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A B S T R A C T   

Study region: The Curuaí floodplain in the low Amazon river in the Pará state of Brazil and Juruá 
basin, a major Solimões tributary. 
Study focus: Characterizing the hydrological dynamics of Amazon floodplains is essential to better 
understand and preserve these environments providing important resources to local populations. 
Radar altimetry is an effective remote sensing tool for monitoring water levels of continental 
hydrosystems, including floodplains. An unsupervised classification approach on radar echoes to 
determine hydrological regimes has recently been tested and showed a strong potential on the 
Congo River basin. This method is adapted to Envisat and Saral satellite radar altimetry data on 
two study areas in the Amazon Basin. The aim is to improve inland water detection along 
altimeter tracks to automatically generate water level time series (WLTS) over rivers, lakes, and 
poorly monitored floodplains and wetlands. 
New hydrological insights: Results show a good agreement with land cover maps obtained with 
optical imagery over selected Amazonian wetlands (70–80% accuracies with Envisat data and 
50–60% with Saral data). Automatically generated WLTS are strongly correlated to the manually 
generated WLTS (R2 

≈ 0.9; RMSE < 1 m). Compared to the manual method, the automatic 
method is faster, more efficient and replicable. Densifying the WL network in the floodplains 
bring crucial information on the connectivity dynamic between lakes and rivers.   

1. Introduction 

Freshwater wetlands and floodplains cover ~8% of the Earth’s surface (Davidson et al., 2018). They have an essential role in fluvial 
hydrological dynamic regulation, organic and inorganic dissolved and particulate material fate, and water quality (Costanza et al., 
1997; Jisha and Puthur, 2021; Xu et al., 2019). It also ensures fundamental functions such as flood mitigation, groundwater recharge, 
water purification, nutrient and sediment retention, and supports high levels of biodiversity (Dudgeon et al., 2006). Today, wetland 
ecosystems are well documented (Davidson et al., 2018; Janse et al., 2019; Jisha and Puthur, 2021) and turn out to be the most 
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threatened ecosystems (“Media Release: Nature’s Dangerous Decline ‘Unprecedented’; Species Extinction Rates ‘Accelerating’ | IPBES 
secretariat,” 2019; Moomaw et al., 2018) requiring the most effective preservation (Dubos et al., 2022). Sixty-six percent of the 
continental biodiversity extinctions are aquatic taxa and habitat’s loss rate is greater than biodiversity extinctions (Denny, 1994; Foley 
et al., 2007). Amazon is the largest river system in the world, with about 6,400,000 km2 and the largest freshwater reserve concentrates 
16% of the planet’s freshwater flow (da Silva Abel et al., 2021; Latrubesse et al., 2017). Wetlands and floodplains in this watershed 
represent 800,000 km2, which is about 10% of the total basin area (Melack and Hess, 2010). Hydrological cycle of the main river and in 
these areas is considered as a key factor in regulating biodiversity (Junk et al., 2014, 1989). Indeed, wetlands are a major biodiversity 

Fig. 1. – A) Curuaí floodplain on the right margin of the Amazon River. B) Juruá watershed and its water drainage network. The radar altimeter 
tracks of Envisat and Saral missions, that had the same orbit, appear in red. Water level gauges used as references in this study are shown in yellow. 
(Background maps: Google Earth, HYDROSHEDS). 
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reserve, regulating many species life cycle of fauna and flora and hosting characteristic biotopes (da Silva et al., 2013; Jézéquel et al., 
2020). For example, in the whitewater rivers of the Amazon, fish communities vary markedly and predictably with hydrological 
season. Their reproduction is synchronized with the onset of the rainy season (da Silva et al., 2013) when the hydrological connectivity 
through surface water is maximum. Indeed, each year the seasonal flood leads to an important rise of the WL in the river, which invades 
the vast associated floodplains and increases the connectivity among rivers, lakes and wetlands, resulting in an intensification of 
nutrients and organisms exchange required for fish life cycles (da Silva et al., 2013; Trigg et al., 2012). Furthermore, because of their 
relative accessibility, soil fertility and fishy water, floodplains are heavily populated areas in the Amazon. Economic activities in these 
areas are directly influenced by climate and river water dynamics that control development of productive activities (agriculture, 
fishing, logging) (Sousa and Oliveira, 2016). Nevertheless, climate change and deforestation, leading to more frequent and severe 
droughts and floods (Marengo and Espinoza, 2016), and anthropic activities, such as hydroelectricity production, mining and urban 
occupation along banks of rivers, are all threats to these systems, their biodiversity and related economic activities (Melack et al., 
2021). In this context, the characterization of the hydrological connectivity is a key issue to better interpret biogeochemical cycles or 
fish population dynamics, for example (Park and Latrubesse, 2017). 

