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Abstract
Genomic offset statistics predict the maladaptation of populations to rapid habitat alteration based on association of 
genotypes with environmental variation. Despite substantial evidence for empirical validity, genomic offset statistics 
have well-identified limitations, and lack a theory that would facilitate interpretations of predicted values. Here, we 
clarified the theoretical relationships between genomic offset statistics and unobserved fitness traits controlled by 
environmentally selected loci and proposed a geometric measure to predict fitness after rapid change in local envir-
onment. The predictions of our theory were verified in computer simulations and in empirical data on African pearl 
millet (Cenchrus americanus) obtained from a common garden experiment. Our results proposed a unified perspec-
tive on genomic offset statistics and provided a theoretical foundation necessary when considering their potential 
application in conservation management in the face of environmental change.
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Introduction
Maladaptation Across Environmental Changes
Predicting maladaptation resulting from traits that 
evolved in one environment being placed in an altered en-
vironment is a long-standing question in ecology and evo-
lution, originally termed as evolutionary traps or 
mismatches (Schlaepfer et al. 2002; Cook and Saccheri 
2013). With the increasing availability of genomic data, a 
recent objective is to determine whether those shifts could 
be predicted from the genetic loci that control adaptive 
traits and the fitness effects of these loci in spatially varying 
environments, bypassing any direct phenotypic measure-
ments (Capblancq et al. 2020; Waldvogel et al. 2020). 
This question is crucial to understand whether sudden 
changes in the species ecological niche, that is, the sum 
of the habitat conditions that allow individuals to survive 
and reproduce, can be sustained by natural populations 
(Grinnell 1917; Hutchinson 1957; Sork et al. 2010; Jay 
et al. 2012; Schoville et al. 2012; Aitken and Whitlock 
2013; Foden et al. 2019). To this aim, several approaches 
have incorporated genomic information on local adapta-
tion into predictive measures of population maladaptation 

across ecological changes, called genomic offset (or gen-
omic vulnerability) statistics (Fitzpatrick and Keller 2015; 
Capblancq et al. 2020; Waldvogel et al. 2020).

Genomic Offset Statistics and their Limitations
Genomic offset statistics first estimate a statistical rela-
tionship between environmental gradients and allelic fre-
quencies using genotype-environment association (GEA) 
models (Forester et al. 2018). The inferred relationship is 
then used to evaluate differences in predicted allelic fre-
quencies at pairs of points in the ecological niche 
(Fitzpatrick and Keller 2015; Rellstab et al. 2016; 
Gougherty et al. 2021). The central hypothesis is that those 
statistics are predictive of changes in fitness traits that oc-
cur under altered environmental conditions (Capblancq 
et al. 2020). Recent efforts combining trait measurements 
in common garden experiments or natural population 
censuses with landscape genomic data have shown that 
the loss of fitness due to abrupt environmental shift corre-
lates well with genomic offset predictions (Bay et al. 2018; 
Ruegg et al. 2018; Ingvarsson and Bernhardsson 2020; 
Rhoné et al. 2020; Fitzpatrick et al. 2021; Chen et al. 
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2022; Sang et al. 2022). Experiments in which organisms are 
placed into an environment that differs from the one in 
which the traits evolved are, however, not always feasible 
(or efficient). Genomic offsets—that can be calculated in 
field studies—offer then a reasonable alternative to com-
mon garden experiments in a wide spectrum of applica-
tions to model and nonmodel organisms.

Despite substantial evidence for empirical validity, the 
proposed measures of genomic offset have well-identified 
limitations due to migration and gene flow (but see 
Gougherty et al. 2021), population structure or genomic 
load. They also have difficulties to account for polygenic 
effects or correlated predictors (Aguirre-Liguori et al. 
2021; Hoffmann et al. 2021; Rellstab et al. 2021). More im-
portantly, different types of genomic offset statistics have 
been proposed in recent years (Fitzpatrick and Keller 2015; 
Rellstab et al. 2016; Capblancq and Forester 2021), and the 
inferred values for each of those statistics have not been 
explicitly linked to fundamental measures in quantitative 
and population genetics. The proposed measures lack the-
oretical foundations that would clarify how those different 
statistics are related to fitness and to each other. Thus, 
there is an urgent need to propose theoretical develop-
ments that will facilitate biological interpretations of gen-
omic offset statistics. Here, we developed a theoretical 
framework that links genomic offset statistics to adaptive 
trait values controlled by ecological conditions, unifies ex-
isting approaches and addresses their limitations.

