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A B S T R A C T   

Study region: this study focuses on Madagascar. This island is characterized by a great diversity of 
climate, due to trade winds and the varying topography. This country is also undergoing extreme 
rainfall events such as droughts and cyclones. 
Study focus: the rain gauge network of Madagascar is limited (about 30 stations). Consequently, 
we consider relevant satellite-based precipitation datasets to fill gaps in ground-based datasets. 
We assessed the reliability of 21 satellite-based and reanalysis precipitation products (P-datasets) 
through a direct comparison with 24 rain gauge station measurements at the monthly time step, 
using four statistical indicators: Kling-Gupta Efficiency (KGE), Correlation Coefficient (CC), Root 
Mean Square Error (RMSE), and Bias. Based on this first analysis, we produced a merged dataset 
based on a weighted average of the 21 products. 
New hydrological insights for the region: based on the KGE and the CC scores, WFDEI (WATCH 
Forcing Data methodology applied to ERA-Interim), CMORPH-BLD (Climate Prediction Center 
MORPHing satellite-gauge merged) and MSWEP (Multi-Source Weighted Ensemble Precipitation) 
are the most accurate for estimating rainfall at the national scale. Additionally, the results reveal a 
high discrepancy between bio-climatic regions. The merged dataset reveals higher performance 
than the other products in all situations. These results demonstrate the usefulness of a merging 
approach in an area with a deficit of rainfall data and a climatic and topographic diversity.   
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1. Introduction 

1.1. Precipitation: a key variable worldwide 

Precipitation is the primary process for redistributing water on the Earth. Precipitation monitoring provides vital information for 
society in the areas of flood monitoring, drought, agricultural production, and public health (World Health Organization, 2015). Rain 
gauge networks are the main source of precipitation measurement data. Rain gauge networks provide point scale measurements, 
whereas the spatial distribution of precipitation is highly heterogeneous, from the local scale (Lebel et al., 2009) to the regional scale 
(Depraetere et al., 2009). Rain gauge networks are rarely dense enough for scientists to be able to estimate the spatial heterogeneity of 
precipitation (Sun et al., 2018). Rain gauge data can be combined with weather radar to provide robust precipitation mapping (Collier, 
1986; Sinclair and Pegram, 2005). However, combination of instrumentation is rarely available in developing countries where weather 
monitoring receives scant investment (Kidd and Huffman, 2011). 

1.2. Gridded precipitation dataset opportunity 

The development of quasi-global gridded precipitation datasets based on satellite or reanalysis data (P-datasets) with regular 
spatial and temporal coverage offers a promising alternative to traditional gauge measurements. This is especially true for remote 
regions where the socio-economic context prevents the maintenance of a dense station network in space and time. 

P-datasets are built from three types of data (i.e. satellites, reanalysis, and rain gauges) (Gehne et al., 2016; Satgé et al., 2020). 
Microwave and/or infrared sensors attached to satellites provide the satellite data used to estimate precipitation (Huffman, 2020). 
Reanalysis data come from physical and dynamical numerical model data (Poccard-leclercq, 2000). Rain gauge data are interpolated to 
produce spatially continuous data. Most P-datasets combine multiple sources of data (i.e. satellites, reanalysis, and rain gauges) to 
improve their precipitation estimates. Over the past 25 years, the successive release of P-datasets that incorporate technical advances 
has led to improvement (Nwachukwu et al., 2020). The National Aeronautics and Space Administration (NASA) and the Japan 
Aerospace Exploration Agency (JAXA) launched the Tropical Rainfall Measuring Mission (TRMM) in 1997, making it possible to 
develop P-datasets that could estimate precipitation at the 0.25◦ grid scale, such as the TRMM multi-satellite precipitation analysis 
dataset (TMPA), the Climate Prediction Centre Morphing dataset (CMORPH), and the Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks dataset (PERSIANN). The Global Precipitation Mission (GPM) was launched in 2014 to 
overcome technical difficulties arising from the TRMM’s aging mechanisms and sensors, and to ensure continued precipitation data 
acquisition. With the GPM mission, several P-datasets that can estimate precipitation at the 0.1◦ grid scale have been developed, such 
as the Integrated Multi-satellite Retrievals for the GPM dataset (IMERG) and the Global Satellite Mapping of Precipitation dataset 
(GSMaP). Finally, several P-datasets have been developed using previous P-datasets and missions to estimate precipitation over a 
larger time window, such as the PERSIANN-Climate Data Record (PERSIANN-CDR), the Multi-Source Weighted-Ensemble Precipi
tation (MSWEP), the Climate Hazards Group Infrared Precipitation (CHIRP) with station data (CHIRPS), the Tropical Applications of 
Meteorology using SATellite and ground-based observation (TAMSAT), and the African Rainfall Climatology (ARC v.2) (Nwachukwu 
et al., 2020). 

1.3. Gridded precipitation spatial uncertainties 

All P-datasets are subject to error. Uncertainties arise from the techniques and methodologies used, and their performance is also 
affected by background conditions, the season, latitude, and meteorological conditions (Kidd and Huffman, 2011). Sensor deficiencies 
can also be a source of error (Rahman et al., 2020). Due to these various constraints, no P-dataset has been validated as suitable 
worldwide application (Gehne et al., 2016). Therefore, they need to be evaluated before being used for a specific purpose, such as 
regional climate and hydrological studies. 

One way to assess P-dataset reliability is to compare its estimate with the measurement at the rain gauge location. A study assessing 
the reliability of seven P-datasets by direct comparison with rain gauge observations across the South American Andean Plateau shows 
that the P-dataset performance varies with the latitude, the longitude, and the presence of water surfaces (Satgé et al., 2016). In 
Pakistan, Rahman et al. (2020) observed strong variability of P-datasets performances according to the orographic and climatic 
conditions. This makes the results of these studies not easily transferable to other climates and other regions. 

