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Abstract: The salinity of estuarine areas in arid or semi-arid environments can reach high values,
conditioning the distribution of vegetation and soil surface characteristics. While many studies
focused on the prediction of soil salinity as a function of numerous parameters, few attempted to
explain the role of salinity and its distribution within the soil profile in the pattern of landscape
units. In a wadi estuary in northern Morocco, landscape units derived from satellite imagery and
naturalistic environmental analysis are compared with a systematic survey of salinity by means of
apparent electrical conductivity (Eca) measurements. The comparison is based on the allocation of
measurement points to an area of the estuary from Eca measurements alone, using linear discriminant
analysis and four machine learning methods. The results show that between 57 and 66% of the points
are well-classified, highlighting that salinity is a major factor in the discrimination of estuary zones.
The distribution of salinity is mainly the result of the interaction between capillary rise and flooding
by the tides and the wadi. The location of the misclassified points is analysed and discussed, as well
as the possible causes of the confusions.

Keywords: estuary; salinity; zonation; satellite imagery; electromagnetic induction; discriminant
analysis; machine learning

1. Introduction

Due to their very low altitude, estuarine areas are outpost regions exposed to climate
change, one of the consequences of which is the rise in sea level [1–4]. They are not only
subject to alternating tidal flooding twice a day, the amplitude of which varies according
to astronomical cycles [5], but also to freshwater, which depends on the distribution
of rainfall locally and in the river catchment. This results in gradients in the spatial
distribution, intensity, and duration of flooding, making them extremely dynamic, complex,
and particularly interesting environments to study [6].

In arid or semi-arid areas, these estuarine zones can have extreme ranges of soil and
groundwater salinity, with salt being concentrated by evaporation during dry periods
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while being exported from areas influenced by fresh river water [7]. This wide range of
salinity is an original feature, but it can also lead to methodological difficulties in data
processing in case of extreme values and strong gradients. Several factors are likely to
disturb, temporarily or permanently, the balance of salt distribution in estuarine landscapes.
These factors include short-term climatic factors, during rather dry years when freshwater
inflow from the river will be moderate, or rather wet years with more significant freshwater
inflow. There are also long-term climatic aspects, which modify the aridity of certain regions,
and are already causing a rise in the seas and oceans, with the extension of the salt water
wedge increasing in coastal areas [8,9]. On the scale of a few thousand years and in tropical
areas, mangrove vegetation is developing that can accumulate sulphides [10]. During
oxidation following marine regression, or following the artificial drainage of soils for land
use, this potential acidity is likely to manifest itself, solubilise the carbonates present, and
precipitate sulphate salts, which, within the profiles, are superimposed on the salts resulting
from the direct evaporation of a salt water table [11,12]. Finally, there are anthropogenic
effects, such as the development of estuarine areas through irrigated agriculture, which
imposes a certain amount of freshwater pressure locally, but also through pumping of the
saline water table and forced evaporation on the surface to exploit the salts. This brief
overview highlights the diversity of processes that can lead to the distribution of salts in
estuarine landscapes. Beyond a certain salinity threshold, which depends on the type of
natural vegetation and its stage of development, plant growth and biomass production
are impacted. Therefore, the spatial distribution of soil salinity is often highlighted by a
specific zonation of different groups of halophilic vegetation, each group corresponding to
a given level of salinity [13]. Similarly, the surface condition of the soil differs according
to the duration and frequency of flooding periods. It is therefore possible to map the
different vegetation zones or surface states using satellite imagery coupled with field
surveys. Such a naturalistic landscape analysis incorporates, consciously or unconsciously,
many factors. On the other hand, modern geophysical tools, and more particularly low-
frequency electromagnetic induction, make it possible to measure soil salinity rapidly and
to multiply georeferenced measurements in order to obtain an accurate salinity map [14].
These are documents based on few parameters, but many point measurements.

