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A B S T R A C T   

Data assimilation (DA) in physically-based hydrodynamic models is conditioned by the difference in temporal 
and spatial scales of the observed data and the resolution of the model itself. In order to use remote sensing data 
in small-scale hydrodynamic modelling, it is necessary to explore innovative DA methods that can lead to a more 
plausible representation of the spatial variability of the parameters and processes involved. In the present study, 
satellite-derived soil moisture and in situ-observed streamflow data were jointly assimilated into a high-reso
lution hydrological-hydrodynamic model based on the Iber software, using the Tempered Particle Filter (TPF) for 
the dual estimation of model state variables and parameters. Twelve storm events occurring in a 199 km2 

catchment located in NW Spain were used for testing the proposed approach. A 3-step procedure was followed: 
(1) sensitivity analysis of the model parameters; (2) joint assimilation of soil moisture and discharge data to 
estimate correlations between observations and model parameters; (3) joint assimilation of soil moisture and 
discharge data using an initial set of particles and parameter standard deviations derived from prior information. 
The numerical model correctly reproduces the observed data, with an average Nash-Sutcliffe efficiency (NSE) 
value of 0.74 over the 12 events when the prior information is used. The approach described is shown to be most 
efficient with storm events that produce isolated peak discharges.   

1. Introduction 

The inherent uncertainty of hydrological modelling (Blöschl et al., 
2019) can be reduced by assimilating independent observed data, such 
as satellite observations or data from gauging stations (Liu and Gupta, 
2007). Data assimilation (DA) has been traditionally used for uncer
tainty quantification and probabilistic forecasting in climate and ocean 
models. More recently, DA has also been applied in the field of hy
drology to improve the accuracy of model predictions, assimilating 
variables such as soil moisture and streamflow (Gavahi et al., 2020; 
Hostache et al., 2020; Moradkhani et al., 2005; Xu et al., 2020), and has 
proved to be a powerful approach to real-time forecasting by updating 
the model state variables and parameters when new observations 
become available (Hostache et al., 2018; Moradkhani et al., 2019). The 
spatiotemporal resolution of remote sensing data is particularly appro
priate for assimilation into large-scale hydrological and climate models 
(Abbaszadeh et al., 2018; Azimi et al., 2020; Lievens et al., 2017). On 
the other hand, observations at in situ gauging stations are still the most 

commonly used ones in hydrodynamic modelling (Jafarzadegan et al., 
2021), with the inconvenience that such data are scarce in their distri
bution in terms of space. This is so because the spatial and temporal 
resolutions of satellite data are often too low to allow for their inte
gration into high-resolution small-scale hydrodynamic models. Due to 
the rapid dynamics of some flood events in small and medium-scale 
catchments, it is not possible to work with a time resolution longer 
than one day, and, especially in flood extent analysis, with spatial res
olutions much greater than the resolution of the numerical model itself. 
Since satellite products are still not always able to provide these tem
poral and spatial resolutions, the integration of these data into hydro
dynamic models tends to be rather recent, and usually focused on large 
rivers (Brêda et al., 2019; Dasgupta et al., 2021a, 2021c; Meyer Oliveira 
et al., 2021; Wongchuig-Correa et al., 2020). 

Most DA frameworks are based on the Kalman Filter and its variants 
(Annis et al., 2022; Jafarzadegan et al., 2021; Muñoz et al., 2022; 
Revilla-Romero et al., 2016; Wongchuig-Correa et al., 2020). These 
techniques do not require a very large number of model simulations, 

* Corresponding author. 
E-mail address: g.glores@udc.es (G. García-Alén).  

Contents lists available at ScienceDirect 

Journal of Hydrology 

journal homepage: www.elsevier.com/locate/jhydrol 

https://doi.org/10.1016/j.jhydrol.2023.129667 
Received 13 January 2023; Received in revised form 12 April 2023; Accepted 3 May 2023   

mailto:g.glores@udc.es
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2023.129667
https://doi.org/10.1016/j.jhydrol.2023.129667
https://doi.org/10.1016/j.jhydrol.2023.129667
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2023.129667&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Hydrology 621 (2023) 129667

2

which is a clear advantage when applied to near-real-time forecasting. 
However, they assume a Gaussian distribution of model and observation 
errors which in general are not realistic in real-world data. Therefore, 
the capacity of Particle Filter (PF) methods to handle non-linear and 
non-Gaussian systems has attracted the attention of the research com
munity in recent years (Van Leeuwen et al., 2019). Unfortunately, de
generacy affects PF methods, in that most of the particles are of very 
little weight after a few assimilation steps. This results in a large weight 
variance, and reduces the ability of the particle ensemble to assess un
certainty and to correctly approximate the posterior distribution of the 
model parameters. The Tempered Particle Filter (TPF) (Herbst y 
Schorfheide, 2019) is one approach that was developed to deal with such 
limitations. TPF reduces degeneracy based on a factorization of the 
likelihood using tempering coefficients that iteratively inflate the pos
terior probability variance. Such an approach has already been used for 
DA into flood models (Di Mauro et al., 2022; Di Mauro et al., 2021). 