Results
Geometry of the Ecological Niche
We developed a geometric approach to the concept of gen-
omic offset (GO) by defining a dot product of ecological pre-
dictors built on effect sizes of those predictors on allelic 
frequencies. Effect sizes, (bℓ) = (bℓj), were obtained from a 
GEA model of centered allelic frequencies on scaled 

predictors observed at a set of sampling locations. In that no-
tation, ℓ stands for a locus, and j stands for a predictor. Effect 
sizes were corrected for the confounding effects of popula-
tion structure and missing predictors (Methods: “GEA stud-
ies”). Given d ecological predictors, recorded in vector x, and 
their altered versions based on some change in time or space, 
recorded in x⋆, we defined a geometric GO—implemented 
as genetic gap in the computer package LEA—as a quadratic 
distance between the two vectors x and x⋆

G2(x, x⋆) = (x − x⋆)Cb(x − x⋆)T , (1) 

where Cb = E[bTb] is the empirical covariance matrix of en-
vironmental effect sizes. Here the notation E[ · ] stands for 
the empirical mean across genomic loci in the analysis, ideally 
the number of loci controlling adaptive traits. Because the ref-
erence allele defining the genotype at a particular locus can 
be changed without any impact on the GEA analysis, we as-
sume that the average value of effect sizes across all genomic 
loci is null, E[b] ≈ 0. Considering allelic frequencies predicted 
from the GEA model, f (x) = xbT +

K
k=1 ukvT

k and 
f(x⋆) = x⋆bT +

K
k=1 ukvT

k , where the uk represents K con-
founding factors and vk their loadings, we have

G2(x, x⋆) = E[((x − x⋆)bT)2] = E[(f(x) − f(x⋆))2]. (2) 

Thus, the geometric GO has a dual interpretation as a quadratic 
distance in environmental and in genetic space. The population 
genetic interpretation of the geometric GO is as the average va-
lue of Nei’s DST/2 (=FST × HT/2) for the set of loci assumed to 
be involved in local adaptation (Nei 1973; François and Gain 
2021). As a genomic offset, the DST statistic can be calculated 
between pairs of population in space, but also in time, and it 
evaluates the genetic diversity between the populations in 
which x and x⋆ are measured or forecasted.

FIG. 1. Geometric offset (genet-
ic gap) under local Gaussian 
stabilizing selection. The two 
points, z(x) = z̅ and 
z(x⋆) = z̅⋆ , represent locally 
optimal values of an adaptive 
trait in respective environ-
ments x and x⋆. The curves dis-
play the fitness values for the 
trait in each environment. An 
organism with trait z(x), opti-
mal in environment x, being 
placed in altered environment 
x⋆ , has a fitness value equal to 
ω⋆ = exp ( − G2(x, x⋆)/2Vs), 
where G2(x, x⋆) is the genomic 
offset (horizontal dashed line), 
and Vs is defined in text.
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Quantitative Theory for Genomic Offset
We developed a quantitative theory for the geometric GO 
and for other GO statistics under the hypothesis of local sta-
bilizing selection (Kimura 1965; Lande 1975). Under this hy-
pothesis, observed allelic frequencies have reached local 
equilibria in which polygenic or quantitative characters are 
under natural selection for intermediate optimum pheno-
types. The theory relies on a statistical model for an unob-
served fitness trait for which a large number of small allelic 
effects mediate the effects of ecological predictors on fitness.