In West Africa, the reliability of 23 P-datasets was assessed through direct comparison with rain gauge observations collected from 
several African national meteorological and hydrological centers (Satgé et al., 2020). Overall, the most satisfactory P-datasets were 
CHIRPS v.2 and MSWEP v.2.2. However, the best performing P-dataset showed wide variation in space at the gauge scale. The authors 
suggest that to obtain the most accurate monthly precipitation representation across West Africa, ideally 14 out of the 23 P-datasets 
analyzed should be considered. In Nigeria, Nwachukwu and colleagues used data from 11 rain gauge stations to evaluate 16 P-datasets, 
using rain gauge stations that were widely distributed across the country (Nwachukwu et al., 2020). The results show that P-dataset 
accuracy depends on the region. In fact, the authors conclude the study by suggesting that to obtain the most accurate monthly 
precipitation representation across Nigeria, 5 out of the 16 P-datasets analyzed should be considered. 

1.4. Toward enhanced gridded precipitation datasets? 

To take advantage of P-dataset performance spatial variability, several studies highlight the benefits of applying ensemble-merging 
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Fig. 1. The diagrams correspond to the average monthly precipitation totals based on all rain gauges for each climatic region for the period 
2011–2018. Bottom: period with available data for each rain gauge. 
Top: Location map of Malagasy rain gauges and the four climatic regions (adapted from Cornet, 1974). 
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approaches to multiple P-datasets to improve precipitation estimates (Grimes, 2008). These approaches are, for example, implemented 
in the creation of P-datasets combining several sources of data, like MSWEP. However, these P-datasets are optimized at a global scale, 
and not necessarily adequate at the local scale. 

Consequently, several studies are developing a local ensemble-merging approach. In Japan, three merging techniques were tested 
for four P-datasets: average, error variance, and inverse error variance weighting (Mastrantonas et al., 2019). The results show that all 
merging techniques outperformed individual P-dataset estimations. In Pakistan, Rahman et al. (2018) tested several methods, and the 
results displayed spatial variability in performance. The merged product outperformed IMERG and TMPA on plains and moderately 
elevated areas but not in highly elevated areas. Therefore, Rahman et al. (2021) implemented a weighting method that varies both 
spatially and temporally (Weighted Average Least Squares (WALS)). The spatial and temporal weighting variation greatly reduced the 
uncertainties associated with an individual P-dataset. 

Overall, these studies show that the ensemble-merging approach applied to multiple P-datasets leads to more accurate precipitation 
estimates than estimates derived from single P-datasets. 

1.5. Study objectives 

Given the previously described context, the two main objectives of this study are as follows:  

- Assess for the first time the reliability of 21 P-datasets in Madagascar at the monthly time step. This first step will complement a 
previous study led by Randriatsara et al. (2022), who assessed 15 P-datasets at annual and seasonal time steps, and one study 
conducted by Ramahaimandimby et al. (2022) who evaluated six P-datasets at the daily time step over one watershed.  

- Propose an ensemble-merging method using the most efficient P-datasets to improve national precipitation monitoring and leading 
to a model that could be applied to other regions of the world. 

Madagascar is chosen as the study area because of its climatic diversity, which is expected to affect P-dataset reliability spatially, 
and as a result, introduces the need for the ensemble-merging method. Moreover, the low density of the current rain gauge network 
pushes water and climate science toward the use of these P-datasets. Therefore, this study is a step toward improved precipitation 
monitoring and related studies across Madagascar. 

2. Materials 

2.1. Study area 

Madagascar, one of the world’s largest islands, has a total area of 587,041 km2. Located in the Indian Ocean, Madagascar is 
characterized by topographic diversity, with high plateaus at its center, a relief of plains and lower plateaus toward the west, and a 
narrow coastal strip in the east. The highest peak, Maromokotro has an elevation of 2876 m. This topography induces a strong het
erogeneity in precipitation distribution. The eastern part, which is exposed to trade winds, experiences more rain (~ 3500 mm year− 1) 
than the western part (~ 800 mm year− 1). Four bioclimatic regions (i.e. humid, semi-humid, dry, and semi-arid) have been identified 
on the island (Cornet, 1974, Fig. 1) and two distinct seasons: wet (November to April) and dry (May to October). This seasonality is 
more pronounced in the semi-arid region than in the humid region (diagrams in Fig. 1). Madagascar is also regularly exposed to 
cyclones (Aruna 2013, Fundi 2015, Eketsang 2019) that are responsible for the high interannual variability in precipitation. 

Madagascar is a classic example of a land mass where it is crucial but difficult to characterize the water cycle. The country has one 
of the highest global poverty rates (World Bank, 2020) and the southwestern district, a semi-arid area, is the poorest region in the 
country. This poverty is associated with malnutrition and health problems due to drought (UNICEF, 2018, 2019). Drought often 
triggers humanitarian crises that involve access to water (hygiene and drinking water) and food (development of crops and livestock), 
(FEWSNET, 2022). Understanding the water cycle is crucial for anticipating humanitarian crises. At the same time, Madagascar is a 
developing country where local institutions have difficulty maintaining a hydrological monitoring network. As a result, Madagascar 
has a low-density network of meteorological stations. Since 2014, the GROSoM observatory (Groundwater Resource Observatory for 
Southwestern Madagascar) has been producing meteorological data to fill this data gap in the semi-arid region (Carrière et al., 2021). 

2.2. Rain gauges 

Twenty-nine meteorological station datasets were obtained from the Malagasy National Meteorological Service (DGM – Direction 
Générale de la Météorologie), the French Centre de Coopération Internationale en Recherche Agronomique pour le Développement 
(CIRAD), and from Non-Governmental Organizations (NGOs). 

The 29 meteorological station datasets were split in two groups. The first group (Dataset-1: red squares in Fig. 1) includes mete
orological stations (24) that belong to the Malagasy Meteorological Directorate. The second group (Dataset-2: green squares in Fig. 1) 
consists of meteorological stations (5) that belong to other institutions (NGOs, Cooperative). Because Dataset-2 includes only stations 
that are not part of the Malagasy Meteorological Directorate network and are not referenced in global rain gauge datasets (see 
Appendix Table A.2), this dataset is considered to be independent from P-datasets that use gauge information for post calibration. 

It should be noted that some stations have daily records whereas others have only monthly records. To take full advantage of the 
existing rain gauge network, the analysis is conducted at the monthly time step. For daily rain gauges, monthly amounts were 
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calculated only for months that have 95% or more of the daily data. Despite some missing months, Dataset-1 consists of a continuous 
observation period of 6 years (2011–2016), whereas Dataset-2 contains a continuous 17-year observation period (2000–2016). 