Previous studies focusing on DA into hydrodynamic models assimi
late flood extent maps (Dasgupta et al., 2021a; Dasgupta et al., 2021b), 
altimetry (Brêda et al., 2019), water stage (Giustarini et al., 2011; 
Matgen et al., 2010; Oubanas et al., 2018) or discharge and water stage 
jointly (Jafarzadegan et al., 2021). In the present study we extend the 
TPF framework to the joint assimilation of soil moisture data from the 
Soil Moisture Active Passive (SMAP) satellite and streamflow data from 
a gauging station. The joint assimilation of soil moisture and streamflow 
through particle filter-based methods has already shown its effective
ness in large-scale hydrological models, for instance in the work of Yan 
and Moradkhani (2016), where a distributed hydrological model of a 
7400 km2 basin was used, yet it has never been applied to a small-scale 
hydrological-hydrodynamic model based on two-dimensional shallow 
water equations (2D-SWE). 

The Landro basin (199 km2) in north-western Spain was used as a 
case study. Numerical modelling was carried out using Iber+ (García- 
Feal et al., 2018), a GPU parallelized version of the Iber software (Bladé 
et al., 2014) that solves the 2D-SWE including rainfall-runoff trans
formation processes (Cea and Bladé, 2015). Twelve storm events of 48- 
hours were analysed. First, a sensitivity analysis (SA) was performed to 
identify the parameters with the highest impact on the model output. 
The TPF was then applied to each event independently in order to find 
sets of feasible parameters. The assimilation process started from a 
random set of particles, and a common standard deviation was assumed 
for all the parameters Based on the obtained parameter sets, we con
ducted a regression analysis to investigate how the prior information of 
each event (antecedent rainfall, soil moisture and streamflow) relates to 
the model parameters. Finally, the TPF was again applied to each of the 
twelve events using a first guess (i.e., a first set of particles) with 
parameter sets derived from the prior information (antecedent rainfall, 
soil moisture and streamflow) for each event. 

2. Methodology 

2.1. Numerical model 

The numerical model used in this study is the freely distributed 
software Iber+ (García-Feal et al., 2018), which solves the 2D-SWE by 
using GPU parallelization techniques. The mass and momentum con
servation equations solved by the model can be expressed as: 
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where h is the water depth, qx, qy and |q| are the two components of the 
unit discharge and its modulus, zb is the bed elevation, n is the Man
ning’s coefficient, g is the gravity acceleration, R is the rainfall intensity, 
and f is the infiltration rate. These equations are solved using an un
structured finite volume solver that includes a specific numerical 
scheme for hydrological applications (Cea and Bladé, 2015). As shown 
in several recent studies, the 2D-SWE can be used to model rainfall- 
runoff transformation and surface runoff with a relatively high resolu
tion at spatial scales ranging from hillslopes to small and medium-size 
catchments (Cea et al., 2016; Cea et al., 2010; Cea and Bladé, 2015; 
Costabile and Costanzo, 2021; Ferraro et al., 2020; Fraga et al., 2019; 
García-Alén et al., 2022; Sanz-Ramos et al., 2021; Uber et al., 2021). 

Iber + includes several formulations to compute infiltration losses. In 
the current study, the physically-based Green-Ampt formulation was 
used (Chow et al., 1988). In its implementation in Iber+, the infiltration 
rate is estimated as: 

fpot = ks

(
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(h + ψ)

b

)

f = min
(

fpot,
h

Δt

)

(4)  

where fpot is the potential infiltration rate, ks is the saturated soil 
permeability in the vertical direction, h is the water depth over the 
terrain, ψ is the suction in the unsaturated soil layer, b is the thickness of 
the saturated soil layer, and Δt is the computational time step. The real 
infiltration rate (f) is limited by the availability of water over the terrain 
(h). The suction (ψ) and the saturated permeability (ks) are model pa
rameters to be defined by the user, while the thickness of the saturated 
soil layer (b) is updated as the total infiltration depth increases, thus: 

b = b0 +
F
ϕ

F =

∫ t

0
fdt (5)  

where b0 is the initial thickness of the saturated soil layer, ϕ is the 
porosity of the soil, and F is the total infiltration depth. Since Iber + is a 
2D model in which the flow in the vertical direction is not resolved, the 
average moisture content of the soil layer (θ) is computed from the thickness 
of the saturated layer (b) as: 

θ =
b
ds

ϕ (6)  

where ds is the total thickness of the soil layer; the total thickness of the soil 
layer (ds) and its porosity (ϕ) are parameters to be defined by the user. In 
Iber+, the initial thickness of the saturated soil (b0) is defined by the user 
through the initial degree of saturation (Sr,0) of the soil. Given Equation (6) 
and the relationship between soil moisture, degree of saturation and porosity 
of the soil (θ = Srϕ), b0 is estimated according to: 

b0 = Sr,0ds (7) 

In addition to infiltration, the model considers initial losses (Ia) that 
can be satisfied by the initial rainfall or by the available overland water 
depth. 