We defined ω(x, x⋆) to be the relative fitness value of a trait 
at equilibrium in environment x being placed in the altered en-
vironment x⋆. Under local Gaussian stabilizing selection, we 
found that the value of the logarithm of altered fitness varies 
in proportion with the geometric GO (fig. 1, Box 1)

− log ω(x, x⋆) ∝ G2(x, x⋆)/2Vs, (3) 

where the Vs coefficient depends on the inherited variance 
and on the strength of stabilizing selection. In addition, the 
above equation remains valid when environmental predictors 
are indirectly related to the factors that influence the traits un-
der selection, for example when those predictors are built on 
linear combinations of causal predictors for selection 

(Supplementary Material: “Linear combination of predictors”). 
The geometric GO is thus robust to correlation in causal ef-
fects, and equation (3) extends to known and unknown linear 
combinations of those effects.

Unifying Genomic Offset Statistics
Beyond defining a new geometric measure of genomic off-
set, the quantitative theory provides a unified framework 
for GO statistics based on redundancy analysis (RDA, 
Capblancq and Forester 2021), the risk of nonadaptedness 
(Rona, Rellstab et al. 2016), and gradient forests (GF, 
Fitzpatrick and Keller 2015) (Supplementary Material: 
“Relationships to other GO statistics”). The main result is 
that all GO statistics predict the logarithm of fitness, but 
not for the same shape of the (within-locality) selection 
gradient. When RDA is performed on both environmental 
and latent predictors, the RDA GO is theoretically equiva-
lent to the geometric GO and thus predicts relative fitness 
under the hypothesis of Gaussian selection within local-
ities. The risk of nonadaptedness, which is defined as the 
average of allelic frequency differences instead of squared 
differences, makes the implicit assumption that the selec-
tion gradient is built upon an exponential (Laplace) curve. 
When the distribution of effect sizes is Gaussian, Rona is 
then related to the square root of the geometric GO (times ����

2/π
√

). Like most machine learning techniques, GF is a 
nonparametric approach. In GF, no selection gradient is 
modeled a priori, but may be thought of as being esti-
mated from the observed data. This might be one reason 
for which GF require more information than linear ap-
proaches based on low-dimensional parameters. The GF 
GO nevertheless follows a construction similar to the geo-
metric GO and the RDA GO.

Validation of the Theory
To illustrate the above theory, we analyzed simulated data 
in which adaptive traits were matched to ecological gradi-
ents by local Gaussian stabilizing selection (fig. 2A, 
Methods: “Simulation study,” Supplementary Material: 
“Extended simulation study”) (Haller and Messer 2019). 
Two environmental predictors playing the role of tem-
perature and precipitation in the studied range were con-
sidered, as well as two additional noncausal predictors 
correlated to the first ones (fig. 2B). The median values 
of temperature and precipitation determined four broad 
types of environments from dry/warm to wet/cold condi-
tions. As an outcome of the simulation, the genetic groups 
resulting from selection, drift and gene flow matched the 
environmental classes, generating high levels of correlation 
between environmental predictors and population struc-
ture in the GEA analysis (supplementary fig. S2, 
Supplementary Material online). As predicted by equation 
(3), the values of the geometric GO computed according 
to equation (1) varied linearly with the logarithm of fitness 
after alteration of local conditions (r2 ≈ 78%, P < 0.001, 
fig. 2C and D). The predictive power of the geometric 
GO was much higher than the predictive power of squared 

Box 1 (Genomic offset theory)

Consider an (unobserved) fitness trait, z, for which a large number of genes 
mediate the effects of ecological predictors on organismal viability. Using Eq. 
(7) in Barton et al. (2017), the trait value is assumed to be controlled by L 
mutations each having infinitesimally small allelic effect of equal size, 
aℓ ≈ ±a/

