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ABSTRACT

Land use and Land cover change (LULCC) is a major global problem, and projecting change is
critical for policy decision-making. Understanding LULCCs at the watershed level is essential for
transboundary river basin management. The present study aims to analyse the past and future
LULCGs in two significant watersheds of the Senegal River basin (SRB) in West Africa: Bafing and
Faleme. This study used Landsat images from 1986, 2006 and 2020 and the Random Forest
classification method to analyze past LULCCs in these two watersheds. The results revealed: In
Bafing, vegetation, settlement, agricultural areas and water increased, while the bareground
decreased significantly between 1986-2020. In Faleme, two periods have different trends.
Between 1986-2006, vegetation, settlement, agricultural areas and water increased, while
bareground decreased. Between 2006-2020, settlement increased, while vegetation, agricul-
tural areas, water and bareground decreased. To predict LULCCs in 2050 under business-as-
usual assumptions, the Multilayer Perceptron and Marcov Chain model (MLP-MC) was used.
The MLP-MC shows better results on Bafing than on Faleme but without questioning its
application on the two watersheds. Bafing has seen a trend towards "more people, more
trees”, while Faleme has seen a trend towards "“more people, more deforestation”. These results
contribute to develop appropriate land management policies and strategies to achieve or to
maintain sustainable development in the SRB.
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Introduction and altitude can also influence these changes (Anwar

Land use and land cover change (LULC) is a challenge
and a key focus of global change research. Land use
(habitat, agricultural) and land cover (forests, wet-
lands, grasslands and water) have different meanings
and are often used interchangeably (Tadese et al.,
2021). LULC changes are the result of changes in the
Earth’s land surface, such as the transformation of
natural land cover (forests, grasslands and deserts)
into human-dominated ecosystems (cities, agricultural
and industrial areas) (Liping et al., 2018; Winkler et al.,
2019). These changes significantly affect critical ele-
ments of our natural capital, such as vegetation, water
resources and biodiversity (Chang et al., 2018; Solly
etal., 2021). The dynamics of LULC change are not the
same in all regions of the world due to different driv-
ing factors (Berihun et al., 2019). Although anthropo-
genic factors have been proven to be the main drivers
of changes, factors such as climate, slope, appearance

et al., 2022; Mekonnen & Manderso, 2023). In West
Africa (WA), notable LULC changes have been
observed (Andrieu, 2018; Barnieh et al., 2020; Cabral
& Lagos, 2017; Diallo & Zhengyu, 2018; A. Traore
et al.,, 2018; S. S. Traore et al., 2022). These authors
shown that WA has undergone significant changes
over the years, and the causes are generally attributed
to rapid population growth and increased agricultural
areas. Even if the information on LULC changes at the
regional or national scale is available, it is essential to
study at the local scale (Fikadu & Olika, 2023). Indeed,
studies of watershed-based LULC changes are crucial
tools for policymakers, planners and local commu-
nities to formulate appropriate policies and strategies
in the future (Berihun et al., 2019; Thiam et al., 2022).

Advances in remote sensing and Geospatial
Information Systems (GIS) have resulted in high-
resolution products and LULC models for mapping,
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detecting and predicting LULC changes (Liping et al.,
2018; S. K. Singh et al,, 2015; Wang et al,, 2021).
Google Earth Engine (GEE) is an open-source, cloud-
based geospatial processing platform that provides
free access and open-source satellite datasets
(Landsat, Modis, Sentinel) with a high spatial resolu-
tion for extended periods (L. Yang et al., 2022). Google
Earth Engine (GEE) is the most popular big geo data
processing platform, which provides a set of state-of-
the-art classifiers for pixel-based classification used for
LULC mapping. The main advantage of GEE is the
close link between the data and the algorithms, both of
which are accessible via an Application Programming
Interface (API) (Gorelick et al., 2017; Shelestov et al.,
2017). Due to its accessible and user-friendly design, it
has grown in popularity recently (Dubertret et al.,
2022; Jampani et al., 2020; Nasiri et al., 2022; Ougahi
& Mahmood, 2022).

The success of any LULC mapping depends on
several factors, including the choice of an appropriate
classification algorithm (Lu & Weng, 2007). Advanced
classification algorithms such as Regression Trees
(CART), Random Forest (RF), kNearest Neighbor
(k-NN), Support Vector Machine (SVM), Artificial
Neural Network (ANN), Multinomial Logistic
Regression (MLR), Maximum Likelihood
Classification (MLC), and Bayesian classifiers have
attracted considerable attention in image classification
for LULC mapping (Ma et al., 2019; Macarringue
et al., 2022). Authors such as A. D. Kulkarni and
Lowe (2016) and Talukdar et al. (2020) have con-
ducted comparative studies between several classifica-
tion algorithms to identify the most suitable and
accurate classification algorithm for LULC mapping.
Their results indicated that Random Forest showed
the best performance for the LULC classification com-
pared to other classifiers. The main factors behind its
widespread use in multitemporal LULC classification
are (1) effective management of outliers and noisy
datasets; (2) satisfactory results with multi-source
and high-dimensional datasets; (3) superior accuracy
to other widely used classifiers, like SVM or MLC in
many applications; and (4) speeding up processing by
concentrating on essential factors (Amini et al., 2022;
Noi Phan et al., 2020).