2.3. Gridded precipitation datasets 

We selected twenty-one satellite-based and reanalysis P-datasets (Table 1). GSMaP-RT v.6, IMERG-ER v.6, IMERG-LR v.6, PRISM 
and TMPA-RT v.7 are based on satellite data (S). ERA-5 Land uses reanalysis data (R). CHIRP v.2 combines both S and R data. WDFEI- 
CRU and WDFEI-GPCC combine R and G data. Eight P-datasets combine S and G data: ARC-2, CMORPH-BLD v.1, CMORPH-CRT v.1, 
GSMaP-Adj v.6, IMERG-FR v.6, PERSIANN-CDR, TAMSAT v.3, TMPA-Adj v.7. Finally, four P-datasets combine all three data sources S, 
R, G: CHIRPS v.2, MERRA2-LND, MERRA2-FLX, MSWEP v.2.2. 

Fig. 2 shows the mean annual precipitation retrieved from the 21 P-datasets for the period 2007–2016 (2010–2021 for PRISM). For 
most datasets, the estimated annual precipitation patterns are consistent with the climatic regions. However, the P-datasets have 
contrasting total estimated precipitation amounts. According to ARC-2, annual precipitation remains below 1500 mm year− 1 over the 
entire island, whereas according to MERRA2-FLX, precipitation reaches 3000 mm year− 1 in the humid region. These differences 
support the need for an evaluation study in this area. 

Table 1 
Main characteristics of the gridded precipitation datasets. In the data source column, S, R, and G stand for satellite, reanalysis, and rain gauge data. 
Spatial coverage refers to the absolute maximum and minimum latitudes with precipitation information. Latency refers to the time delay for data 
availability. Res. = Resolution. Cov. = Coverage.  

Name Full name Data Spatial res. Spatial 
cov. 

Temporal 
res. 

Temporal 
cov. 

Latency 

ARC-2 African Rainfall Climatology S, G 0.1◦ Africa Day 1983 - 
present 

2 days 

CHIRP v.2 Climate Hazards Group InfraRed S, R 0.05◦ 50◦ Day 1981 - 
present 

2 days 

CHIRPS v.2 CHIRP with station S, R, 
G 

0.05◦ 50◦ Day 1981 - 
present 

1 month 

CMORPH-BLD 
v.1 

Climate Prediction Center MORPHing satellite- gauge 
merged 

S, G 0.25◦ 60◦ Day 1998 - 
present 

18 h 

CMORPH-CRT 
v.1 

Climate Prediction Center MORPHing bias corrected S, G 0.25◦ 60◦ 3 h 1998 - 
present 

18 h 

ERA-5 Land European Centre for Medium-range Weather Forecast Re 
Analysis 

R 0.25◦ Global- 
Land 

1 h 1979 - 
present 

5 days 

GSMaP-Adj v.6 Global Satellite Mapping of Precipitation adjusted S, G 0.1◦ 60◦ 1 h 2000 - 
present 

4 h 

GSMaP-RT v.6 Global Satellite Mapping of Precipitation standard S 0.1◦ 60◦ 1 h 2000 - 
present 

4 h 

IMERG_ER v.6 Integrated Multi-Satellite Retrievals for GPM Early Run 
(Full coverage) 

S 0.1◦ 60◦ 0.5 h 2000 - 
present 

4 h 

IMERG_FR v.6 Integrated Multi-Satellite Retrievals for GPM Final Run 
(Full coverage) 

S, G 0.1◦ 60◦ 0.5 h 2000 - 
present 

3.5 
month 

IMERG_LR v.6 Integrated Multi-Satellite Retrievals for GPM Late Run 
(Full coverage) 

S 0.1◦ 60◦ 0.5 h 2000 - 
present 

½ day 

MERRA2_LND Modern-Era Retrospective analysis for Research and 
Applications - Land 

S, R, 
G 

0.625◦× 0.5◦ Global- 
Land 

1 h 1980 - 
present 

3 weeks 

MERRA2-FLX Modern-Era Retrospective analysis for Research and 
Applications - Fluxes 

S, R, 
G 

0.625◦× 0.5◦ Global 1 h 1980 - 
present 

3 weeks 

MSWEP v.2.2 Multi-Source Weighted Ensemble Precipitation S, R, 
G 

0.1◦ Global 3 h 1979 - 
present 

3 h 

PRISM Precipitation Inferred from Soil Moisture S 0.1◦ Africa 3 h 2010 - 
present 

1 day 

PERSIANN- 
CDR 

Precipitation Estimates from Remotely Sensed 
Information using Artificial Neural Network and Climate 
Data Record 

S, G 0.25◦ 60◦ Day 1983 - 
present 

3 
months 

TAMSAT v.3 Tropical Applications of Meteorology using SATellite 
and ground-based observations 

S, G 0.0375◦ Africa Day 1983 - 
present 

2 days 

TMPA-Adj v.7 TRMM Multi-satellite Precipitation Analysis Real Time 
Adjusted 

S, G 0.25◦ 50◦ 3 h 1998–2019 Stopped 

TMPA-RT v.7 TRMM Multi- satellite Precipitation Analysis Real Time S 0.25◦ 60◦ 3 h 2000–2019 Stopped 
WFDEI_CRU WATCH Forcing Data methodology applied to ERA- 

Interim using CRU TS3.101/TS3.21 precipitation totals 
R, G 0.5◦ Global- 

Land 
3 h 1979–2018 Stopped 

WFDEI_GPCC WATCH Forcing Data methodology applied to ERA- 
Interim using GPCCv5/v6 precipitation totals 

R, G 0.5◦ Global- 
Land 

3 h 1979–2016 Stopped  
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3. Methodology 

First, we assess the reliability of P-datasets for Madagascar. Then we develop a new Merged Product Dataset. The major steps, 
explained thereafter, are summarized in Fig. 3. 