��
L
√

, defining the trait value as a polygenic score, 
z =

L
ℓ=1 aℓyℓ + e. Here, yℓ is the allelic frequency at locus ℓ, expressed as 

deviation from the population mean, aℓ has random sign, a2 controls the 
additive genetic variance, and the random term e models the nongenetic 
variance. The definition is equivalent to the more traditional decomposition 
of variance into inherited and noninherited components (supplementary 
fig. S1, Supplementary Material online). Assuming a local Gaussian stabilizing 
selection model, the relative fitness of the trait in environment x is equal to 
ω(z|x) = exp ( − (z − zopt(x))2/2VS), where 1/VS represents the strength of 
stabilizing selection. Conditional on local environment, the optimum, 
zopt(x), corresponds to the mean (or predicted) value of the trait, 
z̅ =

L
ℓ=1 aℓfℓ(x). The logarithm of fitness for a trait at equilibrium in 

environment x being placed in the altered environment x⋆ is thus equal to
(4)  

− log ω(x, x⋆) = (̅z − z̅⋆)2/2VS , (4) 

where z̅⋆ =
L

ℓ=1 aℓfℓ(x⋆). The difference in fitness traits, (̅z − z̅⋆), is 
equal to a(x − x⋆)

L
ℓ=1 bT

ℓ/
��
L
√

. According to the central limit theorem, 
the conditional distribution of (̅z − z̅⋆) is Gaussian N(0, a2G2(x, x⋆)), 
where G2(x, x⋆) is defined from the theoretical – instead of empirical – 
effect size covariance matrix. The distribution of (̅z − z̅⋆)2 is a 
nonstandard chi-squared distribution with one degree of freedom

(5)  

(̅z − z̅⋆)2 ∼ a2 G2(x, x⋆)χ2
1. (5) 

Since G2(x, x⋆) ≈ G2(x, x⋆) for large L, the value of the logarithm of altered 
fitness varies in proportion with the geometric GO, where the 
proportionality coefficient is equal to a2χ2

1/2VS. The expected value is thus 
approximately equal to G2(x, x⋆)/2Vs , where Vs = VS/a2. Consideration of 
traits that are not at equilibrium in environment x adds an intercept term 
to the expected value, equal to a2σ2

ϵ/2VS + σ2
e/2VS, where σ2

ϵ is the residual 
variance in the GEA model and σ2

e is the noninherited variance 
(Supplementary Material: “Logarithm of altered fitness for nonoptimal 
traits”).
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Euclidean environmental distance between predictors and 
their altered values (r2 ≈ 45%, J = 11.3, P < 0.001). 
Although it was calculated on both causal and noncausal 
predictors, the GO adjusted almost perfectly to the quad-
ratic function that determines the intensity of local 
Gaussian stabilizing selection (r2 = 97%, P < 0.001, 
supplementary fig. S3, Supplementary Material online). 
The first two eigenvalues of the covariance matrix of envir-
onmental effect sizes were much larger than the last ones 
(fig. 2C). We found that the loadings on the first axes gave 
more weight to predictors associated with natural selec-
tion, whereas the loadings on the last axes weighted pre-
dictors that did not play a role in the simulated 
evolutionary process. Uninformative predictors were given 
only low weights in the calculation of the GO statistic. 
Those results provided evidence that the largest eigenva-
lues that characterize the geometric GO contain useful in-
formation about local adaptation.

Extended Simulation Study
Expanding our case analysis, additional simulation scen-
arios were considered with traits under local stabilizing se-
lection having distinct levels of polygenicity. Some cases 

were complicated by a strong correlation of environmental 
predictors with population structure. To overcome this 
complication, correction based on latent factors was in-
cluded in all GO calculations (Methods: “GO computa-
tions”). As predicted by the theory, the values of the 
squared correlation between the GO statistic and the loga-
rithm of fitness were very close to each other in all inves-
tigated cases (fig. 3, supplementary fig. S4, Supplementary 
Material online). As expected, methods that did not use 
correction (undercorrection) or include population struc-
ture covariates (overcorrection) worked less well than 
methods with latent factor correction (supplementary 
figs. S5 and S6, Supplementary Material online). Once cor-
rected, the GO statistics ranked similarly in all simulation 
scenarios. The ability of the geometric GO to predict the 
logarithm of fitness was equal to that of corrected RDA 
GO. It was slightly superior to that of Rona and to that 
of the GF GO. All GO statistics were highly correlated 
with the geometric GO (supplementary fig. S7, 
Supplementary Material online). The geometric GO also 
exhibited high correlation with the quadratic distance be-
tween causal predictors explaining the traits under local 
stabilizing selection in the simulation model 
(supplementary fig. S8, Supplementary Material online). 