The aim of this work, carried out in a North African estuarine environment, is to
determine how these two approaches can be correlated and to take advantage of their
complementarity in order to better understand the processes behind the distribution of
salts in this type of environment. In other words, the aim is to assess the importance
of soil salinity in the zonation of the estuarine landscape. The two approaches will be
compared, i.e., salinity mapping from in situ measurements on the one hand, and zonation
of surface states, halophilic vegetation, and more generally, landscape analysis on the other.
For this comparison, two families of methods will be used; on the one hand, the classical
linear algebra methods, such as discriminant factor analysis, a widely proven mathematical
method, and on the other hand, machine learning methods that free themselves from
the constraint of linearity of the boundaries between the different environments in the
data hyperspace.

2. Materials and Methods
2.1. Study Area

The study area (35◦54′ to 35◦65′ north and 5◦87′ to 6◦01′ west) is located on the Atlantic
coast of the Tangier peninsula in northwestern Morocco. It has an area of about 16 km2 in
the estuary of Oued Tahaddart and its tributary Oued Mharhar. It is a low and marshy
alluvial plain surrounded by hills, whose altitude varies from 50 to 228 m (Figure 1).

The geological context consists mainly of formations of the northwestern Rif related
to the two Rifian structural domains, namely, the flysch domain represented by the Nu-
midian, and the external domain by the Tangier unit, the internal Prérif and the Habt [15].
These formations are covered by more recent deposits made up of Neogene post-mantle
biocalcarenites, upper Tortonian blue marls, Messinian sandy marls, lower Pliocene quartz
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sands, then quaternary deposits constituting fluvial terraces and continental accumulation
glaciers [15,16]. The marine quaternary is visible along the Atlantic coastline [17,18].
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Figure 1. Study area in northern Morocco: (a) delimitation of five zones from satellite images and
field observations; note the presence of salt exploitation sectors and the outlet of the watershed
from the Haouta Ben Mediar hill (red arrow); (b) location of apparent electrical conductivity (ECa)
measurement points. Coordinates are WGS84 in metre.

The climate is typical of the western Mediterranean area, with a short, cold, rainy
winter (November to April) and a dry, hot summer (May to September). Annual rainfall is
relatively high, ranging from 655.8 to 765.3 mm [19], but irregularly distributed throughout
the year with a maximum in December. The average annual temperature is 18.2 ◦C, with a
maximum in August and a minimum in January (27.3 and 14.3 ◦C, respectively) [18].

The flow regime of the Oued Mharhar, with an average discharge of about 1 m3/s [20],
is controlled by the rainfall regime. The alluvial plains of the wadi are periodically flooded
by fresh water during floods, most notably when there is a combination of the arrival
of atlantic depressions and high tidal coefficients around the equinoxes. During heavy
rainfall events, freshwater flows prevent saltwater upwelling, whereas during dry periods,
the wadi channels are invaded by marine waters towards upstream [21,22]. A survey of
the study area was conducted based on Google Earth (USGS) images from 2003 to 2021,
as well as on field observations, including a detailed floristic survey. Five areas were
distinguished, namely:

1. A hilly area covered by xerophilous vegetation where permeable and well aerated
sandy soils are developed;

2. A zone covered by halophytic plants. This zone actually includes several types of
halophytic vegetation and several types of soil surface conditions, which vary spatially
over short distances;

3. A non flooded saline bare soil zone;
4. A periodically flooded barren zone;
5. A frequently flooded barren zone (Figure 1a).

To this zonation, we must add some information likely to influence the distribution
of salinity, such as the outlet of a watershed from the Haouta Ben Mediar hill to the south
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of the area (Arrow on Figure 1), and the presence of two sectors of salt exploitation by
pumping the water table, one old, the other still in activity. Field data acquisition was
complemented by 60 salinity measurements in the water table, either from hand auger
holes in the alluvial plain or from existing wells in the surrounding hills.