2.2. Sensitivity analysis 

A global sensitivity analysis (SA) of the model output to the infil
tration parameters was performed in order to identify the most relevant 
parameters to be included in the data assimilation. The five parameters 
analysed were: saturated soil permeability (ks), Manning’s roughness 
coefficient (n), soil suction (ψ), soil initial saturation (Sr,0), and initial 
losses (Ia). All the parameters were considered to be homogeneous in 
space except the bed roughness coefficient, whose spatial distribution 
was predefined based on the spatial distribution of land uses in the 
basin. Thus, the sensitivity to this parameter was assessed by consid
ering a multiplier that was applied to scale its predefined spatial dis
tribution. Regarding the porosity and soil layer parameters, these were 
not taken into account in the SA since, as described in section 3.3 below, 
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both were fixed for all simulations. 
5000 parameter sets were randomly generated using the Latin Hy

percube Sampling (LHS) within a predefined plausible range of variation 
for each parameter. The numerical model was run with each parameter 
set in a representative sample of 5 storm events. The outlet hydrograph 
obtained with each parameter set was compared to a synthetic reference 
hydrograph, using the Mean Absolute Difference (MAD) to quantify the 
degree of dissimilarity between hydrographs. The synthetic reference 
hydrograph was obtained by running the model with the mean value of 
the range of variation of each parameter. The MAD of all computations 
was analysed using the moment-independent importance measure (δ) 
proposed by Borgonovo (2007), as well as the first-order variance-based 
sensitivity indices (S1i), in order to quantify the effect of each parameter 
on the outlet hydrograph. Although variance-based importance measure 
indices are often used, they rely on the assumption that the variance is 
sufficient to describe output variability (Saltelli, 2002). By contrast, 
moment-independent importance measures analyse the effect of the 
parameters without relying uniquely on the output variance. 

2.3. Joint assimilation of soil moisture and discharge data 

Particle Filter (PF) methods follow a two-step iterative procedure 
that includes predictions (model forward simulations) and analysis 
(updating particle probabilities and/or state variables by optimally 
combining the simulation results and the observations). The prior and 
posterior probability distributions, which characterise model states 
before and after the assimilation, are approximated by a set of particles. 
In our case, each particle is a model simulation with its own set of pa
rameters and associated state variables. PF methods are likely to 
degenerate unless the number of particles is very large, increasing 
exponentially with the dimension of the system state. Degeneracy leads 
to a high probability assigned to a very limited number of particles and 
negligible weights to all other particles (Van Leeuwen et al., 2019). 
Given that degeneracy issues have been noted in previous studies (Di 
Mauro et al., 2021), and also considering that a large number of particles 
implies a significant increase in the computational cost of DA, for the 
present study we used a variant of the PF, the so-called Tempered 

Fig. 1. Flow chart of the data assimilation framework. Np is the number of particles, φi is the tempering factor at the i th iteration, N is the number of iterations, 
InEff(φi) is the ensemble inefficiency ratio, r* is a target value, and Wj

i(φi) is the global weight of the jth particle in theith iteration. 

Fig. 2. Landro basin.  
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Particle Filter (TPF) method (Herbst y Schorfheide, 2019). This rela
tively novel approach applies tempering coefficients to inflate the like
lihood within an iterative process, respecting the Bayes’ formula. 

The Bayes theorem in a PF can be formalised as follows: 

p(m|o) =
p(o|m)

p(o)
p(m) (8)  

where p(m|o) is the conditional probability of the model given the 
observation, also called posterior or analysis, p(m) is the probability of 
the model, also called prior or background, p(o|m) is the conditional 
probability of the observation given the model, also called the likelihood 
of the observations, and p(o) is a normalisation factor. 

In the TPF, the likelihood p(o|m) in Equation (8) is factorised as: 

p(m|o) =
∏N

i=1(p(o|m)
φi )

p(o)
p(m),with

∑N

i=1
φi = 1 (9)  

where φi is the tempering factor at the i th iteration, this small enough to 
enable a substantial likelihood variance inflation, and N is the number of 
iterations. The tempering coefficients must add up to one in order to 
follow the Bayes formula (Equation (8). This factorisation enables the 
decomposition of the assimilation into several tempering steps, where 
the degeneration problem is overcome by the inflation of the likelihood 
variance. 

Following the PF formulation, and assuming as independent both the 
observations assimilated into this study (soil moisture and discharge), 
p(m|o) can be estimated at each tempering iteration i, thus: 

pi(m|o) ≈
∑Np

j=1
Wj

i(φi)δ
(
m − mj

)
Wj
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=
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i=1
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where Wj
i is the global weight of the jth particle in the ith iteration, δ is 

the Dirac delta function, Np is the number of particles, mj is an ensemble 
of size Np model states, Ni is the number of iterations up to the ith iter
ation; pQ

(
o|mj

)
and pθ

(
o|mj

)
are the conditional probabilities of the 

observed discharge (Q) and soil moisture (θ) estimated given the jth 

model state, and pQ(o) and pθ(o) are the normalization factors of the 
observed discharge and soil moisture, respectively. Observation errors 
are assumed to be independent of each other. 

Table 1 
Main characteristics of the 12 rainfall events analysed.  

