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Abstract: Like low-lying sandy coasts around the world, the Ghanaian coast is experiencing increas-
ingly frequent coastal flooding due to climate change, putting important socioeconomic infrastructure
and people at risk. Our study assesses the major factors contributing to extreme coastal water
levels (ECWLs) from 1994 to 2015. ECWLs are categorized into low, moderate, and severe levels
corresponding to the 30th, 60th, and 98th percentiles, respectively. Using these three levels over
the Pleiades satellite-derived digital elevation model topography, potential flood extent zones are
mapped. ECWLs have the potential to flood more than 40% of the study area, including socioeconom-
ically important sites such as tourist beach resorts, Cape St. Paul lighthouse, and Fort Prinzenstein.
In this study, all coastal flooding events recorded by the municipality of Keta fall within the 98th
percentile category. Our results show a gradual increase in the frequency of flooding over the years.
Flooding events are caused by a compound effect of the tide, sea level anomaly, waves, and atmo-
spheric conditions. Finally, while wave run-up is the major contributor to coastal flooding, the tide is
the one varying most, which facilitates a simple early warning system based on waves and tide but
adds uncertainty and complicates long-term predictability.

Keywords: Gulf of Guinea; wave run-up; sea level rise; coastal flooding

1. Introduction

Globally, coastal flooding affects coastal areas due to sea level rise (SLR). Coastal areas
serve as homes for about 2.4 billion people (40% of the world’s population) [1], as well as
provide high economic value to coastal countries [2]. Over the 21st century, projections
have shown that SLR would increase the rate of coastal flooding globally [3]. This would
possibly displace most people living in low-lying coastal zones and impact socioeconomic
and ecological systems of great importance, particularly in Africa [4,5]. Generally, the main
cause of coastal flooding is high water levels due to several factors. Coastal flooding is
instigated by an amalgamation of numerous factors from the ocean and atmosphere, such as
mean sea level changes, tides, storm surges, waves, river discharge, and rainfall [6]. When
two or more of these factors occur simultaneously, the severity of flooding can worsen,
leading to an amplified risk of coastal flooding. Examples of compound flooding events
include river discharge and surges [7], rainfall and surges [8] on the coast of the United
States, and rainfall, surge, and waves [9,10]. If these events are statistically dependent,
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meaning they share a mutual driving force, the likelihood of them occurring together is
higher than expected when considering each variable separately. This increased likelihood
of compound flooding events can lead to a higher chance of coastal flooding [6,11].

All these together would eventually lead to overtopping and inundating coastal
defenses in low-lying areas, which potentially cause damage to life and property. Coastal
flooding continues to pose a huge threat to coastal inhabitants. It is known to be one
of the most dangerous and costly of natural disasters [12,13]. Therefore, it is essential
to create awareness of the need to plan, mitigate, and consider alternatives to reduce
the effects of coastal flooding. Understanding the occurrence of extreme coastal water
levels (ECWLs) [11,14] can help support decision making in coastal zone management.
This would help identify regions affected by a strong increase in flood risk and prioritize
mitigation and adaptation efforts [15]. During ECWLs, overtopping is the main cause of
coastal flooding, with much water surpassing the maximum coastal elevation (e.g., dunes,
dykes, cliffs) [16]. Despite this, when overtopping occurs, all areas with low elevation
do not submerge though this phenomenon mainly drives localized coastal flooding and
damage to infrastructures.