Modelling LULC changes using remote sensing
data and determining factors helps answer the ques-
tion of how LULC change and how it may change in
the future (Sankarrao et al., 2021). Several methods
have been adopted to predict future LULC changes.
These methods can be classified into non-hybrid and
hybrid methods. The non-hybrid approaches, such as
Markov Chain (MC), Artificial Neural Network
(ANN), Cellular Automata (CA), have been widely
used to identify the transitions in LULC classes and
have been accurate in predicting LULC changes (Silva
et al., 2020; V. G. Singh et al., 2022). The Non-hybrid

methods have limitations in predicting LULC changes
(Noszczyk, 2019). To overcome the limits of indivi-
dual models, hybrid models have been introduced by
combining several modelling approaches to address
the complexity of real-world systems (Gaur et al,
2020). The hybrid models can capture LULC changes
with greater accuracy (Gaur et al., 2020; Sankarrao
et al., 2021). Clark Labs developed an integrated
LULC model based on GIS and remote sensing,
known as the Land Change Modeler (LCM), to
explore future changes in LULC using a Multilayer
Perceptron neural network (MLP) and Markov chain
(MC) (V. Mishra et al., 2014). Given its robustness and
popularity, the MLP-MC model seems the most sui-
table for modelling spatiotemporal dynamics and pro-
jecting future LULC change scenarios. Gaur et al.
(2020) used hybrid and non-hybrid models to capture
LULC scenarios for the Subarnarekha River and found
that the MLP_MC model was the best-suited model.
Examples of applications can be found in (Fathizad
et al., 2015; Leta et al., 2021; V. N. Mishra et al., 2018;
Sankarrao et al., 2021).

The Upper Senegal River Basin (SRB), located in
WA, is a transboundary basin bordered by four coun-
tries: Guinea, Mali, Mauritania and Senegal. It is
formed by several watersheds. Understanding LULC
changes at a watershed level in transboundary
watershed management is crucial (Thiam et al., 2022).
Unfortunately, there are few studies on LULC changes
in the SRB. Only one previous study was conducted by
Faty (2017). Faty (2017) used Modis-Terra satellite data
from 2007 and 2014 and maximum likelihood classifi-
cation to analyze the LULC dynamics across the SRB.
The main limitation of this study is that the author
evaluated the LULC changes considering that all water-
sheds constitute a single socioeconomic, land and agri-
cultural environment. The author didn’t consider the
influence of the socioeconomic configuration specific
to each watershed. Although LULC change is
a common phenomenon, it is challenging to generalize
trends within a particular region, such as the SRB
(Berihun et al., 2019). In addition, no study has
attempted to simulate the future trends of LULC
changes considering each watershed in the SRB.
Therefore, as part of this study, we aim to fill these
knowledge gaps to understand the spatiotemporal
variability of LULC changes in two watersheds in dif-
ferent socioeconomic and agricultural environments at
the SRB: the Bafing and the Faleme. This study aims: (i)
to map the LULC (1986, 2006 and 2020) in the two sub-
watersheds with the Random Forest (RF) classification
method; (ii) to simulate the future trends of LULC
change of 2050 based on the hybrid model
(MLP_MC) in LCM and (iii) to analyze the spatiotem-
poral variability of LULC in these two watersheds. This
study is relevant for the riparian states of the Senegal
River basin grouped into the organization for the



development of the Senegal River (OMVS) to evolve
policies specific to each watershed.

Materials and methods
Study area

The study area is in the SRB, between Senegal, Mali,
Mauritania and Guinea Conakry (Figure 1). The two
watersheds belong to different administrative regions:

¢ The Bafing is the main constituent of the Senegal
River and originates near Mamou (Guinea
Conakry) (nearly 1,000 m above sea level). It
extends between latitudes 10°30“and 12°30”
N and longitudes 12°30” and 9°30°'W and covers
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northwest Guinea Conakry and southeastern
Mali. It drains the entire eastern part of the
Fouta Djalon and feeds the Manantali
Hydropower dam (Sambou et al., 2023)

e The Faleme also has its source in the northern

foothills of the Fouta Djalon in Guinea Conakry.
It is a major tributary of the Senegal River, which
it joins at the meeting point of the borders of
Senegal and Mali at the level of the city of
Ballou. The Faleme lies between latitudes 12°
11'-14°27'N and longitudes 11° 12°-12°15W in
the humid tropical regions and the southern mar-
gins of the Sahel. The main biophysical
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Figure 1. Location map of the bafing and faleme in the SRB in WA, between senegal, mali, Mauritania, and guinea conakry.
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characteristics of the watersheds studied in the
SRB are presented in Table 1.

Data source

The acquisition of satellite images is the first step in
LULC mapping. The choice of satellite images is based
on four criteria: spatial coverage, spatial resolution,
available years, and cloudiness (minimum) (Horning,
2004; Martignac,). Landsat satellite images were cho-
sen, in this study. It is the oldest of the earth observa-
tion programs, thus having an archive of images over
a long period (more than 30 years) (Woodcock et al.,
2008). It offers a sufficient level of detail to identify the
characteristics of the LULC. Google Earth Engine
(GEE) provides surface reflectance images that are
corrected atmospherically and improve the detection
of changes (Wahap & Shafri, 2020). The images
selected are presented in Table 2. As supplementary
input data, we included the digital elevation model
(DEM) (ALOS World 3D-30 m), distance from the
road, distance from the river, and distance from the
settlement.

Land use and land cover mapping

This study used GEE (Gorelick et al., 2017; Shelestov
et al., 2017) to build the LULC map through Landsat
image processing, supervised classification, and classi-
fication accuracy. Figure 2 describes the general steps
followed to make the maps. Details will be provided in
the following sections.