Fig. 2. Annual precipitation totals in Madagascar according to the estimates of twenty-one gridded precipitation datasets (average values in mm/ 
year for the period 2007–2016, and for the period 2011–2016 for the product PRISM). P-datasets in italics are based on the TRMM mission, P- 
datasets in regular font are based on the GPM mission. Long-term P-dataset are in bold. 
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3.1. Gridded precipitation dataset - pre-processing 

The method we used is based on a point-to-pixel comparison between P-datasets and rain gauge measurements. Precipitation data 
from the P-dataset grid-cells that match rain gauge locations were extracted. Because the P-datasets use different spatial resolutions, 
some were rescaled. Most have a resolution of 0.1◦ (see Table 1). P-datasets with a spatial resolution of less than 0.1◦ were resampled to 
0.1◦ by averaging, and those with spatial resolution greater than 0.1◦ were resampled to 0.1◦ using bilinear interpolation. Temporal 
resolution ranged from 30 min to one day (see Table 1). All P-dataset data were aggregated to a monthly time step. Months common to 
P-datasets and rain gauge datasets were extracted once from all datasets. 

3.2. Gridded precipitation dataset - reliability assessment 

The regridded P-datasets were compared to rain gauge data using four statistical indicators: Root Mean Square Error (RMSE), Bias, 
Correlation Coefficient (CC) and Kling-Gupta Efficiency (KGE). RMSE (Eq. 1) provides the magnitude of the mean error; its optimum 
value is 0. Bias (Eq. 2) indicates the tendency of the P-dataset to overestimate or underestimate the precipitation amount; its optimum 
value is 0. The Pearson linear correlation coefficient (Eq. 3) indicates how well a P-dataset reproduces temporal precipitation vari
ability; its optimum value is 1. The correlation coefficient is then used to calculate KGE (Eq. 4), which indicates the P-dataset’s ability 
to reproduce temporal dynamics and to estimate means (Gupta et al., 2009; Kling et al., 2012); its optimum value is 1. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑

(vo − vs)
2

√

(1)  

Bias =
1
n

∑
(vs − vo) (2)  

CC =
1
n
∑n

i=1

(vo − μvo)(vs − μvs)

σvo ∗ σvs
(3)  

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(CC − 1)2
+ (β − 1)2

+ (γ − 1)2
√

(4)  

Fig. 3. Flow chart of the methodology implemented for the P-datasets reliability assessment and the MPD creation.  
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with β =
σvs
μvs
σvo
μvo

and γ =
μvs
μvo

With n = number of measurements, v0 = rain gauge value, vs P-dataset value, σ = standard deviation, μ = mean. 

For each rain gauge, the four statistical indicators were calculated using (i) all available months, (ii) the months corresponding to 
the wet season, i.e., from November to April, and (iii) the months corresponding to the dry season, i.e., from May to October. The 
analysis was initially performed at the national scale and then at the regional scale for the four climatic regions depicted in Fig. 1. 

The P-datasets were first evaluated using Dataset-1 for the period 2011–2016. However, some Dataset-1 rain gauges may have been 
used in calculating some of the P-datasets. This non-independence of rain gauge data could result in an overestimate of the P-dataset 
capacity. Therefore, we repeated the analysis with independent rain gauges (Dataset-2), using the same statistical indicators for the 
period 2000–2016. 

3.3. Gridded precipitation datasets - merging approach 

Based on the P-dataset reliability assessment (Dataset-1), P-dataset reliability is expected to vary spatially depending on the region 
under consideration. As a result, we used a learning process incorporating the ensemble theory to create a merged gridded precipi
tation dataset (MPD). 

First, we computed the median KGE value obtained from all stations (KGEMedProd) for each P-dataset and for the entire climatic 
region under consideration. Then, for each region, the P-datasets were ranked from best to worst according to their KGEMedProd. 

Next, for each climatic region and P-dataset, the KGEMedProd was normalized (KGEnorm) by a Min-Max normalization (Eq. 5, where 
KGEmin = Minimum of the KGEMedProd, and KGEmax = Maximum of the KGEMedProd). The weighting of each dataset (wKGE) is the ratio 
between KGEnorm and 

∑
KGEnorm (Eq. 6). Consequently, the sum of the weighted KGEs equals 1. Because weightings were calculated 

separately for each climatic region and for a common period (2011–2016), the weightings vary according to location (climatic region) 
but not over time. 

KGEnorm(i) =
KGEMedProd(i) − KGEmin

(KGEmax − KGEmin)
(5)  

wKGE(i) =
KGEnorm(i)
∑

KGEnorm
(6)  

Where i is the P-dataset number. 

Fig. 4. Reliability assessment for 21 P-datasets at the national level, using monthly data from 24 meteorological stations (period 2011–2016). The 
dotted green line is the optimum for each indicator. The right and left sides of the boxes represent the 25th and 75th percentile values, respectively. 
The blue dot is the median value for the wet season, and the red dot is the median value for the dry season. The P-datasets are ranked by the median 
value of KGE. 
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Fig. 5. KGE scores obtained with monthly data for the period 2011–2016 are shown per station for the 21 P-datasets. KGE scores according to the 
climatic region are shown in the upper left corner. The best product map indicates the product with the highest KGE for each rain gauge station. 
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Fig. 6. (a), (b), (c), (d): for each climatic region, KGE as a function of the number of products (from 2 to 21 products ranked in descending order of 
the median KGE) for the weighted average (solid black line) and the simple median (dotted gray line). The best product is the gray line. Green circle 
indicates the optimum number of P-datasets. (e), (f), (g), (h): for 4 stations representing the four climatic regions, monthly precipitation totals 
between 2011 and 2016. Light gray = minimum and maximum values of the 21 products. Dark gray = minimum and maximum values of the MPD 
products. Solid line = MPD values. Dotted line = rain gauge values. For better readability of the graph, the maximum estimated precipitation is not 
shown when it is higher than 800 mm/month. 
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Finally, an arithmetic average and a weighted average are tested to create the MPD dataset. For each climatic region, the averaging 
processes (arithmetic and weighted) are first done based on the two most reliable P-datasets (i.e. descending KGEMedProd). Then the 
averaging processes are reiterated, adding the next most reliable P-datasets one by one. By doing so, 20 combinations are considered in 
the averaging process to develop 20 MPD product versions (i.e by considering 2–21 P-datasets, see Fig. 3). The most accurate version is 
selected from these 20 versions. We used the term MPDwa and MPDaa to denote the MPD using weighted average and arithmetic 
average, respectively. 

To assess the temporal transferability of the proposed ensemble-merging approach, MPD weightings were calibrated with Dataset-1 
(period 2011–2016) and then evaluated with Dataset-2 (period 2000–2016). 

