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Joint Laboratory ELDORADO, IRD/UNAM, Mérida, Yucatán, México, 3 Institut de Recherche pour le
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Abstract

Urbanization is a global trend associated with key socio-economic issues, one of them

being to control the transmission of infectious diseases to a urban fraction of the world’s pop-

ulation that shall reach 68% in 2050. While urban growth has been shown to favor mosquito

species responsible for the transmission of the West Nile Virus (WNV), a major human arbo-

virosis, the effects of concomitant changes in the host bird communities remain hard to

anticipate albeit essential to quantify disease risk and to plan control initiatives. We devel-

oped a R0 modelling of WNV transmission in a urban bird community to assess the risk of

outbreak in Merida, one of the cities with the highest growth rate in Mexico. The model was

parameterized using ecological and epidemiological data collected over the past 15-years

on the local vector, Culex quinquefasciatus, and avian community. We identified a 3-weeks

summer period during which the vector population strongly amplifies the WNV enzootic

transmission and lead to a significant risk of outbreaks in humans. Extensive sensitivity

analyses showed that urbanization induced changes in the bird community could lead to an

up-to 6-fold increase in the duration of the risk period, while the daily risk could rise by 40%.

Interestingly, the increase in Quiscalus mexicanus abundance had 4–5 times larger impact

than any other change in the bird community. In such a context, annihilating the current and

future risk of WNV outbreaks in Merida requires reducing the mosquito population by 13%

and up to 56%, respectively. This study provides an integrative assessment of the current

and future risks of WNV outbreak in the fast urbanizing city of Merida, and points toward the

implementation of epidemiological monitoring combined with preemptive measures target-

ing both C. quinquefasciatus and Q. mexicanus populations, as they are expected to have

synergistic effects.
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Author summary

Urbanization is a major trend in human evolution. By 2050, over 2/3 of the world popula-

tion will live in urban areas. A key challenge associated with such a global trend is to pro-

tect urban residents against infectious diseases, while their environment may provide

favourable conditions for parasites and other pathogens. The West Nile Virus (WNV) is a

typical vector borne pathogen whose transmission to human is expected to be facilitated

in urban environments, where mosquitoes transmitting the virus are favored. Here, we

looked at the barely known effects of changes in the host bird community on the risk of

WNV outbreak in humans. By designing empiricaly informed mathematical models of

WNV transmission in the city of Merida, Mexico, we identified a 3-weeks summer period

during which the virus circulation in urban birds lead to a risk of outbreaks in humans.

Further analyses showed that changes in the bird community could increase the risk

period up-to 6-fold and rise the daily risk by 40%. Such variations are primarily driven by

the increase in a key reservoir species, Quiscalus mexicanus, whose effects are 4–5 times

larger than those of other changes in the bird community. To control the current and

future risks of WNV outbreaks in Merida requires reducing the mosquito population by

13% and up to 56%, respectively. These results strongly call for an epidemiological moni-

toring and preemptive measures targeting both C. quinquefasciatus and Q. mexicanus
populations, as they are expected to have synergistic effects.

Introduction

Urbanization is a paramount trend of our contemporary evolution. The fraction of the world’s

population inhabiting urban areas is expected to rise from 55% in 2018 to 68% in 2050, with

90% of this increase taking place in Asia and Africa, while more than 70% of human beings

already live in urban environments in Northern-America, Latin America and Europe [1].

Among the socio-economic challenges imposed by such a global change, it has been repeatedly

warned that urbanization favors the emergence of new pathogens [2,3] and rises the burden of

infectious diseases already afflicting human populations [4]. These global public health con-

cerns are especially relevant for vector-borne diseases as the environmental changes associated

with urbanization tend to increase vector abundance and species richness [5,6] as well as vec-

tors contact with competent reservoirs [7–9] in inhabited and surrounding areas.

The West Nile virus (WNV) is a mosquito-borne pathogen that was first reported in 1937

in Africa [10]. Its worldwide spread has caused severe outbreaks in humans throughout

North-America and Europe [11,12] and is presumably widely under-reported in South-Amer-

ica, where there is a need for both clinical and epidemiological studies to prevent it from

becoming a major public health concern [13]. The virus is transmitted by Culex spp. and by

secondary mosquito species of genera Ochlerotatus, Aedes, Anopheles and Culiseta [14,15] to

vertebrate hosts that predominantly correspond to bird species, although 29 species of mam-

mals, 3 species of reptiles and 1 species of amphibian were also found infected with WNV

[16,17]. While in most non-avian host species, infected individuals can die of the infection

[18,19], those species are typically considered as dead-end hosts for the WNV, so that the virus

transmission primarily relies upon avian hosts [14]. A large set of previous studies has pro-

vided evidences that urbanization can alter the abundance and species structure of the mos-

quito community [20–23] and that urban landscapes create artificial habitats that serve as

breeding sites for WNV-competent mosquito species, so that their frequency in the mosquito
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community can increase in such environments [24] and reference therein]. Although the con-

tribution of the urban changes in the bird community to the risk of WNV outbreaks has been

less investigated, there are nonetheless evidence that urbanization favors bird biodiversity

reduction and species assemblage changes [25,26] with a correlated increase in Passeriformes

and/or key species that represent competent reservoirs for the WNV [27].

