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Influence of El Niño on the variability of
global shoreline position

Rafael Almar 1 , Julien Boucharel 1,2 , Marcan Graffin1,
Gregoire Ondoa Abessolo 3, Gregoire Thoumyre 1, Fabrice Papa 1,4,
Roshanka Ranasinghe 5,6,7, Jennifer Montano8, Erwin W. J. Bergsma 9,
Mohamed Wassim Baba10 & Fei-Fei Jin 2

Coastal zones are fragile and complex dynamical systems that are increasingly
under threat from the combined effects of anthropogenic pressure and cli-
mate change. Using global satellite derived shoreline positions from 1993 to
2019 and a variety of reanalysis products, here we show that shorelines are
under the influence of three main drivers: sea-level, ocean waves and river
discharge. While sea level directly affects coastal mobility, waves affect both
erosion/accretion and total water levels, and rivers affect coastal sediment
budgets and salinity-induced water levels. By deriving a conceptual global
model that accounts for the influence of dominantmodes of climate variability
on these drivers, we show that interannual shoreline changes are largely driven
by different ENSO regimes and their complex inter-basin teleconnections. Our
results provide a new framework for understanding and predicting climate-
induced coastal hazards.

Coastal areas host a considerable part of human life and activities,
providing tremendous societal, economic and ecological benefits. The
health of these ecosystems, however, highly depends on the fragile
balance between climate influence and local anthropogenic
constraints1,2. Coastal erosion and flooding, associated with land use
changes have already placed seafront ecosystems and population at
great risk3–8 and this is only expected to worsen in the future9. On a
decadal to centennial time scale, sea level rise and river influences will
dominate, compared to waves, which are expected to show more
contrasting trends globally10. Therefore, understanding and predicting
shoreline evolution is of great importance for coastal zone manage-
ment, to anticipate potential threats well in advance, such that there is
sufficient lead-time to implement effective adaptation measures11,12.

However, it remains extremely challenging to predict medium
(e.g. seasonal and inter-annual) to long- (decadal to century) term

shoreline evolution due to the intrinsic limitations of currentmeans of
coastal observation and coastal research approaches1,13–15. One of the
main obstacles impairing a worldwide assessment of coastal mor-
phological change originates from the lack of long-term observational
data at a global scale. The advent of earth observation from space has
greatly increased the availability of optical satellite data at global
scale16,17, which in combination with the computational power offered
by cloud-based platforms18,19, have recently enabled global scale
assessments of shoreline evolution20,21 over the past three decades or
so. Within this line of research, the linkages between observed shore-
line changes and their potential dynamic drivers have yet to be ana-
lyzed in a comprehensive way to provide reliable projections of how
the world’s shorelines may evolve in response to climate change22–24. A
comprehensive physics-based approach has yet to be developed
globally. This is currently impossible due to the different scales at play
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at global and local scales (i.e., having an effect on the shoreline, such as
wave breaking). A global application of existing oceanmodels coupled
with waves-sea level-rivers-sediment (e.g., CROCO25, Delft3D26) is cur-
rently out of reach. Thus, physically simplified shoreline models (e.g.,
CASCADE27,28, COSMOS17, ShorelineS29, LX-Shore30,31) have a bright
future aspotential tools for investigating drivers of shoreline change at
regional to global scales.

Coastal and shoreline management increasingly needs to take
into account morphological changes that occur on interannual
timescales (i.e. few years to a few decades), especially those related
to climate variability32. It is therefore of paramount importance to
determine the dominant factor influencing these changes at these
scales33,34. At interannual timescales, the focus of global coastal
studies has historically been on assessing the response of the
shoreline to regional sea-level changes35,36. However, while wind-
generated ocean surface waves are known to dominate the impact
on beaches at short event to sub-annual scales (e.g37,38.), recent
studies have highlighted the contribution of waves to longer-term
interannual coastal water levels5,39,40 and erosion (e.g21,41,42.). In
addition, the often neglected rainfall/river discharge variability has
been shown to play a major role on shoreline evolution through
sediment43–45 but also changes in freshwater river discharge have
also been reported to influence coastal sea level46–49.

The massive re-organizations of the atmospheric and oceanic
circulation induced by the El Niño Southern Oscillation (ENSO), argu-
ably the most prominent interannual global climate fluctuation50, has
long been known to cause major shifts in weather patterns and
therefore produce interannual variations in global sea-level, waves,
rainfall and continental freshwater flux to the ocean51–54, even far from
its dominant region of influence55,56. While ENSO is known to be
unambiguously dominant in the Pacific with strong impacts on the
shoreline and coastal ecosystems41,42,51,57–64, the possible linkages
between ENSO and the key drivers of shoreline change at global scale
have not yet been fully explored. In particular, the recent rejuvenation
of ENSO research has led to many theoretical breakthroughs in
understanding its complex and diverse regimes65. On a global basis,
other climate modes can also significantly modulate coastal drivers in
other ocean basins. Despite its strong dependence on ENSO66, the
Indian Ocean Dipole (IOD) can strongly influence climate variability in
the IndianOcean, especially in its western part, which is less influenced
by the Pacific Ocean67, but also beyond the Indian basin68. The
Southern Annular Mode (SAM, e.g.69–71,) plays a major role in the cli-
mate of the high and mid-latitudes of the Southern Hemisphere. Its
signature on ocean surface waves also extends beyond local wind-
generated forcing in the Southern Ocean to distant forcing of wave
activity and induced changes in coastal sea level in all tropical basins
and, to a lesser extent, even in the Northern Hemisphere72–75. In the
North Atlantic, climate variability is influenced by the North Atlantic
Oscillation (NAO), a large-scale atmospheric circulation pattern pro-
duced by the difference between the Icelandic Low and Azores High
pressure systems strength76,77. Overall, the NAO is known to pre-
dominantly control the interannual variability of coastal drivers in the
North Atlantic at seasonal to interannual time scales76,78–81 but can,
similarly to the SAM, also affect tropical regions in this basin through
the propagation of swell remotely generated at high latitudes75. While
other regional modes of climate variability may also influence shore-
line changes, we have deliberately limited our focus here to the most
dominant basin-wide climate modes, the two dominant modes of
extratropical variability in each hemisphere, SAM and NAO, as well as
the dominant modes of tropical interannual climate variability in the
IndianOcean, IOD, and in the Pacific, ENSO, considered in all its spatial
diversity and temporal complexity to account for the effect of ENSO
seasonal pacing on the interannual pantropical climate variability82,83.
However, it is still unclear to what extent the combined and individual
variability of these climate modes can explain the overall year-to-year

evolution of global coastal drivers and their subsequent effect on
shoreline variability.