Preprocessing

Orthorectified and atmospheric corrected Landsat
Surface Reflectance Tier 1 images available for Landsat
OLI/TIRS and MSS/TM sensors were collected in GEE
for the years of interest (1986,2006,2020). The cloud
cover function in GEE was applied to select the collection
of annual images with a cloud cover of < 15%. The med-
ian ee.Reducer function on GEE was then used to

“reduce” the image collection to a single output image
representing the median of the images (Dubertret et al.,
2022; Noi Phan et al., 2020).

Construction of features

The spectral and topographic features were combined
as input features for LULC classification algorithm.
For spectral characteristics, blue, green, red, Near
Infrared (NIR), and Shortwave Infrared (SWIR) spec-
tral image bands were selected because they have the
potential to discriminate similar spatiotemporal phe-
nomena, thus improving the separability of LULC
classes (Thiam et al., 2022). In addition, numerous
studies have shown that the use of spectral features
from indices such as normalized difference vegetation
index (NDVI) (1), normalized water difference index
(MNDWI) (2), normalized difference accumulation
index (NDBI) (3) as input features for classification
will effectively improve the accuracy of LULC (K.
Kulkarni & Vijaya, 2021; Tsai et al., 2018). Indeed,
the NDVI supplies information on the characteristics
of the vegetation cover. The NDWI provides informa-
tion on the characteristics of water bodies. The NDBI
is used to get the artificial characteristics of the earth’s
surface. In addition, topographical features such as
altitudes and slopes increase the accuracy of land
cover classification (Y. Yang et al., 2021). Hence, the
elevation and slope data were extracted from the DEM
as features for LULC classification (Table 3).

NIR — Red
NDVI = —— ¢ 1)
NIR + Red
Green — SWIR
MNDW] = e = > W% @)
Green + SWIR
SWIR — NIR
NDBl=—— (3)
SWIR + NIR

Classification
In this study, the RF classification algorithm was
used to produce LULC maps for years 1986, 2006,

Table 1. The main biophysical characteristics of the watersheds. Source: (Sane et al., 2020).

Characteristics Bafing Faleme
Area (Km2) 39.01 28.05
Mean Annual Temperature (C) 283 29.3°C
Agro-Ecology Zone Guinean Sudano Guinean Sudano
Mean Annual Rainfall (mm) 1166 800

Major Soil Type
Dominant Crop
Dominant Livestock
Activities

Bovine

Gres Qtz., Dolerites, Granite, Sandstone
Cassava, Maize, Fonio, Sorghum and Millet.

Fishing, Agriculture area, Livestock, Bauxite Mining

Shale, Gres Qtz., Dolerites, Granites
Maize, Rice, Millet, and Sorghum.
Bovine
Fishing, Agriculture area, Livestock, Gold Mining

Table 2. Characteristics of Landsat images selected for the LULC mapping.

Dataset Satellite Sensor Spatial resolution Date of acquisition Band

Image 1 USGS Landsat 5 (Surface Reflectance Tier 1) MSS/TM 30m 1986 Multispectral
Image 2 USGS Landsat 5 (Surface Reflectance Tier 1) MSS/TM (Surface Reflectance Tier 1) 30m 2006 Multispectral
Image 3 USGS Landsat 8 (Surface Reflectance Tier 1) OLI/TIRS (Surface Reflectance Tier 1) 30m 2020 Multispectral
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Figure 2. The procedures used for the LULC classification map.

Table 3. Spectral and topographic features.
Type of features

Feature Name
Blue, green, red, NIR, SWIR
NDVI, NDBI, MNDWI
Elevation, slope

Spectral Bands
Indices
Terrain

and 2020, respectively. Random Forest algorithm is
a method using tree-type classifiers {h(x,Hk), k=
L,...,} where the “Hk” stands for independent iden-
tically distributed random vectors and “x” stands for
an input pattern (Breiman, 2001). In training, the RF
algorithm creates multiple CART-like trees, each
trained on a bootstrapped sample of the original
training data. It determines a split by examining
a randomly selected subset of the input variables
(Gislason et al., 2006). In the classification process,
each tree provides a unit vote for the most popular
class at input x, and the classification of each tree is
referred to as a “vote” for that class (A. D. Kulkarni
& Lowe, 2016). A complete mathematical presenta-
tion of RF is presented by Breiman (2001). The two
important parameters the user must optimize to get
more accurate results are the number of trees
(Ntree) generated and the number of features ran-
domly chosen to divide each node (Mtry). Based on
the pretests from our data, the number of trees was
set to 100, and Mtry was set to the default value
(square root of the total number of features). Five
LULC classes were used in the classification, namely

(1) settlement, (2) water, (3) vegetation, (4) agricul-
tural areas (5) bareground. The details are specified
in Table 4. The same LULC classes were used for
both watersheds to enable the analysis and compar-
ison of the trends between the two watersheds. The
choice of these five classes was based on information
from key stakeholders in each watershed and fol-
lowed the trend of previous regional studies, which
employed comparable classes (Faty, 2017; Thiam
et al.,, 2022). To perform RF, samples for each class
were taken from Google Earth. These samples were
used as regions of interest (ROI) to train the RF.
Each ROI was given a certain LULC class designa-
tion. 70% of the sample was used for training, while
30% was used for internal model validation.