The city of Merida in the Yucatan peninsula (Mexico) is a 1.12 million inhabitants urban

center with an annual population growth rate of 2.5% over the last 40 years, which represents a

fairly typical pattern in comparison with other intermediate Mexican cities [28]. This urbani-

zation process has led the area covered by the city to increase by 300% between 1984 and 2018

[29], with significant land cover changes [29–31], an increase in mosquito breeding sites and a

decrease in bird local biodiversity [32]. While there is still no documented outbreak of WNV

infection in human across the entire Yucatan peninsula [13], evidences of birds’ infection by

WNV have been collected since 2003 in the peninsula [33] and inside the city of Merida [34],

indicative of an enzootic circulation of WNV. The urban sprawl and epidemiological situation

encountered in Merida are likely to be illustrative of many urban places at risk of WNV out-

breaks in Central and South America, and we thus aimed at providing a cost-efficient way to

contribute evaluating such a risk, anticipating its potential evolution, and quantifying the effi-

cacy of vector control interventions that would be necessary to eliminate the risk of transmis-

sion to human.

The complexity of a vector-borne pathogen’s transmission through a host community

makes the use of mathematical models an essential approach to combine available data in the

quantitative way required to identify the main determinants of transmission [35,36], predict

the epidemiological outcomes of urbanization [37] and provide assistance to design effective

control strategies [38–40]. In this study, we identify the network of WNV transmission in the

city of Merida from ecological studies of the urban bird community, molecular identification

of Culex quinquefasciatus blood meals and from experimental studies of the competences for

WNV of the passeriform and columbiform species that shape this host community. We then

model WNV transmission in such an urban bird community and use a next generation matrix

approach to derive a formal expression of the WNV R0 in this context. These modelling and

eco-epidemiological data provide key estimates and insights into i) the current risk of WNV

outbreaks, ii) its expected variations with changes in the composition of the host community

associated with urbanization, and iii) the level of vector control that could annihilate the risk

of outbreaks of infection in humans.

Materials and methods

Modelling West Nile virus transmission in a urban bird community

We developed a R0 model to assess WNV transmission and the risk of outbreak in the urban

area of Merida that is populated by a reservoir bird community made of passeriform and

columbiform species. Our modelling account for vector-borne transmission by the dominant

vector species, Culex quinquefasciatus, between several groups of bird species defined with

respect to their local abundances and reservoir competences. The R0 was calculated from the

corresponding community graph using the Next Generation Matrix (NGM) method, as previ-

ously done for other vector-borne pathogens circulating in host communities [36,41–43]. The

general expression of R0 for the WNV transmitted by 1 vector to N groups of bird species is

derived below, and subsequently tailored according to the specific entomological and ornitho-

logical situation encountered in the urban environment of Merida (see section ‘Characteriza-

tion of the local network of transmission’).
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The NGM is typically defined from two types of quantities; the mean number of hosts of

group j that are infected by one infected vector during its infectious lifetime (kjV) and the

mean number of vectors infected by one infected host of group j during its infectious lifetime

(kVj).

The expected number of birds of group j infected by one newly infected mosquito (kjV) is

given by the product of i) the probability that the infected mosquito survives the extrinsic incu-

bation period to become infectious, ii) the daily number of bites made by an infectious mos-

quito (a), iii) the probability that such a bite is made on a host of group j (pj), iv) the per bite

probability of (vector to host) virus transmission (b), and v) the duration of the mosquito

infectious lifetime. The mosquito survival probability to the extrinsic incubation period (i) was

calculated by assuming a constant incubation rate (κ) and a constant vector death (μV), so that

this probability (that incubation ends before death) equals (κ/(κ + μV)). Further assuming that

an infectious mosquito will remain so during its lifetime, the duration of the mosquito infec-

tious lifetime (v) is given by 1/μV. Taken together this leads to:

kjV ¼
kapjb

mVðkþ mVÞ
ð1Þ

The mean number of vectors infected by one infected host of group j during its infectious

lifetime (kVj) is obtained by multiplying i) the average number of mosquito per host (m), ii)

the mosquito feeding preference for hosts of group j (pj), iii) the daily number of bites made

per mosquito (a), iv) the per bite probability of (host j to vector) virus transmission (cj), and v)

the duration of the host infectious lifetime. We assumed that an infectious host will remain so

until it dies because of WNV induced (α) or intrinsic (μj) mortality. The duration of the infec-

tious lifetime for a host of group j is then given by 1/(μj+α). Taken together this leads to;

kVj ¼
mpjacj
ðmj þ aÞ

ð2Þ

The R0 for the WNV transmitted by 1 vector to N groups of bird species can then be calcu-

lated as the dominant eigenvalue of the NGM:

NGM ¼

0 � � � kVj . . . kVN
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where kVj and kjV are defined as explained above.

This eigenvalue can be expressed as:

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

j¼1
kjVkVj

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

j¼1
ðapjÞ

2m
bcjk

mVðkþ mVÞðmj þ aÞ

s

ð4Þ

Such expression of R0 allows predicting when, i.e., for which set of parameter values, the

pathogen is expected to circulate within the modelled host community. We will use the condi-

tion R0>1 to indicate when the WNV is able to circulate among the urban reservoir host com-

munity, which is typically thought as an estimate of the local risk of spillover to humans, e.g.

[44,45].
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Model parameterization to the local passeriform and columbiform

community and the transmission of WNV by Culex quinquefasciatus in

Merida, Mexico

The above general expression of the NGM was tailored to describe the transmission of WNV

in the urban area of Merida and R0 was used as a measure of transmission risk to humans.

