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ABSTRACT
Satellite rainfall products (SRPs) have the potential to overcome the limitations of ground- 
based rainfall observations and provide an alternative to inadequately or ungauged water
sheds. However, due to the relatively poor accuracy and associated uncertainties to SRPs, it is 
necessary to evaluate their quality and applicability for each investigated watershed. This paper 
evaluates the usefulness of SRPs as forcing data for hydrological modeling under different 
scenarios and assesses their applicability for the Kedougou, Mako and Simenti sub-basins of 
the Gambia River. To achieve this, the “Génie Rural à 4 paramètres Journalier model” (GR4J) 
hydrological model was employed to simulate the streamflow considering four different 
scenarios: i) non-calibrated GR4J model run with uncorrected SRPs (Scenario 1); ii) non- 
calibrated model run with corrected SRPs (Scenario 2); GR4J model was calibrated and vali
dated using uncorrected SRPs, and then they were utilized to drive the model (Scenario 3); 
GR4J model was calibrated and validated and then run using forcing inputs from corrected 
SRPs (Scenario 4). Results revealed that under Scenario 1 the SRPs performed poorly over the 
three sub-basins, while under scenario 2, the simulated daily streamflows showed relative 
improvement when run using corrected SRPs with 6 or 10 rainfall stations. Under the scenarios 
3 and 4, the calibrated model provides significant improvement of the simulated streamflow 
with both the corrected and non-corrected SRPs. Finally, the SRPs demonstrate potential for 
use in watersheds where there are no rain gauges. The performance loss from scenario 4 
(considered as the reference) to scenario 3 does not exceed 20%. Similarly, the performance 
loss from scenario 4 to scenario 2 does not exceed 50% when the SRPs are corrected using 3 
and 6 rainfall stations (e.g., in the Kedougou sub-basin). Thus, they can be considered accep
table for hydrological simulations when the hydrological model is calibrated with measured 
streamflow.
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Introduction

The planning, design, and management of water 
resources require good estimates of streamflows and 
peak discharges at certain points within a watershed. 
Observed meteorological and streamflow data are initi
ally used for the understanding of the hydrological pro
cesses and thus for modeling these processes to predict 
the streamflow of a watershed (Arsenault, Martel, Brunet, 
Brissette, & Mai, 2023; Loukas & Vasiliades, 2014; 
Oliveira, Ramos, & Neves, 2023; Zhang, Luhar, 
Brunner, & Parolari, 2023). It is likely that most water
sheds of the world are ungauged or poorly gauged (Fasipe 
& Izinyon, 2021; Loukas & Vasiliades, 2014; Zhang, 
Luhar, Brunner, & Parolari, 2023). This is especially 
true in West Africa, where many watersheds are 
ungauged (e.g., Ibrahim, Wisser, Barry, & Fowe, 2015; 
Kwakye & Bárdossy, 2020). These ungauged watersheds 
can be categorized into: i) watersheds with only stream 
gauges; ii) watersheds with only ground-based rain 

gauges; iii) ungauged watersheds (i.e., those that have 
no rain gauge and no stream gauge). The main reason 
for the lack of observations is the inadequate funding for 
the installation and operation of ground-based measure
ment networks (Bui, Ishidaira, & Shaowei, 2019).

The lack of in-situ hydro-meteorological observa
tions makes it extremely difficult to carry out hydro
logical modeling for quantification and predictions of 
water resources (Camera, Bruggeman, Zittis, 
Sofokleous, & Arnault, 2020; Naabila, Lampteyc, 
Arnaultd, Olufayoa, & Kunstmann, 2017). Indeed, it 
has been arguably nearly impossible for hydrologists 
to simulate the water cycles over regions with no or 
sparse ground-based rain gauge networks (e.g., Xue 
et al., 2013; Zeng et al., 2018). This lack of quantitative 
hydrological information constitutes to be a major 
challenge in terms of hydrological knowledge to sup
port the development, design, and sizing of hydraulic 
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structures such as dams and reservoirs on the one 
hand, water management and the management of 
risks related to extreme hydrometeorological events 
on the other hand.

In 2003, the International Association of 
Hydrological Sciences (IAHS) launched the Decade 
on Predictions in Ungauged Basins (PUB) to achieve 
major advances in the capacity to make reliable pre
diction in ungauged basins (Hrachowitz et al., 2013). 
Despite the remarkable results of this initiative (Adjei, 
Ren, Appiah-Adjei, & Odai, 2015), a great deal more 
still needs to be done in terms of in-situ data for 
hydrological predictions and studies in poorly gauged 
basins (Kratzert et al., 2019). The in-situ data are often 
unavailable or limited in numerous watersheds 
around the world (Bao et al., 2012; Gao et al., 2017). 
Predictions in ungauged watersheds have become 
a challenge for the hydrological community world
wide (e.g., Emmerik, Mulder, Eilander, Piet, & 
Savenije, 2015; Ibrahim, Wisser, Barry, & Fowe,  
2015; Sivapalan et al., 2003). To achieve better predic
tions of water resources over sparsely gauged or 
ungauged watersheds, lacking sufficient in-situ mea
surements, hydrologists, and water resource managers 
need to develop and use models or techniques which 
do not require long time series of meteorological and 
hydrological measurements (Gao et al., 2017; Khan 
et al., 2012; Loukas & Vasiliades, 2014; Mei & 
Anagnostou, 2016).

The use of satellite rainfall products (SRPs) to drive 
hydrologic models in data-sparse or ungauged basins 
has been found to be an ideal choice to tackle the 
hydrological quantification problem in ungauged 
basins (Liu et al., 2017). They have also been recog
nized as an alternative to in-situ rainfall measure
ments, capable of covering large areas with adequate 
temporal coverage (Bui, Ishidaira, & Shaowei, 2019). 
Various SRPs are available which produce rainfall 
estimates at various spatial and temporal scales. They 
are also used in several operational applications (e,g, 
dam design, hydrological modeling, flood forecasting, 
crop yield forecasting, disease risk monitoring), 
although they are also deemed to be subject to bias 
which needs to be adjusted/corrected before their use 
in any hydrological modeling application (Faty et al.,  
2018). Moreover, various studies conducted in differ
ent regions worldwide, employing different SRPs, have 
consistently highlighted the necessity of bias correc
tion in SRPs for diverse hydrological applications (e.g. 
Bhatti, Rientjes, Haile, Habib, & Verhoef, 2016; Kim, 
Jung, Park, Yoon, & Lee, 2016; Pratama, Buono, 
Hidayat, & Harsa, 2018; Ziarh, Shahid, Ismail, 
Asaduzzaman, & Dewan, 2020). Thiemig, Rojas, 
Zambrano, and Roo (2013) emphasized the impor
tance of applying bias-corrections to satellite products 
prior to model calibration from the use of a specific 
satellite precipitation source.

The Gambia River Basin is one of the main river 
basins in West Africa and provides important water 
resources for the local communities. Unlike the other 
major river basins in West Africa, the Gambia River 
rain gauge network has an acceptable coverage com
pared to other basins (44 rain gauges in 77,100 km2). 
In addition, streamflows are routinely measured at 
more than 10 stream gauge stations. Therefore, the 
Gambia River provides the opportunity to evaluate the 
quality of different SRPs for hydrological modeling of 
river streamflows. This will allow us to test and recom
mend SRPs for hydrological modeling of other river 
basins in West Africa where the rain gauges coverage 
are not sufficient for model calibration and validation.