Event 
number 

Starting 
date 

Total 
rainfall 
depth (mm) 

Qpeak 

(m3/s) 
Runoff 
depth 
(mm) 

Initial soil 
moisture from 
SMAP1 

1 22/11/ 
19 

63  94.2 60  0.37 

2 18/12/ 
19 

65  76.8 54  0.40 

3 11/08/ 
20 

56  27.9 17  0.20 

4 01/10/ 
20 

64  33.9 26  0.25 

5 24/10/ 
20 

54  53.8 24  0.29 

6 10/12/ 
20 

25  43.9 13  0.38 

7 30/12/ 
20 

41  40.1 23  0.40 

8 24/01/ 
21 

40  87.2 30  0.40 

9 02/02/ 
21 

34  49.7 16  0.40 

10 11/02/ 
21 

59  72.7 52  0.40 

11 17/06/ 
21 

69  44.1 25  0.29 

12 02/10/ 
21 

47  29.1 9  0.23  

1 Two hours before the start of the event and averaged over the whole basin. 

Table 2 
Hydrological parameters considered in the study, and their range of 
variation.  

Parameter Range of variation in DA 

ks(mm/h) 0.3 – 10 
Manning multiplier (-) 0.5 – 5 
ψ(mm) 55 – 355 
Sr,0(-) 0.2 – 1 
Ia(mm) 0 – 30  

Fig. 3. (a) 15 K element mesh taken for the numerical simulation of the selected events in the Landro river basin; (b) Hydrographs obtained for event 1 (left) and 8 
(right) using a mesh of 15 K elements (black) and 1 M elements (green). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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A flow chart of the data assimilation framework is presented in Fig. 1. 
In the first iteration, an initial set of parameters (i.e., first guess) must be 
defined to create the first set of particles. After the model simulations, 
particle weights are estimated using the observations and the tempering 

factor (φi). This exponent ranges between 0 and 1 (0 < φi < 1) and 
makes it possible to retain a substantial number of particles with sig
nificant weights. It is increased at each iteration and represents the so
lution to the ensemble inefficiency ratio (InEff(φi)): 

Fig. 4. Results of the global sensitivity analysis based on MAD.  
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InEff (φi) = r*,withInEff (φi) =
1

Np
∑Np

j=1

(
Wj

i(φi)
)2 (11)  

where a targeted inefficient ratio (r*) is previously defined. 
The particles with high weights are resampled after each iteration i 

using a Sequential Importance Resampling (SIR). Particles are replicated 
proportionally with their weights: those with an associated low impor
tance weight are replaced with replicas of those having higher weight. 
Particles are equally weighted after resampling. Next, two mutations are 
applied to the particles (model parameters are slightly perturbed). These 
mutations, based on a Metropolis Hasting (MH) algorithm, allow the 
ensemble to regain diversity after each resampling step. The mutated 
particle simulations are carried out, and the mutated particles are 
accepted or rejected based on their likelihood as compared to the 
resampled particles likelihood. After two runs of MH, a new iteration is 
started with the estimation of a new tempering coefficient (φi) and the 
computation of the particle weights. The entire process is repeated until 
the sum of the tempering coefficients is equal to unity, i. e. iterations are 
ended when φN = 1 −

∑N− 1
i φi, where N is the total number of iterations. 

Detailed descriptions of the TPF can be found in Di Mauro et al, 2022, 
and Herbst and Schorfheide, 2019. 

The TPF approach was applied twice: (1) using as first guess a set of 
random particles from the ranges of variation, and assuming in the 
mutation of the particles a standard deviation common for all parame
ters; (2) using a relationship between model parameters and basin 
antecedent conditions to establish the initial set of particles (first guess) 
and to define the standard deviation of each parameter. In both cases the 

number of particles (Np) used was equal to 15 and a targeted inefficient 
ratio (r*) equal to 2 was assumed. For the comparison of the simulated 
and observed discharge, we used the Mean Absolute Error (MAE) nor
malised to the peak flow (%), the Nash Sutcliffe Efficiency (NSE), and 
the relative volume error over the hydrograph. For the comparison of 
soil moisture values, the RMSE was used. 

3. Case study and model setup 

3.1. Study area 

The Landro basin is located in the north-western Iberian Peninsula 
(Fig. 2). A streamflow gauging station managed by the regional water 
administration (Augas de Galicia) is located near the basin outlet, 
receiving runoff from an area of 199 km2. The altitude ranges from 91 to 
1427 m above sea level, with an average terrain slope of 27%. The soil is 
made up of gneiss metasediment and granitic rock. Most of the basin is 
covered by eucalyptus, pine forests and scrublands, with only a very 
small proportion of cultivated areas in the main channel floodplains. Its 
location confers on the basin an Atlantic climate, marked by abundant 
rainfall throughout the year, with storms occurring mainly during the 
winter season. The mean annual rainfall depth is 1412 mm and the 
average annual maximum daily precipitation is 62 mm. The Landro river 
has a length of 42 km and follows a S-N direction. On average, the river 
has a minimum, mean and maximum annual streamflow equal to 1.44, 
5.8 and 16.9 m3/s, respectively. 