Using data that have been published over the last 15 years, we identified the local network of

transmission that set the dimension of our model and we derived independent estimates of all

quantities defining the corresponding kjV and kVj.

Characterization of the local network of transmission

A local network of transmission is defined according to the set of local reservoir hosts that

belong to the vector feeding range and with respect to their levels of competences for WNV.

To characterize this network in the urban environment of Merida, we combined local field

studies of i) the bloodmeals of Culex quinquefasciatus, ii) the species composition of the bird

community and iii) their competences for WNV. While 10–15 mosquito species have been

reported in Merida [46,47], only two collected species were known to be capable of transmit-

ting the WNV, C. quinquefasciatus and C. thriambus [47], with evidences of WNV infection

found only in the former in Mexico [47]. In addition, C. quinquefasciatus was shown to repre-

sent 88.7% of mosquitoes collected in the city of Merida [48], so that the general modelling

proposed for the transmission of the WNV by 1 vector to N groups of bird species does fit ade-

quately the local situation encountered in the city of Merida.

Bloodmeal analysis of C. quinquefasciatus. The local vertebrate host community on which C.

quinquefasciatus feed on in Merida was characterized from a bloodmeal analysis performed on

240 engorged mosquitoes collected in the backyards of 40 houses in Merida from January 2005 to

December 2005, using resting wooden boxes [49]. This study showed that vectors typically feed

on birds from three orders; Galliformes (47.1%), Passeriformes (23.8%) and Columbiformes

(11.2%), on domesticated mammals; dogs (8.8%), cats (1.2%), horses (0.8%) and pigs (0.4%), as

well as on humans (6.7%). While mammals and Galliformes are considered as not competent for

WNV [14,50–54], the high proportion of meals made on passeriform and columbiform species

that are typical bird reservoirs [14,55,56] and the concomitant frequency of bloodmeals on

humans, confirm the existence of a transmission path that could potentialy results in local out-

breaks of WNV. To fine-tune the definition of the local network of transmission and assess such a

risk, we identified the passeriform and columbiform species present in Merida from a local field

study and derived estimates of their competences for WNV from the literature.

Passeriform and columbiform host species and their WNV competences. A census of the bird

community performed between October 2004 and September 2005 in parks of the city of

Merida reported 114 species from an overall collection of 9049 individuals [57]. A total of 65

passeriform species belonging to 15 families were found, 4 of which being considered as non-

resident migrating species that we removed from our analysis. The Quiscalus mexicanus spe-

cies was largely dominant, corresponding to 39.9% of all catched Passeriformes, each of the

other species representing between 0.02% and 5.9% of the census (see S1 Appendix). A total of

6 columbiform species were found, with Zenaida asiatiaca representing up to 76.5% of the

catched Columbiformes while the relative abundance of other species varied between 0.04%

and 9.6% (see S1 Appendix). Independent predictions of the local bird community based on

sampling along transects located in 4 different sites located inside Merida suggested that this

census reported 80%-95% (ACE) and 79%-94% (Chao1) of the expected bird species richness

[57]. We then looked into the litterature for estimates of the reservoir competence index (C)

for each of those 67 passeriform and columbiform species, which came from [58] for Q.
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mexicanus, and from [55,59] for all other bird species (see S1 Appendix). When such estimates

were not available for the reported species, we used estimates gathered for the closest relatives

according to the phylogenetic tree provided in [60]. One of the 61 resident passeriform species

was not present in this phylogeny and was removed from the analysis as it accounted for only

0.13% of the collected individuals. The 60 remaining passeriform species (see S1 Appendix)

were then partitioned into four categories according to their reservoir capacities, with groups

P1 to P4 defined from conditions 0<C�0.5, 0.5<C�1; 1<C�1.5 and C>1.5. The resulting

groups were made of 19, 32, 0 and 8 species, respectively, so that we ultimately considered the

first two groups, and merged group 3 and 4 into a third group where C>1. We decided to sin-

gle out the Q. mexicanus species since it is well recognized to be the most abundant passeri-

form species [57] and a highly competent reservoir [58], whose abundance is expected to keep

rising with further urbanization. As they were no variations between competence estimates

among Columbiformes (see S1 Appendix), we considered them as a single group.

The network of WNV transmission. The network of WNV transmission in Merida was thus

described as made of a locally dominant vector species, C. quinquefasciatus, and the above

N = 5 groups of reservoir birds that we thereafter refer to by using the following set of index J

= {Q, P1, P2, P3, Co}, with (Q) standing for Q. mexicanus and (Co) for all other columbiform

species. Fig 1 shows the community graph corresponding to this network of transmission,

along with the part of the bird community that each of the 5 groups of hosts represent, their

species richness and diversity measured using Simpson index.

Host and vector parameter estimates

To assess the transmission of WNV in this network, we estimated all parameters involved in

the expression of R0 established in section ‘Modelling West Nile virus transmission in a urban

Fig 1. The network of West Nile Virus transmission in Merida. (A) Community graph with the vector Culex quinquefasciatus, and the 5 groups of host species;

Quiscalus mexicanus (Q), the three groups of passeriform species with reservoir capacities 0<C�0.5 (P1), 0.5<C�1 (P2) and C>1.0 (P3), and the group made of all

columbiform species (Co). The proportion of individuals that was found to belong to each of these 5 groups in the local bird host community and the species richness

(‘SR’) and Simpson’s diversity (‘S’) of each host groups are shown in (B). The white lines represent the proportions of the different species within each group. Created

with BioRender.com.

https://doi.org/10.1371/journal.pntd.0011340.g001

PLOS NEGLECTED TROPICAL DISEASES Modelling west nile virus transmission in a urban bird community

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011340 May 30, 2023 6 / 21

http://BioRender.com
https://doi.org/10.1371/journal.pntd.0011340.g001
https://doi.org/10.1371/journal.pntd.0011340


bird community’ (Eqs 1–4). A description of the derivation of those estimates is provided

below, and Table 1 summarizes the quantitative values taken by all parameters defining R0.