Furthermore, overtopping due to ECWLs is even more catastrophic when there is a fail-
ure or absence of coastal protection, such as groins and revetments [17]. According to [18],
the principal components of ECWLs are sea level anomaly (SLA), dynamic atmospheric
conditions (DACs), tide (T), and wave run-up (R). On the Jamestown Beach in Accra, [19]
noted that shoreline change responds in decreasing order to sea level variations (86%),
waves (9%), and tidal cycles (5%) on daily bases. Wind-induced setup has limited effect
on the shoreline, while the observed most important component of SLA at that coast was
the influence from the inverse barometer. SLA is due to the steric effect, ocean circulation,
and transfer of mass from the continents (ice sheets, glaciers, land water) to the ocean,
DACs due to atmospheric pressure and winds, astronomical tide (T), and wave effects here
referred to collectively as run-up (R), which includes a time-averaged component (setup)
and an oscillatory component (swash) [18]. Quantifying these local contributions during
flooding events is key, as their relative contribution varies spatiotemporally. One key
factor to consider when assessing flooding and overtopping is a suitable and higher DEM
resolution. A higher-resolution DEM tends to preserve the topographical terrain features
thus determining where floods are most likely to cause problems for people and property
and estimating how water interacts with the environment depending on high-quality DEM
data. The precision and spatial resolution of the DEM affect the accuracy of forecasts of
flood depths [20]. Numerous publications have extensively examined the justification for
utilizing coarse DEM resolutions. They came to a conclusion that, despite their lack of
precision, their model simulations offer a suitable trade-off between readily accessible (free)
data, minimal computational requirements, and an appropriate depiction of hydrological
processes and catchment responses. However, even while increased spatial resolution and
accuracy frequently lead to better outcomes, it is rarely available since these are commercial
and not freely available. Recently, the high-resolution DEMs from sources such as Pleiades
stereo imagery have played a significant role in coastal morphology changes, making them
a great tool to explore and use [21,22].

The eastern coast of Ghana is known to be the most vulnerable coast in Ghana. It
experiences coastal flooding not less than twice every year [23]. In addition, the frequency
and intensity of coastal flooding and erosion have increased. Over the past decade, the
Volta Delta has significantly experienced coastal flooding events and duration [23–25].
Some studies have attributed this to intensive rainfall, oceanographic conditions (waves,
sea level rise, and tides), and human activities (watershed management) [23].

On the other hand, the construction of the Akosombo dam on the Volta River has
been identified as a major cause of erosion and flooding problems in the Volta Delta
region [26–28]. In particular, the Keta District has been affected by coastal erosion and
flooding. For this reason, one of Ghana’s largest sea defenses was constructed from 2000 to
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2004 to control coastal erosion and flooding. Therefore, it is very important to understand
hydrodynamic factors dominating coastal flooding in Keta and Volta Delta at large.

Our study uses Pleiades stereo images to develop the digital elevation model (DEM)
and wave, tide, and sea level anomaly data from satellite and globally freely available
reanalysis. The main aim of this study is to assess the predominant factors of coastal
flooding in the Keta municipality. To achieve this, ECWLs were first categorized into three
main percentiles (30th, 60th, and 98th); secondly, the spatial extent of flooding at each
percentile was assessed; and finally, the dominant and most varying factors were assessed
in the 98th percentile scenario. The importance of this study is that it explores the most
dominant factors and thus provides reasons to consider these factors in implementing
coastal flooding decisions.

2. Materials and Methods
2.1. Study Area

Keta City is located in a large wetland-protected area of 1200 km2. Keta lies on the
eastern coast of Ghana and is located precisely at the extreme east of the Volta Estuary.
This study used Pleiades satellite imagery (Figure 1c) covering major towns such as Woe,
Tegbi, and Keta. The largest lagoon in Ghana, the Keta Lagoon complex, is located in this
municipality. The Keta Lagoon facilitates water transportation to surrounding communities
and has the potential for large-scale commercial aquaculture. Generally, the municipality
serves as a breeding ground for many sea turtles and a temporary passage point for
migratory birds. The town is separated by a narrow sand strip separating the Keta Lagoon
from the sea. Keta is in the Keta Basin, and its geology largely includes mud, wabbly sand,
and gravel [29]. Studies by [30] indicate the presence of numerous canyons (valleys) in
the deep waters, which also signify active erosion. In the past, rampant coastal flood and
erosion cases were recorded, precisely in 1907 when the first coastal erosion occurred, then
in 1924, 1949, 1986, 1996, and 1997 [31]. This has led to the construction of sea defense
structures along the Keta municipality stretch.

