study, we presented
two numerical experiments. The first medium is a simple
homogeneous model. The second is more complex medium
with vertical stratification in order to take into account the
trench.  We  presented  the  calculation  of  the  Cramer-Rao
bound which is an essential tool to understand the impact of
each parameter on the accuracy of the depth estimate. We
compared our temporal modeling to a complete modeling of
the  wave  field  estimated  by  finite  differences.  We  have
noted the limits of our estimate of the travel time. We will
now  have  to  understand  these  limits  to  improve  our
temporal  modeling.  In  our  comparison  with  the  finite
differences  the  question  arises  of  the  calculation  of  the
arrival time of distorted signals. We will be able to evolve
the time modelisation by looking at possible multiple paths.
In addition, we plan to test our temporal modeling on real
data from a controlled test area.
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