Nowadays, most of the in situ water level (WL) stations in the world are located on river main courses or on largest lakes. Since the 
beginning of the 2000 s, Vorosmarty et al. (2001) have been concerned about the decreasing number of in situ stations, which is partly 
related to the maintenance costs of the networks. The Amazonian in situ network has only gauges located in the rivers, except Curuaí 
gauge which is the only one acquiring water level in a floodplain. The development of alternative observation systems for in situ 
networks are thus necessary to improve our ability to monitor the wetlands’ possible evolution in response to the above cited threats 
(climate change, dam). In this regard, remote sensing techniques offer a unique opportunity to monitor large watersheds’ hydrology 
and characterizing connectivity in areas where in situ information is lacking because of difficult access, as it is the case for Amazon 
wetlands (Alsdorf et al., 2007, 2000; Jung et al., 2010; Park, 2020). Advantages of satellite systems are widely known: almost global 
coverage, spatial and temporal consistency of data, archiving of past data, durability and continuity of data are guaranteed (Fasso-
ni-Andrade et al., 2020; Rast et al., 2014). Surface water monitoring requires the mapping of the flooded areas and information on their 
WL to determine the water storage (Alsdorf et al., 2001; Arnesen et al., 2013; Papa and Frappart, 2021). In order to determine wetlands 
extent, radar sensors have strong advantages compared to optical ones as they provide information on land surfaces in all weather 
conditions, during day or night times. Moreover, lower frequencies electromagnetic waves in the microwave domain (e.g. L-band) can 
penetrate through the vegetation cover which can be very dense in the Amazon (Hess, 2003; Frappart et al., 2015; Shu et al., 2021), 
especially radar altimeters and their nadir-pointing vision (mostly operating at Ku or Ka frequency bands). These characteristics allow 
altimeters to measure land surfaces information (e.g. distance between the satellite and the reflecting surface, backscattering coeffi-
cient; Frappart et al., 2006; Frappart et al., 2021b) and thus obtain surface WL. This technique has been widely used over the past two 
decades to monitor the temporal variations of WL of lakes and rivers (Abdalla et al., 2021). However, few studies used radar altimetry 
data to monitor floodplain WLs (see Papa and Frappart in, 2021 for a review), whereas this is a considerable information source. 

This study aims to classify altimeter radar echoes in water-covered classes and create WL time series for each representative groups 
over Amazon floodplains. As WL time series in these areas are non-existent for now, their creation could considerably densify the WL 
station network in the Amazon. For this purpose, we follow a method based on an unsupervised classification of radar echoes to 
distinguish different hydrological regimes which automatically generate WL time series along altimeter tracks over the rivers and the 
floodplains (applied on the Congo river basin in Africa (Frappart et al., 2021c). This method is applied and adapted to two study areas 
in the Amazon to test the method replicability in the most tropical-wooded areas and densify the non-existent WL network in 
floodplains. Indeed, this study targets study areas where floodplains are playing a key role for biodiversity and local populations. 

2. Materials 

2.1. Study area 

The study areas are composed of floodplains located in two major whitewater rivers (Fig. 1): the Amazon River in the surroundings 
of Óbidos (Pará) (from 1.63◦ to 2.75◦ S; from 53.27◦ to 56.80◦ W) and one of the Solimões tributaries, the Juruá (from 2.45◦ to 8◦ S; 
from 65.75◦ to 73◦ W). The Lago Grande de Curuaí floodplain (referred as Curuaí floodplain, hereafter) is separated from the Amazon 
mainstream to the north by narrow levees and to the south by upland (terra firme). It is composed of several large and shallow lakes 
connected temporary or permanently to the mainstream by several channels. The flooded area can vary from less than 600 km2 up to 
2500 km2 during floods, with the maximum flood flow having a return period between 5 and 10 years (Bonnet et al., 2008; Callede 
et al., 2002). Each year, the rising phase of the floodplain starts between November and December and reaches its maximum in 
May-June. The falling phase begins in July and lasts until November with the greatest volume exported occurring from August to 
September. The climate of the Curuaí várzea is tropical monsoon with a mean annual temperature of about 26.5 ◦C and a mean annual 
rainfall of 2033 mm (Bonnet et al., 2008). 

Climate in Juruá basin is very similar, with also two distinct seasons: the dry season, which extends from April to September, and 
the rainy season, which extends from October to March (da Silva Abel et al., 2021). Annual rainfall generally ranges between 1800 and 
2200 mm and average annual temperature is about 24.5 ◦C. The Juruá basin is one of the most important basins in the southwestern 
Amazon, with a territorial extension of 224,000 km2. Its source is at an altitude of about 453 m in the Ucayali region of Peru (10.05◦ S, 
72.49◦ W; (Sousa and Oliveira, 2016). The river course extends over 3280 km, until it reaches its mouth in the northeast, joining the 
right bank of the Solimões River at an altitude of 36 m (2.63◦ S, 65.76◦ W). Over its entire course, the river has a difference in altitude 
of more than 400 m, giving a slope of about 0.007◦/km. According to the fluvial morphology, the Juruá is classified as a meandering 
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river with high sinuosity, high-suspended load and relative stability (Mota Da Silva, 2020). It is considered the most meandering river 
in the world, characterized by numerous irregular and tortuous meanders, with a huge floodplain of over 20,400 km2 containing 
thousands of lakes, many of which are abandoned meanders (Sousa and Oliveira, 2016). 