In this paper, various approaches have been tested 
to simulate streamflows based on four different sce
narios: i) in scenario 1, no rainfall and streamflow data 
are available (ungauged watershed) and in this case, 
only a non-calibrated hydrological model can be run 
with uncorrected SRPs. In scenario 2, rainfall data are 
available, but no streamflow data. In this case, a non- 
calibrated model can be run with uncorrected and 
corrected SRPs and the in-situ rainfall data. In sce
nario 3, only streamflow data are available, which 
allows us to calibrate and validate a model with uncor
rected SRPs. Finally, in scenario 4, both rainfall and 
streamflow data are available, which allows us to cali
brate and validate a hydrological model that can be 
run using bias-corrected SRPs and in-situ rainfall data.

With the aim of assessing the quality of SRPs for 
various hydrological modeling applications in the 
Gambia watershed, this paper focuses on two main 
scientific questions:

● How accurately does the non-calibrated hydro
logical model (GR4J) simulate streamflow when 
run with uncorrected and corrected SRPs?

● To what extent does the calibrated hydrological 
model enhance streamflow simulation when run 
with uncorrected and corrected SRPs?

Materials and methods

Study area

The Gambia River basin, covering an area of 77,100  
km2, is the sixth-largest river basin in West Africa and 
the second largest in Senegal. It spans across parts of 
three West African Sahelian countries: Gambia, 
Guinea Conakry, and Senegal (see Figure 1a). 
Geographically, the Gambia River basin and its sub- 
basins are situated between latitudes 11°22“to 14°40” 
N and longitudes 11°13“to 16°42” W. The region 
exhibits high topographic variation, with elevations 
ranging from 0 m in the far west to over 1531 m in 
the southeast (see Figure 1a,b), where the river source 
is in the Fouta Djalon Mountains of Guinea Conakry. 
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The Gambia River system stretches over 1130 km and 
experiences a Sudano-Sahelian climate.

The Direction de la Gestion et de la Planification des 
Ressources en Eau (DGPRE) of the Ministry of Water 
and Sanitation in Senegal monitors discharge at sev
eral stream gauges throughout the Gambia River 
basin. The drainage areas represented by Kedougou, 
Mako, and Simenti sub-basins are about 7550 km2, 
10450 km2 and 20,500 km2, respectively. The average 
runoff from the Kedougou, Mako and Simenti sub- 
basins is about 73.5 m3/s; 86.4 m3/s and 123.0 m3/s 
over the period 1971–2000, respectively. The rainfall 
regime is driven by the West African monsoon. This 
implies (i) a strong seasonal cycle of rainfall with two 
distinct seasons (namely the dry and the rainy season – 
more than 80% of the annual precipitation occurring 
in the period from May to October); and a the strong 
latitudinal gradient of the annual rainfall over the 
basin which ranges from 600 mm (in the Northern 
part) to 1600 mm (in the South-eastern parts). All in 
all, the basin mean annual rainfall reaches 1300 mm.

Gauge observed rainfall and discharge data

Daily rainfall data from 25 stations over the entire 
Gambia River basin for 1998 to 2010 were provided 
by the Agence Nationale de l’Aviation Civile et de la 
Météorologie du Sénégal (ANACIM) and the Water 
Resources Department (WRD) of the Republic of 
Gambia. The distribution of the rain gauges in the 
Gambia River basin is shown in Figure 1b. The daily 
rainfall datasets recorded by the 25 stations are con
sidered as Reference Rainfall Product (hereinafter, 

RRP). In addition, the maximum and minimum 
daily temperatures were also provided by the meteor
ological services listed above and were also used to 
calculate the daily potential evapotranspiration values 
using Oudin (2004) approach. Data of daily river dis
charge recorded at Kedougou, Mako, and Simenti 
from 1998 to 2009 were also obtained from Direction 
de la Gestion et de la Planification des Ressources en 
Eau du Sénégal (DGPRE).

Satellite rainfall products

Three different SRPs used in this paper are the widely 
used Climate Hazards Group Infrared Precipitation 
with Stations (CHIRPS) (Funk et al., 2014), the 
Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks- 
Climate Data Record (PCDR) (Miao, Ashouri, Hsu, 
Sorooshian, & Duan, 2015), and the Tropical Rainfall 
Measuring Mission version 7 (TRMM) (Huffman & 
Bolvin, 2013). The main specifications and related 
characteristics of the three satellite products are also 
summarized in Table 1.

Evaluation of satellite rainfall products

To quantify the potential uncertainties associated 
with the SRP across the three sub-basins, various 
metrics were selected and calculated for all three 
SRPs in comparison to ground-based daily rainfall 
measurements. For this purpose, the geostatistical 
approach based on the ordinary Kriging interpola
tion method was used. Kriging is widely recognized 

Figure 1. Location of the Gambia River basin (a), and the distribution of the stream gauges (green) and rain gauges (red) (b).

Table 1. Main characteristics of satellite-based precipitation products used in this study.
Product Temporal Resolution Spatial Resolution Period covered Zonal Coverage

TRMM 03 h .25° x .25° 1998 – 2019 50N−50S
PCDR 24 h .25° x .25° 1983- present 60N−60S
CHIRPS 24 h .25° x .25° 1981- present 50N−50S
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as one of the most relevant spatial interpolation 
methods for rain gauge data in the Sahel (see, Ali, 
Amani, Diedhiou, & Lebel, 2005; Ali, Lebel, & 
Amani, 2005). The SRPs performances were then 
quantitatively assessed using the three following 
widely used statistical metrics: i) percentage bias 
(PBIAS); ii) mean absolute error (MAE); and iii) 
root mean square error (RMSE). The percent bias 
(PBIAS) (see equation 1) represents the systematic 
bias of satellite-based precipitation. A positive PBIAS 
indicates an overestimation of satellite precipitation, 
whereas a negative value implies an underestimation. 
The Mean Absolute Error (MAE) (see equation 2) is 
a measure of the average size of the errors in 
a collection of predictions, without considering 
their direction. It is calculated as the average abso
lute difference between the predicted values and the 
actual values, and it is widely used to evaluate the 
performance hydrological models. Finally, The Root 
Mean Square Error (RMSE) (see equation 3) mea
sures the average magnitude of errors in satellite 
precipitation estimates. It considers the squared dif
ferences between the predicted values and the actual 
values. It also assigns greater weight to larger errors, 
providing a more comprehensive assessment of the 
model’s accuracy. A smaller RMSE indicates that the 
satellite precipitation estimates are closer to the 
observations. 

PBIAS %ð Þ ¼

Pn
i¼1 PSi � PGið Þ
Pn

i¼1 PGi
x100 (1) 

MAE ¼
1
n

Xn

i¼1
ðPsi � PGij j (2) 

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

n¼1
PSi � PGið Þ

2
r

(3) 

The results presented in Table 2 provide an overview 
of the biases associated with the various SRPs used. 
These biases can have varying effects on the perfor
mance of the model simulations when employed as 
inputs.

Satellite rainfall products bias correction

As mentioned earlier, the systematic errors (i.e., 
bias) found in the SRPs, as indicated in Table 2, 
have the potential to introduce uncertainty in the 
hydrological modeling simulation. These biases can 
subsequently impact the simulated discharges, lead
ing to inaccuracies in the results (Goshime, Absi, & 
Ledésert, 2019). However, the SRPs were not only 
used uncorrected, but also bias-corrected before 
using as input into a hydrological model for stream
flow simulation. To do so, the SRPs were bias- 
corrected using the Cumulative Distribution 
Function-Transform (CDF-t) method (Michelangeli, 
Vrac, & Loukos, 2009). This approach is based on 
the distribution function of the SRPs from the dis
tribution function of the ground-based rainfall. This 
is a probability-based method that corrects the sys
tematic biases in satellite estimations based on 
a cumulative distribution function (CDF). Here, the 
method assumes that the satellite or gauged pixels 
within each 0.25° × 0.25° grid box share the same 
CDF for precipitation. According to Yang et al. 
(2017) that is reasonable because the probability 
distributions for multiple years of precipitation 
events generally exhibit spatial homogeneity in the 
local area. Thus, the CDF pairs over a specific grid 
box were calculated using mixed precipitation esti
mates from the included gauges and collocated satel
lite pixels. For those 0.25° × 0.25° grid boxes with no 
gauge stations, the gauge and satellite estimates from 
nearby 0.25° × 0.25° grid boxes were collected to 
estimate the CDFs for that grid box. Based on 
these CDFs, the satellite precipitation estimation 
over a given pixel was primarily corrected using 
the CDF from neighboring grid boxes. Values were 
then generated according to precipitation in chron
ological agreement with satellite-based rainfall 
estimates.