2.2. Soil Salinity Measurements

Soil salinity was assessed by low frequency electromagnetic induction with a portable
electromagnetic conductivity meter type EM38B (Geonics Ltd., Ontario Canada) [14,23–26].
This instrument measures the apparent electrical conductivity of the soil (ECa) in mil-
lisiemens per meter (mS m−1). This cost-effective, noninvasive technique provides a high
number of quantitative measurements that may be easily georeferenced and are therefore
well suited to assess the temporal and spatial variability of soil salinity [27]. The device was
used with both vertical (ECaV) and horizontal (ECaH) modes. Under these conditions, it is
estimated that about 75% of the signal comes from the upper 1.8 metre and 1 metre of the
soil, respectively [14]. The combination of these two measurement modes (ECaV/ECaH)
therefore allows estimating the saline profile, either upward for lower values or downward
for higher values [23,28]. The measurement range is 0 to 1000 mS m−1. For values above
700 mS m−1, a correlation was established for both, ECaV and ECaH, between measure-
ments at the topsoil and at 0.7 m above ground, which was then applied to estimate ECa
values over areas of high salinity. This procedure causes a loss of accuracy both in terms of
ECa and of salinity gradient evaluation, but it allows the instrument to remain in a mea-
surement range with a substantially linear response. The 4171 measurement points were
georeferenced with an accuracy of about 2 to 3 m using GPS. They cover the whole study
area with a variable density according to the lateral gradients of ECa values (Figure 1b),
but also with higher density on pilot sites for further research (not presented in this work).
The measurement campaign took place from August to September 2021, combining low
tidal coefficients and low wadi flow in order to have a maximum surface of exposed soil.

2.3. Statistical and Geostatistical Tools
2.3.1. Normality Test

Shapiro–Wilks normality tests were performed on the salinity data, both raw and
log-transformed, on the whole data set or separately on each of the five zones. In addition,
quantile–quantile (QQ) plots were constructed to visually compare the residuals of each
distribution to a normal distribution of the same mean and standard deviation [29]. The
diagonal on these plots represents the normal character of the distribution. The closer the
points of the studied data distribution are to the diagonal, the closer the distribution is
to normality.

2.3.2. ECa Data Spatial Analysis

Sample variograms were calculated to describe the spatial structure of ECa and
log(ECa) variables. Variograms were estimated from the formula:

γ(h) =
1

2N(h)∑
N(h)
i=1 (s(xi)− s(xi + h))2, (1)

where N(h) is the number of pairs of points, and s(xi) and s(xi + h) are the ECa or log(ECa)
values at xi and xi + h. The analysis of the variograms was based on their standard
characteristics, i.e., range, sill, and nugget effect. The directional variograms, for which
point pairs are only included in the calculation of the semi-variance if they were within a
20 degree angular sector, were calculated to obtain a maximum range. The angle minimising
the range was then refined by reducing the sector step to 4 degrees. A model variogram
was fitted to the sample variograms using the least squares method. Finally, ordinary
kriging was used to construct ECa or log (ECa) distribution maps.
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2.3.3. Discriminant Analysis

A discriminant analysis (DA) was performed to check whether each measurement
point could be identified as belonging to one of the five zones from the ECa measurements
alone. DA consists of finding a discriminant function that projects the points onto a line
passing through the centroids of the scatter plots corresponding to each zone in an optimal
direction in order to best discriminate these scatter plots. However, this proven method has
two drawbacks. The first is the linear nature of the approach, which does not necessarily
match the nature of the boundaries between the different zones in the data hyperspace. The
second is that the effectiveness of the discrimination is assessed on the same dataset that
was used to find the discriminant function, and not on a dataset that is independent of the
analysis result. To overcome these two drawbacks, non-linear machine learning methods
were also used [30].