2.2. Datasets 

2.2.1. Altimetry datasets 
Radar altimetry data used in this study were acquired by Envisat and Saral on their nominal orbits. They were placed on a ~790 km 

sun-synchronous orbit with a 98.54◦ inclination sun-synchronous orbit with a 35-day repeat cycle and an equatorial ground-track 
spacing of about 85 km. Envisat payload was composed of 10 instruments including the advanced radar altimeter (RA-2). RA-2 
was a nadir-looking pulse-limited RA operating at two frequencies: Ku- (~13.575 GHz) and S-(~3.2 GHz) bands (Benveniste et al., 
2003). Data were acquired from 05/2002–10/2010. The radar footprint is ~15 km diameter which leads to more than 200 km2 of 
coverage. Ku-band measurements are acquired with ~350 m space between footprints along the satellite tracks. Saral payload was 
composed of 4 instruments including the altimeter radar AltiKa, which is the first altimeter to operate at Ka-band (~35.5 GHz; (Verron 
et al., 2015). Data were acquired from 02/2013–07/2016. The radar footprint is 8 km diameter which leads to more than 60 km2 of 
coverage. Higher pulse repeat frequency (500 MHz against 320 MHz) of Saral allows a shorter space of ~180 m between footprints 
along the satellite tracks. Saral has a smaller footprint and higher along-track and vertical resolutions than Envisat (Bonnefond et al., 
2018; Verron et al., 2021). 

Radar altimeter measures the two-way travel time of the electromagnetic pulse emitted by the sensor and the power reflected by the 
Earth’s surface. The two-way travel-time is used to derive an approximate distance between the satellite and the surface. The analysis 
of the radar echo (power received by the satellite as a function of the time) allows to refine the distance estimate applying a retracking 
process and to estimate the backscattering coefficient (Cretaux et al., 2017). Two types of altimetry data are used here: raw data from 
the Geophysical Data Records (GDR) and normalized tracks data. These are computed along each ground-track clustering and for each 
cycle to obtain 3D gridded information (see Frappart et al., 2021c for more details). Both datasets are made available by the CTOH 
through AlTiS data request from http://ctoh.legos.obs-mip.fr. 

2.2.2. Reference land cover map 
The reference land cover map will be used as validation of the radar echoes classifications, by constructing confusion matrices 

(Section 4.1.1). The Curuaí region map is from (Arantes et al., 2019); Supplementary Material Figure A.A). The Juruá basin’s map is 

Fig. 2. – Flow chart of the approach applied in this study.  
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shown in Supplementary Material Figure A.B and is available on ORNL DAAC for Biogeochemical Dynamics website (http://daac.ornl. 
gov). High water season maps is available and used here to see the entire inundation extent. The overall accuracy for wetland mapping 
is 93% and 86% for vegetation mapping (Hess et al., 2015). Curuaí and Juruá regions’ morphologies and properties are totally 
contrasted in terms of vegetation density and river width which allow us to test the method in different environments. 

2.2.3. Water level time series 

2.2.3.1. WL gauge stations. WL gauge records are used to validate the automatically-generated WL from radar altimetry. Data was 
downloaded from the water’s Brazilian national agency website Hidro-Telemetria (http://www.snirh.gov.br/hidrotelemetria/Mapa. 
aspx). One WL gauge located in the Lago Grande (2.25◦ S, 55.33◦ W), near Curuaí , has collected data since 1982 and has been levelled 
by high precision GPS based on WGS84 coordinate system (Calmant et al., 2013) and reported to EGM2008 gravity field model (Pavlis 
et al., 2012). In the Juruá watershed, the Santos Dumont WL gauge (6.44◦ S, 68.24◦ W) is chosen to be the reference because of its 
proximity to a satellite track and its similar WL recording’s period. This WL gauge is about 3000 km upstream from the mouth of the 
Juruá (see Fig. 1) and record WL since 1981. It has not been levelled, the comparison with altimetry data will be in a relative way to 
focus on the hydrological cycle’s changes. 

2.2.3.2. AlTiS time series. Time series of WL can be manually retrieved using the Altimetry Time Series (AlTiS) software (Frappart 
et al., 2021a), a new version of the MAPS software (Multi-mission Altimetry Processing Software; (Frappart et al., 2015b; Normandin 
et al., 2018). These time series of WL are used to validate the automatic method presented in this study. The software enables the user 
to select the altimetry data inside a Google Earth polygon. It can display parameters supplied by CTOH: backscatter coefficients and WL 
estimations. These parameters are presented as time series obtained computing the median of each cycle valid observations following 
the processing proposed in Cretaux et al. (2017). Some outliers may still be present in the time series and can be manually removed 
thanks to a specialized tool. 