Here, we aim to address this knowledge gap by combining a new
global dataset of satellite-derived monthly shorelines spanning nearly
three decades (1993 to 2019) with global data sets of historical coastal
sea-level, waves and fluvial inputs (see the conceptual diagram
depicting the adopted methodological approach in Fig. S1). Through
this analysis, we gain unprecedented insights on the relative con-
tributions of climate-driven variations in these three forcing to
observed interannual shoreline change globally, and on how these
contributions vary regionally.

Results and discussion
Drivers of shoreline change
The complex phenomenon of shoreline evolution results from the
combined influence of several oceanic and terrestrial hydro-
sedimentary factors, acting and interplaying at various temporal and
spatial scales.Herewe consider threemain drivers of shoreline change:
(i) regional sea level, (ii) oceanwaves, and (iii) fluvial inputs.We use the
waterline as a proxy for shoreline. Since our focus here is on the
interannual variability of climate-driven variability at the global scale,
we consider the variability of the monthly drivers smoothed with an
8-month window runningmean (to remove sub-annual dynamics from
our analysis) and through simplified expressions of their dominant
contributors. The influence of regional sea level changes on the water
line is straightforward: any change in sea level is a change in the
mobility of the water line. The regional sea level anomalies (SLA)
considered here incorporate contributions from sterodynamic and
manometric sea level changes (due to land icemass loss and terrestrial
water storage changes), as well as atmospheric surge—also known as
storm surge, which integrates the influence of both wind setup and
surface atmospheric pressure effects (corresponding to the so-called
Dynamical Atmospheric Correction). Ocean surface waves affect the
waterline in two ways, through morphological changes and the sedi-
ment budget (erosion/accretion—widely documented by the coastal
scientific community, with reference papers such as Yates et al.84 but
also Splinter et al.85, among many others) but also through their con-
tribution to the coastal water level via the runup (or setup for the time-
averaged component;86 see Melet et al.39 for a global assessment on
interannual timescales). Here, waves are parameterized as the incom-
ing deep-water wave energy flux (cf. Data and Methods). Similarly, we
consider the river flows as a proxy representing the continental influ-
ence of fluvial inputs. River discharge also has a dual influence on the
waterline. The first effect of rivers on a global scale is sedimentary,
through the input of solid sediment45, which strongly determines the
sediment budget of coastal cells: decreasing or increasing, for exam-
ple, is linked to climate-induced variability in precipitation and is
responsible for shoreline retreat or advance44. Rivers and their changes
in freshwater river flow are also known to affect the waterline through
changes in coastal water levels (see review49) by affecting the density
content of the water column (process and observations49). It should be
noted that our interest here is not in the precise magnitude of the
influence of these drivers, which may be influenced by local and
complex nonlinear processes (e.g., complex wave transformation on
continental shelves87 and induced coastal morphodynamics and
setup), but only in the expression of their interannual variability. It is
also likely that such local effects are damped at the spatio-temporal
scales considered here. With these assumptions, the 8-months
detrended monthly shoreline interannual anomaly (cleared from the
monthly mean climatology) S is then formulated as

S x, tð Þ =α xð ÞSea Level x, tð Þ+ β xð ÞWaveEnergyðx, tÞ+ γðxÞRiverflowðx, tÞ ð1Þ

where x and t represent the along-shore and temporal dimensions,
respectively, with 0.5° alongshore and monthly resolution,

Article https://doi.org/10.1038/s41467-023-38742-9

Nature Communications |         (2023) 14:3133 2



respectively. For more robustness, the coefficients are calculated
based on randomized hindcasts of varying lengths from 10 to 27 years.

Figure 1a shows local correlations between interannual anomalies
of shoreline positions S satellite-derived and computed from themulti-
linear regressionmodel (Eq. (1). This comparison yields relatively good
model/data correlations that are statistically significant along 91% of
the shorelines derived by satellites and 52% of the global world’s
shorelines (within 60°N–60°S), with a globally averaged correlation of
0.49 (significant at 95% confidence level). Figure 1b shows where each
driver dominates the interannual shoreline variability (dominance is

assumed when the contribution of a given driver is >40%), calculated
with respect to the total variance explained. The individual contribu-
tions are calculated separately and reduced to the total variance
explained by our model, which allows us to accommodate variables
that may be partially dependent. While about 50% of the global
shoreline (within 60°N-60°S) exhibits a clear dominance of one of the
forcing, SLA emerges as the dominant driver of shoreline evolution
alongmostof the global shorelines. However, significant contributions
fromwave activity is observed along the open west-facing shores such
as Western Africa, Western Europe, and Western South America. A

notable exception is along the western North American coastline,
where SLA fluctuations associatedwith zonal oscillations of ENSO over
the Pacific Basin dominate interannual variability of the shoreline.
Conversely, in enclosed seas such as the Gulf of Mexico, Arabian Sea,
the Bay of Bengal or East Sea, average wave action is weaker and the
influence of SLA predominates. Unsurprisingly, the influence of fluvial
inputs emerge as the dominant driver of shoreline variability near large
rivermouths (e.g., the Amazon, Niger, Zambezi, Indus and Red Rivers).
This is particularly true in the intertropical zone, where, for example,
river basins in South Asia (e.g. the Bay of Bengal), South East Asia or
North East Australia generally experience strong monsoon-related
interannual rainfall variability with significant impacts on continental
river flows88,89. Another notable exception is the maritime continent
(islands, peninsulas and shallow seas of Southeast Asia), where again
ENSO-related SLA variability and waves from the strong Northwest
Pacific Tropical Cyclone activity90 appear to dominate shoreline evo-
lution. In the following, we focus on establishing linkages between
dominant modes of tropical and extratropical climate variability and
the three main drivers of shoreline change considered in our regres-
sion model (sea level change, waves, fluvial inputs).