GR4J hydrological model

The GR4J model (Perrin, Michel, & Andréassian,  
2003) was used to evaluate the utility of SRPs in 

Table 2. Comparison between SRPs and ground-based daily rainfall over three sub- 
basins of the Gambia watershed during the 1999–2009 period.

Sub-basin

Performance metric SRP Kédougou Mako Simenti

PBIAS (%) CHIRPS 50.2 45 27.3
PCDR −31.4 −31.7 −39.6
TRMM 29.0 28.0 20.9

RMSE (mm) CHIRPS 11.46 11.13 10.08
PCDR 9.03 8.89 8.88
TRMM 12.21 12.55 12.56

MAE (mm) CHIRPS 7.97 7.68 6.88
PCDR 6.29 6.19 6.17
TRMM 7.83 7.81 7.66
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streamflow simulation over three sub-basins on the 
Gambia River. GR4J is a daily, lumped, four- 
parameter rainfall-runoff model (Perrin, Michel, & 
Andréassian, 2003). It consists of a production reser
voir, two unit-hydrographs, a routing reservoir, and 
an underground exchange function. The GR4J has 
a function for compensating precipitation by evapo
transpiration. The model is based on two functions: 1) 
the production function that determines the effective 
precipitation that supplies the production reservoir, 
and 2) the routing function that is based on the unit 
hydrograph. For more details of the GR4J model, see 
Perrin, Michel, and Andréassian (2003). The GR4J 
model version used in this study was from the airGR 
package in R (Coron et al., 2021; Coron, Thirel, 
Delaigue, Perrin, & Andréassian, 2017). The four para
meters of the GR4J model are : i) X1 which is max
imum capacity of the production store (mm) ii) X2 is 
groundwater exchange coefficient (mm/d) iii) X3 
1 day ahead maximum capacity of the routing store 
(mm) and iv) X4 is time base of unit hydrograph UH1 
(days). In the case the GR4J model is not calibrated 
before application, the following parameter values of 
X1-X4 are recommended for the Gambia basin: X1 =  
257.238; X2 = 1.012; X3 = 88.235; X4 = 2.208 (see, 
Coron, Thirel, Delaigue, Perrin, & Andréassian,  
2017, for more details).

Model calibration and validation

Appropriate model calibration can reduce the para
metric uncertainty and improve streamflow simulations 
(Gan et al., 2018). In this study, the GR4J model was 
calibrated and validated for an independent period 
using different rainfall datasets. These were ground- 
based rainfall, uncorrected SRPs, and bias-corrected 
SRPs using 1, 3, 6, 10, and 25 rainfall stations. For 
each rainfall product, the GR4J model parameters 
were optimized by comparing the simulated discharge 
measurements against the observed discharge measure
ment at Kedougou, Mako, and Simenti streamflow 
gauges. According to Thiemig, Rojas, Zambrano, and 
Roo (2013), model performance can be said to be good 
when KGE ≥ 0.75, an efficient medium if it is between 
0.75 and 0.5 and mediocre if it is less than 0.5.

The method used to calibrate the streamflow 
consists of the “Pas-à-Pas” method (Michel, 1989; 
Nascimento, 1995). This method was developed by 
the Hydrology Division of the National Research 
Institute for Agriculture, Food, and the 
Environment (INRAE) in Antony (formerly 
Cemagref). “The hydrological model calibration 
method used in this study is the “Pas-à-Pas” 
method (Michel, 1989; Nascimento, 1995), devel
oped at the Hydrology Division of the National 
Research Institute for Agriculture, Food, and the 

Environment (INRAE) in Antony (formerly 
Cemagref). This method is integrated into the 
airGR (Coron et al., 2021; Coron, Thirel, Delaigue, 
Perrin, & Andréassian, 2017) package of R software. 
It is a local method that performs an optimization 
(maximization or minimization) of an objective 
function (independently of the method). In this 
paper, we adopt a maximization of the Kling 
Gupta Efficiency criterion (2009) computed on the 
non-transformed streamflows noted here KGE. The 
optimization process is iterative. The method adopts 
a moving strategy, mostly along the axes of the 
parameter space, with a search step that can vary 
from one iteration to another. The amplitude of the 
search step being here the same for all parameters, 
prior mathematical transformations (e.g., logarith
mic or square root transformations) can be applied 
to guarantee roughly equivalent sensitivities to this 
search step for all parameters. These transforma
tions on the parameters are chosen taking into 
account the way the parameters are involved in 
the model, and are specific to the model (Perrin,  
2000). The search starts from an initial vector of 
parameters. We then calculate the corresponding 
value of the objective function. We then vary suc
cessively each value of the parameters of the initial 
deviation (Perrin, 2000).

The available observed data for calibration includ
ing daily precipitation, daily mean discharge and eva
potranspiration were divided into two 5-year periods 
(1999 to 2004 and 2005 to 2009). The years 1998 and 
2004 were used as warm-up for initializing the model 
reservoirs. Thus, the model calibrations were done for 
Kedougou, Mako and Simenti watersheds during the 
period from 1999 to 2004. Then, the model was vali
dated for an independent period from 2005 to 2009 for 
three sub-basins.

The simulated discharge values from the four 
rainfall datasets, over the calibration and validation 
periods, were compared to the observed discharge 
measurements to evaluate the model performance 
for discharge simulations. Beyond the percentage 
bias (PBIAS), the Mean Absolute Error (MAE) 
and the Root Mean Square Error (RMSE) metrics, 
as mentioned above, several other statistical criteria 
were also used to evaluate the simulated streamflow 
performances. In other words, the streamflow 
simulations was also assessed using the normalized 
root-mean-square error (NrMSE) and Kling Gupta 
Efficiency (KGE) methods. Note that KGE evalu
ates simultaneously the mean bias, the standard 
deviation, and the correlation between the observa
tions and the simulation. These performance 
metrics are also defined as follows: 

NRMSE ¼
RMSE

PGi
x100 (4) 
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KGE ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σQSim

σQObs

� �2

þ
1

Bias

� �2

þ r � 1ð Þ
2

s

(5) 

In equation 1–5, n is the number of measurements, PSi 
the daily value estimated or simulated, PGi the daily 
value of reference or observed, RMSE is the root mean 
square error, �PGi the average of the reference or 
observed values, �PSi the average of the simulated 
values, σQObs is the standard deviation of the observed 
flow rates, σQSim the standard deviation of the simu
lated daily flows, r is the Pearson correlation coeffi
cient between the observation and the simulation, and 
the Bias represents the mean bias in average volume.