Fig. 5. Interactions over the most sensitive model parameters: ks, Sr,0 and Ia. Each dot represents the result of a simulation, the size and colour of the dot being 
proportional to the resulting MAD value. 
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3.2. Observed data 

3.2.1. Rainfall 
Rainfall data since 2019 were provided by the regional meteoro

logical agency (Meteogalicia) in the form of raster rainfall fields. Those 
were estimated from the combination of rain gauge and meteorological 
radar observations using a conditional merging technique (Pettazzi and 
Salsón, 2012), which improves the characterisation of the spatial dis
tribution of rainfall by combining the advantages of rain gauges (high 
accuracy of rainfall data at ground level) and radar (high space resolu
tion of the observations). The meteorological radar operated by 
Meteogalicia has spatial and temporal resolutions of 250 m and 5 min, 
respectively, while the rain gauge data has a temporal resolution of 10 
min. The observed rainfall intensity data were implemented in the nu
merical model as raster fields with a spatial resolution of 250 m and a 
temporal resolution of 1 h. 

From the period with available rainfall data, 12 storm events rep
resenting different peak flow and initial soil moisture conditions were 
selected (Table 1). Each of the events analysed has a total duration of 48 
h. 

3.2.2. River discharge 
Discharge data for the 12 storm events were available from a stream 

gauge operated by the regional water administration (Augas de Galicia). 
The data were obtained from water-level measurements performed 
every 10 min, converted to discharge values using previously-calibrated 
rating curves. The location of the Landro gauging station is shown in 
Fig. 2 (Longitude: 613,652 UTMX-29 T ED-89; Latitude: 4,830,448 
UTMY-29 T ED-89). The data provided by Augas de Galicia underwent 
an internal validation process in which erroneous observations were 
discarded. However, the uncertainty of the data is not provided. Within 
the framework of this study, it was assumed that the observed discharge 
had a maximum relative error of 10%, which is an order of magnitude 
used in similar studies (Abbaszadeh et al., 2018). 

3.2.3. Soil moisture 
Soil moisture data were retrieved from the Soil Moisture Active 

Fig. 6. Borgonovo moment-independent importance measure (top), first-order 
Sobol sensitivity indices (middle) and the Morris sensitivity measure μ* (bot
tom) for each model parameter. 

Fig. 7. Results obtained after the first application of the TPF approach. For each event, the adjustment achieved for the discharge (in terms of MAE/Qpeak, NSE, and 
relative error of the volume of the hydrographs) and soil moisture (in terms of RMSE) are indicated. 
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Passive (SMAP) satellite provided by the National Snow and Ice Data 
Center. Among the different products available there, the Root Zone Soil 
Moisture Analysis Update (SPL4SMAU) was used, which is obtained via 
the assimilation of SMAP L-band brightness temperature data into the 
Catchment land surface model using ensemble-based Kalman filtering 
(Reichle et al., 2020). The product (version 5) provides instantaneous 
soil moisture fields for both the surface (0–5 cm) and root zone (0–100 
cm) layers at 3-h intervals over an Earth-fixed, global cylindrical 9-km 
Equal-Area Scalable Earth Grid (EASE-Grid 2.0) (Peng et al., 2021; 
Reichle et al., 2017). Due to the rapid dynamics of some flood events, 
the temporal resolution of satellite data is one of the main limitations of 
integrating satellite products into the numerical simulation of small- 
scale hydrodynamic models. The SPL4SMAU product has a temporal 
resolution that is well suited for its application in short-duration storm 
events. 

In this study, the soil moisture value for the root zone was used, since 
it was considered the most representative means of characterising the 
infiltration capacity of the soil. In the assimilation of observed data, the 
average soil moisture in the whole catchment was used, with the SMAP 
data having an uncertainty value of 0.02 m3/m3 (Reichle et al., 2019). 
Table 1 indicates the soil moisture value at the beginning of each storm 
event. 

3.3. Model setup 

Whereas section 2.1 presented a general description of the numerical 
model and the selected infiltration model, here we will specify the 

particular characteristics of the numerical model of the Landro basin, 
including aspects such as the spatial discretisation used and the range of 
variation of the hydrological parameters considered. 

In Iber+, the Digital Terrain Model (DTM) values are interpolated to 
the nodes of the computational mesh using a bilinear interpolation 
method. The elevation value at each mesh vertex is interpolated using 5 
m spatial resolution LiDAR-derived DTM provided by the National 
Geological Institute of Spain (IGN-CNIG, 2021). Bottom friction is 
modelled in Iber + with the Manning’s formula. For this study, the 
Manning’s roughness coefficient was defined according to the land use 
map of the European project CORINE Land Cover 2018 (CLC2018) 
(European Union Copernicus Land Monitoring Service, 2018) and the 
recommendations of the Methodological Guide for the Development of 
the National Floodplain Mapping System (Sánchez and Lastra, 2011), 
which proposes a Manning’s coefficient for each land use in CORINE. 
Since the roughness values required when computing the overland flow 
with the 2D-SWE are sometimes higher than those commonly used for 
riverbeds (Cea et al., 2016; Fraga et al., 2013; Sanz-Ramos et al., 2021), 
the Manning’s coefficient multiplier was used here with a rather wide 
range of variation. Regarding the numerical simulation of the base flow, 
this was set constant for each storm event and was equal to the observed 
flow at the beginning of the corresponding event. 