The influence of ENSO on shoreline driver’s climate variability
Assessment of the ENSO teleconnection pathways to these drivers is
inherently complicated by the spatial diversity of ENSO in particular
related to its two dominant modes of expression, namely the Eastern
andCentral Pacific ElNiño flavors (EP andCP91,92), aswell as its irregular
temporal behavior. The different environmental drivers of shoreline
evolution can all be seen as fast transients of the climate system that
are constrained by the seasonal and ENSO variability (cf. Data and
Methods and Fig S2). Therefore, it is possible to extend the mathe-
matical ENSO-based model of Pacific coastal wave evolution93 and
apply the analytical solution therein to represent the evolution of SLA,
wave energy flux and fluvial input globally (Eq. 2). Following the
mathematical derivation of the 2nd order solution94, these relation-
ships canbe expressed as the independentmulti-linear combinationof
two indices of ENSO activity, i.e. Emode and Cmode that represent the EP
and CP El Niño variability, respectively95, as well as their non-linear
interaction with the seasonal cycle (represented by a cosine function
with a 12 months period and a phase ϕ with a boreal winter peak in
January96), i.e. the ENSO-annual combination modes Ecomb-mode and
Ccomb-mode, known to generate adeterministic variability at near annual
time scales as

In order to evaluate the contribution of these distinct ENSO
regimes within a more holistic view of global climate variability, we
extend this model for each driver to also account for the influence of

the dominant modes of extratropical climate variability, namely SAM,
IOD and NAO, as

Sea level x, tð Þ= f 1 ENSOð Þ+φ1 xð ÞNAO+δ1 xð ÞSAM+ ρ1ðxÞIOD
Wave energyðx, tÞ= f 2ðENSOÞ+φ2ðxÞNAO+δ2ðxÞSAM+ ρ2ðxÞIOD
River flowðx, tÞ= f 3ðENSOÞ+φ3ðxÞNAO+δ3ðxÞSAM+ ρ3ðxÞIOD

8><
>:

ð3Þ
The distributions of correlation coefficients between observed

and simulated (using Eq. 3) interannual anomalies of sea level, wave

Fig. 1 | Shoreline change as a linear function of hydrodynamic drivers. a Global
distribution of correlations between interannual anomalies of observed (from
Landsat satellite) shoreline position and the multi-linear regression model for
shoreline change anomaly (S) as a function of SLA, wave energy flux and river
discharge anomalies over the period 1993-2019; only portions of shoreline where
correlations are above the 95% confidence threshold are shown. The inset in the
bottom left corner shows the globally averaged correlation coefficient. b Global
distribution of the dominant drivers of modeled Shoreline; a dominant contribu-
tion is taken as when > 40% of variance of Shoreline is explained by the variance of
one individual driver. The inset in the bottom left corner shows the globally aver-
aged contribution of each driver. For more robustness, whiskers in each inset
delineate the range of one standard deviation among all randomized hindcasts of
varying lengths from 10 to 27 years.

Sea levelðx, tÞ= f 1ðENSOÞ= a1ðxÞEmode +a2ðxÞCmode + a3ðxÞEmode +a4ðxÞCmode

� � � cos 2πðt�ϕÞ
12

� �

Wave energyðx, tÞ= f 2ðENSOÞ= b1ðxÞEmode +b2ðxÞCmode + b3ðxÞEmode +b4ðxÞCmode

� � � cos 2πðt�ϕÞ
12

� �

River flowðx, tÞ= f 3ðENSOÞ= c1ðxÞEmode + c2ðxÞCmode + c3ðxÞEmode + c4ðxÞCmode

� � � cos 2πðt�ϕÞ
12

� �

8>>>><
>>>>:

ð2Þ
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energy flux and river flows are shown in Fig. 2a, b and c, respectively.
The model that accounts for the effect of the four climate modes
(ENSO, IOD, NAO, and SAM) produces an overall correlation of 0.72,
0.64, and 0.61 with the reanalysis products of SLA, wave energy, and
river flows, respectively (cf. Table 1 of supplementary material), and
exhibits statistically significant correlation at the 95% level along the
world’s shorelines. Figure 2d–f breakdown the respective contribution
of NAO, IOD, SAM, and ENSO to the model’s globally averaged total
variance. With an average contribution of ~65%, ENSO, in all its diver-
sity and complexity (i.e. Total ENSO in black contour bar), emerges as
the predominant driver of global climate-driven interannual variability
of the four climatemodes considered. This theoretical framework also
allows disentangling the respective contributions to the drivers of
shoreline change from (i) the two types of ENSO linear forcing, the
Emode and Cmode and (ii) their non-linear interactions with the seasonal
cycle (the combination modes, E Comb-mode and C Comb-mode, i.e.
the last two terms of Eqs. (2)97). Over the study period, several El Niño
events were recorded: a major CP (2009/2010), and several small CP
(2002/03, 2005/06). The linear ENSO effect appears to dominate the
interannual anomalies of all shorelinedrivers (orange bars in Fig. 2d–f).
Because the Emode ismostly related to the extreme El Niño occurring in
the far eastern Pacific (e.g., the 1997/98, 2015/16 El Niño), the Cmode

(prevailing during the study period) overshadows the Emode contribu-
tion. Nevertheless, ENSO’s non-linear influence is far from negligible,
with the EComb-mode andCComb-mode contributing together ~25% to
the total variance (cf. yellow and purple bars on Fig. 2d–f).