The climate conditions are dry equatorial, with a mean rainfall below 1000 mm in
May and July and sometimes late August and October. Generally, wind conditions are
weak, with speeds less than 2.6 m/s [32,33]. Wave conditions are generally less than 3 m
and a maximum period of 19.68 s in the direction south and southwest with an average
period of 10.91 s. The tide condition is micro-tidal and estimated to be 1 m on average.
The beaches are generally sandy with a median grain size of 0.6 mm, and most inhabitants
survive by fishing and farming [34]. The inhabitants of Keta District are involved in various
economic activities. These include agriculture, fisheries, salt harvesting, sand mining, and
tourism. The agricultural and fishing sectors are more dominant than the other sectors.
Fort Prizenstein and Woe Lighthouse are two major tourist sites in the Keta District. The
Keta District is very important to the Volta Delta; therefore, it is imperative to assess and
understand the factors that influence coastal flooding in this area and for the Volta Delta as
a whole.

2.2. Datasets

This section describes the data used for this study. This study uses satellite imagery
and hydrodynamic data for the Keta area.

2.2.1. Pleiades Satellite Imagery and Acquisition

Satellite data provide key missing information for coastal management [35,36], includ-
ing ocean drivers, land use, and vulnerability assessment [18,33].

It turns out that in West Africa, there are several gaps in coastal management. In
addition, there is limited use of high-resolution satellites, thereby preventing any efficient
mitigation measure on a broad scale.

The Pleiades satellites 1A and 1B were launched in 2011 and 2012, respectively, at an
altitude of 694 km and can obtain a burst of up to 12 images during a single pass [37]. The
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Pleiades imagery comes in single or (tri)stereo images with panchromatic and multi-spectral
images of respective ground pixel resolutions of 0.5 m and 2 m. Thus, the sensors of the
Pleiades satellites work in the near-infrared and visible spectrum. However, the Pleiades
imagery was first established in line with the French–Italian Optical and Radar Federated
Earth Observation program (ORFEO). In recent years, other partners in Europe and other
countries have used it in their studies. The major features of the Pleiades collection are
explained in detail in the user guide of Pleiades imagery [38]. For this study, tri-stereo
imagery was acquired from the Centre National D’etudes Spatiales (CNES).
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image superimposed showing the major towns and tourist sites in the Keta District of the Volta 
Delta, Ghana (Gulf of Guinea, West Africa). 
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Figure 1. A map of the study area showing (A) an image of Ghana with all districts and the Volta
Delta shaded in yellow; (B) an image of the Volta Delta showing all the districts with the water bodies
in the Volta Delta; and (C) an image of Keta District with Pleiades multi-spectral satellite image
superimposed showing the major towns and tourist sites in the Keta District of the Volta Delta, Ghana
(Gulf of Guinea, West Africa).

At Keta, such burst and tri-stereo images (Figure 2) were acquired on 20 October 2020
and constituted the data used in this study. The time difference between the individual
images is set for each acquisition to dT = 6 s. This gives a base-to-height (B-H) ratio
for the two data sets of B/H = 0.12. Generally, for flat areas, a low B/H value provides
better height accuracy of the stereoscopy [39]. The Pleiades images were acquired at an
approximately equal tidal elevation of +0.8 m. These images were finally downloaded
from Centre National D’etudes Spatiales (CNES) website. Unfortunately, these data are not
freely available but were acquired with the help of LEGOS.
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Figure 2. An image of the tri-stereo images (PHR1A) acquired on 20 October 2020 for the Keta study
area (made using Google Earth).

2.2.2. Hydrodynamic Data

To compute ECWLs, it is required to use hydrodynamic, meteorological, and tidal
parameters [11]. For this study, the parameters used include; sea level anomaly (SLA),
wave run-up (R), tide (T), and other atmospheric conditions (DACs). All parameters were
referenced to the WGS84 datum and extracted at a grid point of latitude of 6.047366◦ and
longitude of 1.080522◦.

Tide data were extracted on the hourly resolution at the nearest grid point from the
global tide FES (finite element solution) 2014 model [40]. These data were produced by the
Laboratory of Geophysical and Oceanographic Spatial Studies of Toulouse (LEGOS). AVISO
(Archiving, Validation and Interpretation of Satellite Oceanographic) data, with the support
of the Centre National d’Etudes Spatiales (CNES), distributes the atmospheric pressure and
winds component (DACs) generated by the MOG2D model from LEGOS of the Collecte
Localisation Satellites (CLS) Space Oceanography Division [41]. More information can be
found at http://www.aviso.altimetry.fr/ (accessed on 20 March 2022).