Simulation scenarios

To evaluate the quality of SRPs for hydrological mod
eling, the following procedure was used by creating 
four simulation scenarios. In the first scenario, the 
non-calibrated GR4J model was run with uncorrected 
SRPs for simulating discharges. This scenario repre
sents the case of an ungauged watershed which lacks 
both rainfall and streamflow measurements. In 
the second scenario, the non-calibrated GR4J model 
was run with bias-corrected SRPs and the in-situ rain
fall data. Here, the SRPs were corrected by 1, 3, 6, and 
10 in-situ rainfall stations, which were selected in such 
a way that maximum coverage was achieved. The 
purpose of this approach is evaluate the potential 
spatial subsampling effects that may arise from using 

a small number of stations to correct the biases in 
SRPs. This approach is inspired by Sy et al (2021). 
The utility of this scenario is to evaluate the discharge 
measurement simulation utility of the three SRPs in 
watersheds that lack streamflow and contain some 
rainfall measurements. In the third scenario, the 
GR4J model was calibrated and validated using uncor
rected SRPs. The validation results were compared 
with the actual measured streamflow data. This sce
nario was exclusively used to investigate the feasibility 
of hydrological modeling over the watersheds wherein 
only discharge measurements exist. In the last and 
fourth scenario, the GR4J model was calibrated and 
validated using corrected SRPs with in-situ rainfall 
data. The corrected SRPs were similar as under sce
nario 2, meaning that 1, 3, 6, and 10 rain gauges were 
used for bias correction. This scenario corresponds to 
watersheds where both rainfall and discharge mea
surement data exist.

Results

Evaluation of satellite rainfall products against 
gauged rainfall product

When the bias-corrected SRPs using 1, 3, 6, and 10 
stations were compared with the RRP constructed 
from the 25 stations by kriging, the difference 
between the daily mean of the satellite products 
and that of the ground-based rainfall is almost 
zero (Table 3). Generally, the PCDR product 

Table 3. Comparison between the daily averages of the rainfall estimated by SRP 
and daily rainfall data obtained considering the different sampling of stations (i.e., 1, 
3, 6, 10, and 25 stations). NC refers to un-corrected SRP, while C refers to the 
corrected-SRP using 1 station (C1), 3 stations (C3), 6 stations (C6), 10 Stations (C10) 
and 25 stations (C25). Rain-gauge refers to the daily averages of the recorded 
rainfall datasets.

Kédougou Mako Simenti
Number of Stations considered. Product mm mm mm

Raw SRPs CHIRPS (NC) 3.832 3.673 3.230
PCDR (NC) 1.696 1.687 1.479
TRMM (NC) 3.273 3.212 3.012

1 CHIRPS (C1) 3.510 3.519 3.516
PCDR (C1) 3.488 3.486 3.519
TRMM (C1) 3.645 3.632 3.569
Rain-gauge 3.406 3.406 3.406

3 CHIRPS (C3) 3.266 3.251 3.230
PCDR (C3) 3.247 3.243 3.236
TRMM (C3) 3.645 3.632 3.569
Rain-gauge 3.324 3.324 3.324

6 CHIRPS (C6) 2.924 2.900 2.874
PCDR (C6) 2.889 2.882 2.869
TRMM (C6) 2.892 2.867 2.821
Rain-gauge 3.095 3.095 3.095

10 CHIRPS (C10) 2.584 2.559 2.528
PCDR (C10) 2.543 2.537 2.518
TRMM (C10) 2.549 2.522 2.474
Rain-gauge 2.890 2.890 2.890

25 CHIRPS (C25) 2.526 2.509 2.490
PCDR (C25) 2.497 2.489 2.488
TRMM (C25) 2.501 2.526 2.496
RRP−25 2.462 2.456 2.458
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showed better performance in terms of capturing 
the mean daily rainfall than the CHIRPS and 
TRMM SRPs. The mean daily rainfall of ground- 
based rainfall, CHIRPS, PCDR, and TRMM SRPs 
was estimated to be in the same order of magni
tude, depending on the number of stations. Based 
on the daily mean values, the raw satellite products 
(PCDR and TRMM) underestimate the values 
obtained at a single station, while the raw 
CHIRPS overestimates rainfall at all stations except 
at Simenti where it slightly underestimates rainfall. 
Compared to the average rainfall at a 1, 3, 6, and 
10 rainfall stations, the uncorrected CHIRPS pro
duct overestimates rainfall at all rainfall stations, 
with the exception of Simenti with a single and 
three rainfall stations. For the uncorrected PCDR, 
it is characterized by an underestimation of preci
pitation at all station categories (1, 3, 6, and 10 

rainfall stations). The uncorrected TRMM product, 
it underestimates rainfall at a single and three rain
fall stations, while it overestimates the rainfall at 
a 6 and 10 rainfall stations (Table 3).

Scenario 1: Uncalibrated GR4J model run with 
uncorrected SRPs

In scenario 1, the uncorrected daily CHIRPS, PCDR, 
and TRMM rainfall products were used to drive the 
GR4J uncalibrated model. The rationale behind this 
scenario was to test the hydrological usability of these 
SRPs for ungauged watersheds. The performance 
metrics of daily streamflow simulations using the 
uncalibrated model with the uncorrected SRPs are 
shown in Table 4. The CHIRPS and TRMM products 
resulted in an overestimation of the peak streamflows, 
whereas they resulted in a reasonable match with the 

Table 4. Performance metrics of the discharge simulation with the uncorrected 
SRPs over the period 1999–2009 using an uncalibrated model.

Sub-basin

Performance  
metric SRP Kédougou Mako Simenti

PBIAS (%) CHIRPS 63.2 77.6 52.7
PCDR −84.4 −82.1 −87.3
TRMM 22.5 42.7 44.9

MAE (m3/s) CHIRPS 78.4 97.9 129.3
PCDR 76.6 85.7 153.4
TRMM 56.7 76.2 126.4

NRMSE (%) CHIRPS 136.2 146.9 126.4
PCDR 104.2 102.5 106.7
TRMM 96.9 115.5 129.3

KGE (-) CHIRPS −0.09 −0.29 −0.01
PCDR −0.29 −0.25 −0.33
TRMM 0.44 0.15 −0.02

Figure 2. Observed and simulated streamflow of the Gambia sub-basins Kedougou, Mako and Simenti, using the uncalibrated 
GR4J model and three uncorrected SRPs as rainfall input.
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low streamflows. The PCDR product resulted in an 
underestimation in peak streamflows, while it also 
resulted in a reasonable match for low streamflows.

Overall, there was a poor agreement between the 
observed and simulated streamflows in the Gambia 
sub-basins. Figure 2 shows the simulated and mea
sured hydrographs for Kedougou, Mako and Simenti. 
The poor performance is also illustrated by the low 
KGE values for CHIRPS, PCDR, and TRMM 
(Table 4). The other metrics (MAE, NRMSE, and 
PBIAS) also indicate a poor performance of the unca
librated GR4J model using uncorrected SRPs. The 
model has a tendency to substantially overestimate 
(CHIRPS and TRMM) or underestimate (PCDR) the 
high streamflows. Based on these results, it can be 
concluded that the streamflows of the Gambia basin 
cannot be simulated from uncorrected satellite data 
using the uncalibrated GR4J hydrological model.

Scenario 2: Uncalibrated GR4J model run with 
corrected SRPs

Note that because of the results obtained in both 
Simenti and Mako sub-basins are similar to those 
from Kedougou sub-basin, only results from 
Kedougou sub-basin are shown. The aim of this sce
nario is to evaluate the utility of three bias-corrected 
SRPs (TRMM, CHIRPS, and PCDR) for simulating 
streamflow in the sub-basins assuming that no dis
charge measurements exist. The performance metrics 
of daily streamflow simulations are shown in Table 5. 
The results indicate that all SRPs corrected with 1 or 3 
rainfall stations overestimate the streamflows. 
However, when corrected with 6, 10, or 25 rainfall 
stations, they underestimate streamflows. The perfor
mance of the discharge simulation with the SRPs cor
rected with either 3 or 6 rainfall stations [3 in 

Table 5. Performance metrics of the discharge simulation (peak streamflow) for three sub-basins in the Gambia 
basin using the uncalibrated GR4J model and the corrected SRPs over the period 1999–2009.