The contributions from the extratropical climate patterns to the
drivers of shoreline change associated with NAO (green bars in

Fig. 2d–f) and SAM (light blue bars in Fig. 2d–f) reach on average 15 and
8% globally, respectively. The IOD contribution (burgundy bars in
Fig. 2d–f) is also around 15%. Figure 2g–i shows the gain in correlation
between observed and simulated interannual anomalies of sea level,
wave energy flux and river flows, respectively, associated with the
inclusion ofNAO, IOD, andSAM into the set of Eqs. (2). The influenceof
NAO on all three drivers is strongest in the northern Atlantic and
Mediterranean basins. This is due to its strong effect on thermosteric
variations79,98,99, as well as the atmospheric pressure field and mer-
idional gradient anomalies that force the zonal wind field and lead to
dynamical sea level and precipitation changes100,101 as well as increased
wave activity in the North and tropical Atlantic102. A substantial
increase in correlation can also be observed in the Southern Hemi-
sphere (e.g., Indonesia, South Africa, South America), particular in
wave energy (Fig. 2h), owing to the influenceof SAMon the interannual
variability of ocean wave activity south of 30°S, whereas we can
hypothesize that the increase in wave energy correlation along the
Eastern African façade is due to effects from the IOD.

Overall, our analysis reveals that accounting for the full con-
tinuumof ENSOeffects ondrivers of shoreline change explainsmostof
their variability with a substantial gain compared to when only its
canonical influence is considered as commonly done (measured by a
simple linear regression of the shoreline drivers onto the classic Niño3
index, i.e., theusualbenchmark in ENSOstudies, seeTable S1). Our new
framework indeed allows considering the wide spatial diversity and
temporal irregularity of ENSO teleconnections operating towards
higher latitudes (Figs. S3b, e, h) and other oceanic basins (Figs S3c, f, i)
whereas the canonical variability tends to limit such atmospheric and

Fig. 2 | Climate influence on drivers of shoreline change. Global distribution of
correlation coefficients between observed and climate modes-based simulated
(Eq. 3) interannual anomalies of sea level (a.), wave energy (b.) and river discharges
(c.). Respective percentageof global contributions of thedifferent linear (Emode and
Cmode), non-linear (i.e. combination modes, E Comb-mode and C Comb-mode)
ENSO terms, NAO, IOD and SAM to the total model solution for sea level (d.), wave
energy (e.) and river discharges (f.). Gain in correlation between observed and

simulated interannual anomalies of sea level (g.), wave energy flux (h.) and river
flows (i.) respectively associated with the inclusion of NAO, IOD, and SAM into the
set of Eqs. (2). Whiskers in each inset delineate the range of one standard deviation
among all randomized hindcasts of varying lengths from 10 to 27 years. In panels
(a), (b) and (c) only portions of shoreline where correlations are above the 95%
confidence threshold are shown.
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oceanic bridges essentially to the tropical Pacific. It is also noteworthy
that the inclusion of SAM, IOD andNAO as predictors leads to a similar
improvement in the variance explained globally, i.e. +12% for SLA, +16%
forwave energy and +11% for river flow for a total variance explained of
52%, 41 and 37%, respectively, with the improvementsmainly restricted
in term of spatial influence to the shorelines located in the high lati-
tudes of the North Atlantic and Southern Hemisphere with the
exception of the eastern tropical African coasts (Table S1).

ENSO-based model to compute shoreline evolution
The dominant El Niño influence on the key drivers of shoreline evo-
lution over the last three decades highlighted above suggests that
ENSO has a very substantial influence on shoreline variability at
interannual timescales along most of the world’s shoreline. From
Eq. (1) and Eq. (2), our mathematical expression can thus be applied
directly to compute shoreline change anomalies using only ENSO
characteristics as input (Eq. 4):

Sðx, tÞ= FðENSOÞ= AðxÞEmode +BðxÞCmode + CðxÞEmode +DðxÞCmode

� � � cos 2πðt � ϕÞ
12

� �

ð4Þ

This simplified ENSO-based model, which integrates the essential
environmental factors impacting shoreline variability, simulates the
global shoreline anomalies (Fig. 3) relatively well, with a globally
averaged correlation of 0.43 (significant at the 95% level). This
demonstrates that the ENSO state, when represented in all its spatial
diversity and temporal complexity (as compared to only its canonical

expression as commonly done) may be a reasonable predictor of the
main processes affecting shoreline changes even outside the Pacific
basin and the tropics (see the regional and global gain from the
canonical to complex ENSO model formulation on the different inset
bar plots of Fig. 3 and Table S1). However, while ENSO’s influence is
significant (at 95% significanceormore) along about 83%of theworld’s
shoreline estimated by satellite (47% of the world’s total shoreline),
there remain several stretches where correlations are below the 95%
significance threshold. The inclusion of SAM, IOD and NAO into Eq. (4)
results as a new Eq. (5):

Sðx, tÞ= FðENSOÞ+ εðxÞNAO+ ζ ðxÞSAM+ηðxÞIOD ð5Þ

This leads to a notable increase in global average correlation,
which then reaches 0.62, and in particular along most European and
Southern Hemisphere’s shorelines. This can be explained by the con-
sideration of atmospheric factors associated with NAO78,98,103,104 and
SAM and their induced effects on SLA and waves on extratropical
shorelines in both hemispheres. The increase in variance seen in the
Indian Basin is likely related to the inclusion of the IOD and to some
extent the SAM, which can generate waves strong enough to travel to
these regions (e.g., Indonesia, northwest Australia, India).