Altimetric-derived SLA, including global mean level rise (GMSLR), was extracted
from AVISO’s nearest grided data point of the altimetry data point [42].

All wave run-up data were obtained from ERA-interim reanalysis (global climate
and weather data available from 1979 onward) at a 0.5◦ × 0.5◦ resolution. These data
were produced by the European Center for Medium-Range Weather Forecasting (ECMWF)
model, which used wave data at 6-hourly resolution. The calculation of wave run-up (R)
was performed using the dissipative beach equation proposed by [43] (see [11]).

R = 0.043
√

HsLo (1)

Hs is the offshore significant wave height, and Lo is the wavelength. All the parameters
mentioned above are resampled hourly from 1994 to 2015. All hydrodynamic data used in
this study were freely available and extracted for the Keta area within its conforming grids.

http://www.aviso.altimetry.fr/
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2.3. Workflow and Methodology

This section describes all methods used in this study; this includes DEMs derived from
the Pleiades, computing extreme coastal water levels (ECWLs), and flood extent mapping.

2.3.1. Pleiades-Derived Topography

Digital elevation models (DEMs) were generated from the Pleiades stereo imagery
using the NASA AMES Stereo Pipeline (ASP) software to obtain the topographic variation
of the beach. The ASP software uses the tri-stereogrammetry method, where DEMs are
derived from the sensor level. For the tri-stereo methodology approach of ASP, three
panchromatic images are taken as input (0.5 m resolution) [44]. These are then correlated
pair by pair, and a final correlation between the two correlated pairs gives the output DEM.
This method uses the rational polynomial coefficient (RPC), which accompanies the imagery
and further provides a relationship between the satellite image and ground coordinates.
The DEM was then orthorectified by referencing them to planimetric coordinates. This
was performed using AMES Stereo Pipeline software. It has a feature that ortho-rectifies
a sensor-level satellite image using its geometry by the accompanied RPC file and, in the
process, creates a DEM at a set resolution (see also [21,22]). This DEM is automatically
orthorectified, after which the satellite images at the sensor are projected onto the DEM
so that the output images are fully orthorectified and corrected using ground control
points [38]. The Pleiades panchromatic images (0.5 m resolution) produced a 2 m resolution
DEM. The various steps involved in Pleiades imagery processing are summarized in
Figure 3.
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structure from motion procedure workflow implemented in this study. This approach derives DEMs
and orthophotos from satellite imagery.

Pleiades Imagery Pre-Processing

This is the preliminary stage of Pleiades data processing. In this stage, data are
selected and organized by matching similar features. The pairs of Pleiades images called
1 and 2 and 2 and 3 are selected and processed. After this, the stereo image pairs are
selected, and band one is selected from each image and aligned using the affine-epipolar
algorithm of ASP [45]. Images are pre-aligned. This process is carried out by identifying
tie-points between them, which are then used to alternate the sensor spot to guarantee
that pairs of conjugate epipolar lines are both col-linear and analogous to one of the image
axes [46]. Due to the incompatibility of the ASP software with multi-band imagery, this
study opted for a panchromatic image (band 1) as it offers a wide range of radiance data
and suitable graphic and visual contrast, which aids in distinguishing image features from
their respective shadows.

Corresponding of Features

In the ASP, features are matched with each other after the images are prepared for
feature matching (Figure 3). The search window algorithms (SWs) in ASP approximates
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the superficial motion of each scene point by linking the search windows of each local
window with each pixel in the stereo pair [47]. For each stereo pair, a relative disparity
map is produced with a search window algorithm [45].