Vector feeding rate (a) and preferences (pj). The overall biting rate of C. quinquefasciatus was

estimated by [48] and found equal to 0.25 bite a day, which is consistent with other estimates

derived in [61]. Preferences were derived from the study by [49] that provided the percentage

of bites made on Passeriformes, including Q. Mexicanus, and Columbiformes and were used

for each of the corresponding groups.

Death rates of host (μj) and vector (μV). Death rates of vector and hosts were estimated using

the typical assumption that their lifetime follows an exponential distribution with a mean equal

to the average life duration expectancy. The average species lifespan was found in [48] for C.

quinquefasciatus, in [62] for 44 other hosts species, and in 4 open-access scientific databases vis-

ited in June 2021 for the last 16 species (see S1 Appendix). For each of the five groups of hosts,

the death rate was then calculated as the average of those species’ death rates weighted by their

relative abundance. As strong differences were reported in C. quinquefasciatus survival between

the rainy and dry seasons [48], we considered two separate estimates of the vector death rate for

the corresponding period of time, i.e. May-October and November-April, respectively.

Vector/host ratio (m). The mosquito to host ratio was calculated from abundance estimates

derived from two longitudinal field studies on vector [49] and hosts [57] in the urban environ-

ment of Merida. The vector abundance was estimated from [49], where mosquitoes were

trapped from 40 backyards, the corresponding backyards and their immediate neighbourhood.

Table 1. Definition and estimates of the model parameters.

Symbol (unit) Estimate References

Vector feeding
Biting rate a (days-1) 0.25(a) [48]

Feeding preferences pj(1) 0.22 for passeriform species (including Q. Mexicanus) 0.12 for columbiform

species

[48]

Vector and host abundance
Vector abundance NV

(2) 98,136,160,147,54,78,108,267,99,111,265,95 [49]

Host abundance NH
(2) 861, 669, 758, 715, 684, 589, 469, 804, 602, 605, 519, 739 [57]

Vector to host ratio m(3) 11, 19.6, 20.3, 19.8,7.6,12.7,22.2, 32, 15.8, 17.7, 49.2, 12.4

Vector and host mortality
Vector death rate μV (days-1) 0.08 (rainy) 0.22 (dry) (b) [48]

Host death rate μj(1) (days-1) {2.19, 3.2, 3.1, 2.6, 1.5} x 10−4 (c) [62]

Probabilities of WNV transmission
Compounded per bite probabilities of

transmission(4)
b cj(1) 0.545, 0.36, 0.11, 0.016, 0.36 [55] [58]

[59]

WNV life-history
Incubation rate in vector κ (days-1) 0.106 (d) [64]

WNV-induced host death rate α (days-1) 0.25 (e) [58]

(1) j takes value in J = {Q, P1, P2, P3, Co}, with (Q) standing for Quiscalus mexicanus, (P1, P2, P3) for other passeriform species and (Co) for Columbiformes. (2) Both

vector and host abundances were estimated monthly, and are given from January to December. (3) The vector to host ratio was calculated after the field estimates of NV

were corrected by the ratio AM/Av to account for the sampling area and by the efficacy of traps estimated to be around 70% (Garcia-Rejón J. and Baak-Baak C, personnal

communication). (4) Only the product of the per bite probability of (vector to host) virus transmission, i.e. parameter b, and of the per bite probability of (host j to

vector) virus transmission, i.e. parameters cj, are relevant to the calculation of R0 and were estimated as explained in the main text. (a) This biting rate estimate implies

that mosquitoes bite on average once every 4 days (1/0.25). (b) These vector death rates correspond to an (adult) mosquito life expectancy of 12.5 (1/0.08) and ~4.5 (1/

0.22) days during rainy (May-October) and dry (November-April) seasons, respectively. (c) These host death rates are equivalent to life expectancies of ~12.5 (1/

(2.19x10-4x365), ~8.5 (1/(3.2x10-4x365), ~8.8 (1/(3.1x10-4x365), ~10.5 (1/(2.6x10-4x365) and ~18.2 (1/(1.5x10-4x365) years, respectively. (d) This incubation rate

corresponds to an incubation time of ~9.4 days (1/0.106). (e) This additional host death rate leads infected hosts to die after 4 days (1/0.25).

https://doi.org/10.1371/journal.pntd.0011340.t001
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The vector sampling area (AV) was considered to be proportional to the mosquito dispersal

range, which was calculated as the surface of a circle with a radius equal to the mean dispersal

distance of C. quinquefasciatus, i.e. 0.27 km per day [63]. Vector abundance was then calcu-

lated by scaling up from the sampling area (Av = 9.16km2) to the total area of Merida (AM =

883.4km2). Importantly, these field estimates of the vector population were made on a monthly

basis. As [63] also provided monthly variation of the total host abundance, we could estimate

the vector to host ratio for each month of the year. The ratio was found to vary between 7.6

and 49.2, consistent with previously estimated values that were found in the range of 10–100

vectors per host [36,64].