3. Methods 

3.1. Methodology summary 

The method applied in this study to generate WL from a classification of the radar altimetry echoes is summarized in Fig. 2. First 
step consists of applying a K-means unsupervised classification technique to radar altimetry parameters as in Frappart et al. (2021c). 
Then, best parameter combinations are determined with confusion matrices and accuracy computing. Finally, VS were built on the 
water-covered surfaces and some comparisons are presented, with in-situ and AlTiS software. 

3.2. Classification of radar altimetry echoes 

3.2.1. Temporal variations of radar altimetry data 
The classification’s methodology is applied to one or several radar altimetry parameters as their responses differ according to the 

presence or not of water. Over open water areas such as rivers and lakes, there are large seasonal variations in the backscatter co-
efficient in Ku- and Ka-bands (Supplementary Material Figure B; Frappart et al., 2021a, 2021b). These temporal variations are related 
to changes in river width or lake extent in the altimeter footprint, caused by the increase in WL. The larger the water extent, the more 
power backscattered to the radar altimeter as this sensor is nadir-pointing. Large variations of the backscatter coefficients occur along 
the hydrological cycle, well-synchronized with the temporal variations of the WL over rivers and lakes. In the Amazon, maxima occur 
in May/June and minima in November/December. There is smaller variation in the backscatter coefficient over the flooding forests, 
but some variation still remains due to changes in flooding extent present in the several km-wide altimeter footprints. Even when the 

Fig. 3. – (A) Radar altimetry echoes are different regarding the radar footprint. (B) Radar altimetry echoes are classified in function of the echoes’ 
shapes and (C) for each class, a VS is created. 
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flooded areas are under vegetation, large backscattering responses are observed (Frappart et al., 2015a; Frappart et al., 2021b), and 
time series of water levels can be derived (Frappart et al., 2006; Frappart et al., 2021c). Over non-flooded forest, smaller variations of 
backscattering and height are observed, not related to the changes caused by the hydrological cycle (see also Frappart et al., 2015b; 
Frappart et al., 2021a). These changes can be mostly attributed to orbital drifts (plus or minus 1 km around the nominal orbit of the 
satellite) and to changes in local roughness as the wavelength of the electromagnetic waves at Ku- and Ka-bands is lower than 0.1 m. 
The chaotic variations in the height observed in the Envisat and Saral time series are outliers. When the tracking is operating well, the 
height is estimated to be continuous. 

These very different temporal behaviors, observed in radar altimetry echoes over open water and forest-covered areas, are used to 
classify the echoes by type of aquatic environment. The unsupervised clustering algorithm K-means is used in our method to classify 
echoes (Jain and Dubes, 1988; Likas et al., 2003). K-means is suitable for our purpose as no training dataset can be used due to the 
complexity of the radar altimeter echoes in very heterogenous environments (Stammer and Cazenave, 2017). Echoes are grouped into 
K different clusters, based on their shape similarities (see Fig. 3. A), translating the soils backscatter coefficient and, thus, charac-
terizing the land cover. A Python algorithm is used to obtain these K groups and classify them as Fig. 3 show it (panel B), and process to 
VS creation (panel C). 

3.2.2. Echoes classifications 
Tests were conducted considering three to six classes. By taking into account the classification test results and as an analysis of the 

best number of classes was already performed in a previous study (Frappart et al., 2021c), the optimal number of K classes is four (0− 3) 
to best represent the different hydrological regimes in the Amazon rivers, lakes and wetlands, without over-interpreting the radar 
echoes (Kodinariya and Makwana, 2013). However, Curuaí and Juruá’s classes of the validation maps are more than four. In order to 
simplify the comparison, closest aquatic environments were grouped together to approximate our four classes classification to assess.  
Table 1 summarizes the validation groups of reference classes for our radar echo classification. 

The radar altimetry echoes are classified according to three combinations of parameters: backscatter coefficient only (B) (as in 
Frappart et al., 2021c), backscatter coefficient and raw WL (B+RWL), and backscatter coefficient and normalized WL (B+NWL). 
Indeed, the backscatter coefficient is an important parameter to keep to detect the water presence and WL normalization highlights 
major phases of the hydrological regime, in contrast to raw WL, where the amplitude variations are highlighted. 

3.2.3. Classification validation 
Then, the best parameter accuracy combination is determined for each satellite mission over each study area by analysing 

confusion matrices between reference land cover maps (see Fig. Annexe A) and our classifications. Confusion matrices and accuracies 
are calculated to quantify the agreement between both and determine the best combination of parameters. For each confusion matrix 
obtained with the classifications, the accuracy index is calculated (Eq. 1). This index determines which combination of parameters 
gives the best classification of radar altimeter echoes. It can take values ranging from 0 for poor accuracy, to 1 for very good accuracy.  

(TP + TN) / (TP + FP + TN + FN)                                                                                                                                            (1) 

With TP = True Positive, FP = False positive, TN = True negative and FN = False negative. 