Reconstruction of Topography from Pleiades (3D Reconstruction)

After data are processed and corresponding features are identified, ASP uses the stereo
triangulation algorithm method (Figure 3) to merge features to obtain a 3D location (x, y, z)
of the nearby intersection between lines that link the sensor orbital location to all matched
pixels in both the left and right images. This approach combines all the information on
altitudes, the model of each sensor, and the disparity map. The result of the process is a
raster format consisting of four bands containing triangulated coordinates for x, y, and
z, as well as a triangulation error metric stored in the fourth band. This metric is useful
in evaluating the quality of the sensor model, ephemeris/attitude data, and the disparity
matches [41]. Next, the output is transformed into a 3D point cloud, which is geocoded
using the WGS84 UTM 31N coordinate system and ellipsoid heights. The post-processing
stage of the ASP involves determining the orthometric heights of the 3D point cloud
using ground control points (GCPs) with known orthometric heights to calculate a height
correction factor for the 3D point cloud [48]. Ground control points (GCPs) in the form
of concrete pillars buried at ground level and marked for identification purposes were
used for the study. These GCPs were obtained from [49] for the Keta area. The GCPs
obtained were in the form of X, Y, and Zs of ground pillars. They were connected to the
Ghana meter grid system to establish and coordinate the concrete pillars as ground control
points (GCPs). This process followed the standards set by the Ghana Survey Department,
ensuring consistency and conformity. The static differential GPS (D-GPS) method was
employed to observe each control point, with an average observation time of not more than
30 min. These observations were referenced to the established Ghana national coordinated
pillars [49]. Finally, the 3D point cloud is utilized to generate DEMs and orthophotos. The
final DEM and orthophotos are exported and saved for further analysis using the ASP
stereo-RPC algorithms.

2.3.2. The Altimeter Corrected Elevations Version 2 (ACE2)

To assess the quality of DEMs for coastal flooding studies, DEM was downloaded from
the website of the Data Center in NASA’s Earth Observing System Data and Information
System (EOSDIS). ACE2 is the second iteration of the global digital elevation model that the
Shuttle Radar Topography Mission produced using satellite radar altimetry (SRTM). Version
1 data have been upgraded with the release of the Altimeter Corrected Elevations Version 2
(ACE2) generated by combining satellite radar altimetry with SRTM. Global Observations
to Benefit the Environment (GLOBE), the original altimeter corrected elevations (ACEs)
digital elevation model (DEM), and additional matrices produced by reprocessing European
remote sensing (ERS-1) images are among the data sources used in the adjustment. The
three arc seconds data (90 m) were downloaded with the same datum for this study to
compare with Pleiades-derived DEM [50].

2.3.3. Computing Extreme Coastal Water Level (ECWL)

Using the hourly datasets described earlier, ECWLs were calculated hourly from 1994
to 2015. This approach followed the [7] formula.

ECWL = SLA + DAC + T + R (2)

Three major percentiles were used to show how severe ECWLs go; the 30th, 60th,
and 98th percentiles were obtained and further confirmed with in situ flood occurrence
dates from 2000 to 2015 from the National Disaster Management Organization of the
Keta District. In Keta, extreme coastal water levels (ECWLs) are determined using an
approach that combines several parameters such as sea level anomaly (SLA), storm surge
height caused by atmospheric pressure and winds (DACs), astronomical tide level (T),
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and height of wave breaking (R). The worst scenario of water levels is defined as the
top 2% or 98th percentile to determine the physical impact of ECWLs in the area. The
cumulative annual occurrence of the time spent over this threshold is computed over
the study period. Topographic data are set to a geoidal coordinate system to assess the
potential for overtopping and flooding. ECWLs are converted to geodetic data using the
vertical datum value of [51] to superimpose with the topographic data. Finally, MATLAB
software’s linear regression is used to analyze the trend of ECWLs in the Keta area based
on annualized data.

2.3.4. Flood Extent Mapping

Potential flood extent zones were mapped using the bathtub inundation model. This
approach assumes that areas would be flooded with elevations lower than the ECWL for
all percentiles. Flooded areas are mapped in the geographic information system (GIS)
environment using a simple calculation (Equation (3)). All elevations in each cell of the
Pleiades DEM are equated against a predicted ECWL, and all cells that fall below the ECWL
are considered flooded. Since only data on the elevation are needed for its application, the
approach allows for estimates without detailed hydrological data [52].

Using the raster calculator tool in ArcGIS 10.4, ECWLs for the different percentiles
were computed to assess areas that fall below ECWLs along Keta City. All ECWLs for the
three percentiles were considered for a bathtub analysis. This approach is frequently used
for this type of analysis [53–56]. The ESRI’s ArcGIS 10.4 and MATLAB software was used
for statistical calculation and map development.