A B

C D

FIG. 2. Simulation of fitness traits and geometric offset. (A) Spatial individual-based forward simulations: Adaptive traits were matched to eco-
logical gradients by local Gaussian stabilizing selection. (B) Geographic maps of four environmental predictors before and after change. (C ) 
Logarithm of altered fitness values as a function of geometric offset. The eigenvalues of the covariance matrix of environmental effect sizes 
are displayed in the top left corner. (D) Geographic maps of the logarithm of altered fitness values (left) and geometric offset (right).
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This result supported the evidence of near-optimal fitness 
prediction by the GO statistics in all simulated evolution-
ary scenarios. When all genomic loci in the genotype ma-
trix were included in the GO calculations, the predictions 
stayed close to those based on subsets of loci identified in 
the GEA analysis, GF GO reaching then performances simi-
lar to the other GO statistics (supplementary fig. S9, 
Supplementary Material online).

Evaluating the Bias of Linear Allelic Frequency 
Predictions
An approximation made by the geometric and other GO 
statistics is that allelic frequencies are predicted by uncon-
strained linear functions of environmental predictors. To 
evaluate the impact of this approximation, we compared 
linear predictions to those of a logistic regression model, 
which are constrained between zero and one. For small en-
vironmental change, the effect sizes in the linear GEA mod-
el could be approximated by the effect sizes in the logistic 
regression multiplied by the heterozygosity at each locus 
(Supplementary Material: “Bias of linear predictors”). 
The geometric GO was then accurately approximated by 
the squared distance between constrained genetic 
predictors, E[(fc(x) − fc(x⋆))2] (supplementary fig. S10, 

Supplementary Material online). Using a nonlinear ma-
chine learning model (Supplementary Material: 
“Variational autoencoder GO”), we found again that the 
squared genetic distance between constrained genetic pre-
dictors strongly correlated with the geometric GO, sup-
porting the approximation of fitness in altered 
environment using linear models (supplementary fig. S11, 
Supplementary Material online).

Pearl Millet Common Garden Experiment
We hypothesized that GO statistics could predict the loga-
rithm of fitness in pearl millet, a nutritious staple cereal 
cultivated in arid soils in sub-Saharan Africa (Rhoné et al. 
2020). Pearl millet is grown in a wide range of latitudes 
and climates with wide variety of ecotypes (landraces). 
The geometric GO and other measures of GO were esti-
mated from 138,948 single-nucleotide polymorphisms for 
170 Sahelian landraces in a 2-year common garden experi-
ment conducted in Sadoré (Niger) using loci identified in 
the GEA study (fig. 4A, Methods: “Pearl millet experi-
ment”). For each landrace grown in the common garden, 
the total weight of seeds was measured as a proxy of land-
race fitness, which was explained by a Gaussian selection 
gradient (supplementary fig. S12, Supplementary 