3.3. WL Time series 

3.3.1. Automatic generation of WL time series 
Time series of altimetry-derived water levels are generated over the clusters identified as covered with water (i.e., open water and 

flooded areas). For each water-covered classes (0− 2), a virtual station (VS) is created (Fig. 3. C), indicating the intersection between 
the ground and a water body. VS are created under some conditions depending on water bodies widths:  

• A minimal number of 5 radar echoes is required for creating a VS in Curuaí . For Juruá watershed, the minimal number is 1 because 
of the narrowness of the river sections where variations in surface type can be spatially significant. 

Table 1 – 
List of the Curuaí and Juruá’s reference map classes grouped for the validation of the radar echo 
classification.  

Curuaí (Arantes et al., 2019) 

Classification group Reference map classes 
Open water Mainstem channel + Lakes and channels 
Semi-permanent inundation Grassland habitat exposed only at very low water 
Intermediate inundation Grassland habitat exposed at mid water 
High level inundation Grassland habitat exposed only at high water 
Non-inundated Forest + Shrub + Urban + Outside study area 
Juruá (Hess et al., 2015) 
Open water Open water + Aquatic macrophyte 
Flooded Flooded shrub + Flooded woodland + Flooded forest 
Non-flooded Non-wetland + Non-flooded forest  
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• The distance between two radar echoes from the same VS of one class must be less than 5 km in Curuaí / 1.5 km in the Juruá 
watershed.  

• The distance between two VS from any class must be at least 1 km in Curuaí and in the Juruá watershed.  
• The maximal distance for a VS’ process from the same class is 50 km in Curuaí / 5 km in the Juruá watershed. 

Then, a WL time series is automatically created for each VS. To be sure of the classification parameter to keep for WL time series 
study, VS are numerically analysed. These results are presented in sub-Section 4.1. 

3.3.2. WL time series validation 
In order to validate the automatic method, time series from the parameter presenting the best classification accuracies is analysed 

here. Curuaí and Juruá’s time series of WL are compared with the manually retrieved time series of WL obtained using the AlTiS 
software and to in situ data. These time series are compared in terms of anomalies of WL. Validation between created VS from the three 
water-presence classes with the in situ data and AlTiS software-based WL are achieved by correlation test of R2 and RMSE. Some WL 
comparison results are shown in Section 4.2. 

Fig. 4. – K-Means classifications of the Envisat radar echoes over Curuaí according to (a) the backscatter coefficient only, (b) the backscatter 
coefficient and raw WL and (c) the backscatter coefficient and normalized WL. 
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Fig. 5. – K-Means classifications of the Envisat radar echoes over Juruá according to (a) the backscatter coefficient only, (b) the backscatter co-
efficient and raw WL and (c) the backscatter coefficient and normalized WL. 
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4. Results 

4.1. Radar echoes classification and virtual station detection 

4.1.1. Classification of radar altimetry echoes 
The results of the along-track classifications of Envisat and Saral radar echoes over Curuaí and the Juruá river are shown in Figs. 4, 

5 and Supplementary Material Figures C and D, respectively, for each parameter. Corresponding confusion matrix results computed 
between reference class maps and radar echoes classifications are shown in Fig. 6, more details are presented in Supplementary 
Material Tables A and B. The four classes represent all the major hydrological regimes present in the study areas. Very similar results 
were obtained when considering four to six classes (as in Frappart et al., 2021c not shown here) but best solutions were obtained with 
four classes. Classes 0 and 3 represent the most and the least widely covered with water areas, respectively. Classes 1 and 2 correspond 
to intermediate water regimes, class 1 corresponding with longer presence of water than class 2. For Envisat results over Curuaí region, 
true positive (TP) and false negative (FN) results are predominant (70–80%), representing good correlation, for both parameters with a 
slightly better class correlation for B+NWL parameter. Concerning Saral results over Curuaí , 60% of the results are in good agreement 
with the map references for B and B+NWL parameters, but only 25% are in good agreement for B+RWL parameter. For Envisat results 
over the Juruá watershed, 41% of the B and B+NWL results and 25% of the B+RWL results are in good agreement with map reference 
classes. Concerning Saral results over Juruá watershed, 33% of the B and B+NWL results and 25% of the B+RWL are in good 
agreement. 

4.1.2. Classification selection 
Classification accuracies are shown in Table 2. Accuracy varies between 0.52 and 0.74 for B and B+NWL parameters and between 

0.25 and 0.59 for B+RWL parameter. Indeed, mixing effects between different types of soil due to the large radar footprint over the 
surface are taken into account, which can explain the moderate accuracy values. Considering the very small differences between B and 
B+NWL accuracies, we only focus on the B+NWL parameter because of its innovative character. These results are available online on 
the data repository (Enguehard et al., 2023). 