Elevation projection by ECWL(p) = (DEM ≤ ECWL (p)) (3)

where (p) are percentiles (30th, 60th, or 98th percentile).

3. Results
3.1. Percentile of Coastal Flood Occurrences

All ECWLs were ranked 30th, 60th, and 98th percentiles, corresponding to 0.54 m,
0.97 m, and 1.62 m, respectively. For example, from Figure 4, flood events obtained from
the National Disaster Management Organization (NADMO) in the Keta District occurred
around the 98th percentile (1.62 m).
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3.2. Time Spent on 98th Percentile

Generally, for the 98th percentile, the maximum time spent on coastal flooding is 200
h per year. However, there is an increase in time spent from 1994 to 2015. Figure 5 shows a
gradual increase in hours spent every year.
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3.3. In-Situ Flood Occurrence Data

All data obtained from NADMO show that coastal flooding usually occurs from June
to September (Table 1). July represents the most dominant month of coastal flooding
between 2002 and 2015. While June is the least month of flood occurrence.

Table 1. The occurrence of coastal flooding was obtained from NADMO from 2002 to 2015. Generally,
all data obtained from NADMO range between 2002 and 2015. There are no data available from 1994
to 2002. All data sets were collected by observing flooding and reporting by the NADMO office in
Keta, Ghana.

Year of Occurrence Month of Occurrence

2002 August

2003 September

2004 July

2005 July

2006 September

2007 July

2008 August

2009 September

2010 August

2011 July

2012 June

2013 July

2014 August

2015 September
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3.4. Flood Extent Mapping concerning Percentiles

Figure 6 shows the extent and percentage of potentially flooded areas for all percentiles.
The highest percentage of the area flooded was recorded in the 98th percentile. The figure
shows that 43% of the area would potentially flood. The 30th and 60th percentiles showed
that 19% and 29% of the area would potentially be flooded, respectively. However, the
most severe flooding is observed in the 98th percentile scenario.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 18 
 

 

Table 1. The occurrence of coastal flooding was obtained from NADMO from 2002 to 2015. Gener-
ally, all data obtained from NADMO range between 2002 and 2015. There are no data available from 
1994 to 2002. All data sets were collected by observing flooding and reporting by the NADMO office 
in Keta, Ghana. 

Year of Occurrence Month of Occurrence 
2002 August 
2003 September  
2004 July 
2005 July  
2006 September  
2007 July 
2008 August 
2009 September  
2010 August 
2011 July 
2012 June 
2013 July 
2014 August 
2015 September 

3.4. Flood Extent Mapping concerning Percentiles 
Figure 6 shows the extent and percentage of potentially flooded areas for all percen-

tiles. The highest percentage of the area flooded was recorded in the 98th percentile. The 
figure shows that 43% of the area would potentially flood. The 30th and 60th percentiles 
showed that 19% and 29% of the area would potentially be flooded, respectively. How-
ever, the most severe flooding is observed in the 98th percentile scenario. 

 
Figure 6. Flood extent mapping for each scenario of ECWLs where: (A) 30th percentile of ECWLs 
with 19% of the area being potentially flooded, (B) 60th percentile of ECWLs with 29% of the area 
being potentially flooded, (C) 98th percentile of the area being potentially flooded. 

Figure 6. Flood extent mapping for each scenario of ECWLs where: (A) 30th percentile of ECWLs
with 19% of the area being potentially flooded, (B) 60th percentile of ECWLs with 29% of the area
being potentially flooded, (C) 98th percentile of the area being potentially flooded.

3.5. Comparison of Pleiades DEM and ACE2 DEM

A simple comparison between the two DEMs was assessed to show the ability of
Pleiades DEMs to capture beach evolution and coastal flooding. Figure 7A and B show
the location of the transect (red line) from which elevation profiles were extracted for both
Pleiades and ACE2 DEMs. Figure 7C exhibits profile variations extracted for a distance of
about 600 m, and this further shows a maximum elevation of 11 m high for Pleiades DEM
and 2 m high for ACE2 DEM. This shows a very suitable representation and variation in
the beach’s topography. Figure 7D is a box plot showing the variation and distribution of
elevation along the transect. While Pleiades DEM shows a suitable elevation distribution
and variation, ACE2 DEM barely shows any variation distribution in elevation within the
same transect.