FIG. 3. Predictive performances of GO statistics. Proportion of variance of fitness in the altered environment explained by GO statistics (coef-
ficient of determination). Four scenarios with distinct levels of polygenicity in adaptive traits and correlation of environmental predictors with 
population structure were implemented. Significance values were based on paired t-tests of the difference in mean performance for each GO 
statistic relative to the geometric GO (***P < 0.001). Boxplots display the median, the first quartile, the third quartile, and the whiskers of dis-
tributions. The upper whisker extends from the hinge to the largest value no further than 1.5 interquartile range (IQR) from the hinge. The lower 
whisker extends from the hinge to the smallest value at most 1.5 IQR of the hinge. Extreme values are represented by dots.
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Material online). Including latent factor correction, GO 
statistics were computed using the climate condition at 
the location of origin of the landrace and the climate at 
the experimental site. All GO statistics displayed a consist-
ent relationship with the logarithm of seed weight (figs. 4B
and 5). Loci identified in the GEA study increased the per-
formance of GO statistics compared with using whole gen-
omic data, and the improvements were substantial 
compared with methods that did not include correction 
for confounding factors (supplementary figs. S13–S14, 
Supplementary Material online and supplementary table 
S1, Supplementary Material online). The best predictions 
of fitness in the common garden were obtained with the 
geometric GO and with the corrected version of Rona 
(r2 = 61%, P < 0.001, fig. 5). The eigenvalues and eigenvec-
tors of the covariance matrix of environmental effect sizes 
suggested that climatic conditions could be summarized in 
three axes. Temperature predictors were given higher im-
portance in driving fitness variation than precipitation and 
solar radiation predictors (supplementary fig. S15, 
Supplementary Material online).

Discussion
Quantitative Theory
The geometric theory presented in our study provided a 
unified framework that not only explains why and when 
a GO statistic differs from the standard Euclidean environ-
mental distance but also allowed for a better understand-
ing of previous measures of genomic offset. Based on 
models of local selection gradients, a theoretical analysis 
of GO statistics relying on Fisher’s infinitesimal trait model 
was developed. In this framework, the geometric GO de-
cays linearly with the logarithm of fitness in the altered en-
vironment. Although of much lower computational 
complexity, the geometric GO was proved to be equiva-
lent to a GO based on RDA, which justifies the use of 
RDA approaches under local Gaussian selection. The 
square root of the geometric GO was connected to Rona 
and justifies the use of absolute differences in allele fre-
quencies under exponential selection gradient.

Improving GO Statistics
According to Rellstab et al. (2021), current GO statistics 
may provide wrong predictions due to the correlation be-
tween population structure at selectively neutral loci and 
environmental predictors. Built on unbiased effect sizes, 
the geometric GO, which is based on a unique model for 
GEA estimation and for GO prediction, addressed this 
problem by including latent factors as covariates in the pre-
diction model. Latent factor corrections were then incor-
porated into all considered GO statistics, which increased 
their predictive performance compared with their trad-
itional usage. Our versions of RDA GO and Rona—that 
slightly differ from original proposals—were implemented 
in the R package LEA. Although those changes led to im-
proved statistics, the geometric GO reached higher 

predictive performance than the other GO approaches. 
Next, the geometric GO addressed the problem of corre-
lated predictors by modeling the covariance of their effect 
sizes. The importance of predictors could be assessed by 
examining the eigenvalues and eigenvectors of the environ-
mental effect size covariance matrix. The eigenvalues pro-
vide a natural ranking of the importance of each axis, 
similar to the cumulative importance curves in GF. When 
a statistical analysis includes redundant predictors, repro-
ducing information already present in a reduced set of pre-
dictors, the geometric GO gave lower weight to those 
redundant predictors, and differed substantially from the 
Euclidean environmental distance. Generally, the principal 
benefit of genomic offset over purely environmental dis-
tances in predicting maladaptation comes from the 
weighting of environmental predictors by their effect sizes 
(Làruson et al. 2022). All proposed GO approaches share 
the principle of weighting the environmental predictors 
by their strength of genetic association. For the vast major-
ity of organisms where the most important predictors are 
unknown or for which common garden experiments are 
not efficient or unfeasible, genomic offset therefore pro-
vides a useful means for weighting the environmental pre-
dictors based on the information contained in allele 
frequencies.