4. Results 

4.1. P-dataset reliability assessment 

4.1.1. P-dataset consistency at the national scale 
Considering all months, notable differences in P-dataset performance are observed at the national scale (Fig. 4). For example, KGE 

scores range between 0.34 (MERRA2-LND) and 0.86 (WFDEI-GPCC). This KGE score range can be partially explained by CC and Bias 
score variations (Eq. 4). CC scores range between 0.67 for WFDEI-CRU and 0.95 for MSWEP v.2.2. The lowest KGE scores are asso
ciated with the P-dataset that overestimates monthly precipitation estimates (MERRA2-FLX, ERA-5 LAND, IMERG-ER v.6, IMERG-FR 
v.6and MERRA2-LND). On the contrary, with a Bias value close to 0, the WFDEI-CRU KGE low value (0.53) is related to its low CC score 
value (0.67). 

With a KGE (CC) score above 0.80 (0.90), the five best P-datasets (considering all months) are WFDEI-GPCC, CMORPH-BLD v.1, 
MSWEP v.2.2, CHIRPS v.2 and GSMaP-Adj v.6 (Fig. 4). Their elevated CC scores and minor variance demonstrate their ability to 
represent precipitation variations. Additionally, WFDEI-GPCC, CMORPH-BLD v.1, (and) MSWEP v.2.2 (< 45 mm month− 1) have the 
lowest RMSE scores, despite a positive median bias. 

At the seasonal level and in terms of KGE and CC, all P-datasets that were studied are more reliable during the wet season than the 
dry season. During the dry season, only four P-datasets have a KGE > 0.50 (WFDEI-GPCC, CMORPH-BLD v.1, MSWEP v.2.2, and 
CHIRPS v.2), and some P-datasets even have a negative KGE score (ERA5, IMERG datasets, MERRA2-LND, PRISM, PERSIANN-CDR, 
TAMSAT v.3, and WFDEI-CRU). Globally, the error metrics tend to scale with the climatology: the Bias remains close to 0 for all P- 
datasets during the dry season, and Biais and RMSE are higher during the wet season since the precipitation amount is higher (Fig. 1). 

Overall, the top five ranking P-datasets observed for all months in term of KGE (WFDEI_GPCC, CMORPH_BLD v.1, MSWEP v.2.2, 
GSMaP_Adj v.6, CHIRPS v.2) are similar during both wet (WFDEI_GPCC, CMORPH_BLD v.1, MSWEP v.2.2, TMPA_Adj v.7, CHIRPS v.2) 
and dry seasons (MSWEP v.2.2, WFDEI_GPCC, CHIRPS v.2, CMORPH_BLD v.1, GSMaP_Adj v.6). 

4.1.2. P-dataset consistency at the climatic region level 
We evaluated P-datasets at the regional scale for each climatic region. Results are detailed in Annex B.1. Overall, the P-datasets 

perform best in the dry region and worst in the humid region. In the dry region, KGE scores range from 0.52 (IMERG-LR v.6) to 0.93 
(GSMaP- Adj v.6). More variability is observed in the other regions. In the semi-humid region, KGE scores range from − 0.68 
(MERRA2-FLX) to 0.93 (ARC-2). In the semi-arid region, KGE scores range from 0.12 (MERRA2-LND) to 0.90 (CHIRP v.2). In the 
humid region, KGE scores range from − 0.21 (TAMSAT v.3) to 0.92 (WFDEI-GPCC). The most efficient P-dataset varies according to 
the climatic region under consideration: GSMaP-Adj v.6, ARC-2, CHIRP v.2, and WFDEI-GPCC are the most reliable P-datasets for dry, 
semi-humid, semi-arid, and humid regions, respectively. 

P-dataset performance also varies within each climatic region (see KGE map on Fig. 5 and RMSE and CC maps in Appendix C.1 and 
Appendix C.2). For example, WFDEI-GPCC shows higher KGE scores in the northern than in the southern part of the semi-arid region 
(Fig. 5). Similarly, CMORPH-BLD v.1 (GSMaP-RT v.6) is more reliable in the northern part than in the southern part of the humid (dry) 
region. These results highlight the geographical variability of P-dataset performance. However, the low density of rain gauge stations 
prevents us from drawing hard conclusions at the local scale for each SPP. 

The “best product” map (Fig. 5 lower right corner) shows the P-dataset with the highest KGE score at each rain gauge location. This 
map shows that product reliability varies across the island. Ideally, eight P-datasets should be considered to obtain the most reliable 
monthly precipitation estimates across Madagascar. 

The following section illustrates the ensemble-merging approach using this complementarity to create a more reliable product for 
the entire island. 

4.2. Ensemble-Merging approach 

4.2.1. Calibrating a Merged Gridded Precipitation Dataset (MPD) 
The weighted average process has been used to create a more a more highly performing P-dataset. For all climatic regions, 

consideration of the 21 P-datasets in the development of both MDPsa and MDPwa was in no case more satisfactory than the best P- 
dataset based on the KGE value (Fig. 6a, b, c, d). In fact, inclusion of P-datasets that are too different from observed values lowers the 
performance of both MPDaa and MPDwa. Consequently, an optimal number of P-datasets has been identified for each climatic region. 
Because MPDwa systematically shows higher KGE than MPDaa, this number was highlighted only for MPDwa. The best combination 
includes two P-datasets in the humid region (CMORPH-BLD v.1 and WFDEI-GPCC, Fig. 6a) and in the dry region (CMORPH-BLD v.1 
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and GSMaP-Adj v.6, Fig. 6c), five for the semi-humid region (ARC-2, MSWEP v.2.2, CMORPH-BLD v.1, WFDEI-GPCC, and GSMaP_Adj 
v.6, Fig. 6b), and six P-datasets for the semi-arid region (CHIRP v.2, CHIRPS v.2, TAMSAT v.3, MSWEP v.2.2, TMPA_RT v.7, and 
GSMaP_Adj v.6, Fig. 6d). 

For each climate region, the use of a weighted average for MPD development results in a higher KGE score than using either the 
arithmetic average of P-datasets (Fig. 6a, b, c, d) or the most efficient P-dataset. For example, in the humid region, KGE values of 0.94, 
0.90, and 0.92 are obtained for the MPDwa, MPDaa and for the best product (WFDEI-GPCC), respectively. MPDwa (solid line in Fig. 6e, 
f, g, h) is near rain gauge values (dotted line) for all seasons and in all regions. This indicates its ability to reproduce precipitation peaks 
in wet periods and the absence of precipitation in dry periods. 