Nr. of rainfall stations used Product
PBIAS 

%
MAE 
m3/s

NRMSE 
% KGE-

Kedougou
1 CHIRPS 68.4 96.8 206.8 −0.70

PCDR 67.7 107.9 196.8 −0.47
TRMM 8.1 102.4 215.2 −0.81

3 CHIRPS .4 46.4 72.9 0.74
PCDR 2.4 56.6 88.0 0.64
TRMM .5 42.7 66.0 0.79

6 CHIRPS −37.3 44.9 65.6 0.44
PCDR −35.3 5.2 75.1 0.41
TRMM −36.9 43.5 64.9 0.44

10 CHIRPS −66.7 62.4 88.5 0.0
PCDR −65.6 62.9 89.6 0.0
TRMM −66.2 61.7 87.3 0.02

25 CHIRPS −5.1 52.9 75.4 0.29
PCDR −49.8 58.7 84.4 0.23
TRMM −51.2 52.3 75.2 0.27

Mako
1 CHIRPS 95.4 126.5 250.2 −1.17

PCDR 105.0 152.8 261.3 −1.20
TRMM 11.5 137.5 249.5 −1.24

3 CHIRPS 18.7 57.8 88.8 0.54
PCDR 25.2 72.4 113.6 0.37
TRMM 18.0 5.7 72.7 0.61

6 CHIRPS −27.3 45.8 60.7 0.58
PCDR −21.5 52.9 72.9 0.59
TRMM −26.0 43.1 57.7 0.60

10 CHIRPS −61.5 65.7 83.4 0.08
PCDR −58.0 64.7 83.3 0.12
TRMM −6.1 64.2 81.6 0.11

25 CHIRPS −44.7 56.5 72.8 0.36
PCDR −39.9 62.2 89.0 0.37
TRMM −42.3 53.1 68.9 0.40

Simenti
1 CHIRPS 134.9 241.5 344.7 −2.18

PCDR 163.0 3.5 334.7 −2.26
TRMM 137.9 234.4 308.6 −1.92

3 CHIRPS 38.5 99.1 118.9 0.15
PCDR 58.2 133.9 147.6 −0.12
TRMM 35.9 86.3 91.0 0.32

6 CHIRPS −16.2 69.9 62.5 0.73
PCDR −2.3 77.5 71.6 0.75
TRMM −17.4 6.2 51.1 0.75

10 CHIRPS −57.1 96.3 81.7 0.14
PCDR −48.7 87.9 73.1 0.27
TRMM −56.6 94.8 77.4 0.18

25 CHIRPS −36.5 85.1 74.4 0.49
PCDR −24.1 86.1 88.4 0.55
TRMM −36.3 76.8 64.9 0.52
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Kedougou sub-basin (7550 km2) and 6 rainfall stations 
in Simenti sub-basin (20500 km2)] was relatively 
improved (see the reported KGE values). This perfor
mance can be surprising with an uncalibrated model. 
But it could be explained, perhaps, by the fact that the 
spatial pattern of rainfall is good for those corrected 
for SRPs .

The results in Table 5 show that the underestima
tion bias decreases from the smallest basin 
(Kedougou) to the largest basin (Simenti). Except for 
these two cases, the performance of the uncalibrated 
model run with the corrected SRPs is not so poor 
overall. This is reflected in the KGE value of the 
corrected SRPs with 1, 3, 6, 10, and 25 rainfall stations 
(Table 5). In addition, this performance of the simula
tion, in terms of statistical metrics, is mainly because 
the peak values are not correctly simulated (Figure 3). 
Apart from that, the patterns of streamflows are good 
given that the model was not calibrated in this 
scenario.

In terms of bias, the underestimation becomes 
more important when we increase the number of rain
fall stations from 6 to 10 stations (Figure 3). Because 
the value of SRPs corrected with a small number of 

stations is larger than that of SRPs corrected with 
a large number of stations (Table 3).

In addition to the bias and KGE, the other metrics 
(MAE and NRMSE) indicate poor performance of the 
corrected SRPs using the uncalibrated model 
(Table 5). However, the model reproduces more or 
less well the temporal variability of the streamflows. As 
seen in Figure 3, when the SRPs are corrected with 1 
and 3 rainfall stations the peak flows are overestimated 
while when corrected with 6, 10, and 25 rainfall sta
tions the peak flows are underestimated. Figure 3 
shows also that the patterns are good, even if it can 
be noted that the absolute differences are large in 
terms of peak flows. In addition, the strong overesti
mation of peak flows with the SRPs corrected with 1 
rainfall station are obvious. The peak flows can even 
reach 6000 m3/s (Figure 3). It is concluded that the 
rainfall obtained from 1 and 3 stations is not suffi
ciently representative for the basin. This is the reason 
why when PCDR is bias-corrected with 1 and 3 rainfall 
stations, it overestimates the streamflow while it 
underestimated before the bias correction.

Based on the results of this scenario, it can be 
concluded that the daily streamflows of the Gambia 

Figure 3. Observed and simulated streamflow of the Gambia sub-basins Kedougoui using the uncalibrated GR4J model and three 
corrected SRPs with using 1, 3, 6 and 10 rainfall stations, as rainfall input.
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sub-basins can be simulated acceptably with the SRPs 
corrected with 6 or 10 rainfall stations using the unca
librated GR4J hydrological model (Table 5 and 
Figure 3). The particular cases of the Kedougou and 
Simenti sub-basins with corrected SRPs with 3 and 6 
rainfall stations cannot overturn the conventional 
notion that calibration is an inevitable prior step to 
any model application (Karthik & Patrick, 2018; 
Revilla-Romero et al., 2015; Thorstensen, Nguyen, 
Hsu, & Sorooshian, 2016). Thus, without measured 
streamflows, the performance of SRPs in hydrologic 

modeling cannot be satisfactorily evaluated since 
observed streamflows are essential for model 
calibration.

Scenario 3: Calibrated and validated GR4J model 
using uncorrected SRPs

This scenario was exclusively used to investigate the 
feasibility of hydrological modeling over the water
sheds wherein only discharge measurements exist. 
This scenario evaluates the possibility of modeling 

Table 6. Statistical performance of uncorrected SRPs in hydrological modelling during calibration and validation periods, 
respectively (1999-2003; 2005-2009).

Sub basins Product PBIAS 
%

MAE 
m3/s

NRMSE 
%

KGE-

Calibration
Kedougou CHIRPS -3.5 42.25 65.8 0.79

PCDR -2.3 50.20 71.4 0.72
TRMM -3.7 33.22 52.3 0.86

Mako CHIRPS -1.3 48.05 64.5 0.79
PCDR -0.6 58.84 73.9 0.71
TRMM -3.1 40.79 52.7 0.85

Simenti CHIRPS 0.8 86.60 79.8 0.66
PCDR 4.8 91.35 77.7 0.71
TRMM -6.2 62.13 53.5 0.83

Validation
Kedougou CHIRPS -21.4 40.77 60.9 0.64

PCDR 22.5 68.60 85.8 0.55
TRMM -39.7 49.16 71.5 0.35

Mako CHIRPS -21.6 44.83 60.3 0.67
PCDR 20.7 73.79 84.3 0.61
TRMM -46.5 52.89 72.3 0.33

Simenti CHIRPS -20.0 62.31 65.5 0.71
PCDR 31.0 93.76 79.6 0.56
TRMM -42.1 66.77 65.1 0.36

Figure 4. Comparison of observed vs. simulated streamflow during calibration and validation periods.
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streamflow with a model that is calibrated using 
uncorrected SRPs as the rainfall input. The GR4J 
hydrological model was calibrated for the three 
Gambia sub-basins over the period of 1999–2003 and 
validated over the period of 2005–2009. The year 1998 
was used for warming-up. The statistical metrics of the 
simulation results during calibration and validation 
are summarized in Table 6. In addition, Figure 4 
shows the streamflow simulation results.