Rainfall losses were computed using the Green-Ampt infiltration 
model. We considered five parameters of this model (ks, n, ψ , Sr,0, Ia), 
and chose a range of variation capable of representing a wide variety of 
soils (Table 2). The other two parameters contemplated in the imple
mentation of this infiltration model were fixed in all simulations: total 

Fig. 8. Result of observed (black) and simulated (red) hydrographs after the joint assimilation of discharge and soil moisture in the first application of the TPF 
approach. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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thickness of the soil layer (ds), and porosity (ϕ). The total thickness of 
the soil layer (ds) was set to 1 m to remain consistent with the SMAP- 
derived soil moisture data (see section 3.2.3). The porosity (ϕ) of the 
soil was set to 0.42, since it was considered to be a parameter directly 
related to soil type and with low variation from one event to another. 
This value was set within the range of variation shown in the study by 
Fraga et al. (2019) over the same area. 

The computational domain was discretised with an unstructured 
non-uniform mesh, using a coarser mesh size in the hillslopes and a finer 
mesh size in the channel network. This is a common procedure in 2D- 
SWE models that allows for a reduction in computational cost without 
compromising the accuracy of the results (Costabile and Costanzo, 
2021). In order to establish the mesh size that would be used in the 
numerical simulations, a mesh convergence analysis was performed, 
using events 1 and 8. The results with a mesh of 1 M elements were used 
as a reference. The resolution of this reference mesh is equal to 5 m on 
the watercourse and 25 m on the hillslopes. These resolutions are 
consistent with García-Alén et al. (2022), where it is concluded that 

higher mesh resolutions provide similar results in terms of the output 
hydrograph. The use of a 15 K element mesh, with a mesh resolution of 
40 m in the water course and 800 m in the hillsides (Fig. 3a), made it 
possible to reduce the computational cost of the simulation by a factor of 
90 times, and provides a MAD (Mean Absolute Difference) normalised to 
the peak flow lower than 3.5% in both events when compared with the 
reference simulation on a 1 M elements mesh (Fig. 3b). Thus, the 15 K 
mesh was taken for the numerical simulation of the selected events. 

4. Results and discussion 

4.1. Sensitivity analysis 

The sensitivity analysis (SA) was based on five different events that 
were simulated using 5000 different parameter sets. Fig. 4 includes 
scatter plots that show the relationship between the model parameters 
and the MAD relative to the comparison of the simulated hydrographs 
with the hydrographs computed in the reference simulation. In this 

Fig. 9. Relationships between the numerical model parameters considered for the joint assimilation and the observed 5-day antecedent rainfall (left column), initial 
soil moisture observed by SMAP (middle column), and base flow at the beginning of the event (right column). Event 7, the only event in which negative NSE values 
were obtained, is represented in red. The Spearman’s rank (rs) correlation coefficient is indicated. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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comparison the entire time series of the simulated hydrographs were 
considered. As mentioned in section 2.2, this reference simulation was 
obtained by running the model with the mean value of the range of 
variation of each parameter. In these plots, each point corresponds to a 
single simulation result using a given parameter set. A weighted histo
gram (weighted by the MAD of each simulation) is included above each 
scatter plot. Most of the samples providing high MAD values are grouped 
within a small range of ks values. On the contrary, the outlet hydrograph 
does not seem to be sensitive to the Manning multiplier or to the suction 
parameter (ψ), since uniform histograms are observed for these two 
parameters in all the events. The initial degree of saturation (Sr,0) tends 
to be very relevant when it is close to 1, and far less relevant when it is 
smaller than 0.8. Finally, the uniformity of the histograms indicates that 
the model is not very sensitive to the initial loss parameter (Ia). 

Fig. 5 shows the interactions according to these three parameters (ks, 
Sr,0 and Ia). For each of the five events and for the three pairs of 

parameters (ks-Sr,0, ks-Ia and Sr,0-Ia), MAD values obtained in each 
simulation are plotted in the parameter space. The size and colour of the 
dots are proportional to the MAD value. In the first row in Fig. 5 (Sr,0 

against ks), it can be observed that for high values of Sr,0 (close to 1), the 
results are independent of the value of ks. However, when Sr,0 is far from 
its upper limit, a significant interaction is observed for low values of ks. 
There is not a clear interaction between Ia and the other two parameters, 
confirming that the sensitivity of the model to this parameter is low. 

To further quantify the relevance of each model parameter, several 
sensitivity measures were computed based on the MAD results: (1) the 
Borgonovo moment-independent importance measure (δi), (2) the first- 
order Sobol sensitivity index (S1i) and (3) the sensitivity measure μ* 
derived from the Morris analysis. Fig. 6 provides the δi (top), S1i 

(middle) and μ* (bottom) results obtained for the five parameters and 
for the five events considered in the SA. The Borgonovo importance 
measure indicates that the model is more sensitive to ks and Sr,0 than to 

Fig. 10. Linear relationships between ks and the initial SM form SMAP (left), Sr,0 and the initial SM from SMAP (centre), and Ia and the 5-day antecedent rainfall 
(right). Event 7 was excluded in the estimation of the linear regressions. 