4.2.2. Validating MPD reliability 
As expected, the MPDwa has a small Bias (2.3 mm month-1) and RMSE (22.8 mm month-1) and exhibits the highest KGE (0.93) and 

CC (0.98) scores for the calibration period (2011–2016, Dataset-1). However, to validate our methodology, this result must be tested 
against other data. Therefore, Dataset-2 (five stations for the period 2000–2016) was used to validate our results. For the validation 
period (2000–2016) and considering all months, MDPwa is the best product in terms of KGE (0.89, see Table 2) and CC (0.95). The same 
result applies to wet season months (Table 2). During the dry season, the MDPwa has a favorable CC score (0.79) but tends to un
derestimate precipitation and show a lower KGE score (0.41). 

5. Discussion 

5.1. Benefit of the GPM-based precipitation estimate over TRMM-based precipitation estimates 

The transition from TRMM-based P-datasets to GPM-based datasets was not successful across Madagascar. IMERG P-datasets were 
developed as a successor to TMPA P-datasets, which are no longer produced (Zhu et al., 2020). Despite improvements in satellite data 
and retrieval algorithms between the two datasets, the results show no significant improvement. TMPA-Adj v.7 (TMPA-RT v.7) 
monthly precipitation estimates are more reliable than that derived from its counterpart IMERG-FR v.6 (IMERG-ER and LR v.6). This 
result is consistent with a study comparing P-dataset reliability across the Jurua basin of the Amazon region (Satgé et al., 2021). The 
authors found that TMPA-Adj v.7 (TMPA-RT v.7) daily precipitation estimates were more reliable than that derived from IMERG-FR 
v.6 (IMERG-ER and LR v.6). However, another study conducted over Nigeria, shows the opposite result, with IMERG-FR v.6 
(IMERG-ER and LR v.6) monthly precipitation estimates that are more accurate than TMPA-Adj v.7 (TMPA-RT v.6) (Nwachukwu et al., 
2020). Similarly, CMORPH P-datasets also outperformed IMERG P-datasets for both gauge-adjusted and non-adjusted versions, which 
is consistent with previous observations made across the Jurua Amazon basin (Nigeria) (Satgé et al., 2021, Nwachukwu et al., 2020). 
The contradictory results regarding the performance of the oldest and the newest P-datasets obtained across different regions confirms 
the need for a P-dataset reliability assessment prior to their use over a specific region. 

Finally, versions that include a gauge-based adjustment outperformed non-gauge-adjusted versions. For example, CMORPH-BLD 
v.1, GSMaP-Adj v.6, TMPA-Adj v.7 and IMERG-FR v.6 show higher KGE scores than CMORPH-CRT v.1, GSMaP-RT v.6, TMPA-RT 
v.7 and IMERG-ER and-LR v.6, respectively (Fig. 2). This result shows the benefit of such adjustment and the need to maintain 
traditional gauge observations despite their low spatial coverage and consequent difficulty in adequately capturing spatial precipi
tation variability. 

Table 2 
scores of the five best products for (a) with Dataset-1 (24 rain gauge stations, period 2011–2016) and (b) with Dataset-2 (Five rain gauge stations, 
period 2000–2016). Bias is in mm month− 1 and RMSE is in mm month− 1.  

(a) ALL YEAR DRY SEASON WET SEASON  

KGE CC Bias RMSE KGE CC Bias RMSE KGE CC Bias RMSE 

MPDwa 0.93 0.98 2.3 22.8  
0.72 

0.89 0.4 7.7 0.90 0.97 1.3 32.3 

WFDEI GPCC 0.86 0.94 8.5 43.7  
0.54 

0.84 4.5 13.8 0.82 0.91 12.9 54.3 

CMORPH BLD v.1 0.82 0.94 4.2 37.9  
0.51 

0.78 1.1 14.1 0.82 0.93 5.8 51.9 

MSWEP v.2.2 0.81 0.95 2.5 39.6  
0.66 

0.84 -0.2 8.9 0.82 0.92 5.1 53.5 

CHIRPS v.2 0.80 0.91 2.7 61.9  
0.52 

0.72 1.1 10.3 0.75 0.85 3.7 80.7 

(b) ALL YEAR DRY SEASON WET SEASON  
KGE CC Bias RMSE KGE CC Bias RMSE KGE CC Bias RMSE 

MPDwa 0.90 0.95 1.1 36.8 0.41 0.79 -4.8 15.2 0.85 0.91 0.2 51.0 
CHIRP v.2 0.88 0.92 0.7 52.0 0.33 0.82 -3.0 22.9 0.81 0.83 4.3 71.4 
ARC-2 0.87 0.90 -2.7 49.9 0.30 0.54 -7.3 23.8 0.78 0.81 5.4 68.0 
CHIRPS v.2 0.83 0.91 -0.6 51.1 0.39 0.81 -1.4 17.9 0.77 0.80 1.5 71.9 
CMORPH BLD v.1 0.81 0.92 3.3 47.9 0.73 0.79 1.7 18.5 0.75 0.80 11.0 66.9  
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5.2. Benefit of multiple data combinations for precipitation estimates? 

Most of the best P-datasets combine multiple data sources. For example, MSWEP v.2.2 and CHIRPS v.2, which combine satellite, 
reanalysis, and gauge information, are among the 5 most reliable P-datasets. MSWEP v.2.2 was built to optimize existing precipitation 
data sources by combining them, in particular to mitigate impacts of orographic constraints and low rain gauge density (Beck et al., 
2017). MSWEPv.2.2 merges CMORPH, GSMAP, TMPA, and ERA-Interim data in addition to other data sources. The results validate the 
multi-source approach as shown by the fact that MSWEP v.2.2 is among the best performing products across all regions of Madagascar 
(Appendix B1). Similarly, CHIRPS v.2, which combines information from TMPA, MERRA2, ERA5, and gauge information, ranked in 
the 5 most reliable P-datasets (Fig. 2). 