2.3.4. Machine Learning

Four widely used machine learning algorithms were compared to the discriminant
analysis, namely (1) linear naïve Bayesian classification (NBC), a supervised learning algo-
rithm used for classification, (2) K-nearest neighbours (KNN), a non-parametric, supervised
learning classifier, which uses proximity to make classifications or predictions about the
grouping of an individual data point, (3) K-means clustering (K-means), a distance-based
algorithm that group the closest points to form a cluster, and (4) Gaussian mixture models
(GMM), which assume that there are X Gaussian distributions, that each of these distri-
butions represents a cluster and therefore groups the data points belonging to a single
distribution. The latter two algorithms use the entire data set and distribute it into a given
number of classes (here 5 classes). For the first two algorithms, the dataset was split into a
training part and a test part. Fot this, the data were classified according to their electrical
conductivity and every second sample (50%), every fourth sample (25%) and three out
of four samples (75%) were chosen to form a training dataset, with the rest of the data
used for cross-validation, i.e., to check the performance of the method in classifying the
measurement points according to their area of belonging. In this way, each subset of the
data covers the entire ECa salinity range. The machine learning algorithms used do not
have a linearity constraint, i.e., they can accommodate non-linear (curvilinear) boundaries
between different areas in the hyperspace of the data, and are therefore likely, if this is the
case, to provide better results than discriminant analysis.

All calculations were performed with the XLStat software (addinsoft). A confusion
matrix was used to validate the accuracy of the classification obtained by discriminant anal-
ysis or machine learning. Particular attention was then paid to the location of misclassified
points according to each method used.

3. Results

Within the alluvial zone, the saline water table varies between 1 and 3 m in depth
upstream of the study area, in the area covered by halophyte plants and bare soil, and
between 0.5 and 1.5 m downstream, in the areas of periodic or frequent flooding. The ECa
range was from 3 to 2842 mS.m−1 and from 1 to 2310 mS.m−1, with mean values of 1165 and
858 mS.m−1 for vertical (ECaV) and horizontal (ECaH) mode measurements, respectively.
The coefficient of variation (Cv) was 58% for ECaV and 60% for ECaH. The other statistical
parameters (median, variance, and standard deviation) are presented in Table 1.
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Table 1. Major statistics of the ECa measurements.

Statistique ECaV ECaH ECaV/ECaH

N. of observations 4171 4171 4171
Minimum 3 1 0.20
Maximum 2842 2310 2.19

Median 1102 840 0.73
Mean 1165 858 0.71

Variance 459919 262159 0.01
Stand. deviation 678 512 0.10
Coef. of variation 0.58 0.60 0.14

The normality tests led to the rejection of the hypothesis of a normal distribution, both
on the raw and the log-transformed data (Figure 2c,f). However, although the normality test
was still negative, the Q-Q plots suggested that when each zone was analysed separated,
the distribution of the log-transformed data approached normality as illustrated for the
hills area (Figure 2,d) and the halophytes area (Figure 2b,e).
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Histograms for raw and log-transformed data on the whole area are presented in Figure 3.
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Figure 3. Frequency distribution of data for (a) ECaV, (b) ECaH and (c) the ECaV/ECaH ratio.

The average salinity values on each landscape unit were more or less contrasted. The
range of salinity followed the succession hills < halophytes < bare soils < frequently flooded
area < periodically flooded area (Table 2). While the hill zone was quite distinct, there
was a significant overlap of ECa values for the halophyte zone and bare soil on the one
hand, and for both flood zones on the other, both for the vertical (ECaV) and horizontal
(ECaH) measurements.

Table 2. Means and standard deviations of ECaV and ECaH values (mS m−1) for each zone of
the estuary.

Hills Halophytes Bare Soils Frequent Flooding Periodic Flooding

ECaV Mean 252 786 1034 1698 1792
Stand. Dev 355 320 242 285 393

ECaH Mean 182 559 767 1268 1333
Stand. Dev 275 247 197 203 286

The raw and directional variograms at 58◦ and 148◦ for the vertical mode measure-
ments ECaV and log (ECaV) are plotted in Figure 4. The variograms show periodic
structures, which are consistent with the presence of spots. The smaller range for the
58◦ angle and the maximum range for the 148◦ perpendicular suggest that these spots
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were roughly oriented along the wadi axis, i.e., parallel to the hydrological axis of the
study area. For a study area of 16 km2, the number of 4171 measurements corresponded to
one measurement per 3832 m2, i.e., on average, one measurement every 62 m. This value
was much lower than the range, which was around 500 metres. The map calculation is
therefore reliable.
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Figure 4. (a)Variogram and adjusted spherical model for ECaV and log(ECaV) and (b) directional
variogram for ECaV at angle 58◦ and its perpendicular at angle 148◦.