NAO and SAM, whose expressions are predominantly atmo-
spheric, offer little seasonal predictability other than that linked to
ENSO itself105. Similarly, the IOD variability unrelated to ENSO ismostly
stochastic66 and therefore of little value for improving seasonal climate
predictions. On the other hand, ENSO, as a slower mode of variability

Fig. 3 | ENSO-basedmodelof interannual normalized shoreline change. aGlobal
distribution of correlation coefficients between observed (from Landsat satellite)
and ENSO-based (Eq. 4) simulated interannual anomalies of shoreline change. Only
portions of shoreline where correlations are above the 95% confidence threshold
are shown. b Gain in correlation between observed and simulated interannual
shoreline anomalies associatedwith the inclusionofNAO, IODand SAM into Eq. (4).
Panels (c) to (n): Observed and simulated time series of yearly averaged interannual
shoreline monthly anomalies averaged over the corresponding regions delineated

by the black boxes on the left map when the model considers all climate modes or
the complex ENSO only. Inserted bar plots in each time series plots indicate the
shoreline change variance explained (in %) by the complex ENSO model (orange
bars), by the simple linear regression model onto the canonical ENSO mode
(represented by the classicNiño3 index, graybars) andby themodel considering all
climate modes (yellow bars). Whiskers in each inset delineate the range of one
standard.
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characterized by a strong subsurface oceanic signature, remains the
most reliable predictor for climate forecasts at time scales beyond the
seasonal horizon106. Our results show that reasonably skillful predic-
tions can be obtained from computationally cheap statistical models
approximating the evolution of the diverse ENSO regimesby linear and
nonlinear dynamics. We believe the results and methods presented in
this study provide a solid conceptual framework to evaluate complex
connections between large-scale climate variability and regional
coastal hazards and could form the basis for developing regional
physics-based projections of shoreline change to feed into effective
coastal adaptation strategies around the world.

Limitations
Several simplifications were necessary to perform this study at glo-
bal scale, as is the case with any large-scale analysis. We have
excluded very high-latitude coasts where the seasonality of envir-
onmental variables is perturbed by ice107. We have used the global,
and necessarily coarse, publicly available ERA5 wave reanalysis
product that has nevertheless been widely used and validated in the
literature. Additionally, we did not consider the transformation of
wave energy from offshore deep waters to the continental shelves
and farther into coastal zones, a process that can be substantial in
areas with wide shelves37,87. Instead, we focused directly on offshore
waves and considered only regional patterns of variability under the
influence of the synoptic climate environment. Small-scale (spatio-
temporal) coastal dynamical processes are complex and out of reach
of the large scales covered by this interannual regional to global
study. Their physical influence on shorelines is also multifaceted.
For instance, the influence of rivers on coastal sea levels46,47 and
sediment discharges45,108,109 depends on several socio-environmental
aspects and such information is still unavailable worldwide despite
an urgent need. Our approach is focused on the interannual varia-
bility of the influence of shoreline drivers, and not on the precise
magnitude of these influences, which can be substantially locally
modulated by several processes operating at shorter time scales. We
believe the year-to-year assessment in this study dampens such
small-scale, non-linear and complex interactions and helps the dis-
tillation of large scale, statistical links between shoreline drivers and
climate signals such as ENSO. Overall, the correlations obtained
between our proxies and the observed/modeled shoreline changes
provide reasonable confidence in our approach (Fig. 1).

Here we examine the influence of interannual climate variability
on the world’s coastlines, excluding longer-term trends from our
analysis. This long-term, decadal to centennial, shoreline evolution
is influenced by a variety of factors, including trends in our con-
sidered drivers (waves, sea level rise and river discharge), but also
other factors such as vertical land motion, also called subsidence,
due to natural (such as Glacial Isostatic Adjustment (GIA) - or post-
glacial rebound) and local human influence. High rates of relative
sea-level rise due to subsidence in urban areas such as Jakarta, have
been reported to reach tens of centimeters per year, andmost deltas
are sinking due to oil exploitation and agriculture110, by far exceed-
ing natural variability and even all projected worst-case scenarios of
mean sea level rise over the 21st century111,112. Changes in the coastal
sediment budget due to terrestrial inputs, climate change and
human infrastructure (river damming, coastal protection and deep-
water harbors) also play a dominant role in the long ter. On a long-
term basis, current wave trends are not expected to continue in the
future unlike sea level10, which is predicted to rise steadily or even
accelerate.

Furthermore, our methodology considers natural stretches of
coasts influenced by natural climate variability. However, shorelines
have been actually modified in various ways by human activities, par-
ticularly in urbanized areas where, for example harbors have been
constructed, land reclaimed from the ocean20, seawalls built to combat

shoreline recession, cliffs stabilized, beaches nourished, and groins
placed in an attempt to retain a beach fringe and maintain dunes. For
example, in the US alone, 14% of national shoreline is estimated to be
hardened with engineering structures (e.g. seawalls, dikes113), and this
percentage is expected to intensify globally over the 21 s century114,115.
Human intervention is particularly high in tropical developing coun-
tries, where dramatic changes in land use are occurring, due to, for
instance, deforestation and urbanization, at a higher rate than any-
where else in the world116,117. In particular, unplanned or poorly
designed coastal structures are a major issue transforming the coastal
landscape in these countries. The regional aggregation of our data at
synoptical scale (8 transects, ~400 km) aims at damping these local
and human-induced influences to enhance and capture larger scales
climate-driven patterns.