Fig. 11. Results obtained after the second application of the TPF approach. For each event, the adjustment achieved for the discharge (in terms of MAE/Qpeak, NSE, 
and relative error of the volume of the hydrographs) and soil moisture (in terms of RMSE) are indicated. 
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the other 3 parameters. This result is consistent with the μ* values ob
tained in the Morris analysis, where the values of ks and Sr,0 stand out 
slightly above the rest of the parameters. Regarding the Sobol’s indices, 
the sums of the first-order indices are greater than 0.89 in all events, 
indicating a weak interaction among the parameters. Moreover, it can be 
deduced that the initial degree of saturation (Sr,0) is able to explain 
between 65% and 77% of the first-order MAD variance. Conversely, and 
although the effect of the initial losses (Ia) is already low, the Manning’s 
coefficient multiplier and the suction (ψ) have a limited effect on the 
MAD. The effect of ks is moderate in this case, with an average value of 
0.13. Based on these results, it can be concluded that ks, Sr,0 and, to a 
lesser extent, Ia, are the most relevant model parameters. 

4.2. Joint assimilation of soil moisture and discharge data 

Based on the SA results, the number of parameters considered in the 
DA was reduced to saturated soil permeability (ks), initial degree of 
saturation (Sr,0) and initial losses (Ia). The range of variation considered 
for these parameters is shown in Table 2. The Manning’s coefficient 
multiplier and suction were set to 4.5 and 136.5 mm in all the simula
tions. Thus, the chosen roughness coefficients maintain the same order 
of magnitude as in other overland flow studies where it has been 
observed that these coefficients tend to be higher than the ones 
commonly used in the simulation of river flows (Nguyen et al., 2016). 
The suction value was established from the literature, as based on pre
vious experiences (see e.g., Chow et al., 1988). 

As mentioned in section 2.3, 15 particles were considered in the 
Tempered Particle Filter (TPF) approach. Each particle corresponds to a 

model simulation with its own set of parameters and associated state 
variables. After the iterative process, 15 different outputs of streamflow 
and soil moisture were obtained. The ensemble expectation (average 
value of the 15 particles) was used to compare with observations and to 
evaluate the performance of the DA approach. In the first iteration of the 
assimilation (first guess), the parameter values of each particle were 
randomly selected from their range of variation. Also, in the application 
of the MH algorithm for the mutation of the particles carried out at each 
tempering iteration, a standard deviation equal to 1 was assumed for all 
parameters (1 (-) for Sr,0, 1 mm/h for ks and 1 mm for Ia). 

Fig. 7 summarises the performance metrics obtained for each event, 
while Fig. 8 shows the observed and simulated hydrographs and SM 
values. The agreement between modelled and observed hydrographs is 
good in most of the events, except in events 6 and 7. In both of these, and 
especially in event 7, the model was unable to reproduce the observed 
hydrograph. Considering the time variability of the observed rainfall in 
both events, the proposed methodology seems to be less effective in 
storm events with continuous and low-intensity rainfall that generates 
less pronounced peak discharges. Excluding the result of these events, 
the mean NSE value obtained for the other 10 events was 0.72. In gen
eral, a better fit was observed in the events with a well-defined isolated 
peak discharge (e. g., events 8, 9 and 11, with NSE values equal to 0.97, 
0.92 and 0.96, respectively). 

Concerning soil moisture, the RMSE between the simulations and 
observations was less than 0.02 in 8 of the 12 events, which can be 
considered very satisfactory. Events 3 and 11 both had poor perfor
mances, with RMSE values of 0.08 and 0.09, respectively. 

In order to carry out this joint assimilation by reducing as much as 

Fig. 12. Result of observed (black) and simulated (orange) hydrographs after the joint assimilation of discharge and soil moisture in the second application of the 
TPF approach. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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possible the ranges of variation of the numerical parameters considered, 
we also searched for relationships between the parameters considered in 
the DA and the antecedent rainfall, soil moisture and streamflow of the 
basin. Fig. 9 shows the relationships obtained between saturated soil 
permeability (ks), initial soil saturation (Sr,0) and initial losses (Ia), and 
also the following antecedent conditions of the basin: accumulated 5- 
day antecedent rainfall, initial moisture observed by SMAP, and base 
flow at the beginning of the event. The accumulated antecedent rainfall 
was estimated over the 5 days prior to the start of the event, in that it is a 
time period commonly used to estimate the antecedent moisture con
ditions of a basin (Brocca et al., 2008). Event 7, the worst in terms of 
NSE, is represented in red. 

The saturated soil permeability does not show a clear trend with the 
antecedent conditions, with rather low Spearman’s correlation co
efficients (Fig. 8). Conversely, the initial SM exhibits a significant trend 
with the 3 antecedent conditions considered. The Spearman’s rank 
correlation with the initial baseflow reaches 0.958, which is particularly 
high. A high correlation coefficient with the initial SM derived from 
SMAP is also observed. Regarding the initial losses, there is no evident 
relationship with the basin antecedent conditions. Although the Spear
man’s correlation coefficients are not high, these relationships could be 
used to at least reduce the parameter variance and thus optimise the 
number of iterations needed in the PF approach. Particularly for dry 
antecedent conditions, as seen in the results of Ia obtained for initial SM 
lower than 0.3 or base flow lower than 10 m3/s, it can be observed that 
Ia varies in a range between 20 and 30 m3/s. 