The resulting kriging maps of ECaV, ECaH, and ECaV/ECaH data are presented in
Figure 5. There was an upstream–downstream salinity gradient, but also a lateral variation
with the highest values concentrated at the edge of the alluvial plain, near the contact with
the hilly areas. In this sector of highest salinity, the ECaV/ECaH ratio was rather low (1.3
to 1.35), reflecting an upward saline profile and capillary rise.

The results of the discriminant analysis and the confusion matrix in the classification of
the points according to zones are presented in Tables 3 and 4. The best rate of well-classified
points was obtained by considering the raw data (ECaV and ECaH), and the logarithm of
the conductivity ratio log(ECaV/ECaH), which contains information on the vertical salinity
gradient within the soil profiles. Under these conditions, the rate of well-classified points
was 62.29%.

Table 3. Rate of points well-classified according to data conditioning (raw or log-transformed) and
according to the consideration of the salinity gradient within the soil profiles (ECa ratio).

ECaV ECaV, ECaH ECaV, ECaH Log(ECaV) Log(ECaV), Log(ECaH)
And And And And And

ECaH ECaV/ECaH log(ECaV/ECaH log(ECaH) log(ECaV/ECaH)

Well-classified 60.66% 59.22% 62.29% 56.39% 55.26%

Table 4. Results of the discriminant analysis using variables ECaV, ECaH, and log(ECaV/ECaH).

From\To Freq. Flooding Per. Flooding Halophytes Hills Bare Soils Total % Correct

Freq. flooding 760 46 10 1 51 868 87.56%
Per. flooding 784 222 28 6 60 1100 20.18%
Halophytes 97 2 1008 87 135 1329 75.85%

Hills 16 3 100 537 31 687 78.17%
Bare soils 19 0 97 0 71 187 37.97%

Total 1676 273 1243 631 348 4171 62.29%
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Figure 5. Salinity distribution map of the study area for (a) ECaV, (b) ECaH, and (c) ECaV/ECaH ratio.

The points from the frequent flooding zone had the highest rate of good classification
(87.56%). The hilly area also showed a good result, with 78.17% of well-classified points.
This is the area with the lowest average salinity. On the other hand, the rate of well-classified
observations was lower for the other zones, with many confusions between the bare soil
zone and the halophyte zone, and a very poor discrimination of the sector with periodic
flooding, with only 20.18% of well-classified points. The distribution of the misclassified
points is presented in Figure 6. The points misclassified as belonging to the hill zone were
mainly located in the north of the study area, i.e., at the immediate edge of the hill zone, in
the first 300 m of the halophyte zone with lower salinity (Figure 6a). Points misclassified
as belonging to the halophyte zone were mainly located in the bare soil zone, or along
the steep salinity gradient between the hill zones and the other higher salinity zones. A
similar distribution was observed for points misclassified as bare soil, mainly confused
with the halophyte zone, but also numerous confusions with areas of periodic or frequent
flooding. A concentration of confusions could be noted at the outlet of the watershed from
the Haouta Ben Mediar hill (red arrow on Figure 6a). Concerning the flood zones, the
points misclassified as belonging to the frequent flood zone were located on the former salt
exploitation sector, or accompanied the drainage axes towards the halophyte zone. Again,
a concentration of misclassified points accompanied the steep salinity gradient between
the hills and the periodically flooded area.