3.6. Hydrodynamic Contributors of Coastal Flooding

The major factors contributing to coastal flooding in the 98th percentile was evaluated
from 1994 to 2015. Figure 8 shows the distribution of dominant factors in the ECWL.
Waves have the highest contribution of 1.2 m compared to all other factors. Tide is the
second highest contributor with 0.6 m, followed by SLA and DACs. Figure 8 shows that
wave run-up dominates 98% of ECWLs to coastal flooding, followed by the tides, SLA,
and DACs.
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3.7. Variability of ECWL Parameters

Figure 9 shows the variability of parameters in 98% of ECWLs. A mean deviation plot
was plotted to assess the variability between each parameter. From Figure 9, tide shows the
highest variability among all the parameters, with about 0.75 m of variation. Though wave
dominates from Figure 8, tides vary greatly during coastal flooding of 98% of ECWLs. On
the other hand, parameters such as SLA and DACs exhibit very low variability between
−0.05 and 0.05 m.
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4. Discussion

Generally, low-lying regions experience coastal flooding. The findings of this study
indicate that even with the smallest level of extreme coastal water levels (ECWLs), coastal
flooding occurs. This phenomenon is common in low-lying areas such as deltas. Coastal
flooding due to ECWLs can result from a single factor or a compound effect from several
factors. On average, the Volta Delta experiences frequent flooding events (Figure 10) [32].
Most of these events have been attributed to “tidal waves”. However, as global warming
increases extreme sea levels in the coming decades, coastal flooding is expected to become
more frequent [57]. To understand which parameter contributes the most to extreme coastal
events, all ECWLs were aggregated into severity ranks where the 98th percentile is the
most severe, the 60th percentile is severe, and the 30th percentile is less severe. This study
shows that all coastal flooding events in Keta District are in the 98th percentile of coastal
flooding. This further indicates that coastal flooding in the Keta area was reported as a
severe event from 2002 to 2015. ECWLs can result from a single ocean factor such as high
tide, wave, or SLA. However, combining all these factors makes the scenario worse and
more extreme. Coastal flooding at a given location occurs at varying temporal and spatial
scales. This study shows that over the years, there has generally been an increase in the
time spent by ECWLs. From Figure 5, the time spent by ECWLs reaches values as high as
200 hrs/year. This is consistent with the general sentiment of coastal flooding in the Volta
Delta of Ghana over the past decade. In addition, global warming is still on the rise and
thus accounts for the increase in flooding events and time spent per year during the most
extreme events.
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Figure 10. The imagery of beach resorts affected by ECWLs; (A) an aerial view of two major
beach resorts (Aborigines beach resort and Agblor Lodge) in Keta without flooding; (B) gradual
flooding of the Agblor Lodge and Aborigines beach resort being affected by ECWLs; (C) an aerial
view of wave overtopping in the Keta area due to ECWLs. (Photo A obtained from https://www.
agblorlodge.com/gallery_cat/aerial-photograph/ (accessed on 21 April 2023); photo credit of B and
C: Brempong Emmanuel).

The spatial extent of coastal flooding by ECWLs shows that most of the area is poten-
tially flooded in the 98th percentile of coastal flooding. Interestingly, in the 98th percentile
case, parts of the main road and houses would potentially flood in the most extreme case.
This is because the area is generally low-lying, and any minute increase in ECWLs would
result in coastal flooding. The annual number of hours shows a positive (i.e., increasing)
trend (calculated using the hourly ECWL time series for all years) (Figure 5.). The highest
increase rates were observed in the 98th percentile and 2015. This is possible because
coastal areas generally have low ECWL variability (time series variance). Thus, even a
small increase in regional sea level can greatly impact coastal flooding [58]. ECWLs at
the coast results from various, sometimes unrelated contributions, i.e., both natural and
anthropogenic [59]. These include tides, meteorological processes, wave conditions, and
sea level anomalies. Assessing the combination of these factors helps reduce the risk posed
by coastal flooding [60].