Limitations
Our simulation models and our theoretical developments 
relied upon a model of genotype × environment inter-
action for fitness related to antagonistic pleiotropy, where-
by native alleles are best adapted to local conditions 
(Kawecki and Ebert 2004; Anderson et al. 2011). 
Although antagonistic pleiotropy is an important mechan-
ism for local adaptation, there are other types of interac-
tions for fitness. If local adaptation is caused by 
conditional neutrality at many loci, where alleles show dif-
ference in fitness in one environment, but not in a contrast-
ing environment, the predictive performances of GO 
statistics remain to be explored. In addition, GO statistics 
(except GF) are based on linear models for the relationship 
between genotype and environment. Linear models gener-
ate GO statistics that are invariant under translation in the 
niche, making predictions relevant at the center of the spe-
cies distribution, but perhaps less relevant at margins of the 
range. Although translational invariance could be cor-
rected for by defining the offset as the average of squared 
differences between allelic frequencies in nonlinear models, 
we found that the results were very close to the linear mod-
els. An explanation may be that nonlinear machine learning 
models offer more flexible GO statistics than linear models, 
but that linear models achieve a better bias-variance trade- 
off than machine learning models, likely because less data 
are needed for their application. Other conceptual limita-
tions include gene flow and constraints on adaptive plasti-
city that might mitigate the effect of environmental change 
on fitness (Kawecki and Ebert 2004; Aguirre-Liguori et al. 
2021). As they do not use any observed information on 
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fitness traits, GO statistics provide measures of expected 
fitness loss based on the indirect effects of environment 
mediated by loci under selection (Baron and Kenny 
1986). GO statistics are more accurate when nongenetic ef-
fects do not covary with environmental predictors. Lastly, 
we found that using candidate loci based on statistical sig-
nificance in GEA improved prediction of fitness in altered 
conditions both in simulation and in real data analysis. 
We think that this happens because those studies may gen-
erally be underpowered, that is, a much larger sample size 
would increase the predictive power of GO statistics. 
Using a liberal threshold in GEA studies was considered 
as a trade-off between polygenicity and statistical signifi-
cance, so that the GO measures could actually be based 
on polygenic scores whereas not erasing or blurring the 
genomic signals of local adaptation.

Pearl Millet Experiment
To compare predictions of local adaptation with empirical 
data, GO statistics were estimated in a common garden 
experiment on pearl millet landraces in sub-Saharan 
Africa. Using GF, the original study reported a squared 
correlation of r2 ≈ 9.5−−17% for seed weight, indicating 
that higher genomic vulnerability was associated with 
lower fitness under the climatic conditions at the experi-
mental site (Rhoné et al. 2020). In our reanalysis, signals of 
local adaptation were consistent across all GO statistics, 
and improved fitness prediction substantially, up to a va-
lue of squared correlation equal to r2 ≈ 61%. The results 
strengthened the conclusions of (Rhoné et al. 2020), and 
supported the use of GO statistics in predictions of fitness 
values across the sub-Saharan area.

A

B

FIG. 4. Interpolated fitness gradient and genomic offset for pearl millet landraces. (A) Fitness values (log) measured as the mean total seed weight 
for each pearl millet landrace in the common garden experiment located in Sadoré (Niger). (B) Values of the geometric genomic offset. Locations 
of landrace origin are represented as dots. Values at unsampled locations were interpolated from the nearest sampled location using the inverse 
distance weighting method.
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Conclusions
Considering a duality between genetic space and environ-
mental space, we developed a theoretical framework that 
linked GO statistics to a non-Euclidean geometry of the 
ecological niche. The geometric GO, as well as the modi-
fied Rona statistic, were implemented in the genetic gap 
function of the R package LEA (Gain and François 2021). 
As a result of the quantitative theory, interpretations in 
terms of fitness in the altered environment were proposed, 
unifying several existing approaches, and addressing some 
of their limitations. Based on extensive numerical simula-
tions and on data collected in a common garden experi-
ment, our study indicated that GO statistics are 
important tools for conservation management in the 
face of climate change.

Materials and Methods
GEA Studies
GEA studies and estimates of environmental effect sizes 
were performed based on LFMMs in the computer pack-
age LEA v3.9 (Caye et al. 2019; Gain and François 2021). 

In LFMMs, allelic frequencies are modeled at each genomic 
locus of a genotype matrix as a mixed response of observed 
environmental variables with fixed effects and K unob-
served latent factors. The number of latent factors was es-
timated from the screeplot of a principal component 
analysis of the genotype matrix. Loci with minor allele fre-
quency less than 10% were filtered out the analysis. 
Statistical significance was determined by using the R pack-
age qvalue at a level of false discovery rate equal to 10%.