Satellite-derived shorelines can be prone to many sources of
uncertainties or systematic biases that can confound analyses such as
those presented here. Therefore, it remains challenging to assess
whether the absence of a relationship with potential drivers (e.g.,
ENSO) is due to a true lack of relationship, or simply due to poor
quality shoreline data. The monthly median NDWI shoreline mapping
approach used here is likely to be more susceptible to potential data
issues than other approaches that use longer annual composites20,118,
particularly in regions of the world with either high persistent cloud
cover, or relatively low satellite observation densities119,120. This can
make it challenging to obtain even clean annual median shorelines in
many of these low data environments, let alone high-quality monthly
shorelines. Similarly to a former global study20 and unlike Vos et al.,
(2019)19 who used advanced trained convolutional neural network
coefficients to distinguish between land and marine pixels, here we
used the more basic NDWI waterline proxy for this global application.
Our shorelines are smoothed in the same way as the drivers over an
8-month period to eliminate sub-annual shoreline dynamics, which
also smooths out some of the problems associated with getting good
monthly shorelines. The correlations obtained between our indepen-
dent drivers/climate modes and the observed/modeled shoreline
changes provide a reasonable level of confidence in our satellite-based
global shoreline dataset that admittedly can be further improved, but
paves the way for more future detailed studies and technological
developments.

Methods
Our methodological approach is summarized in the Supplementary
material Fig. S1 and detailed in the following.

Shorelines from satellite images
Here we use the water line as shoreline definition121, i.e., the water line
at the time of data collection. Due to the continuous influence of tides,
storm surges and waves on the shoreline, the water line is subject to a
combination of sediment and hydrodynamic variabilities that do not
directly represent the evolution of the “geological” shoreline, such as
the retreat ofmeanhigh-water line, the vegetation line, the erosion of a
cliff, or the erosion of a coastal settlement. Different portions of the
shoreface profile are likely to have contrasting responses to drivers of
change, even potentially exhibiting contrasting trends through time
and space122,123. Nevertheless, the water line adequately reflects the
shoreline position that is relevant for vulnerability and risk associated
with erosion and flooding118 and is thus used a shoreline proxy in
this study.

The global dataset used in this study is re-sampled with transects
spaced at 0.5o intervals (~50 km), along the same 14,410 points vector
as in Almar et al.40 spanning approximately 1.5 million kilometers. The
initial shoreline dataset used is Global Self-consistent Hierarchical
High-resolution Geography (GSHHG version 2.3.6124) to define loca-
tions along the world shorelines. The world was divided into compu-
tational regions using a series of GSHHG shoreline polygons. This
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positions our study not at the local scale (<50 km, ~ specific bay, beach,
community seafront), but to capture the regional to global picture.
The local coastline has its own complexities (e.g., wave transformation
on unknown changing bathymetry, impact of infrastructure and
human intervention), which are beyond the scope of this study.
Instead, the individual data are more regionally aggregated (along 8
consecutive data points, ~400 km of coastline), showing similar
regional behavior rather than distinguishing local diversity (see
Fig. S4). The monthly composites of shoreline positions were derived
from 1993 to 2019 usingmultiple satellite acquisitions provided by the
Landsat missions 5, 7, and 8. The extraction of these data was per-
formed on the Google Earth Engine (GEE) platform125. The GEE was
calculated over 30 regions of interest of varying size, covering coastal
areas worldwide (and 60% of the globe). Since we used T1_8DAY_NDWI
30m collections from Landsat 5, 7 and 8 satellites, which represent
monthly median composites of 10.5 images (i.e., 3 or 4 images per
monthdepending on themonth × 3 satellites) of size 0.70 × global area
at a 30m resolution, about 400 Megapixels were processed, which
amounts to approximately three petaoctets of satellite data and
required 7200h of computation. Normal Difference Water Index
(NDWI) maps were derived from satellite images and the NDWI
threshold used was 0126. The identified pixels correspond to ocean for
NDWI >0, and to land surfaces for NDWI <0. The shoreline is then
identified as the interface between the land and sea surfaces127. We
acknowledge that the selection of water index thresholds can have a
significant impact on the quality and distribution of satellite-derived
shorelines. The constant NDWI threshold used here contrasts with the
use ofmore complexdynamicmethods to optimize thresholds to local
conditions (e.g., the commonly used Otsumethod128), but remains the
most commonly used approach to obtain a primary estimate and gives
reasonable results at the validation sites.

Issues due to wave breaking or water turbidity during extremes
are smoothed out usingmonthlymedian composites in addition to the
post 8-month smoothing to remove event-related and sub-annual
dynamic. Also, our study focuses on interannual evolution, which
dampens the complexity of this short-term link between drivers and
shoreline evolution (with potential lags129,130). To illustrate the ability
but also the limitations of our method to observe shoreline variability
from satellite, Fig. S6 shows a comparison between the closest satellite
transects and various ground measurements of some of the longest
shoreline datasets around the world: Truc Vert131 (South West France,
Fig. S6a), Torrey Pines132 (West Coast USA, Fig. S6b), Duck (East coast
USA, Fig. S6c, data provided by the U.S. Army Engineer Research &
Development Centre, Coast & Hydraulics Laboratory, Field Research
Facility) and Narrabeen133 (East Coast Australia, Fig. S6d). The in-situ
data are based on regular monthly topo-bathymetry measurements
averaged along the coast (typically one kilometre), and the compara-
tive shoreline proxy used here is the high tide upper beach contour
above mean sea level. For all sites, the ground truth data are inter-
polated to a regularmonthly resolution, and comparisons aremade for
periods where no significant gaps were present in the in-situ data.
Despite the coarse resolution of our dataset (transects every 0.5o), our
regional comparison with local measurements shows good overall
agreement, increasing from short, seasonal, to longer interannual time
scales. The local behavior of the beaches such as a nourishment at
Torrey Pines cannot be captured and is beyond the scope of our
regional to global analysis. Here, we are after the variability of the
shoreline for which the correlation is the most appropriate quality
proxy. The correlation is used to assess the quality of our dataset
compared to in-situ data. It should be emphasized that we aim here to
resolve only the regional to global scales of interannual variability of
the coastal shoreline, not the amplitude of the subsequent numerous
anddiverseprocesses thatmay includenon-linearities and interactions
within the coastal system37,134. These correlation coefficients between
our satellite-derived shorelines representative of the regional scale,

and in-situ local shorelines range from 0.38 to 0.61 at these sites,
despite distances of up to tens of kilometers between our closest
transects and the sites. The differences may come from the difference
in the shoreline approximation used; thus, all sea level variations, such
as regional sea level, wave contribution to sea level at the coast (i.e.,
setup and run-up) but also river discharge have amore direct effect on
the position of the waterline than the surveyed shoreline proxy using
mean sea level as a reference. Nevertheless, this demonstrates the
regional common behavior of shorelines at interannual scales, already
identified42,57,104.