Because soil moisture is a result of precipitation events, efforts have been made to retrieve precipitation data from soil moisture 
estimates in a bottom-up approach (Brocca et al., 2013) instead of the approach using cloud properties. These approaches have proven 
efficient in flat semi-arid to arid regions where satellite soil moisture data are more reliable due to low interference from topography 
and/or vegetation cover (Satgé et al., 2021). In this context, the PRISM (Precipitation Inferred from Soil Moisture) product seeks to 
improve IMERG-ER estimates by using soil moisture data from the Soil Moisture and Ocean Salinity (SMOS) satellite (Pellarin et al., 
2022). The results show an obvious improvement in KGE with the PRISM product, especially in dry and semi-arid regions. These results 
are consistent with the work of Pellarin et al. (2022) in West Africa. PRISM performs better in dry regions because the soil moisture 
constraint prevents an overestimation of the number of rainfall events. Even so, the low reliability of SMOS in coastal regions limits the 
performance of PRISM over an island. 

Combining satellite-based data and gauge-based data enhance P-dataset performance. As an example, there is a clear enhancement 
in precipitation estimates between CHIRP v.2 (no gauge information) and CHIRPS v.2 at the national scale and especially in the wet 
region (KGECHIRP = 0.5, KGECHIRPS = 0.65). Similarly, WFDEI-GPCC performs better than WFDEI-CRU. This difference can be 

Table A1 
Meteorological stations characteristics for the period 2011–2016.  

Name Long. Lat. Alt. (m) Temporal coverage Climatic region GSOM GSOD GPCC 

Ampanihy  44.75  -24.65  248 1981–2018 Semi-arid - - No 
Ankazoabo Sud  44.55  -22.45  882 1981–2018 Semi-arid - - No 
Antananarivo  47.53  -18.90  1260 2011–2018 Semi-humid 1977–2023 2011–2019 Yes 
Antsirabe  47.07  -19.87  1542 2011–2018 Semi-humid 1977–2022 1974–2015 Yes 
Antsiranana  49.30  -12.35  115 2011–2018 Dry 1977–2023 - Yes 
Antsohihy  47.96  -14.88  9 2011–2018 Dry - 1987–2020 Yes 
Besalampy  44.48  -16.75  46 2011–2018 Dry - 1973–2007 Yes 
Betioky Sud  44.35  -23.75  240 1981–2018 Semi-arid - - No 
Ejeda  44.55  -24.35  249 1981–2018 Semi-arid - - No 
Farafangana  47.83  -22.80  3 2011–2018 Humid 1977–2005 1973–2015 Yes 
Fianarantsoa  47.10  -21.45  1136 2011–2018 Semi-humid 1977–2022 1973–2020 No 
Ivato  47.48  -18.80  1268 2011–2018 Semi-humid - 1973–2020 Yes 
Mahajanga  46.35  -15.66  17 2011–2018 Dry - - Yes 
Maintirano  44.03  -18.05  26 2011–2018 Dry 1978–2015 1973–2017 Yes 
Mananjary  48.36  -21.20  3 2011–2018 Humid 1977–2015 1973–2015 Yes 
Morombe  43.36  -21.75  2 2011–2018 Semi-arid 1980–2004 1973–2004 Yes 
Morondava  44.31  -20.28  4 2011–2018 Semi-arid 1977–2018 1973–2020 Yes 
Nosy Be  48.31  -13.32  17 2011–2018 Semi-humid - - Yes 
Ranohira  45.40  -22.55  763 2011–2018 Semi-arid 2006–2020 1973–2020 Yes 
Sainte-Marie  49.81  -17.08  4 2011–2018 Humid 1987–2023 1973–2020 Yes 
Sakaraha  44.55  -24.95  217 1981–2018 Semi-arid - - No 
Sambava  50.16  -14.28  68 2011–2018 Humid 1977–2022 1973–2020 Yes 
Toamasina  49.40  -18.11  9 2011–2018 Humid 1977–2022 1973–2020 Yes 
Toliary  43.73  -23.38  9 1980–2018 Semi-arid 1977–2022 1973–2019 No  

Table A2 
Meteorological stations characteristics for the period 2000–2016.  

Name Long. Lat. Alt. (m) Temporal coverage Climatic region GSOM GSOD GPCC 

Andranoma-nelatra 47.11 -19.78 1621 2002–2020 Semi-humid - - No 
Befandefa 43.25 -22.15 9 1981–2018 Semi-arid - - No 
Ivory 46.42 -19.55 926 2005–2020 Semi-humid - - No 
Mandrare 46.35 -25.05 13 1981–2018 Semi-arid - - No 
Manombo Sud 43.45 -22.95 10 1981–2018 Semi-arid - - No 

GSOD = Global Summary Of the Day (available at https://www.ncei.noaa.gov/maps/daily/?layers=0001, accessed on 11/03/2023), 
GSOM = Global Summary of the Month (available at https://www.ncei.noaa.gov/maps/monthly/, accessed on 11/03/2023) 
GPCC = Global Precipitation Climatology Center (available at: https://kunden.dwd.de/GPCC/Visualizer_intro?p_data
set=monitor10_v2022&p_coast=1&p_art=3&p_out=0&p_season=1&p_scale=1.4&p_year=2020&p_as=0&p_zoom=1&p_area=0&p_lonmin=
− 180.&p_lonmax=%2B180.&p_latmin=− 90.&p_latmax=%2B90.&p_color=1&p_proj=1, accessed on 11/03/2023) 
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Fig. B1. Boxplot of KGE scores at the regional level.  
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explained by the number of rain gauge stations used: four stations in the CRU dataset (Harris et al., 2020), about 20 in the GPCC dataset 
(Schneider et al., 2022) for Madagascar. This means that WFDEI products are highly dependent on rain gauge network density, as 
previously observed by Chen et al. (2020). 

To benefit from the importance of gauge information, ARC2 and TAMSAT v.3 have been specifically developed to use as much 

Fig. C1. Map of the regional RMSE scores for the period 2011–2016.  
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gauge information as possible to estimate precipitation across Africa. ARC2 was specifically developed to improve rainfall monitoring 
needed/necessary for water management, agriculture, and food security on the African continent. Novella and Thiaw (2013) showed 
that this product estimates droughts fairly accurately but underestimates rainfall during the dry season (June-October) and in coastal 
and mountainous regions. Our study results confirm this bias, with a correlation coefficient close to 0.8 in the dry season, with a 

Fig. C2. Map of the regional CC scores for the period 2011–2016.  
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negative bias, and a low KGE score in the wet region. TAMSAT v.3, designed to estimate low precipitation from a drought monitoring 
perspective, has been shown to underestimate precipitation (Maidment et al., 2014, 2017). This underestimation results in better 
scores in semi-arid regions than in wet regions (negative KGE), and an overall negative bias. 