During calibration, all model simulations forced by 
the uncorrected SRPs match the observed streamflows 
relatively well. They show a capacity of the SRPs to 
reproduce acceptably the streamflows during the cali
bration period (Figure 4). The performance statistics 
(Table 6) indicate a good performance, in terms of 
KGE values, for TRMM over all sub-basins. CHIRPS 
also presents a good performance over Kedougou and 
Mako sub-basins while over Simenti sub-basin this 
performance is somewhat lower (KGE = 0.66). As for 
PCDR, it presents an efficient medium during the 
calibration period (Table 6). This overall good perfor
mance of the calibration using the three SRPs is also 
reflected in the low PBIAS values of the simulated 
streamflows. This shows the capability of the cali
brated GR4J model using uncorrected SRPs to simu
late observed streamflow. Apparently in the 
calibration process there is sufficient correction for 
the bias in total rainfall, and the pattern of the satellite- 
based rainfall in this case is more important.

The performance of the hydrological modeling dur
ing the calibration period is better than during the 
validation period (Table 6). These results agree with 
the findings of Belayneh, Sintayehu, Gedam, and 
Tirunesh (2020) in which model performance during 
the calibration period was better compared to the 
validation period. Although observed and simulated 
streamflow matched well for the calibration period 
(Figure 4), there was mostly an underestimation of 
the observed streamflows for all three SRPs. The 
agreement of peak magnitude between the observed 
and simulated streamflow was good for the calibration 
period (Figure 4). In terms of KGE, TRMM is the best 
product during the calibration period, followed by 
CHIRPS, despite its low KGE value in Simenti sub- 
basin. As for PCDR, it shows a constant performance 
in all sub-basins during calibration (Table 6).

During the validation period (2005–2009), the per
formance of the model using the three SRPs is overall 
also good. But this performance is not as good as the 
performance during the calibration period. Because 
the transition from calibration to validation leads to 
a significant increase in errors (Coron, 2013) particu
larly visible in the percent bias (Tables 6 and 7). This is 
acceptable since the validation is done under different 
climatic conditions than those used during the calibra
tion. Also, it is during this period that the model 
parameters are optimized.

In addition, the performances vary for the different 
SRPs (Table 6). CHIRPS and TRMM show again 
underestimations during the calibration period, and 
these become more important during validation 
period.

It should be noted that CHIRPS and PCDR show 
acceptable performance in terms of KGE values during 
the validation period. They achieve better perfor
mance than TRMM, in terms of KGE. At the same 
time, the streamflow simulated with PCDR show 
a slight overestimation during the validation period, 
while those simulated with CHIRPS and TRMM are 
underestimated (Table 6). This indicates that the 
uncorrected SRPs used as input for the GR4J model 
is a good way to simulate the streamflow in watersheds 
wherein only streamflow measurements are available. 
The analysis of Table 6 shows also that all SRP simula
tions during the validation period have more bias 
compared to the calibration period. This suggests an 
increase in the uncertainty of streamflow simulations 
of SRPs over the validation period.

In conclusion, the overall performance of the GR4J 
model forced with uncorrected SRPs is good for the 
validation period, indicating that the GR4J model can 
be applied to simulate the streamflow in Gambia sub- 
basins beyond the calibration period, using uncor
rected SRPs. This implies that the model is capable 
to simulate the hydrology of West African watersheds 
where only streamflow data is available, and no mea
sured rainfall data.

Scenario 4: Calibrated and validated GR4J model 
using bias-corrected SRPs

In this scenario, the GR4J model was calibrated and 
validated with each of the three bias-corrected SRPs as 
forcing inputs. The calibration and validation periods 
of scenario 3 were kept unaltered within scenario 4. 
The performance metrics of the calibration period are 
shown in Table 7. All simulations using the bias- 
corrected SRPs resulted in KGE values above 0.7, 
except for the streamflows simulated with CHIRPS 
bias-corrected with 1 rainfall station. Despite this, all 
the simulations with the bias corrected SRPs show 
a good tendency to adequately reproduce the observed 
streamflows during the calibration period (Figure 5).

The TRMM-based simulations showed better 
results than CHIRPS and PCDR-based simulations 
during the calibration period, as reflected by the 
higher values of KGE and lower values of MAE and 
NRMSE. This indicates that the TRMM product had 
a more reliable hydrological utility than the other two 
products during the calibration period. Under this 
scenario, CHIRPS-driven model simulation per
formed less well, overall. It should be noted that even 
if the streamflow simulated with TRMM showed the 
best performance, but those simulated with CHIRPS 
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and PCDR are also good in all the sub-basins 
(Figure 5).

During the validation period, the streamflows 
simulated with TRMM present lower performance. 
The streamflows simulated with CHIRPS showed the 
best values of KGE followed by PCDR.

The statistical results obtained during the valida
tion period for the performance of corrected SRPs 
used as input into GR4J over the three sub-basins are 
summarized in Table 8. The streamflows simulated 
with SRPs bias-corrected with 3, 6 and 10 rainfall 
stations exhibited quite excellent values of KGE but 
also have relatively high values of bias. The simula
tions using SRPs bias-corrected with 1 rainfall station 
provide low values of KGE, particularly for PCDR and 
TRMM. All simulations with SRPs bias-corrected with 
6 and 10 rainfall stations performed better than the 
SRPs bias-corrected with 3 rainfall stations (Table 8 
and Figure 5). Figure 5, which compares the simulated 
and observed streamflows, clearly shows the differ
ences in performance of the corrected SRPs with 1, 3, 
6, and 10 rainfall stations in each sub-basin. However, 
the performance of SRPs corrected with 6 and 10 

rainfall stations is overall the same order of magnitude 
in simulating streamflows during the validation period 
in all sub-basins. In summary, the SRP data with bias- 
correction used for model calibration and validation 
showed good performance for the three Gambia sub- 
basins.

Discussion

As in previous studies, the use of satellite rainfall 
products does not aim to substitute ground-based 
rainfall observations for hydrological modeling, but 
rather to use them as an alternative for ungauged or 
poorly gauged watersheds. In addition, this paper 
evaluates the accuracy of streamflow simulation with 
a non-calibrated hydrological model using uncor
rected and corrected SRPs. The findings of our paper 
correspond with other research carried out in the field 
of simulating or calibrating hydrological models using 
SRPs, such as hydrological modeling from several 
satellite products (Artan et al., 2007; Behrangi et al.,  
2011; Belayneh, Sintayehu, Gedam, & Tirunesh, 2020; 
Bitew & Gebremichael, 2011; Bâ et al., 2018; Gao et al.,  

Table 7. Statistical evaluation criteria during calibration period using the bias-corrected SRPs.