Per bite probabilities of transmission (b, cj). A complete set of independent estimates of

those probabilities is arguably the largest difficulty in calculating the R0 for a multiple hosts

network of transmission. It is however important to note that only the products of those prob-

abilities are relevant to the calculation of R0. Now, those products (bcj) can readily be estimated

from the ratio C/D, where C stands for the host reservoir competence defined in [54] and D

represents the duration of viremia in days, respectively. We calculated those quantities from

bird species competence estimates already used to characterize the local network of transmis-

sion and from the duration of infection found in [55,58,59] (see S1 Appendix). Those products

ranged from 0.11 to 0.545, similar to the range of values that were obtained in other modelling

studies of WNV transmission, e.g. [36,64,65].

WNV life history. The duration of the extrinsic incubation period was calculated from the

rate of incubation estimated by [64], and found equal to 9.4 days, which is very similar to pre-

vious estimates found in C. quinquefasciatus and other mosquito species [36] and leads to an

incubation rate in vector κ equals to 0.106. The WNV induced host death rate was estimated

under the same assumption as the natural host death rates (see above) and from infection

experiments that provided life duration expectancy upon infection for Q. mexicanus and other

passeriform and columbiform species [58].

Analysing the risk of West Nile Virus outbreak in the urban area of Merida

Seasonal variations of the risk of WNV outbreak. We started our analysis by integrating all

the estimates provided in Table 1 into the calculation of R0 for each month of the year. The observed

temporal variations in the vector death rate and in the vector to host ratio are indeed likely to lead to

marked seasonal variations of the risk of WNV outbreak, which obviously is a key public health

information to anticipate. From the predicted variations we then calculated i) the annual period of

time when R0 exceeds 1, ii) the average value of R0 during such a period of risk of WNV spill-over

to humans, and iii) the maximal value of R0, thereafter denoted as P, �R0, and Rmax
0

, respectively.

Systematic sensitivity analyses of the risk of WNV outbreak. We completed our situational

analysis by performing systematic sensitivity analyses of the predicted seasonal variations of the

risk of WNV transmission to changes in each of the model parameters. We then increased or

decreased the estimated values model parameters appearing in Table 1 by 5%, 10%, 15%, 20% and

25% and we measured the corresponding P, �R0 and Rmax
0

. Such analyses were intended not only to

provide a comprehensive view of the potential consequences of the inevitable uncertainty in the

estimates of parameters appearing in Table 1, but also to identify the parameters whose future

changes could have the most significant impact on the risk of WNV outbreak.

Changes in bird reservoir community associated with urbanization and

their implications for the risk of WNV outbreak

With the increase of human population in Merida and the associated changes in the urban

environment, one expects a progressive enrichment of the bird community with the more
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synanthropic species [66]. We simulated the most likely scenario whereby an increase of the

abundance of Q. mexicanus and/or Columbiformes is compensated by a proportional reduc-

tion in the rest of the bird community. The impact of such changes on the risk of WNV out-

breaks was assessed while the abundance of Q. mexicanus and/or Columbiformes were

progressively increased from 0 to 50% by 10%. We systematically measured the resulting

changes in P, �R0 and Rmax
0

. All those variations were compared through elasticity measures that

provided the proportional changes in P, �R0, R
max
0

for a proportional change in the abundance of

Q. mexicanus and in the abundance of Columbiformes, i.e. the percentage of variations in P, �R0

and Rmax
0

when the abundance of Q. mexicanus or the abundance of columbiforms is increased

by 1%. A value of elasticity was calculated to assess the response to a change in Q. mexicanus
provided that the abundance of columbiforms has already raised by 0%, 10%, 20%, 30%, 40%

and 50%, and the same procedure was applied to evaluate the impact of changes in the abun-

dance of columbiforms, when the abundance of Q. mexicanus has already raised by similar

amounts, i.e. between 0% and 50% by 10%.

Potential of vector control to limit the risk of WNV outbreak

To complete the above analyses, we aimed at exploring how efficient should vector control be

for the risk of WNV outbreaks to be annihilated. We estimated the fraction of the vector popu-

lation that should be removed for R0 to remain lower than one all year round, and we did so

for the current bird community as well as for the various alternative compositions of this com-

munity considered when assessing the impact of urbanization.

Results

What is the current risk of WNV outbreak in Merida, Mexico

The R0 values estimated from the parameterized network of transmission show a strong sea-

sonal pattern with WNV circulation amongst urban reservoirs peaking in July and August,

and being at its lowest level between mid-November and mid-April (Fig 2A). The season with

a maximal risk of WNV outbreak corresponds to the period of time when, concomitantly, the

vector to host ratio (m) is at (one of its) highest and the mosquito death rate (μV) is at its lowest

(Fig 2B), as expected from the general expression of R0 provided by Eq 4. The value of R0

reaches a maximum value Rmax
0

= 1.07 at the beginning of August, indicating that there is, at

that time, a sustained WNV transmission between birds in Merida and a risk of outbreak of

human infections. This risk seems to be restricted in time as R0 stays above one for a period of

P = 23 days, from mid-July to the end of the first week of August, when it is on average equals

to �R0 = 1.04. Interestingly, all the above predictions were shown to be robust to the inclusion of

a bird recovery in our modelling, as Rmax
0

, P and �R0 were then changed by a maximum of -3.6%,

-17% and -1.9%, respectively (see S2 Appendix).