Sea level, waves and river flow
Sea level was computed at the coastal points situated along the open
coasts of the world. Regional sea level anomaly (SLA) was derived at
each computational profile fromsatellite altimetry sea level time series
using the SSALTO/DUACSmulti-mission data135. In addition, Dynamical
Atmospheric Corrections (DAC, or storm surge) were taken from a
global application of the hourly MOG2D-G non-structured grid model
outputs136, forced by surfacewinds and atmospheric pressure from the
ERA-interim reanalysis137. The offshore wave energy flux, proportional
to and here directly taken as Hs

2xTp where Hs is the significant wave
height and Tp the swell peak period138 was extracted from ERA5139,
developed by the European Centre for Medium-Range Weather Fore-
castsmodel (ECMWF), at 0.25° × 0.25° and hourly temporal resolution.
The ERA5 reanalysis uses a coupled ocean wind-wave and atmospheric
model, which has been extensively validated137,140,141. For continental
freshwater river flowdata, used here as a proxy for annual variability of
fluvial inputs, we rely on daily runoffs from the up-to-date ISBA-CTRIP
(Interactions between Soil, Biosphere and Atmosphere-Total Runoff
Integrating Pathways, from the Centre National de Recherches
Météorologiques—CNRM) land surface model simulations142. ISBA-
CTRIP is a “state-of-the-art” hydrological numerical system that
simulates continental hydrology and freshwater river flow at the
coast globally. It is based on a two-way coupling between the ISBA
andCTRIPmodels, where the ISBA solves the land surface energy and
water budgets at any time step, while the CTRIP river routing model
simulates natural river discharges up to the ocean from the total
runoff computed by the ISBA land surface model. Here, we use the
global offline simulation at 0.5° resolution driven at a 3-hourly
timescale by the ERA-Interim (ECMWF Reanalysis) reanalysis avail-
able over the 1979–2019 period. At each time step, ISBA-CTRIP pro-
vides the variations of continental freshwater flux to the ocean
from which we use here yearly average for 1993-2019. Note that
ISBA-CTRIP does not include anthropogenic effects on water stora-
ges and river discharges since it does not include representations
of flow regulation and irrigation water needs which can have a pro-
found impact45,143,144. Nevertheless, modeled daily runoff has been
extensively validated against several database of in-situ daily
measurements for large rivers in different environments142, showing
good accuracy and agreement in terms of seasonal and interannual
variations.

All these data were interpolated on to the shoreline transect
locations using the nearest neighbor method and computations were
performed at all 14,140 shoreline transect locations. In order to elim-
inate local effects and to focus on variability at regional scales, all sea
level components were spatially smoothed such that all calculations
usedmedian valueswithin a radius of 100 kmalongshore. All datawere
linearly detrended, the seasonal cycle removed using a monthly mean
seasonal climatology and to focus on the interannual variability
smoothed using a running mean with an 8-month window over the
period 1993–2019.

Toward an ENSO-based shoreline prediction
Here, to construct a model of shoreline change drivers, we follow
Boucharel and Jin’s95 approach, based on the stochastically forced
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model of fast climate variability145,146. We consider the variations of
coastal wave energy flux, sea level and river inputs as fast transients of
the climate system that respond to slow climate forcing, i.e., the two
different types of ENSO and their seasonally modulated influence on
tropical and extra-tropical storm activity, precipitation and SLA
regional patterns. The seasonal connections between ENSO and these
drivers of shoreline evolution are evidenced by the regression patterns
between interannual anomalies of precipitation, sea surface tempera-
ture (SST), wind speed and direction and the Emode and Cmode in boreal
winters and summers (Fig. S2). Emode and Cmode are two uncorrelated
and independent ENSO indices, calculated as the first two rotated
Principal Components of the EOF decomposition of SST interannual
anomalies94 and accounting for the variability of the two different
types of ENSO, respectively, the extreme warm events in the Eastern
(i.e. EP ElNiño) andmoderatewarmevents in theCentral Pacific (i.e. CP
El Niño). Note that the two classical ENSO indices Niño3 (monthly sea
surface temperature anomalies averaged in the region boundedby 5°N
to 5°S, from 170°W to 120 °W) and Niño4 (monthly sea surface tem-
perature anomalies averaged in the region bounded by 5°N to 5°S,
from 150°W to 90°W) are almost identical to the Emode and Cmode