4.1.3. Virtual station creation 
For each series of radar echo in the same class and respecting the conditions listed in Section 3.3, a VS is created. Fig. 7 presents the 

number of VS created according to the different combination of parameters and area/satellite (independently from the accuracies). 
First, we can see that the B+RWL combination does not allow to create more than 10 VS for at least two classes, except for the Juruá/ 
Saral combination where class 0 is over-represented (more than 500 VS). In contrast, B and B+NWL present similar distribution for 

Fig. 6. – Confusion matrix results for (a) Curuaí Envisat classification, (b) Juruá Envisat classification, (c) Curuaí Saral classification and (d) Juruá 
Saral classification for each parameter results: backscatter only (B), backscatter and raw WL (B+RWL) and backscatter and normalized WL 
(B+NWL). TP = True Positive, FP = False positive, TN = True negative and FN = False negative. 
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each area/satellite combination. As expected, there is much more class 1 VS created in the Juruá than in Curuaí because of the largest 
floodplain area crossed by the altimeter. Finally, Envisat and Saral exhibit similar VS classes distributions in Juruá and Curuaí for B and 
B+NWL parameters but much less VS are created for Curuaí /Saral compared to Curuaí /Envisat, probably due to the only 3 years of 
Saral data used here compared to the 8 years of Envisat data. However, the method proves to be efficient to create VS over Amazon 
floodplains. 

4.2. WL time series validation 

Time series of WL results are available online on the data repository (Enguehard et al., 2023). Here, we choose to focus on B+NWL 
time series because of its innovative character compared to the B parameter that has been already studied (Frappart et al., 2021c). With 
the large number of results, only VS at the closest location to the gauging stations have been selected for comparison. Figs. 8 and 9 
present these VS, as well as the R2 and RMSE between our results and those obtained using AlTiS software. Supplementary Material 
Figs. E and F are presenting R2 and RMSE between our results/AlTiS results with the gauging station. Our results show good correlation 
with those from AlTiS. 

Table 3 summarizes R2 and RMSE according to areas and sensors. Our automatic results give better R2 and RMSE near Curuaí with 
Envisat sensor, whereas AlTiS results are better compared when using Saral data. Near Santos Dumont, AlTiS results are slightly better 
than automatic ones when using Envisat data. Finally, no automatic VS has been created over the river near Santos Dumont using Saral 
data, then comparisons with our method can’t be possible but AlTiS and in situ method seems to be accurate enough. 

5. Discussion 

5.1. Identification of water regime along altimetry ground-tracks 

Through the use of k-means clustering and validation against reference land cover maps, we are able to attribute hydrological status 

Table 2 
Classification accuracies over Curuaí and Juruá watershed with Envisat and Saral data for both three parameters.   

B B+RWL B+NWL 

Curuaí / Envisat  0.740  0.592  0.741 
Curuaí / Saral  0.525  0.422  0.525 
Juruá / Envisat  0.685  0.510  0.685 
Juruá / Saral  0.592  0.252  0.594  

Fig. 7. – Number of VS created with Envisat over (a) Curuaí and (b) the Juruá and with Saral over (c) Curuaí and (d) the Juruá.  
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(open water, flooded and non-flooded areas) to each class. As in Frédéric Frappart et al. (2021c), our classifications and associated 
regimes coincide well with reference classes (Arantes et al., 2019; Hess et al., 2015). Class 0 is very often located on open water (lakes 
or rivers); on the contrary, class 3 is mainly located in non-flooded areas. Classes 1 and 2 correspond to intermediate hydrological 
environment such as permanently or seasonally flooded and seasonally or infrequently flooded, respectively. Nevertheless, reference 
land cover maps may be strongly methodology-dependant and thus may not be always accurate for our comparison. Indeed, the 
reference map over Curuaí from Arantes et al. (2019) has been obtained using Landsat (optical) images acquired between 2008 and 
2009 and the one over Juruá river from Hess et al. (2015) has been obtained using SAR during the 1996 high water season (May to 
July), whereas Envisat and Saral respectively provide altimetry data over 2002–2010 and 2013–2016. This lack of time concordance 
may reduce accuracy classifications. 

Best classifications are obtained with both B and B+NWL parameter, for both satellites but we focus on B+NWL results only to 
assess these new results. Envisat classifications are generally better than Saral‘s ones. Several reasons are likely to account for such 
lower accuracies of Saral results compared to Envisat’s. The most obvious one is the drift of the Saral mission on its nominal orbit of 

Fig. 8. – a) Location of automatically generated VS over Curuaí and R2 associated (Yellow points = Envisat. Red points = Saral). b) and c) Examples 
of time series of WL from in-situ WL (grey line), automatically generated VS (green points), and manually generated (black lozenges). Biases with in 
situ gauges has been removed. 
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several kilometres. From one cycle to another, the land cover contained in the Saral footprint was different causing inaccuracies in the 
classification process. Another one is related to the great time-lag between reference maps period 1995–1996 Juruá and 2009–2010 for 
Curuaí . Finally, Saral is the first sensor to operate at Ka band. Larger scattering in the vegetation and more power backscattered at Ka 
band are measured by Saral than at Ku band, and then affect calculated accuracies. 