Sensitivity analyses of the intensity and duration of the risk of WNV

outbreak in Merida, Mexico

The general pattern of seasonal variations shown in Fig 2 is very robust to all changes we made

to all model parameters (see S3 Appendix). We thus focused our sensitivity analysis on the

three key summary quantities; the amount of time P where R0>1, the average risk of WNV

outbreak during such a period, �R0, and its maximal value Rmax
0

. As expected, all of them increase

in value with most of the parameters that contribute positively to the analytical expression of

R0 provided by Eq 4. Those parameters can easily be anticipated from this expression and our
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sensitivity analysis consistently shows that the vector biting rate (a), the vector preferences for

each (competent) bird species (all pj’s), the vector to host ratio (m), the probabilities of trans-

mission (all bcj’s but bcP3 that has no effect) and the rate of WNV incubation in vector (κ) con-

tribute to increase the risk period and the maximal and average levels of risk (Fig 3). On the

contrary, larger vector (μV) and WNV-induced host death rate (α) lower the duration and the

risk of transmission, as expected from their contribution to the expression of R0. Meanwhile,

host mortalities (μj) did not show any of the negative effects that were expected from Eq 4.

While the identified (positive or negative) effects of these various parameters on P, �R0 and Rmax
0

make epidemiological sense, our modelling further allowed to quantify the extent to which

they affect the risk of WNV outbreaks (Fig 3). The larger variations in the three above key

quantities were induced by the vector biting rate (a), the vector to host ratio (m) and the

WNV-induced host death rate (α). Increasing the vector biting rate by up to 25% led to a 3.8

times broader period at risk and simultaneously raised the maximal and average risk by 36%

and 10%. A decrease in the WNV-induced host death rate extended by up to 3.3 times the

duration of the risk period, while the maximal and average risk increased by up to 24% and

3%. Similarly, an increase in the vector to host ratio produced 2.7 times longer risk period with

a maximal and average risks increased by 20% and 3%, respectively. The next two parameters

with the most significant impacts were both associated with Q. mexicanus. The vector prefer-

ence for Q. mexicanus (pQ) had 3 to 5.2 more impact on the duration of the risk period and the

maximal and average risks during this period, than the preference for other Passeriformes and

Columbiformes. Meanwhile, the probability of WNV transmission associated to Q. mexicanus
had 3.7 to 8.7 more effects on those same three quantities than the probabilities associated

with other Passeriformes and Columbiformes. Finally, although a decrease in the vector

Fig 2. Seasonal variations of the risk of West Nile Virus outbreak in Merida, Mexico. (A) The monthly values of R0 show a strong temporal pattern

including a period of P = 23 days with a risk of outbreak (R0>1) and a maximal risk in August equals to Rmax
0

= 1.07. The average value of R0 during the

identified period of risk of WNV spill-over to humans was found to be �R0
� = 1.04. (B) The seasonal variations in R0 are induced by the changes in the vector to

host ratio (m) and in the vector death rate (μV) estimated from [44], [52] and [56] appear in green and red, respectively.

https://doi.org/10.1371/journal.pntd.0011340.g002
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mortality rate during rainy season also contributed to broaden the period and (maximal and

average) risks of transmission of WNV in Merida, the vector mortality during the dry season

and the host mortality rates had virtually no effect on any of these three predicted quantities.

Fig 3. Sensitivity analyses of the risk of West Nile Virus outbreak in Merida, Mexico. The effects of -25% to +25%

changes in each of the model parameters value are shown for the (A) duration of the period at risk of WNV outbreak

(P), and the (B) maximal (Rmax
0

) and (C) average ( �R0
�) values of such a risk. The reference values of P, Rmax

0
and �R0

� that

are shown in bold and represented by horizonal lines in A-C are those obtained from the model parameters estimates

given in Table 1 and that appeared in Fig 2.

https://doi.org/10.1371/journal.pntd.0011340.g003
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Urbanization, change in the composition of the bird community and its

implications for the risk of WNV outbreak in Merida, Mexico

While the above sensitivity analyses allowed to quantify the effects that independent changes

in each of the model parameters have on the risk of WNV outbreaks, the modification of the

bird community associated with the development of a city such as Merida will concomitantly

involve several of these effects. We assessed their overall outcomes on P, �R0 and Rmax
0

(Fig 4A–

4C). The amount of time where people are exposed to a risk of WNV outbreak (P) increases

steadily from 23 to a maximal value of 138 days when the host community was enriched in Q.

mexicanus and Columbiformes. The average and maximum value of the risk also rise when Q.

mexicanus and Columbiformes are made more abundant, but in substantially lower amount.

The value of Rmax
0

increased from 1.07 to a maximal value of 1.5, while the average risk �R0 varied

even less, from an initial value of 1.04 to a maximum of 1.23. In other words, the main effect of

modifying the host community is in increasing the duration of the annual period of time with

a risk of WNV outbreaks, rather than in amplifying the daily risk of such outbreak. Interest-

ingly, the changes in the abundance of Q. mexicanus have larger impacts than the changes in

the abundance of Columbiformes on all three quantities; P, �R0 and Rmax
0

.

