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The offshore Tumbes-Guayaquil forearc basin in the accretionary prism of Northern Peru-Southern Ecuador
shows evidence of gravity-driven large-scale deformation systems active during the Late Neogene-Quaternary
period. Subsurface data and the construction of eight structural cross-sections show that the ~8 km-thick
Oligocene-Quaternary sedimentary infill is detached seaward and completely decoupled from the underlying
inner accretionary prism systems. The Corvina décollement in the Tumbes basin and the Posorja décollement in
the Guayaquil basin constitute two thin-skinned gravity tectonic systems associated with kilometer-scale, updip
“raft” extensional structures paired with downdip fold-thrust systems (Barracuda and Domito thrust systems).
Although many previous studies have described the structural and stratigraphic architecture of the Tumbes-
Guayaquil forearc basin, no model explicitly accounts for this anomalous large-scale gravity tectonics. We
propose that this gravity tectonic style, more commonly observed in passive continental margins, is primarily
controlled by the combination of tectonostratigraphic features, including crustal-scale transtensional deforma-
tion related to oblique convergence along the Northern Andean margin, basal décollement slope tilting, strong
sediment accumulation, and the presence of overpressured shales.

Collot et al., 2002; Higley, 2004a, b; Calahoranno, 2005; Fernandez
et al., 2005; Witt et al., 2006; Cobos, 2010; Espurt et al., 2018; Reynaud

1. Introduction

Because of their ability to record tectonic events, forearc basins are a
key structural feature of oceanic subduction zones, although their dy-
namics still include some grey areas (e.g., Dickinson, 1995; Heuret et al.,
2012; Tsuji et al., 2015; Noda, 2016; Vannucchi et al., 2016; Noda and
Miyakawa, 2017). The offshore Tumbes-Gulf of Guayaquil forearc basin
is part of the Northern Peruvian-Southern Ecuadorian accretionary
prism developed over the Nazca (Farallon)-South American plate
convergence system through the Late Cretaceous to Cenozoic period
(Daly, 1989; Espurt et al., 2018; Aizprua et al., 2019; Jaillard, 2022,
Fig. 1). The complex structural architecture and petroleum systems of
this frontier forearc region have been strongly studied by academic and
petroleum industry through numerous seismic reflection and explora-
tion well data (e.g., Benitez, 1995; Deniaud et al., 1999; Deniaud, 2000;

* Corresponding author.

et al., 2018; Aizprua et al., 2019; Lemgruber-Traby et al., 2020; Guzman
et al.,, 2022; Marquez et al., 2022). These studies show that the
Tumbes-Gulf of Guayaquil forearc basin is characterized by: (1) a
massive Cenozoic prograding sedimentary infill containing ductile basal
shale layers (Higley, 2004a,b; Espurt et al., 2018); (2) a large
crustal-scale strike-slip fault zone, the Puna fault zone that crosses
obliquely the forearc basin, leading to significant transtensional defor-
mation favoring available space and sedimentary trapping in the forearc
basin (Benitez, 1995; Deniaud et al., 1999; Deniaud, 2000; Cobos,
2010). The combination of these sedimentary and tectonic features
might have exerted a strong control on the kinematics of structural
growth of the forearc basin.

This paper aims to present an original contribution with eight
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structural cross-sections based on seismic reflection profiles and well
data to understand the three-dimensional structure and dynamics of the
Tumbes-Guayaquil forearc basin (Fig. 1). Here we present a new
tectono-stratigraphic interpretation for the Tumbes-Guayaquil forearc
basin, involving a tectonic style reported for the first time in the dy-
namics of the region. Results reveal a new view of the gravity tectonics
that controlled the structural growth of the Tumbes-Guayaquil forearc
depocenter. This large-scale gravity tectonics is active during the Late
Neogene and the Quaternary in a context of ongoing oceanic subduction,
rather classically observed in passive continental margins. We discuss
the regional driving tectono-stratigraphic features controlling such
atypical gravity tectonic style and its relationship with the geodynamic
processes affecting the Northern Andean active margin.