5.2. VS creation and validation 

VS detection over Curuaí is effective. River width is up to 6 km and floodplain lakes are large enough to allow a good detection of 
open water in the radar footprint. However, the Juruá river is narrower, locally up to 400 m width downstream and up to 200 m width 
upstream, as well as abandoned meanders that are now lakes. Detection of water is therefore more difficult. Nevertheless, the virtual 
stations created are quite numerous, especially when using the B or B+NWL parameters. With this method, a significant densification 
of the virtual station network is therefore achieved. As a comparison, 6 VS from the Hydroweb database (http://hydroweb.theialand. 
fr/) are available over the Amazon in Curuaí region, while about 100 VS have been created over the river and floodplains with our 

Fig. 9. – a) Location of automatically generated VS over the Juruá (Yellow points = Envisat. Red points = Saral). b) and c) Examples of time series 
of WL from in-situ WL (grey line), automatically generated VS (green points), and manually generated (black lozenges). Biases with in situ gauges has 
been removed. 

Table 3 
R2 and RMSE results near to Curuaí and Santos Dumont gauge stations with Envisat and Saral sensors for WL time series comparisons.   

R2 RMSE (m) 

Envisat Curuaí Automatic/AlTiS [0.90, 0.99] [0.07, 0.70] 
Automatic/In situ 0.90 0.70 
AlTiS/In situ 0.80 0.92 

Juruá Automatic/AlTiS [0.52, 0.97] [0.17, 4.30] 
Automatic/In Situ 0.75 2.89 
AlTiS/In situ 0.83 2.49 

Saral Curuaí Automatic/AlTiS [0.74, 0.99] [0.06, 1.47] 
Automatic/In situ 0.69 1.94 
AlTiS/In situ 0.79 1.07 

Juruá Automatic/AlTiS [0.53, 0.98] [0.36, 2.81] 
Automatic/In Situ X X 
AlTiS/In situ 0.88 0.95  
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method. For the Juruá, more than 100 VS from the Hydroweb database are available over the river, while about 1500 VS have been 
created over the river and floodplains. The backscatter coefficient parameter combined with the raw water levels (B+RWL) did not 
give satisfying results either for classification accuracies or for number of VS created. This may be due to the extreme changes between 
water levels over the different surface types. 

A bias of almost 2 m can be observed for Envisat data and 1.5 m for Saral data over Curuaí and has been respectively removed. 
Previous studies showed that Envisat has a + 1 m bias compared to in situ gauges (Calmant et al., 2013; Santos da Silva et al., 2010). 
Still, part of the bias could be due to the distance between automatic VS and in situ gauges. Nevertheless, R2 and RMSE are estimated 
and show good agreement between the automatic time series and AlTiS ones. 

As over the Congo river (Frappart et al., 2021c), the automatic method over Amazon’s forest is more efficient than the manual AlTiS 
software. Indeed, automatic method is faster than AlTiS computation and allow monitoring floodplains areas. Moreover, removing 
outliers from AlTiS software induce fewer elements in time series. Despite the slightly worse R2 and RMSE results than for Curuaí , the 
method is rather effective in Santos Dumont. However, as it can be seen in Fig. 9.c), Juruá river automatic results should be considered 
with caution. Juruá river and ancient meanders are well detected using Envisat data. But, during low water period, some anomalous 
water levels can be retrieved most probably due to the narrowness of the river. 

5.3. River-floodplain connectivity 

Using the automatically generated WL series, it is possible to carry out a connectivity analysis between floodplain lakes and rivers 
by examining the duration of the connection between the mainstream and the lakes (or between lakes) during floods and recessions, 
detecting different filling/emptying dynamics between lakes. The methodology that leads to an important densification of the number 
of water level measurement points in rivers and floodplains is an important contribution for the scientific community to better un-
derstand the dynamics of river-floodplain exchanges and their evolution over time. 