4.3. Joint assimilation of soil moisture and discharge data using a first 
guess and parameter variances derived from prior information 

The relationships between model parameters and antecedent con
ditions shown in Fig. 9 were used in a slightly different implementation 
of the TPF. Hence, those relationships were used: 1) to define the 

parameter standard deviations used in the particle mutations and; 2) to 
establish a set of parameters (synthetic prediction) derived from the 
basin antecedent conditions of each event. The synthetic parameter sets 
were utilised, together with the parameter standard deviations, to 
generate the first set of particles (first guess) of the assimilation. 

A linear relationship was assumed for the three model parameters: 
between ks and the initial SM from SMAP, Sr,0 and the initial SM from 
SMAP, and Ia and the 5-day antecedent rainfall (Fig. 10). In the esti
mation of the linear regressions, event 7 was not included due to its poor 
performance. The Pearson’s coefficient values obtained for the re
lationships of ks, Sr,0 and Ia were − 0.46, 0.90 and − 0.59, respectively. 
From the linear regressions, standard deviations of 0.074 (-) for Sr,0, 
1.078 mm/h for ks, and 7.159 mm for Ia were estimated. 

Fig. 11 and Fig. 12 show the performance metrics obtained for each 
event, as well as the comparison between the observed and simulated 
hydrographs and SM. The results with this implementation of the TPF 
improve with respect to those obtained using the standard imple
mentation, especially in terms of discharge, since in this case only 4 
events gave a NSE lower than 0.7. The worst NSE was again on event 7, 
with a value of 0.27. However, the MAE normalised to the peak flow and 
the relative volume error over the hydrograph for this event indicate 
that the prediction was in agreement with the results observed. In terms 
of SM, no significant improvement was observed with respect to the 
standard implementation of the TPF. However, 9 of the 12 events 
remained with RMSE values in the range of 0.02–0.03, a result very close 
to the uncertainty value considered in the DA process (0.02). In event 11 
a poor reproduction of the SM observations was obtained (RMSE equal 
to 0.087). Although the Sr,0 dis not match the observed SM from SMAP, 
and therefore the first guess was not adequate, the assimilation method 
was able to adapt to this outlier and eventually took it as a feasible 
parameter. 

Fig. 13a shows the NSE obtained in the standard (blue) and improved 
(orange) applications of the TPF approach. After the implementation of 

Fig. 13. (a) Results of NSE and number 
of iterations of the DA from the first 
(standard) and second (improved) 
application of the TPF approach. (b) 
Relationship between observed ante
cedent rainfall and the initial loss 
parameter achieved in the first (stan
dard) application of the TPF approach; 
in red the result obtained for event 9, in 
orange the linear regression and the 
synthetic prediction from the ante
cedent rainfall observed in event 9. (For 
interpretation of the references to 
colour in this figure legend, the reader 
is referred to the web version of this 
article.)   
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the prior information, the NSE always increased, except in event 4. 
Considering the 12 events, the average NSE was 0.37 in the first 
assimilation and increased to 0.74 after the implementation of prior 
information. If event 7 is excluded in the estimation of these average 
values, the mean NSEs obtained in the first and second implementations 
were 0.69 and 0.78, respectively. Fig. 13a also includes the number of 
iterations needed in the DA process, a value that is directly related to the 
number of model runs required and thus to the computational cost of the 
method. In general, an equivalent or even higher number of iterations 
was needed when the prior information was included. This increase in 
the number of iterations is in some cases related to outliers in the linear 
relationship between model parameters and antecedent conditions 
(Fig. 10), especially in the case of Ia and ks, where the relation is less 
evident. For example, in the case of event 9 the value of Ia taken from the 
linear regression, and based on the 5-day antecedent rainfall (red dot in 
Fig. 13b), is very different from the value which yielded a good repro
duction of the observed discharge data. 

5. Conclusions 

A particle filer-based data assimilation methodology to assimilate in 
situ observed discharge and satellite-derived soil moisture was proposed 
and applied to a 2D hydrological model based on the 2D-SWE. The 
proposed approach was based on the joint assimilation of soil moisture 
data provided by the SMAP satellite and discharge data measured at a 
gauging station. Twelve storm events registered in the Landro river 
basin (199 km2) were analysed, and used to evaluate the effectiveness of 
the method. 

This joint assimilation framework allowed for a correct reproduction 
of the basin outflow, with soil moisture values close to the observations 
for most storm events. A mean NSE value of 0.74 was reached for all 
twelve events. The results were in general more accurate in rainfall 
events that produced isolated peak flows. It was found that it was 
possible to relate some of the model parameters to the hydrological 
antecedent conditions of the catchment, in this way improving the 
assimilation process. The most significant correlation (Pearson’s coef
ficient of 0.90) was identified with the initial soil saturation. The 
application of these relationships to the DA process lead to better per
formances, but was not always accompanied by a reduction in compu
tational cost. The results of this case study, then, show that by 
considering only three hydrological parameters in the assimilation 
process, a good compromise between DA effort and model performance 
can be achieved. 
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