Nr. of rainfall stations used Product
PBIAS 

%
MAE 
m3/s

NRMSE 
% KGE-

Calibration
Kedougou
1 CHIRPS −5.0 49.4 81.3 0.68

PCDR −7.8 48.2 73.8 0.72
TRMM −4.4 39.1 67.1 0.78

3 CHIRPS −4.7 47.1 69.2 0.77
PCDR −3.7 43.9 64.6 0.84
TRMM −4.2 36.2 53.0 0.85

6 CHIRPS −3.4 44.4 62.3 0.81
PCDR −1.6 43.4 61.4 0.81
TRMM −2.7 35.6 53.2 0.86

10 CHIRPS −2.8 67.1 90.3 0.76
PCDR −4.3 49.7 67.5 0.73
TRMM −5.2 41.5 61.6 0.79

Mako
1 CHIRPS −3.1 60.3 83.1 0.67

PCDR −2.0 42.7 59.8 0.82
TRMM −5.0 43.8 61.0 0.80

3 CHIRPS −4.3 53.2 68.5 0.77
PCDR −2.4 48.3 60.8 0.82
TRMM −4.2 42.6 52.7 0.85

6 CHIRPS −2.1 50.7 61.0 0.81
PCDR −0.4 48.9 57.8 0.82
TRMM −2.6 41.5 53.6 0.85

10 CHIRPS −1.2 49.4 60.5 0.80
PCDR −2.1 51.5 64.8 0.77
TRMM −3.3 43.2 61.1 0.80

Simenti
1 CHIRPS 1.3 98.8 89.7 0.61

PCDR 1.2 65.2 56.8 0.81
TRMM −9.2 67.4 56.5 0.82

3 CHIRPS −4.3 101.0 74.1 0.73
PCDR −2.1 84.1 56.1 0.84
TRMM −7.2 75.8 50.9 0.83

6 CHIRPS −1.1 84.3 60.9 0.82
PCDR −0.2 82.5 52.5 0.86
TRMM −3.9 64.3 43.4 0.89

10 CHIRPS 8.4 76.3 62.6 0.78
PCDR −2.5 93.2 60.3 0.80
TRMM −4.0 72.6 49.8 0.87

12 B. FATY ET AL.



2017; Kim, Jung, Park, Yoon, & Lee, 2016; Shrestha, 
Artan, Bajracharya, Gautam, & Tokar, 2011; Tang 
et al., 2016; Thiemig, Rojas, Zambrano, & Roo, 2013; 
Xue et al., 2013; Yilmaz et al., 2005; Yong et al., 2010). 
In these studies, the usefulness of SRPs to increase the 
performance and reliability of the models was high
lighted. Zeweldi, Gebremichael, and Downer (2011) 
reported increased performance of a rainfall-runoff 
model when the model was calibrated using satellite 
data.

In our study, the results of scenario 1 showed 
poor performance which is illustrated by the low 
values of KGE for CHIRPS, PCDR, and TRMM 
(Table 4). The other performance evaluation cri
teria, such as MAE, NRMSE, and PBIAS also indi
cate a poor performance of the uncalibrated GR4J 
model using uncorrected SRPs. These findings are 
similar to those of Revilla-Romero et al. (2015) who 
compared the performance of the calibrated and 
the uncalibrated model simulations in terms of 
reproducing the in situ streamflow time series. 
They demonstrated that simulated streamflows 
from an uncalibrated model resulted in poor KGE 
and PBIAS scores. Indeed, in our study, as 
described in the Tables 6 & 7, the GR4J model 
gives better outcomes when it was calibrated by 
uncorrected and corrected SRPs. But the stream
flows simulated with TRMM product are better 

than CHIRPS and PCDR SRPs for Gambia River 
sub-basins during the calibration period. This result 
is consistent with the findings of the study done by 
Belayneh, Sintayehu, Gedam, and Tirunesh (2020), 
which was conducted in the Upper Blue Nile Basin 
on TMPA_3B42v7 and CHIRPS. In that study, an 
evaluation of SRPs was made using the HECHMS 
model. The results revealed that the HEC-HMS 
model performance with TMPA_3B42v7 was better 
than when using the CHIRPS SRP during calibra
tion periods. In addition, Tables 6 & 7 and Figs. 4 
& 5 clearly indicate that the model performance 
statistics value has been increased when the model 
used bias-corrected SRPs. Thus, it can be con
cluded that bias-corrected SRPs showed better per
formance than uncorrected SRPs for streamflow 
simulation in the Gambia sub-basins. Behrangi 
et al. (2011) found that bias-correction of SRPs is 
critical and can yield substantial improvement in 
capturing both the streamflow pattern and magni
tude. Even though bias correction of SRPs 
improves the accuracy of streamflow simulations 
of satellite products, the usefulness of SRPs for 
hydrologic modeling became most apparent when 
the hydrologic models were calibrated with SRPs 
was highlighted. These findings corroborate those 
of Artan et al. (2007) who concluded that that 
satellite-based rainfall estimates can be used to 

Figure 5. Comparison of observed and simulated hydrographs in the calibration period (01-01-1999 to 12-31-2003) and in the 
validation period (01-01-2005 to 01-31-2009).
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drive hydrologic models for streamflow prediction 
if the hydrologic model is calibrated with satellite- 
based rainfall estimates. Bâ et al. (2018) also eval
uated PCDR with the hydrological model before 
bias correction and after bias correction over 
upper Senegal River and Rani River basins. Their 

study demonstrated that PCDR is useful for rain
fall-runoff simulation in this region.

Furthermore, when comparing all scenarios, sce
nario 4 appears to be a better approach than the 
other three scenarios, and scenario 3 is also better 
than scenarios 2 and 1. However, it should be noted 

Table 8. Statistical evaluation criteria during validation period using the bias-corrected SRPs

Nr. of rainfall stations used Product
PBIAS 

%
MAE 
m3/s

NRMSE 
% KGE-

Validation
Kedougou
1 CHIRPS -37.4 48.09 69.8 0.48

PCDR 32.0 79.90 110.2 0.38
TRMM -66.7 61.11 89.1 -0.02

3 CHIRPS -20.5 42.04 62.0 0.63
PCDR 26.1 61.54 83.1 0.59
TRMM -33.1 46.93 68.4 0.43

6 CHIRPS -12.3 43.54 64.4 0.68
PCDR 21.2 58.77 78.5 0.64
TRMM -28.1 44.85 63.8 0.5

10 CHIRPS -11.8 45.19 66.4 0.64
PCDR 16.8 60.69 78.5 0.63
TRMM -24.5 47.21 64.0 0.52

Mako
1 CHIRPS -30.6 54.18 71.4 0.59

PCDR 36.7 82.46 111.2 0.32
TRMM -67.1 67.74 88.5 0.02

3 CHIRPS -17.2 43.16 61.9 0.74
PCDR 27.3 69.73 90.6 0.51
TRMM -39.8 49.72 68.1 0.41

6 CHIRPS -11.3 42.59 58.2 0.79
PCDR 21.1 64.4 80.7 0.62
TRMM -30.1 45.87 60.1 0.55

10 CHIRPS -7.4 49.0 64.3 0.76
PCDR 16.4 64.87 77.9 0.67
TRMM -27.1 45.7 57.2 0.56

Simenti
1 CHIRPS -30.8 74.43 78.9 0.56

PCDR 96.6 155.95 180.9 -0.69
TRMM -66.7 96.47 89.8 0.00

3 CHIRPS -12.2 55.74 66.8 0.75
PCDR 39.2 84.40 90.0 0.32
TRMM -37.6 65.88 67.3 0.45

6 CHIRPS -7.0 60.16 58.9 0.81
PCDR 34.0 82.07 81.3 0.43
TRMM -20.7 53.49 52.3 0.72

10 CHIRPS -0.9 65.75 63.5 0.80
PCDR 31.2 86.37 80.1 0.49
TRMM -18.8 55.18 48.0 0.72

Table 9. Difference in performance between scenarios 1; 2 and 3 compared to the 
baseline scenario in Δ (%) Kedougou (1st : 1 rainfall station, 3st: 3 rainfall stations, 6st: 
6 rainfall stations, 10st: 10 rainfall stations).