GO Computations
RDA was performed by using principal components of fit-
ted values of the GEA regression model. Rona was com-
puted as the average value of the absolute distance 
between predicted allelic frequencies across genomic loci 
(Rellstab et al. 2016; de Aquino et al. 2022). GF computa-
tions were performed using the R package gradientForest 
version 0.1. For consistency, we reported squared values 
of GO statistics in RDA and GF. Unless specified, GO sta-
tistics were computed on the loci detected in the GEA 
study, that is, a same set of loci for all methods. To correct 
statistics for the confounding effect of population 

FIG. 5. Logarithm of fitness in the common garden as a function of the GO statistic. Latent factor corrections were included in the calculation of 
all GO statistics (ten factors). Fitness was evaluated as the mean total weight of seed for 170 pearl millet landraces. GO values for GF were multi-
plied by a factor of ten.
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structure, all analyzes were performed conditional on the 
factors estimated in the LFMM analysis (Supplementary 
Material: “GO computations”).

Simulation Study
Spatially explicit individual-based simulations were per-
formed using SLiM 3.7 (Haller and Messer 2019) 
(Supplementary Material: “Extended simulation study”). 
Each individual genome contained neutral mutations 
and quantitative trait loci (QTLs) under local stabilizing se-
lection from a 2D environment. The probability of survival 
of an individual genome in the next generation was com-
puted as the product of density regulation and fitness. We 
designed four classes of scenarios, including weakly or 
highly polygenic traits, and weak or high correlation of en-
vironment with population structure. In scenarios with 
high polygenicity, traits controlled by 120 mutations 
with additive effects were matched to each environmental 
variable by local stabilizing selection. In weakly polygenic 
scenarios, the traits were controlled by ten mutations. 
Scenarios with high confounding effects were initiated in 
a demographic range expansion process, creating correl-
ation between environment and allelic frequencies at the 
genome level. For each scenario, 30 replicates were run 
with distinct seed values of the random generator. At 
the end of a simulation, individual geographic coordinates, 
environmental variables and individual fitness values be-
fore and after instantaneous environmental change were 
recorded. Paired t-tests were used to test statistical differ-
ences in the mean of predictive performances for the geo-
metric GO and the other GO statistics.

Empirical Study
Methods regarding the common garden experiment on 
Pearl millet landraces conducted in Sadoré (13◦14′0′′N, 
2◦17′0′′E, Niger, Africa) were described by Rhoné et al. 
(2020). For each of 170 landraces grown in the common 
garden, the total weight of seeds was measured by harvest-
ing the main spike in ten plants per landrace sown during 
two consecutive years and was used as a proxy of landrace 
fitness. For each landrace grown in the common garden, en-
vironmental predictors, x, were obtained at the location of 
origin of the landrace, and x⋆ corresponded to the local 
conditions in Sadoré. We made the hypothesis that the 
mean total weight of seeds for a landrace was proportional 
to ω(x, x⋆) in the common garden. Using 100 plants per 
landrace in a pool-sequencing design, allelic frequencies 
were inferred at 138,948 single-nucleotide polymorphisms. 
Climate data were used to compute 157 metrics in three 
categories, precipitation, temperature (mean, maximum, 
and minimum near surface air temperature), and surface 
downwelling shortwave radiation, that were reduced by 
principal component analysis (27 axes). GO statistics 
were computed using the climate condition (x) at the loca-
tion of origin of the landrace and the climate conditions 
(x⋆) at the experimental site. For each GO statistic, we es-
timated a linear relationship with the logarithm of the 

mean total weight of seeds and used Pearson’s squared cor-
relation to evaluate the goodness of fit. The J-test was used 
to test differences between predictive performances, corre-
sponding to R-squared for distinct regression models, of the 
geometric GO and other GO statistics (Davidson and 
MacKinnon 1981).

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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