For this reason, many global studies have attributed the cause of coastal flooding to
sea level rise without considering the role of other factors along the coast [61–64]. This
factor is equally important, as knowing about it would reduce the magnitude and exposure
of physical damage. Appropriate planning and mitigation measures can be implemented
with proper forecasting of extreme coastal events and a better understanding of the major
contributors to coastal flooding at the local scale [65,66]. It is, however, worth knowing that,
from Figure 7, Pleiades DEM can capture enough beach variations, such as the back beach,
berm, and nearshore topography, compared to global DEM. This is relevant for coastal
flooding studies since beach topography is very important for coastal flood prediction and
how coastal structures impact and protect beaches.

Furthermore, in this study, wave run-up is the primary contributor to ECWLs for
the Keta area. This confirms studies indicating that the Volta Delta is primarily wave-
dominated, and thus all beaches are primarily formed and affected by wave activity [66,67].
In this study, the ECWLs at the 98th percentile have the wave run-up contributing as much
as 70% to them (see Figure 8). In general, in the swash zone, single waves propagate
beyond the slope of the beach and shoreline [68,69]. This area experiences significant
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erosion and wave overtopping during storms, as seen in Figure 10C. Water continuously
covers and uncovers this area (Figure 10B). In particular, during a strong storm surge,
waves affect the barrier beach or foredune more [70]. This also confirms the study by [18],
which indicates that coastal flooding occurrences are expected to increase significantly in
the coming decades.

For this reason, as the sea level rises, the study results show that considering wave
contributions to long-term changes in total water level at the coast would lead to more
accurate decadal forecasts and longer-term projections of total water level at the coast.
Figure 9 shows the variability of the contributors in the ECWL. The tide is more variable
on all time scales. Normally, the tide varies, including diurnal, biweekly with spring
and neap tides, and seasonal and interannual scales. This explains why the tide is the
most variable parameter among all parameters despite the predominance of waves in
Figure 8. However, it is impossible to predict the phase between the tide and the wave
run-up, which depend on independent factors. Overall, this increases the uncertainty
of both short-term deterministic forecasts [17], while the probabilistic approach is more
suitable for long-term prediction of overtopping and flooding [71]. Other factors, such
as SLA and DACs, contribute to ECWLs, but their effects are rarely seen in the ECWLs.
Using the Pleiades-derived DEM has proven to show how promising the Pleiades would
contribute to studies in the coastal environment compared to global DEMs. This would be
very helpful locally, particularly for coastal managers and engineers. Although operational
accuracy without a ground control point is not yet possible for coastal studies at this stage
(as stated by [22,35,72]), the limitations in accuracy encountered suggest that satellite-based
topography monitoring can be a significant advancement in overcoming long-standing
technological barriers in monitoring, thereby supporting local coastal engineering and
coastal monitoring. By offering local perspectives, this study offers valuable insights for
developing evidence-based measures to minimize damage and injury. As a result, using
ECWLs will attract considerable attention from diverse audiences in West Africa, including
researchers, practitioners, decision makers, and policymakers from various fields such
as catchment management, engineering, economics, disaster management, and science-
informed policy planning.

5. Conclusions

This study quantified coastal flooding from 1994 to 2015 in the historical city of Keta in
the Volta Delta, Ghana. High-resolution coastal topography derived from Pleiades satellites
and extreme coastal water levels (ECWLs), including wave contribution, were used to
map potential flood areas. During the most severe situation (98% percentile of ECWLs),
43% of the Keta area is potentially flooded, including roads and inhabitants’ houses. The
major hydrodynamic contributor to coastal flooding is wave run-up, which differs from
Senegal, where tide dominates. On the other hand, while wave run-up dominates, the
tide is more variable, indicating the key role of the phasing between components. The
time spent (hrs/year) with potential severe flooding from 1994 to 2015 is increasing due to
global mean sea level rise, as observed by satellite altimetry. It will most likely accelerate
over the twentieth century with more and more people being displaced. Our local findings
can help decrease exposure to damage and injury by developing pertinent science-based
protection and mitigation solutions.
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