SCENARIOS ΔMAE(100%) ΔNRMSE(100%) ΔKGE(100%)

Scenario1-CHIRP − 77 −119 111
Scenario1-PCDR − 76 −70 136
Scenario1-TRMM −59 −82 49
Scenario2-1st- CHIRPS −96 −154 203
Scenario2-1st -PCDR −124 −167 165
Scenario2-1st -TRMM −162 −221 204
Scenario2-3st- CHIRPS 01 −05 04
Scenario2-3st -PCDR −29 −36 24
Scenario2-3st -TRMM −18 −25 07
Scenario2-6st -CHIRPS −01 −05 46
Scenario2-6st -PCDR −16 −22 49
Scenario2-6st -TRMM −22 −22 49
Scenario2-10stCHIRPS 07 02 100
Scenario2-10st -PCDR −27 −33 100
Scenario2-10st -TRMM −49 −42 97
Scenario3 -CHIRPS 05 −06 02
Scenario3 -PCDR −16 − 16 11
Scenario3 -TRMM 07 02 00
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that scenario 4 is only better than scenario 3 when the 
products are corrected with 6 and 10 rainfall stations. 
The only exception was the use of PCDR in the valida
tion period while it was corrected with 10 rainfall 
stations. The streamflows simulated under scenario 4 
have the highest KGE values and the lowest estimation 
errors in both calibration and validation. However, 
only the SRPs corrected with 6 rainfall stations have 
higher values of KGE than the KGEs obtained under 
Scenario 4, in all sub-basins. Sometimes, the KGE 
values obtained under scenario 3 are higher than 
those under scenario 4 when the SRPs are corrected 
with 1, 3 , and 10 rainfall stations. This can be 
explained by the fact that 6 rainfall stations are more 
representative than 1, 3, and 10 rainfall stations. These 
can be considered as lack of spatial representativeness 
of the sparse gauges that were used for the bias 
correction.

In conclusion, instead of 1 or 3 rainfall stations, 
it is preferable to use uncorrected satellite data in 
the Gambia sub-basins for hydrological modeling. 
The study also shows that if the rainfall stations are 

not well distributed in the basin (e.g., . 10 stations), 
no matter how many there are, they are no better 
than uncorrected satellite data.

Analysis of the add-value of scenarios

This section assesses the add-value and usefulness of 
scenarios 1, 2, and 3 (based on partial information) 
compared the scenario 4 considered as reference 
(which uses the full available information). For this 
purpose, the level of the loss of performance from 
scenario 4 to scenarios 1, 2 and 3 is quantified by the 
percentage of the difference between the performance 
criteria of the reference scenario and those of the 
evaluated scenarios. The following performance cri
teria are considered: MAE, NRMSE, and KGE. 
However, the analysis is focused only on KGE criter
ion to simplify the text. The results are summarized in 
Tables (9, 10, 11) where only the results for the 
Kedougou sub-basin are shown. Statistical results for 
Mako and Simenti sub-basins are similar to those for 
Kedougou and are not shown.

Table 10. Difference in performance between scenarios 1; 2; and 3 compared to the 
baseline scenario in Δ (%) Mako.

SCENARIOS ΔMAE(100%) ΔNRMSE(100%) ΔKGE(100%)

Scenario1-CHIRP −93 −141 136
Scenario1-PCDR −75 −77 130
Scenario1-TRMM −84 −115 82
Scenario2-1st- CHIRPS −110 −201 275
Scenario2-1st -PCDR −258 −337 246
Scenario2-1st -TRMM −214 −309 255
Scenario2-3st- CHIRPS −09 −30 30
Scenario2-3st -PCDR −50 −87 55
Scenario2-3st -TRMM −19 −38 28
Scenario2-6st -CHIRPS 10 00 28
Scenario2-6st -PCDR −08 −26 28
Scenario2-6st -TRMM −04 −08 29
Scenario2-10stCHIRPS −33 −38 90
Scenario2-10st -PCDR −26 −29 84
Scenario2-10st -TRMM −49 −34 86
Scenario3 -CHIRPS 05 −06 02
Scenario3 -PCDR −20 −28 13
Scenario3 -TRMM 02 02 00

Table 11. Difference in performance between scenarios 1; 2; and 3 compared to the 
baseline scenario in Δ (%) Simenti.

SCENARIOS ΔMAE(100%) ΔNRMSE(100%) ΔKGE(100%)

Scenario1-CHIRP −53 −108 101
Scenario1-PCDR −86 −103 138
Scenario1-TRMM −97 −198 102
Scenario2-1st- CHIRPS −144 −284 457
Scenario2-1st -PCDR −361 −489 379
Scenario2-1st -TRMM −248 −446 334
Scenario2-3st- CHIRPS 02 −60 79
Scenario2-3st -PCDR −59 −163 114
Scenario2-3st -TRMM −14 −79 61
Scenario2-6st -CHIRPS 17 −03 11
Scenario2-6st -PCDR 06 −36 13
Scenario2-6st -TRMM 06 −18 16
Scenario2-10stCHIRPS −26 −31 82
Scenario2-10st -PCDR 06 −21 66
Scenario2-10st -TRMM −31 −55 79
Scenario3 -CHIRPS −03 −31 20
Scenario3 -PCDR −11 −48 17
Scenario3 -TRMM 03 −23 07
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Thus, it appears from the analysis of Table 9 that, 
although the reference scenario (scenario 4) is better, 
the loss of performance from this scenario to scenario 
3 does not exceed 20%. Also, the loss of performance 
from scenario 4 to scenario 2 does not reach 50% when 
the SRPs are corrected with 3 and 6 rainfall stations in 
Kedougou sub-basin. In the Mako sub-basin also 
(Table 10), except for PCDR corrected with 3 rainfall 
stations which reached 55%, the loss of performance of 
this scenario when the SRPs are corrected with 3 and 6 
rainfall stations is not as huge as that. So, we can 
conclude that, in addition to the scenario 4, the sce
nario 3 can be used. The scenario 2 also can be used 
when the SRPs are corrected with 3 and 6 rainfall 
stations because the loss of information is not as 
important as that (Table 11).

Conclusion

This paper quantitatively evaluated the accuracy 
and error of the three SRPs (CHIRPS; PCDR and 
TRMM) by comparing them with the ground-based 
observations of the Kedougou, Mako and Simenti 
sub-basins during 1998–2010. For further valida
tion, the hydrological simulations were performed 
with those SRPs in the Gambia sub-basins, using 
the GR4J model during 1999–2009 under four sce
narios: uncalibrated GR4J model run with uncor
rected SRPs for simulating the streamflows; the 
uncalibrated GR4J model run with uncorrected 
and corrected SRPs (scenario 2) ; GR4J model 
calibrated and validated using uncorrected SRPs 
and then utilized them to drive the model (sce
nario 2) and GR4J model calibrated and validated 
and then run again using forcing inputs from cor
rected SRPs (scenario 4). For the hydrological vali
dation under scenario 1, the SRPs performed 
unsatisfactory over all sub-basins. Under scenario 
2, except the simulations with 1 and 3 rainfall 
stations, hydrological simulation is characterized 
by underestimation of streamflows. Under scenario 
3, during the validation period (2005–2009), the 
performance of the model using the three uncor
rected SRPs is overall also good, with satisfactory 
KGE and better estimation of streamflow discharge 
distribution. Therefore, the SRPs demonstrate 
potential for use in watersheds where there are no 
or limited rain gauges. Under scenario 4, hydrolo
gical validation performance of the SRPs corrected 
with 3, 6, and 10 rainfall stations is acceptable, with 
KGE values globally higher than 0.5, which means 
that the model is capable of reproducing the 
streamflow not observed during the calibration per
iod. and better estimation on streamflow discharge 
during validation period. Hence, SRPs can be 
acceptably used for a hydrological simulation 
when the hydrological model is calibrated with 

SRPs over the sub-basin. This paper provides 
a reference for the use of SRPs in ungauged basins. 
Globally, the SRPs present satisfactory performance 
in both statistical evaluation and hydrological 
simulation when using a calibrated model and indi
cating their potential to be used as the hydrological 
modeling input and water resources management. 
Hence, the SRPs can be recommended for use in 
the watersheds wherein there is no ground-based 
observation.
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