To further quantify these trends we performed an elasticity analysis where the effect of vary-

ing the abundance of Q. mexicanus (Columbiformes) is assessed conditionally to each of the

abundance of Columbiformes (Q. mexicanus) (Fig 4D). The elasticity analysis clearly shows

that the duration of the period at risk of WNV outbreaks (P) strongly depends on the change

Fig 4. Changes in the bird community associated with urbanization and its implications for the risk of West Nile

Virus outbreak in Merida, Mexico. The effects of increases in the abundance of Quiscalus mexicanus (along the x-

axis) and/or columbiform (along the y-axis) species are shown for the (A) duration of the period at risk of WNV

outbreak (P), and the (B) maximal (Rmax
0

) and (C) average ( �R0
�) values of such a risk, whose reference values appear in

bold in A-C. The elasticity measures shown in (D) represent the percentage of growth in P, Rmax
0

and �R0
� when the

abundance of Q. mexicanus (Q) or the abundance of columbiforms (Co) is increased by 1%. An elasticity measure was

calculated to assess the response to a change in Q. mexicanus provided that the abundance of columbiforms has already

raised by 0%, 10%, 20%, 30%, 40% and 50%, which led to 6 different elasticity values shown as colored circles where

green = 0%, violet = 10%, yellow = 20%, light green = 30%, red = 40% and blue = 50%. The same procedure was

applied to evaluate the impact of changes in the abundance of columbiforms, when the abundance of Q. mexicanus has

already raised by similar amounts, i.e. from 0% to 50% by 10%, and using the same key for colors. Created with

BioRender.com.

https://doi.org/10.1371/journal.pntd.0011340.g004
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in the abundance of Q. mexicanus as a 1% increase in the latter sparks a 6.6% to 7.8% increase

of duration, according to the abundance of Columbiformes. Meanwhile, a similar increase in

the abundance of Columbiformes would only rise such a duration by 0.8% to 2.1%, according

to the abundance of Q. mexicanus. On average, the period at risk of WNV outbreaks (P) was

then found to be about 4.8 times more sensitive to changes in the abundance of Q. mexicanus.
As described above, increasing the abundance of Q. mexicanus and Columbiformes has much

lower effects, typically 10 times smaller, on the average ( �R0) and on the maximal (Rmax
0

) risks

encountered during such a period. A 1% increase in the abundance of Q. mexicanus is pre-

dicted to rise �R0 by 0.2% to 0.34% and Rmax
0

by 0.48% to 0.72%, according to the abundance of

Columbiformes, while the effects of a 1% increase in the abundance of Columbiformes is antic-

ipated to increase �R0 by 0.03% to 0.16% and Rmax
0

by 0.05% to 0.27%, according to the abun-

dance of Q. mexicanus. On average, the mean ( �R0) and maximal (Rmax
0

) risks of WNV

outbreaks (P) were then found to be about 2.5 and 2.7 times more sensitive to changes in the

abundance of Q. mexicanus than in the abundance of Columbiformes.

Potential of vector control to limit the risk of WNV emergence

Our estimate of the current risk of WNV outbreak and our predictions about its future point

towards calculating the fraction of the vector population that should be removed for R0 to

remain lower than one all year round in the various contexts considered above (Fig 5). To

reach that objective and annihilate the current risk of outbreaks, the size of the mosquito popu-

lation should be reduced by ~13%. A 50% increase in the abundance of Columbiformes would

only require to strengthen this effort to reach a ~17% reduction in vector abundance, but a

similar increase in the abundance of Q. mexicanus would impose to limit the vector population

size by up to 43%. Obviously, simultaneous rises in the abundance of the two taxa would make

an even stronger control necessary, with an up to 56% reduction required to compensate for a

50% increase in Q. mexicanus and in Columbiformes.

Fig 5. Potential of vector control to limit the risk of WNV outbreak in Merida, Mexico. The percentage of the vector population that

shall be removed by vector control for R0 to remain lower than one all year round is 13% for the current bird community. The variations

of this required percentage of vector control (y-axis) was estimated while varying the percentages of Q. mexicanus and of columbiform

species. The frequency of Q. mexicanus in the bird community was increased from 0 to 50% (by 10%) along the x-axis, while the different

colors stand for different frequency of columbiforms as follows: green = 0%, violet = 10%, yellow = 20%, light green = 30%, red = 40%

and blue = 50%. Created with BioRender.com.

https://doi.org/10.1371/journal.pntd.0011340.g005
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Discussion

Global urbanization is a defining trend of the Anthropocene [67] that favors the emergence of

new pathogens [2,3] and rises the burden of infectious disease already afflicting human popu-

lations [4]. A large set of studies have provided evidence that the ongoing changes in urban

areas favor WNV-competent mosquitoes ([23,24] and reference therein). While urbanization

has also been shown to reduce bird biodiversity [25,26] and to increase the abundance of key

species representing good reservoirs for the WNV [27], the contribution of such alteration of

the bird community to the risk of WNV outbreaks remains much less investigated. To advance

our quantitative understanding of risk of WNV outbreaks in developing cities in this direction,

there is thus an obvious interest in implementing integrative models that bring together ento-

mological, epidemiological and ornithological data [68–70].

A seasonal risk of WNV outbreak in the city of Merida, and the need for

epidemiological surveillance

We developed such an R0-modelling of the transmission of WNV by C. quinquefasciatus in

the passeriform and columbiform community sampled in the city of Merida, Yucatan, Mexico.

Our model predicts a strong seasonal pattern in the circulation of WNV amongst local birds

with a summer peak associated to a 3-weeks period (starting around mid-July) when R0

exceeds 1, which is mostly explained by the low mosquito death rate and the high vector to

host ratio encountered at that time of the year. The mosquito populations are then able to sus-

tain and amplify WNV transmission in the bird community, strongly suggesting a time-lim-

ited but significant risk of outbreak of infections in humans. This prediction is consistent with

previous field studies demonstrating that the virus is circulating in birds, horses and bats

[34,71,72] in Merida, although there is no available record of infection in humans. Those

empirical and modelling results outcomes clearly point toward the need to implement epide-

miological surveillance in and out the city of Merida to better inform the circulation of WNV

between animals and humans, and to provide the opportunity to design inclusive ‘One Health’

preventive strategies [73,74].