Classification accuracy

Assessing the reliability of the classification results is
essential in remote sensing applications. Many
researchers recommend using a confusion matrix
(Table 5), as well as the accuracy indicators derived
from the confusion matrix, including overall accuracy
(OA), user accuracy (UO), and producer accuracy
(PO) to represent accuracy (Foody Giles, 2022;
Szantoi et al., 2021). These indicators show the agree-
ment between the LULC classification results and the
actual LULC (Olofsson et al., 2014). In this study,
a confusion matrix was generated in GEE. OA (4),
UA (5), and PO (6) and kappa index (KA) (7) were
then used to evaluate the reliability of the classification
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Table 4. Description of the five classes used in the study.

Class Name

Description

1 Settlement The human (urban and rural) settlement, housing, roads, transport, mining, and industry.
2 Water Rivers, streams, ponds, lakes, reservoirs, estuaries, and wetlands,

3 Vegetation Forest, savannah, riparian vegetation and mixed forest, and mixed forest land.

4 Agriculture area  Agriculture area (irrigated crops, rainfed crops), Pasture.

5 Bareground

Deserts, sand fields, exposed bareground rock, sand and temporary bare ground, transitional areas, mixed barren land.

(Table Al). All these indices (4,5,6,7) take values
between 0 (indicating disagreement) and 1 (indicating
perfect agreement)). A value above 0.80 for the KA is
considered satisfactory (Stehman, 2014).

q ..
OA; = Zj:l Pjj (4)
Pii
U0, = — 5
Pi )
-
PO, =2 ©6)
Pj
NS Pii — 30 (Pi+ #P + )

K; =

N> =S¢ (Ni+N+i)

P = number pixels

Land use land cover change prediction

This study used the MLP-MC model embedded in
the LCM to simulate future LULC maps. The pre-
diction of future LULC was done in five steps:
change analysis, identification of explanatory vari-
ables, creation of transition potential maps, change
prediction, and validation. LULC maps of the years
1986 and 2006 were employed to analyze the trend
of change, to calculate transition potential maps
and to predict the LULC map of 2020. For model
validation, the LULC map for 2020 was compared
with the predicted LULC map of 2020. After
demonstrating our model’s ability to predict the
LULC map of 2020, the same simulation technique
was used to predict the LULC maps of 2050 using
the LULC maps of 1986 and 2020 based on the
business as usual (BAU) scenario (J. Mas et al.,
2014). The BAU scenario is a scenario in which
future LULC distributions follow the trends

Table 5. Typical confusion matrix for classification validation
(This table has been adapted from Roland (2021)).

Classes 1 2 . k . q Total
1 P Py Pk Piq Piy
2 Py Py, ... Pk ... Paq Py
K Pk1 sz e Pkk e qu Pk+
q Pqi Pq1 ... Pak ... Paq Pas+
Total P P ... Pk ... P.q P

observed in the past and are formulated based on
the transition probabilities and driving factors as
predicted by the model. We assume that the cli-
mate will not disrupt human activities. The general
scheme of the study is presented in Figure 3.

Changes analysis

The first step was the change analysis to define the
transition classes. Changes are described as transitions
from one class of LULC to another (Azari et al., 2022).
The change analysis was performed by using the two
earlier LULC maps with the module change analysis in
LCM. The module change analysis estimates the gains
and losses of each class between the two earlier LULC
maps. Changes in terms of loss (Lij) and gain (Gij) are
calculated using equations (8) and (9) (Thiam et al.,
2021).

>
Lij =(Pi — Pii) (<2

>.j=1Pj

Gij = (Pj — pjj)(ﬁ), where i%]  (9)
where Lij is the proportion of loss from category i to
j under random processes of loss, Pii is the proportion
of category i that showed persistence between the two
times, Gij is the proportion of gain from category i to j,
Pj is the proportion of the landscape in category j at
the end of time, Pjj is the observed persistent propor-
tion of category j, and Pi is the entire area of category
i at the starting point.

), where i#j (8)

Identification of the explanatory variables

The second step was the identification of the explanatory
variables that have driven past LULC changes. Based on
the literature, we selected slope, elevation, distance to the
river, distance to the settlement, and distance to the road
as the main variables influencing the change in LULC
over time (Chinwendu, 2019; Murgante et al., 2014).
Slope and distance to the river were used to represent
the accessibility of a neighbourhood. Distance to road
and distance to settlement were selected to highlight the
proximity of urbanization.

Transition potential modelling

The third step was the determination of transition
potential maps with the multilayer perceptron (MLP)
model in LCM. MLP is composed of a neural network
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based on a feed-forward algorithm with three layers: the
input, hidden, and output layers (J. F. Mas & Flores,
2008). MLP adjust the weights of the input and output
layers using the backpropagation process. It only incor-
porates conductive factors with strong predictive capa-
city into the computation procedure, resulting in
different transition potential maps for each sub-
model. These maps show the ability to change from
one LULC class to another (V. Mishra et al., 2014).
The MLP model was trained and tested using the expla-
natory variables and the change analysis obtained
between the two earlier images as input. The MLP
first created a random sample of cells that transitioned
among LULC classes during the required time and
started the automatic training process. The sample is
divided into two equal parts, 50% of the sample for
training and the remaining 50% for testing the perfor-
mance. Transition potential maps were generated after
the successful execution of MLP training for each class.