Similarly, the results from the machine learning analysis are presented in Table 5. The
best results were obtained with the Bayesian naive classification and 5 nearest neighbours
algorithms and considering 75% and 25% of the points for training and testing, respectively
(Figure 7). On the maps in Figure 7, the density of misclassified points was lower than in
Figure 6 as the test sample was only 1042 points instead of the whole dataset for the other
algorithms. The results presented by these two methods give very similar results, not only
in terms of the percentage of well-classified points, but also in the detail of their location.
There were many confusions along the high salinity gradient line, the points classified as
belonging to the hilly area were mostly concentrated in the northern part of the halophyte
area. The points classified as frequently flooded areas were mainly observed in the former
salt exploitation area, and a few other misclassified points at the outlet of the Haouta Ben
Mediar basin.
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4. Discussion
4.1. A relevant Zonation

The results show the existence of landscape units, each with its own distribution
of ECa values, a phenomenon already observed in estuarine environments [31]. Indeed,
the fact that the distribution of values is multimodal can be explained by the existence
of several zones, each with its own distribution law, which is confirmed by distributions
closer to normality when the zones are analysed separately (Figure 2). The hilly areas show
a high ECaV/ECaH ratio (Figure 5c), which reflects a downward saline profile, and thus a
leaching of salts to depth facilitated by the sandy soil texture. The other areas, on the other
hand, have much lower ECaV/ECaH values, particularly the flooded areas. Due to their
position further downstream, i.e., closer to the ocean outlet, the water table is close to the
soil surface and capillary rise is important and contributes to an upward saline profile. In
the periodic flooding zone, the redistribution of salts under the influence of inundation
is less frequent, which confers a very high topsoil salinity. It is precisely in this area that
people were building salt works for the exploitation of salt for several centuries.

4.2. An Effective Discrimination

Many studies aim at predicting salinity by crossing a set of satellite data combining
biophysical indicators of vegetation, surface condition, and field measurements [32–34], but
few studies focused on the importance of salinity in the zonation of natural or anthropised
environments. In our estuary area, the results of the discriminant analysis show that about
62% of the points can be correctly located as belonging to one of the five zones based on
the salinity values and the salt profile. The NBC and KNN machine learning algorithms
perform slightly better. These results are remarkable considering that only two parameters
ECaV and ECaH were measured, representing the salinity at different depths, but which are
themselves highly correlated with each other (r2 = 0.987). As a result, the information con-
tained in the dataset is poor in terms of diversity, being limited to 1 or 2 parameters. These
conditions are outside the usual framework of application of machine learning algorithms,
which generally rely on a much larger number of parameters for discrimination [35–37].
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Salinity and the salt profile are major parameters in the differentiation of the five zones of
the estuary.

For the discriminant analysis, the best result is obtained from the raw data and the
logarithmic transform of the salinity gradient information. The confusions concern areas
with similar salinity ranges and a high degree of overlap (Table 2), with the two high-
salinity inundation areas on the one hand, and the intermediate-salinity areas of bare
soil or halophyte plants on the other. Taking into account the vertical salinity gradient
within the soil profiles somewhat improves the discrimination. However, for hyper-saline
environments, the measurement of the gradient from vertical versus horizontal salinities
is less accurate for technical reasons, which does not allow the vertical salinity gradient
parameter to play a more important role in the classification of these areas, where the
capillary rise and redistribution of salts can be significant. However, it is an important
criterion describing the operating differential between the zones. Upward gradients (lowest
ECaV/ECaH) reflect areas where capillary rise is almost permanent, while flooding removes
salts from the upper part of the soil profile or redistributes them within the profile itself,
erasing the traces of capillary rise.

The area with a strong salinity gradient between the hilly area and the periodically
flooded area concentrates a high proportion of poorly classified points. This can be ex-
plained by several factors. On the one hand, the location of the hill zone boundary, based
on satellite imagery, is inaccurate by a few metres. On the other hand, the geo-referencing
of the measurement points by GPS also has an inaccuracy which, together with the reading
inaccuracy and the stability of the EM38 equipment, is responsible for the nugget effect
observed on the variograms (Figure 4). An inaccuracy of a few metres can be accompanied
by a very large variation in the electrical conductivity value in this sector with a strong
salinity gradient, leading to class confusion.