indices, respectively, andprovide a similar but simpler andmoredirect
measure of ENSO spatial diversity, although not quite orthogonal.
Nevertheless, we re-ran all the main calculations and figures using
these simple indices, which gave similar results (see Figs. S5, S6). Both
types of El Niño events are associated with strong zonal swings in SST
anomalies across the tropical Indian and Pacific basins, which have
massive repercussions in terms of coastal sea level variability in the
tropical band through thermosteric effects. This well-known ENSO
zonal redistribution of ocean heat can also induce, via atmospheric
teleconnections55, a strengthening of the North Pacific jet-stream that
can even extend to the North Atlantic basin at the peak of EP El Niño
events (Fig. S2a). Thiswill increase the coastal wave activity alongwest-
facing shorelines via the intensification of the Aleutian (Icelandic) low-
pressure systems in the North Pacific (Atlantic) basins. This strength-
ening of surface winds will also affect coastal sea level along the
NorthernHemisphere west-facing shorelines through dynamic effects.
Because ENSO-driven changes in SST also affect theWalker circulation,
which induce significant redistribution of deep atmospheric convec-
tion, ENSO has a strong influence on large-scale precipitation patterns
and in particular on the intensity of monsoonal regimes. The onset of
El Niño is associated with drier conditions over South Africa, the
Maritime continent and theMiddle East, which extends over the entire
tropical Atlantic during CP events (Fig. S2c, d). At their peak, the East
Asian, North American and West African monsoons are significantly
strengthened while the South American monsoon is weakened. These
changes in rainfall patterns are generally translated to the amount of
freshwater discharged by rivers to the ocean. Overall, this analysis
confirms that, similarly to wave variability in the Pacific, ENSO has a
substantial seasonally-modulated influence on SLA and river discharge
variability as well, particularly in the Pacific and the tropics. Therefore,
we can use the same hypothesis and expand the model presented by
Boucharel et al.93 and Boucharel and Jin95 for coastal wave activity also
for SLA and river flow. The analytical solution of low-frequency waves,
SLA and river discharge amplitude changes (Z) can be then written in a
general form as

Z = 1 + k1mðtÞ+ k2m
2ðtÞ+ ::: ð6Þ

with m tð Þ= γAcos 2π t�ϕð Þ
TA

� �
+ γCCmode + γEEmode representing the cli-

mate forcing (first term being the seasonal cycle with a period
TA = 12 months and a phase similar to that of ENSO peaking in
December–February, ϕ = 1 (i.e. January) and the last two terms the CP
and EP El Niño forcing, respectively).

At the 2ndorder, the interannual evolutionof the amplitudeof the
driver Z can then be expanded (Eq. 6) as in Eq. (2) or Eq. (4). Since our

model resembles Linear InverseModels, we can obtain the coefficients
of the different terms, and therefore, the full analytical solution
through a local multi-linear regression147,148.

We compare thismodel that integrates the spatial diversity aswell
as the time scales associated with the different ENSO-annual cycle
combination modes to what is commonly known as the canonical
ENSO effect, the current state-art-of-the-art or benchmark in studies of
coastal impacts of ENSO; a simple regression model onto the classic
Niño3 index.

Other climate modes
To differentiate between ENSO and other climate modes, we use the
Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) in the
Southern hemisphere and the North Atlantic Oscillation (NAO) in the
Northern hemisphere. The SAM index is calculated as the zonal pres-
sure difference between mid-latitudes (40°S) and higher latitudes
(65°S) of the Southern Hemisphere. The NAO index ismeasured as the
difference in atmospheric pressure at the surface sea level between the
subpolar low pressure in Iceland and the subtropical high pressure in
the Azores. The IOD is represented by anomalous SST gradient
between the western equatorial Indian Ocean (50E–70E and 10S–10N)
and the south eastern equatorial Indian Ocean (90°E–110°E and
10°S–0°N). All climate indices were linearly detrended, and the sea-
sonal cycle was removed using a monthly mean seasonal climatology,
allowing us to focus on the interannual variability, which was here
smoothed using a running mean with a 8-month window over the
period 1993-2019.

Statistical significance of correlations and intervals of
confidence
Here, we consider a total period analysis spanning 324 months but
with a temporal smoothing using an 8-month window runningmean,
which leads to 324/8 = 40 independent time steps. In Fig. S5, we
estimated the slope of the best linear fit to the autocorrelation
logarithm for each driver and the shoreline, or in other terms, an
e-folding time equivalent to their interannual memory. While such
memory times vary differently for the drivers and the shoreline
position along the different global shorelines, they remain below a
maximum of ~24 months. In addition, because our estimation of the
shoreline from space is based on thewaterline position, we expect an
instantaneous response of shoreline to SLA variation. Studies in
Australia149 and in France129 show with high frequency observations
that the memory of shoreline with respect to the wave forcing does
not exceed two weeks. Although the time scales of the shoreline’s
response to the input of sediments from river discharge remains
somewhat uncertain, a local lead-lag correlation analysis between the
shoreline variability and its dominant driver’s shows that the max-
imum coherency always occurs at a lag below 12 months (Fig. S8).
Since we explore the interannual variability of the shoreline, this
implies an in-phase relationship between its position and all hydro-
dynamic forcing.

This leads to a total number of independent observations for
shoreline and drivers ofN = 40 – (24/8) = 37. Thus, the total number of
degrees of freedomd.o.f for amultiple linear regression analysis with k
predictors is d.o.f =N-k-1. For instance, this gives a d.o.f = 37-3-1 = 33
and correlation coefficient thresholds of 0.32 and 0.44 at the 95 and
99% significance level, respectively, according to a Student t test for
Fig. 1. For Fig. 2, d.o.f = 37-7-1 = 29 and correlation coefficient thresh-
olds are 0.36 and 0.46, respectively.

To provide intervals of statistical confidence, we compute coef-
ficients of the multi-linear regression hindcast model at each coastal
point over various sub-periods ranging between 10 and 27 years
(depending on available data series lengths) from the total 1993–2019
period. For instance, for a hindcast of a given length of n months, we
realize 324� n� 1ð Þ randomized hindcasts.
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The variance explained by different contributors (i.e., driver or
climatemode components) to the total regressionmodel is calculated
as (Eq. 7):

explained variance= 100 � 1� varðtotalmodel� contributorÞ
varðtotalmodelÞ

� �

ð7Þ

Data availability
The raw climate data that support the findings of this study are already
available online. AVISO (https://www.aviso.altimetry.fr/en/data/
products/auxiliary-products/dynamic-atmospheric-correction/
description-atmospheric-corrections.html), ERA5 (https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=
overview), NOAA climate indices (https://psl.noaa.gov/data/
climateindices/list). ISBA-CTRIP (http://www.umr-cnrm.fr/spip.php?
article1092).

Code availability
Matlab codes and processed data are made available upon request.
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