5.3. Ensemble-merging approach advantages and limitations 

Multiple methods have been developed to explore the merging of P-datasets, but none is widely implemented, and none has been 
evaluated in Madagascar. Consequently, a weighted averaging approach was proposed in this paper, based on the principles of already 
existing approaches. The resulting MPDwa product performed better than other products for the calibration and validation periods. The 
uniqueness of this method is the selection of P-datasets based on their observed performance over each climatic region. This approach 
differs from previous studies that include only a limited number of P-datasets in the selection and merging process (Mastrantonas et al., 
2019; Rahman et al., 2018; Zhang et al., 2021). This broad selection was motivated by the variability in P-dataset performance specific 
to the climatic regions of Madagascar (Fig. 5). Other spatial characteristics could have been used to constrain the MPD weightings (e.g. 
altitude, slope). However, our tests suggested that slope and altitude alone are not sufficient to optimize the weightings, perhaps due to 
the effects of trade winds. Therefore, we have chosen to use climatic regions as the spatial variation factor, which indirectly includes 
altitude and slope. 

The results show a high variability according to the season. This observation implies that it may be advisable to optimize MPD 
weightings according to the season. This weighting method would require expertise in seasonal variations, which could be the focus of 
a new study. The weightings could be computed using a Weighted Average Least Squares (WALS) to combine P-datasets with 
weightings adjusted according to the seasons, as previously tested by Rahman et al. (2020) across Pakistan. 

Using MPD makes it possible to estimate uncertainty bounds. This uncertainty is related to the dispersion of the values of the 
various P-datasets that were used to establish MPD (dark gray area in Fig. 6). The uncertainty could be estimate based on the value 
range or on the standard variation of the products selected for the MPD values. Knowledge of the uncertainty is essential in being able 
to propagate it throughout the study. For example, if the precipitation and evapotranspiration uncertainties are known, it will be 
possible to estimate the uncertainty on the P-ET term, which is a proxy for aquifer recharge in these semi-arid areas without rivers. 

6. Conclusion 

The proliferation of P-datasets makes precipitation data available even in regions with low-density rain gauge networks, such as 
Madagascar. However, P-dataset performance varies in time and space. It is therefore essential to choose a P-dataset that is robust 
enough to cope with the various climatic contexts and seasons observed in Madagascar. In this context, this study assesses for the first 
time the reliability of 21 P-datasets at the monthly time step across Madagascar. The results are summarized below:  

- At the national scale, WDFEI-GPCC, CMORPH-BLD v.1, and MSWEP v.2.2 are the most reliable P-datasets. With a spatial resolution 
of 0.1◦ and temporal coverage of 44 years (1979-present), MSWEP v.2.2 offers encouraging prospects for precipitation trend 
analysis across Madagascar provided that this product meets other criteria specific to trend analysis such as continuity of input 
data.  

- P-dataset reliability varies in space according to the climatic region under consideration. GSMaP-Adj v.6, CHIRP v.2, CMORPH-BLD 
v.1, and WFDEI-GPCC are the most reliable P-datasets for dry, semi-arid, semi-humid, and humid regions, respectively.  

- The ensemble-merging approach proposed in this study takes advantage of the variability of P-dataset reliability in space (i.e., 
climatic region). The MPDwa P-dataset developed according to this method provides precipitation estimates that are more reliable 
than all other P-datasets that were considered. This was true for all climatic regions.  

- The two-step method (P-dataset reliability assessment and ensemble-merging approach) presented in this paper could be tested at 
other time steps or in other regions that have available rain gauge measurements. This method makes it possible to take advantage 
of all available P-datasets to obtain more reliable precipitation estimates across the study area. 
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Madagascar and CIRAD (Centre de coopération internationale en recherche agronomique pour le développement) of France. Financial 
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Appendix 

See Tables A1 and A2. 
Reliability assessment for 20 P-datasets at the regional level, using monthly data from 24 meteorological stations (period 

2011–2016). The dotted green line is the optimum for each indicator. The right and left edges of the boxes represent the 25th and 75th 
percentile values, respectively. The blue dot is the median value for the wet season, and the red dot is the median value for the dry 
season. The P-datasets are ranked by the KGE median value Fig. B1. 

At the regional level, P-datasets performances vary according to the season. In the semi-arid region, the best P-datasets are mostly 
the same for all seasons, except for TAMSAT v.7, which has a high global KGE, but a negative one for the dry season. In this region, 
CHIRP v.2 and CHIRPS v.2 present high KGE scores, especially for the wet season. In the semi-humid region, the best P-dataset being 
the same for the dry and the wet seasons. Among the five best P-datasets, only CMORPH-BLD v.1 shows significantly lower results 
during the dry season. In the humid region, WFDEI-GPCC and CMORPH-BLD v.1 present high scores for all seasons. MSWEP v.2 is also 
efficient but with a lower score for the dry season. Several P-datasets fail to reproduce precipitation amounts for the dry season, but 
present high KGE scores for the wet season (ARC-2, IMERG-FR v.6, GSMaP- Adj v.6). In the dry region, MSWEP v.2 and CMORPH-BLD 
v.1 are among the best for all seasons. GSMaP- Adj v.6 and TMPA- Adj v.7 have high scores for the wet season and low scores for the dry 
season Fig. C1. 

RMSE scores according to the climatic regions. RMSE scores obtained with monthly data for the period 2011–2016 are shown per 
station for the 20 P-datasets. The best product map indicates the product with the highest KGE for each rain gauge station. 

The RMSE scores are mostly better in the semi-arid region. Only WFDEI-GPCC achieves a small RMSE in the humid region. 
CMORPH-BLD v.1 has good RMSE scores for most of the island except the west coast. MSWEP v.2 has balanced scores Fig. C2. 

CC scores according to the climatic regions. RMSE scores obtained with monthly data for the period 2011–2016 are shown per 
station for the 20 P-datasets. The best product map indicates the product with the highest KGE for each rain gauge station. 

The CC scores at the regional level are in line with the KGE scores. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.ejrh.2023.101400. 
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