The watershed outlet from the Haouta Ben Mediar hill is accompanied by a concen-
tration of misclassified points in the flood valley to the southeast of the study area (red
arrow in Figures 1, 6, and 7). This area appears darker on some of the satellite images
consulted (between 2003 and 2021), but not permanently. In Figure 5a,b it can be seen that
the outlet of the catchment extends into a lower conductivity axis within the floodplain.
The lower ECa values are accompanied by lower ECaV/ECaH values. These observations
suggest the presence of a coarser textured channel below the ground surface where the less
mineralised water from the catchment area flows. This illustrates the presence of structure
not readily identifiable by landscape analysis, revealed by systematic mapping, confirming
the complementarity of approaches to better understand the mechansisms driving salinity
distribution [28,38–40].

4.3. Linearity as a Low-Constraining Condition

The K-nearest neighbours (KNN) algorithm and the naive Bayesian classification
(NBC) perform slightly better than the discriminant analysis when assigning the mea-
surement points to the five zones of the estuary, which is not always the case in salinity
class prediction studies [32,41]. This suggests that the linearity condition imposed by the
discriminant analysis is not very restrictive, but this difference can be interpreted as the
fact that the boundaries between zones in the data space are not linear, but curvilinear and
irregular. The logarithmic transformation of the data, a procedure that would be more
suitable for curvilinear boundaries, is monotonic and regular, and does not improve the
result. On the other hand, machine learning methods, especially K-nearest neighbours, can
cope with irregular boundaries between different areas in the data space [30], which might
be the case in our study.

4.4. Factors Other Than Salinity and the Saline Profile

Salinity and salt distribution in the soil profile are key factors in the discrimination
of the five estuary zones, but they are not the only factors responsible for the distribution
of vegetation, including halophyte plant associations. The granulometry of the soil and
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the frequency/duration of flooding determine the aeration status of the soil and its redox
level. For the same salinity, better aerated environments will be likely to be colonised
by vegetation, whereas highly reducing environments will be devoid of it [42–44]. The
movement of sand transported to the surface by the wind according to the topography can
modify the assessment of surface conditions when drawing the zonation. As a result, the
distinction between halophyte and bare soil zones can be misjudged. It is important to
note that the establishment of halophytic plants is not instantaneous. These plants are slow
growing [45], despite high yields under cultivated and seawater-irrigated conditions [46].
Any change in salinity, which can be rapid, is not immediately accompanied by a change in
vegetation cover. The river system is extremely active in estuarine environments. This was
clearly visible on the satellite images consulted between 2003 and 2021. The position of
the wadi and its meanders changes frequently, which notably blurs the zonation between
frequent and periodic flooding zones. The same applies to the secondary hydrographic
network and the tidal channels, which are generally fractal in structure [47,48] with vertical
walls of about 1 metre. They can grow, expand, or fill in as the wadi wanders. This leads to
a slow modification and readjustment of water and salt transfers in the landscape. For all
these different reasons, the surface mapping does not represent the hydro-saline balance in
detail with recent operating conditions of the estuary.

5. Conclusions

This study aimed to better understand the role of salinity, its intensity, and distribution
within soil profiles, on the zonation of an estuary in northern Morocco. The five zones
mapped by naturalistic landscape analysis and satellite imagery have their own statistical
distribution of apparent electrical conductivity, with more or less overlapping ranges. The
various classifications by discriminant analysis or machine learning algorithms correctly
position from 57 to 66% of the points in their original area, attesting to the importance of
salinity alone on the characteristics of the estuary areas. The saline profile within the soils,
ascending or descending, is a secondary parameter, but it contributes to a better differ-
entiation of the zones. The presence of curvilinear and irregular boundaries between the
zones in the data hyperspace can explain slightly better results obtained by two algorithms,
namely naive Bayesian clustering and 5 nearest neighbours. The statistical methods of
discriminant analysis and machine learning help to critically review the zonation of surface
states and the understanding of the mechanisms responsible for their spatial distribution.
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