Change prediction

The fourth step was using Markov Chain (MC) in LCM
to predict the LULC map for a specified future date. The
historical rate change determined during the change
analysis phase and transition potential maps are used as
input in the MC model to predict the future LULC. The
MC model is a stochastic process that shows the prob-
ability that one state will change into another. The MC

Klo)

model uses this information as the basis to predict future
changes. By examining past changes, MC model creates
a transition probability matrix of changes (V. N. Mishra
et al.,, 2018). Based on a projection of the transition
potentials into the future, the technique estimates pre-
cisely the amount of LULC expected to transition from
the later date to the predicted date and provides
a transition probability file.

Validation

The validation process aims to verify the accuracy
of the predicted map compared to a reference map.
The validation process in LCM involves cross-
tabulation in a three-way comparison between the
later LULC map, the predicted LULC map, and the
actual map. Two approaches have been used for
model validation. The first approach is to use the
metric performance indicators relative operational
characteristic (ROC) and the validation statistics of
various Kappa indices (Kappa for no information
(Kno), Kappa for location (denoted Klocation),
KIA for Kstandard) between the classified map
and the predicted 2020 map to assess the accuracy
of the prediction (Pontius & Batchu, 2003).
A LULC model is valid if the Kstandard is greater
than 70%, according to Zadbagher et al. (2018).
The second approach is to compare the predicted
and actual area of each LULC class.
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Results
Land use land cover maps accuracy

This section presents the results of LULC classifi-
cation for the two watersheds. Figures 4, 5, 6 and 7
show the results of the independently classified
images for 1986, 2006 and 2020. Table 6 presents
the classification accuracies. The overall accuracy is
equal to 96%, 95% and 95% for 1986, 2006 and
2020, respectively. All these indices (user accuracy
(UA), and producer accuracy (PA)) take values
between 0.75 and 0.98 (indicating perfect agree-
ment). The Kappa index obtained for both maps
is above the threshold of 0.8. A value above 0.80 is
considered satisfactory (Olofsson et al., 2014;
Szantoi et al.,, 2021). Therefore, the classification
could be identified as accurate.

Land use land cover change detection

Bafing

According to Figures 4 and 5, in 1986, the area covered
by bareground was the most dominant LULC class,
covering 60% of the watershed. Over the 34 years, this
area has gradually decreased to almost half, from 60%

to 30%. The vegetation area represents the second
most dominant LULC class, covering 36% of the
watershed. This class has continuously increased
from 36% in 1986 to 44% in 2020. Settlement were
the third most dominant LULC class and covered 2.8%
in 1986. However, settlement significantly increased to
16% in 2006 and 18% in 2020. The agricultural areas
were the fourth LULC class, covering 0.8% of 1986 in
the watershed. The extent of agricultural areas
increased from 0.8% in 1986 to 4% in 2020. The area
covered by water was the lowest but increased con-
tinuously over the study period from 0.6% to 3.3%.

Faleme

Analysis of the LULC map of 1986 (Figures 6 and 7)
shows a predominance of bareground, representing an
area of 78% in the watershed. Overall, the area covered
by bareground continuously decreased from 78% to
44% during the study period. Vegetation were
the second most dominant LULC class, covering 20%
in 1986, as in Bafing. However, the extent of vegeta-
tion area increased from 20% to 28% in 2006 and
decreased from 28% to 23% in 2020. Settlement were
the third most dominant LULC class, with an area of
1.7% in 1986. Settlement class increased steadily to
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Figure 4. LULC maps of the Bafing for the years a) 1986, b) 2006, and c) 2020.
LULC Types_Bafing
Classe Name 1986 2006 2020
1 Settlement 2.77 15.95 17.93
2 water 0.59 2.87 33
3 vegetation 35.66 42.73 43.85
4 cultivated_area 0.83 3.97 4.04
5 Bare ground 60.15 34.47 30.87
Total 100 100 100
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Figure 5. Percentage of area per LULC category for 1986, 2006, and 2020.

10% in 2006 and 28% in 2020, becoming the second
most dominant LULC class. Between 1986 and 2020,
the area covered by water increased from 0.46% in
1986 to 1.3% in 2006 but decreased from 1.3% (in
2006) to 1.1% in 2020. The agricultural areas repre-
sented the lowest coverage, covering less than 0.2% of
the watershed in 1986 but increasing markedly from
0.2% to 4.7% in 2006. However, the agricultural areas
class showed a downwards trend between 2006 and
2020, from 4.7% to 3.5% in 2020.

120" W 127000 W

Land use land cover change prediction

Transition potential

The most significant surface state changes were ana-
lyzed between 1986, 2006 and 2020 to select the domi-
nant changes in the modelling procedure. From 1986
to 2006 and from 2006 to 2020, conversions from
bareground to vegetation, settlement, agricultural
areas, and water were the most significant for Bafing.
For Faleme, the overall distribution results for 1986,
2006, and 2020 showed that the most significant
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Figure 6. LULC maps of the Faleme for the years 1986, 2006, and 2020.
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LULC Types_Faleme

Classe Name 1986 2006 2020
1 Settlement 1.7 10.15 27.88
2 water 0.46 133 1.09
3 vegetation 19.62 27.77 23.22
4 cultivated_area 0.2 4.71 3.54
5 Bare ground 78.02 56.05 44.28
Total 100 100 100
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Figure 7. Percentage of area per LULC category for 1986, 2006, 2020.

Table 6. Classification accuracies: user’s accuracy (U.A), producer’s accuracy (P.A), overall accuracy (O.A)
and the Kappa accuracy (K.A) for each of the selected images.