The absence of large WNV outbreaks in humans, and the virus vs vector

hypotheses

While the WNV has been introduced in Latin America and the Caribbean in the 2000’s

[75,76], it has yet failed to produce severe human outbreaks in urban places [13] despite the

virus being repeatedly reported in various bird or horse species, such as in Merida, Mexico

[34], Brazil [77], Guatemala [78,79] and various other places in Latin America [80]. One of the

most common hypotheses to explain such pattern is human protection by cross-immunity

with other viral infections such as dengue, yellow fever and the Rocio or Saint-Louis encephali-

tis [13,80–83]. Alternative hypotheses, reviewed by [80] and [13], suggest that the lack of large

outbreaks might be due to the dilution of WNV transmission by higher levels of biodiversity

in the tropics, to under-reporting of cases because of asymptomatic infections [84], misdiagno-

sis by confusion of the symptoms with those of other diseases [76,85], cross-reactivity in sero-

logic tests [86,87], and/or to the typical difficulty in monitoring public health in remote places

such as the Amazonian region [13]. Recently, [13] emphasized that the absence of human

cases of WNV encephalitis or severe disease in South American countries could be explained

by the circulation of mutant strains with lower level of pathogenicity. Interestingly, our model-

ling showed that reducing the bird death from WNV (α) tends to increase (up to almost 4

times) the duration of the period of risk of WNV outbreaks and, to a lower extent (up to 1.4
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times), the maximal and average R0 values of the virus during such period. Those effects are

readily explained by the increase in the duration of the infectious period (equal to 1/(μj+α))

that is associated with the reduction of the bird death from the disease (α). Accordingly,

although strains with lower pathogenicity may indeed lead to asymptomatic cases and reduce

apparent public health concerns [13], they also are spreading at larger rate according to a typi-

cal trade-off already documented for other human-pathogens, e.g. [88–91]. Our sensitivity

analyses further showed that the risk of WNV outbreaks strongly rises with higher vector bit-

ing rates (a) and vector to host ratio (m), which is consistent with the conclusion of [92] who

previously used a SIR model to calculate the R0 of WNV in a bird community, and identified

vector (demographic and biting) parameters as key determinants of the rate of virus circula-

tion. Those two quantitative studies therefore point toward an alternative working hypothesis

that the absence of large outbreaks of WNV in Latin America could be caused by a limited

transmission due to vectors’ features rather than by the virus life-history.

Prevention strategies by vector and bird control

Among the three parameters that were identified as having the largest impact on the duration

and intensity of the risk of WNV outbreaks (see discussion above), only the vector to host

ratio (m) can be targeted through appropriate control strategies. In order to reduce m and
lower WNV transmission among urban birds, typical vector control strategies could be imple-

mented to limit C. quinquefasciatus abundance. As expected, the level of preventive vector

control required to annihilate the predicted risk of outbreaks in human, i.e. for R0 to be lower

than 1 all year round, varies with the structure of the bird community. According to our

model predictions, a reduction of ~13% of the C. quinquefasciatus population would be

enough to reach such a public health objective in the city of Merida with its current columbi-

form and passeriform community. However, such a relatively low figure may be deceptive as

our modelling also shows that it could rise up to 17%, 43% and 56%, if the abundance of

Columbiformes, Passeriformes or both taxa were to increase. While preventive strategies tar-

geting C. quinquefasciatus could probably be implemented at somewhat reduced costs by ade-

quately integrating them into existing vector control program in Merida [93], the last

predictions strongly suggest that concomitantly controlling the bird population dynamics

might substantially help by keeping low the target for vector control. In such perspectives,

another key outcome of our modelling is that bird taxa make significantly different contribu-

tions to the overall risk of transmission, with Q. mexicanus emerging as the host with the largest

impact on WNV transmission, as previously reported in the city of Puerto Barrios, Guatemala

[79]. The mean and maximal risks of WNV outbreaks were indeed found to be 2.5 to 2.7 times

more sensitive to changes in the abundance of Q. mexicanus than in the abundance of Colum-

biformes. This highly competent species thus seems to play a similar role of superspreader as

Turdus migratorious in New York, USA [94], which suggests that it would be worth to (at

least) monitor the growth of its population and survey its prevalence of infection by the WNV

infectious status while the city of Merida is further developing. Such urban field studies might

actually be beneficial to our understanding of other public health concerns in the Americas.

The generalist behavior and ability to adapt to urban environment of Q. mexicanus has indeed

contributed to its spread from Central to North [95] and South [96] America, and as made it a

good reservoir of other human pathogens such as Salmonella spp. [97], Sarcocystis sp. [98], try-

panosomes, haemosporida, and filarial nematodes co-circulating in Texas, USA [99].

To conclude, this study highlights the potential for WNV outbreak of human infection in

the urban Merida, Mexico, and identifies Q. mexicanus as a local superspreader of the virus.

This naturally suggests to implement a dedicated epidemiological monitoring and preemptive
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measures concomitantly targeting C. quinquefasciatus and Q. mexicanus populations, as those

two control strategies are expected to have synergistic effects.
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