With this method, the new densified VS network permits to obtain information on water bodies WL along the river and along river 
cross-sections, enabling to analyse hydrologic connectivity between river and lakes and lakes with each other and determine flood 
duration and rising/draining velocities at each VS. As an example, VS time series in the river and the Curuaí floodplain, created using 
Envisat data (B+NWL parameter), are shown in Fig. 10a. Most of the time, the river is flooded before the floodplain, except for some 
years during which the flood is beginning earlier (e.g. 2006, 2007) and can last from 6 to 8 months depending on the year, generally 
from November/December to May/June. Mean rising velocity is about 0.8 m/month in the river and in the floodplain, except in the 
Lago Grande do Curuaí where the flood is slower (0.7 m/month). Then, falling phase is beginning and can last from 4.5 to 7 months 
depending on the year, generally until November/December. Draining velocities are about 1 m/month in the river and in the 
floodplain, except in the Lago Grande do Curuaí where the flood is slower (0.9 m/month). Indeed, west of the floodplain is flooded by 
the upstream river and small channels before the east which is flooded both by the west floodplain and by channels connected to the 
downstream river (Bonnet et al., 2008; Park and Latrubesse, 2017). The double input of east floodplain by the channels/river is easily 
seen for some years with the double peaks in the time series (e.g. 2003, 2004, 2008, 2009). VS time series in the Juruá river and the 
floodplain near Santos Dumont, created from Envisat (B+NWL parameter), are shown in Fig. 10b. Rising can last from 5 to 8 months 
depending on the year, generally from ~September to March/April. Rising velocity is about 1.2 m/month in the river, whereas they 
are slower (0.4–0.7 m/month) in the floodplain. Then, falling phase is beginning and can last from 4.5 to 8 months depending on the 
year, generally until ~September. Draining velocity is about 1.4 m/month in the river, whereas they are slower (0.5–0.7 m/month) in 
the floodplain. In this case, river is always flooded first and propagation of rising water in the floodplains is well seen after the flood 
begun several months ago. Times of connection can be easily recognised when the river is low. From the moment when flood begin 
until the floodplains is rising, four months has past (e.g. 2003, 2004, 2006, 2007). Times of disconnection between the river and the 
floodplains are lasting about 6 months in this Juruá portion. 

This kind of information, coupled with bathymetry, can possibly permit to better interpret fish population dynamics (Hurd et al., 
2016; Park and Latrubesse, 2017). Even if Envisat and Saral allow to analyse surface water connectivity at monthly time-scale, the 
opportunity of the new Ka-band wide-swath radar altimeter of the Surface Water and Ocean Topography (SWOT) mission will be 
unique (Biancamaria et al., 2016). Owing to its capability to map water levels at 100 m of spatial resolution several times during its 
21-day repeat period, this new dataset will allow a finer monitoring of the surface water connectivity between river and floodplains. 

6. Conclusion 

In this study, we confirm the strong potential of radar altimetry backscattering coefficient to identify land water surfaces along the 
tracks. Compared to a previous study, we showed that the discrimination between land and water is enhanced when taking into 
consideration in the classification process the normalized water level in areas with a complex hydrodynamics such as the Curuaí várzea 
and the Juruá watershed, in Amazon. Results show good replicability and efficiency over a densely vegetated equatorial area. Indeed, 
classification accuracies of 0.74 (0.53) and 0.69 (0.59) were obtained for Envisat (Saral) when comparing with reference land cover 
maps in the Curuaí várzea and the Juruá watershed, respectively, using a k-means clustering approach. Based on these results, WL time 
series were automatically generated along the tracks over the classes associated to open water and inundation. Their creation 
permitted to strongly densify VS network in the river and the floodplains: 4650 VS were created in both areas. Comparisons show an 
accuracy ranging from 0.52 (0.53) to 0.97 (0.98) when comparing the time series of WL automatically generated with Envisat (Saral) 
with ones from the in situ station or the ones manually created in the Curuaí várzea. 

On the one hand, this method offers possibility to include floodplain water level in current database and allow better surface water 
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stock estimations to monitor areas where in situ data does not exist. On the other hand, the created WLs allow a better connectivity 
analysis between the river, the lakes and the floodplains. The wetlands’ filling dynamic is better understood. Especially in Curuaí , 
where the varzea is filled to the west first via the upstream river, and then to the east via channels connected to the western floodplain 
and the downstream river. This information, coupled with bathymetry, would allow to better understand fish population dynamics and 
floodplain biogeochemical functioning. The recent launch of the SWOT mission offers new opportunities for better monitoring the 
channel-floodplains connectivity as this new mission will provide water level maps at 100 m of spatial resolution 2 or 3 times every 21 
days in equatorial areas. 
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Remy, M., Rémy, E., Restano, F., Richardson, M., Richardson, A., Ricker, D., Ricko, R., Rinne, M., Rose, E., Rosmorduc, S.K., Rudenko, V., Ruiz, S., Ryan, S., 
Salaün, B.J., Sanchez-Roman, C., Sandberg Sørensen, A., Sandwell, L., Saraceno, D., Scagliola, M., Schaeffer, M., Scharffenberg, P., Scharroo, M.G., Schiller, R., 
Schneider, A., Schwatke, R., Scozzari, C., Ser-giacomi, A., Seyler, E., Shah, F., Sharma, R., Shaw, R., Shepherd, A., Shriver, A., Shum, J., Simons, C.K., 
Simonsen, W., Slater, S.B., Smith, T., Soares, W., Sokolovskiy, S., Soudarin, M., Spatar, L., Speich, C., Srinivasan, S., Srokosz, M., Stanev, M., Staneva, E., 
Steunou, J., Stroeve, N., Su, J., Sulistioadi, B., Swain, Y.B., Sylvestre-baron, D., Taburet, A., Tailleux, N., Takayama, R., Tapley, K., Tarpanelli, B., Tavernier, A., 
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