1986

Landcover/land use class PA UA
Settlement 0.84 0.96
Water 0.99 0.99
Vegetation 0.99 0.99
Agricultural areas 0.75 0.87
Bareground 0.98 0.95
Overall accuracy (0.A) 0.96

Kappa accuracy (K.A) 0.95

2006 2020
PA UA PA UA

0.94 0.93 0.97 0.95
0.98 0.99 0.93 0.96
0.98 0.96 0.96 0.95
0.90 0.97 0.85 0.93
0.97 0.94 0.96 0.95
0.95 0.95

0.94 0.94

changes for the period (1986-2006) were transitions
from bareground to settlement, agricultural areas,
vegetation, and water. Over 2006 and 2020, conver-
sions from vegetation and bareground to all other
classes, including water, agricultural areas and settle-
ment, were the most significant.

Model validation

Bafing. On the simulated LULC map of 2020
(Figure 8b), the areas occupied by settlement, vegeta-
tion, bareground, water and agricultural areas are
18.75%, 44.76%, 28.50%, 3.91%, and 4.08%, respec-
tively, against 17.93%, 43.85%, 30.87%, 3.30%, and
4.04%, respectively, on the reference map of 2020
(Figure 8a).

Figure 10 shows no significant difference between
the simulated and predicted areas. The visual compar-
ison of the simulated 2020 map with the actual map is
reasonably similar. In addition, the validation

indicators provide values of ROC = 81.6%, kia (kstan-
dard) =78.34%, Klo=79.86% and kno=2386.83%
(reflecting the overall accuracy of the simulated
map), which are considered satisfactory (Chinwendu,
2019; Olofsson et al., 2014; Roland, 2021; Tiné et al.,
2019). These results indicate that the MLP- CA model
reasonably simulated the LULC map of 2020 and can
be used to project future LULCC in Bafing.

Faleme. On the simulated LULC map of 2020
(Figure 9b), the areas occupied by settlement, water,
vegetation, agricultural areas and bareground are
11.10%, 1.73%, 30.10%, 5.88% and 51.20%, respec-
tively, compared to 27.88%, 1.09%, 23.22%, 3.54%
and 44.28%, respectively, on the reference map of
2020 (Figure 9a). There is a significant difference
between the observed and predicted areas. This differ-
ence is due to the change in trend described above
between the period 1986-2006 and the period 2007-
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2020. Although the validation indicators provide
values of ROC =75.92%, «xia (kstandard) =0.58%,
Klo = 67.14% and kno = 67.14%, (reflecting the overall
accuracy of the simulated map) deemed fair
(Chinwendu, 2019; Olofsson et al., 2014; Roland,
2021; Tiné et al., 2019), the simulated maps for 2020
cannot be considered satisfactory. Thus, our model
cannot be validated for the Faleme. Nevertheless, we
have produced the simulated LULC map for 2050
based on the trend (2006-2020) that describes the
current development in Faleme.

Projected LULC maps

For Bafing, changes in LULC between 1986 and 2020
were first analyzed, leading to transition potential maps
and a probability matrix illustrating the significant
LULCC. The transition probability matrix for the clas-
sified maps is presented in Table 7. Analysis of the
Table 7 results shows that between 1986 and 2020, the
settlement, agricultural areas, and bareground classes
were the most dynamic. Indeed, the settlement and
agricultural areas classes indicate a 45% and 18% prob-
ability of not changing to another LULC class, respec-
tively. At the same time, the area of agricultural areas
and bareground has a probability of 23.6% and 219% of
transforming into settlement. Similarly, the vegetation
class also shows stability with a chance of 80.7%.
Bareground have a high possibility of turning into
vegetation at 22%.

Finally, the LULC projection scenarios for Bafing in
2050 were simulated based on the probability matrix
obtained using the 1986 and 2020 maps. Figure 10
shows the predicted LULC maps for 2050. The results
of this simulation indicate that vegetation will cover the
largest area with 49% in 2050, followed by settlement
with an area of 19%. Bareground will be the third most
dominant LULC class and will cover 22% in 2050. Water
and agricultural areas will each cover 4.8% of the area.

For Faleme (Figure 10), based on the probability
matrix obtained using the 2006 and 2020 maps, the
simulation results show an increase in settlement areas,
and agricultural areas will be observed by 2050. There is
also a decrease in water, vegetation, and bareground.

Discussion

The global environment changes are acknowledged to
be fundamentally and significantly influenced by LULC

changes. This study aimed to evaluate LULCC over 34
years in two watersheds (Bafing and Faleme) of the SRB
and to simulate future changes in LULC in 2050 with
the status quo (BAU) assumption. This study used the
RF classification algorithm and Landsat images from
1986, 2006 and 2020 for the LULC mapping. RF classi-
fication results are very satisfactory with good accuracy.
We noticed that some pixels are poorly classified, espe-
cially in Faleme. This confirms the results of Zurqani
et al. (2018), who suggest that the RF algorithm works
better in areas where LULC types are dominated by
vegetation. The analysis of the post-classification
change detection has reported significant changes in
LULC during the study period.

Analysis of changes in Bafing between 1986 and
2020 revealed the expansion of settlement and agri-
cultural areas at the expense of bareground. These
results corroborate those of Herrmann et al. (2020),
who proved that the intensity of LULC change in
settlement and agricultural areas was high in WA.
Studies have showed that the increase in settlement
and agricultural areas is caused by the increasing
population in the WA (Assede et al., 2023). Indeed,
the average growth rates are 2.5% and 2.7% for the
countries covering our study areas, namely, Guinea
and Mali. Tabutin and Schoumaker (2020) observed
a high population rate in WA and the resulting socio-
economic impacts (increase in agricultural areas).
These results also mirror those of Berihun et al.
(2019), who also found that population increase was
consistent and positively correlated with the expan-
sion of agricultural areas between 1982 and 2006 in
Ethiopia. The results on the increase in vegetation
during 1986-2020 are in good agreement with the
findings of previous studies conducted in Fouta
Djallon Plateau of Bafing in Guinea. Indeed, These
results are consistent with the results of UCAD
(2019) and Descroix et al. (2020), who found
a regreening in Fouta Djallon Plateau of Bafing in
Guinea. The increase in vegetation that coincides
with population growth suggests that population
growth does not always lead to deforestation. Indeed,
Descroix et al. (2020) pointed out that the densely
populated areas of the Fouta Djallon Plateau of
Bafing in Guinea are those where the vegetation
cover is not threatened and where the ecological inten-
sification of rural activities has long been established.
Therefore, the claim “more people, more trees”

Table 7. Transition probability matrix (%) of the LULC map for the period from 1986 to 2006 of Bafing.

Bafing makana Settlement Water Vegetation Agriculture area Bareground
Settlement 0.4515 0.0158 0.2527 0.1149 0.165
Water 0.0491 0.06236 0.2236 0.0014 0.1024
Vegetation 0.0796 0.0358 0.8065 0.0139 0.13
Agriculture area 0.2364 0.0544 0.4893 0.1813 0.3122
Bareground 0.2089 0.0216 0.2157 0.0471 0.6836
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Figure 10. Predicted LULC maps 2050 of a) Bafing and b) Faleme.

proposed in Tanzania by Kabanza et al. (2013) seems
valid for Bafing. In addition, it should be noted that
several projects have been adopted in the Bafing in
Mali to fight biodiversity losses after the construction
of the Manantali Dam. Among these projects, we can
mention the Bafing Faunal Reserve (Mali), the status
of biosphere reserve (Mali), the Natural Resources
Management Project (PGRN/World Bank) in the
1990s and 2000s, the Project for the Extension and
Strengthening of Protected Area Systems, the Bafing
transboundary area protected area project during the
period 2010-2015 (Faty, 2017). Another significant
result obtained is the increase in water between 1986
and 2020. The observed increase in water can be
explained by the recovery of rainfall in this region in
the 1990s, after the drought period of 1960-1970.
Several authors (Bodian et al., 2020; Diop et al., 2016;
Nouaceur et al., 2020) noted a recovery in rainfall in
WA. Bodian et al. (2020) studied the recent evolution
of hydroclimatic variables in the SRB from 1940 to
2013. These results show a recovery in annual rainfall
in the SRB, which improves surface water availability.
Recovery of annual flow was reported after the 1990s
in Bafing (at Bafing Makana station) (Sane et al,
2017). It can also be attributed to the construction of
the Manantali dam in Bafing. The Manantali Dam,
built in 1988, has an area of approximately 477 km?2
and a capacity of 11,791.8 million m? (Bader, 2001). It
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aims to make surface water available and sustainable
throughout the year and to satisfy energy production
and flow regulation, especially in the context of cli-
mate change and variability (Bader et al., 2015).

In Faleme, the analysis of the post-classification
change detection revealed that areas occupied by set-
tlement increased from 1986 to 2020. The results also
show that agricultural areas, vegetation and water
increased significantly between 1986 and 2006.
However, there was a decrease in agricultural areas,
vegetation, and water between 2006 and 2020. These
results can be explained by the artisanal extraction of
gold in Faleme during the last decades.
Overpopulation in Faleme is strongly linked to popu-
lation growth and mining activities (industrial and
artisanal). Faleme supports the gold resources of east-
ern Senegal and Mali Artisanal gold mining has
increased significantly in recent decades, mainly due
to the rising price of gold on the international market
and the difficult socioeconomic situation (Bohbot,
2017). Artisanal gold mining is becoming
a profession like agriculture and livestock in Faleme
(Ministry of Economy and Finance,2018). This activ-
ity generates several sources of income in the different
localities where it is practised, but it also causes several
environmental impacts, including on soils, water
resources and deforestation (Bohbot, 2017). The
results of this study on Faleme are in good agreement
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with the conclusions of previous studies conducted in
regions where gold panning is practiced. For example,
results on the decrease in agricultural areas in Faleme
are consistent with those of Atteyoub and Camara
(2020) and Ndiaye (2020) who reported that the devel-
opment of gold panning has led to the gradual aban-
donment of agricultural practice in this area. Similarly,
Doucouré (2015) in his book “Des pierres dans les
mortiers et non du mais! Mutations in the gold-
mining villages of southeastern Senegal”, describes
the abandonment of agricultural areas in favor of
gold panning. The deforestation and reduced water
surface quality in Faleme is also consistent with the
results of Traoré (2022) at kenieba in Mali and at
Nzema in Ghana Kaku et al. (2021).

The predicted LULC map of 2050 was performed
using the MLP-MC model embedded in LCM with the
BAU scenario. LULCCs prediction involves two dif-
ferent aspects. The first is the amount of change, and
the second is the spatial distribution of change. LCM
provides the amount of change by comparing initial
(1986) and second (2006) LULC maps with the MLP
and then predicting future land cover (2020) using the
MC transition probability matrix for the future. Model
validation is performed by comparing the simulated
LULC map (2020) with the classifier LULC map
(2020)’. For Bafing, the model has been validated
with satisfactory results. The simulation results indi-
cate that the observed and predicted LULC map of
2020 were in good agreement. During the period
2020-2050, the prediction results (based on the past
trend (1986-2020) revealed that vegetation would be
the dominant LULC, but an increase in agricultural
areas, water, and settlement will also be observed in
2050.

For Faleme, the model has not been validated with
satisfactory results. The results showed that the
observed and simulated LULC maps of 2020 were
not in good agreement, and errors for all classes were
noted. These results can be explained by the trend shift
between the previously mentioned periods (1986-
2006) and (2007-2020). The results of the validation
of the MLP_MC model on the Faleme showed
a limitation of deterministic prediction models such
as MLP_MC in LCM. The principle behind MLP- MC
projections is that the rates of change observed during
the calibration phase will remain unchanged during
the simulation period, which in many circumstances,
is an incorrect assumption, according to J. Mas et al.
(2014). Approaches based on historical tendencies
may or may not be effective. The predicted LULC
map 2050 was then obtained based on LULC changes
from 2006 to 2020. The results indicated that the
settlement area increased from 10.15% to 27.88%
from 2006 to 2020, and the prediction results confirm
that it will continue to expand to 32.58% during 2020-
2050, at the cost of a reduction in vegetation (23.22%

to 19.83%). Such a loss of vegetation is expected to
reach a critical threshold in the coming years, showing
the need to develop better spatial planning and
adapted sustainable development strategies. These
combinations of results suggest that population
growth and anthropogenic activities appear to be the
primary driver of LULC changes in these two
watersheds.

These two watersheds show that while population
growth can contribute to increased pressure on land
resources and lead to unsustainable land-use practices,
it is not the only determinant of these issues. Other
factors, such as socioeconomic activities, agricultural
practices, appropriate policies and regulations, educa-
tion and awareness, also play an essential role. The
results in Bafing showed that when population growth
is accompanied by adopting sustainable land manage-
ment practices, it can lead to better land and water
conservation. The presence of a large dam in Bafing
has led to the implementation of virtuous policies
favourable to the environment. In Faleme, mining
activities, many of which are uncontrolled, are leading
to environmental degradation. These divergent devel-
opment trajectories have different impacts on the
water cycle and must be considered in water develop-
ment policies for the Senegal River basin.

The main limitation of our study is that it did
not consider stakeholder involvement in LULCC
modelling processes. According to Hewitt et al.
(2014), the information of stakeholders on
LULCC drivers, reconstruction of timelines of
major past events and their perspective on poten-
tial future trajectories of land-use change are essen-
tial to achieve holistic results in a participatory
manner and complement model results. This tech-
nique bridges the gap between practitioners’ per-
spectives and those of technical or policy
stakeholders (Thiam et al., 2022). In addition, the
use of hybrid prediction models integrating several
individual models could improve the prediction
and allow the simulation of LULCC to be more
realistic (Gaur et al.,, 2020; Girma et al., 2022;
Sankarrao et al., 2021). Sankarrao et al. (2021)
compare different LULCC modelling techniques
to predict the future LULC by testing MLP-MC,
Logistic Regression-Markov Model (LR-MC),
Multilayer Perceptron Markov Chain Cellular
Automata (MLP_MC_CA) and Logistic Regression
Markov Model Cellular Automata (LR_MC_CA)
models on Nagavali River Basin (NRB), in
Southern India. The results revealed that after
combining the MLP_MC model with the Cellular
Automata, the model was improved in terms of the
Kappa coefficient. In addition, the hybrid model
MLP-MC-CA had a better agreement than the
other models. Furthermore, the study did not
incorporate climate change and variability drivers.



Considering these limitations, future research can
fill the gaps left by these shortcomings. This work
was done to establish scenarios for the construction
of hydropower dams and to assess the combined
effects of LULC and climate change on the services
these dams will provide in these watersheds
(Sambou et al.,, 2023). This document allows the
OMVS to develop adequate land and water
resource management policies and strategies speci-
fic to each watershed, considering the sustainable
development goals.

Conclusion

This study analyzed the historical LULCC from 1986
to 2020 with the RF classification and the projected
LULC for 2050 by using the MLP-MC model in the
Bafing and Faleme in the SRB. The main results
revealed that spatial and temporal changes have
occurred. During 1986-2020, a significant increase in
vegetation, water, agricultural areas and settlement
and a decrease in bareground were found in Bafing.
The projections of LULC for 2050 show effect for the
environment by the increase in vegetation, agricultural
areas and settlement. The analysis in Faleme show an
increase in settlement, vegetation, agricultural areas,
and water, as well as a decrease in bareground between
1986 and 2006. Between 2006 and 2020, settlement
increased. However, there was a decline in vegetation,
agricultural areas, water, and bareground. By 2050
(based on 2006-2020 trends), land use changes will
convert in a direction incompatible with a balanced
environment. The analysis of surface state dynamics
revealed that population growth and changing anthro-
pogenic (socioeconomic) activities were the main dri-
vers of LULC changes. The changes in LULC are both
positive and negative. Based on LULCC, the SRB
experienced a trend towards “more people, more
trees” for the Bafing and “more people, more defor-
estation” for the Faleme. These two examples show
that population growth, accompanied by adopting
sustainable land management practices, can lead to
better water and land conservation. These divergent
development pathways have different impacts on the
water cycle and must be considered in water develop-
ment policies for the Senegal river basin.
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