2. Geological setting
2.1. Tectonic context

Currently, along the Northern Peruvian-Southern Ecuadorian active
margin, the Nazca Plate is subducting N83°E-trending beneath the
Northern Andes at a velocity of 60 mm/a (Villegas-Lanza et al., 2016,
Fig. 1). The accretionary prism structure is characterized by the accre-
tion of successive forearc depocenters, separated by thrust wedges
involving continental, oceanic and sedimentary rocks (Espurt et al.,
2018; Aizprua et al., 2019). The Tumbes and Gulf of Guayaquil offshore
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basins form an approximately 16000 km? large, thick Cenozoic forearc
depocenter lying between coastal basement wedges (Carpitas, Zorritos,
Pallatanga and Santa Elena) and outer wedges (Banco Peru and Domito)
made of off-scrapped sediments (Fig. 1). The Tumbes and Gulf of
Guayaquil basins are separated by the broad Barracuda antiform in the
forearc basin center (Fig. 1; Fernandez et al., 2005; Vega, 2009). The
Gulf of Guayaquil basin is cut obliquely by the SW-trending Puna dextral
strike-slip fault zone, which accommodates the relative motion of two
crustal slivers: the North Andean Sliver, moving NE-ward and the Inca
Sliver to the south, moving SE-ward (Nocquet et al., 2014; Alvarado
et al., 2016; Villegas-Lanza et al., 2016, Fig. 1). The fault zone partici-
pates to the opening of the Gulf of Guayaquil basin (Deniaud, 2000; Witt
et al., 2006). The collision of the Carnegie Ridge with the Ecuadorian
margin could have controlled the North Andean Sliver NE-ward escape
and favored the opening of the Gulf of Guayaquil during at least the
Quaternary (Witt et al., 2006; Michaud et al., 2009, 2018, Fig. 1).

The historical seismicity of the Tumbes-Guayaquil forearc zone does
not show large magnitude subduction earthquakes (only three ~ Mw
7-7.5 events in 1901, 1933 and 1953 were possibly tsunamigenic;
Lockridge, 1984; Espinoza, 1992; Beauval et al., 2013; Ioualalen et al.,
2014; Yepes et al., 2016; Chunga et al., 2018; Vaca et al., 2019). Low
interseismic coupling and creeping on the subduction interface contrast
with strong interseismic coupling regions to the north characterized by
large earthquake occurrence (Chlieh et al., 2014; Nocquet et al., 2014;
Villegas-Lanza et al., 2016). Crustal faults in the onshore and offshore
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Fig. 1. Geodynamic and structural settings of the Tumbes-Guayaquil forearc basin. (a) Geodynamic map of the Central-North Andean active margin related to the
Nazca-South American convergence plate system. The dotted red square indicates the location of the Tumbes-Guayaquil forearc basin. The black arrows show the
relative convergence rate (mm/a) and the oblique convergence trend between the Nazca (NAZ) and South American (SAM) Plates and the relative motions of the
North Andean Sliver (NAS) and the Inca Sliver (INS) in mm/a (from Villegas-Lanza et al., 2016). (b) Structural map of the Tumbes-Guayaquil forearc basin. The thick
lines with numbers indicate the locations of the eight cross-sections (labelled 1 to 8) constructed in this study along seismic reflection profiles. The white and black
circles correspond to exploration wells. M: Marina-1X well, C: Corvina-40-X-1 well, B: Barracuda-15-X-1 well, E: Esperanza-1 well, D: Domito-1 well, T: Tiburon-1
well. Major rivers are indicated in blue. Coordinate system is UTM zone 17S. IW: inner wedge; OW: outer wedge. (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)
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region of the Gulf of Guayaquil basin are seismically active (e.g., Puna
fault zone), as revealed by strong to moderate present-day seismicity
(Alvarado et al., 2018; Vaca et al., 2019) and morpho-tectonics analysis
(Dumont et al., 2005).

2.2. Lithostratigraphy

Many previous works have described the Cenozoic sedimentary infill
across the Tumbes and Gulf of Guayaquil basins and surrounding areas
based on seismic profile and well data, correlated with field observations
(e.g., Séranne, 1987; Benitez, 1995; Jaillard et al., 1995; Deniaud, 2000;
Higley, 20044, b; Fernandez et al., 2005; Witt et al., 2006; Fildani et al.,
2008; Vega, 2009; Cobos, 2010; Espurt et al., 2018; Aizprua et al., 2019;
Reynaud et al., 2018; Jaillard, 2022; Aizprua et al., 2022). The lithos-
tratigraphy is presented using the Corvina-40-X-1 well in Peru and the
Esperanza-1 well in Ecuador (Fig. 2) and described hereafter.

In the study area, basement rocks are either exposed along the coast
or revealed by exploration wells (Fernandez et al., 2005; Vega, 2009;
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Fig. 2. Stratigraphy of the Tumbes-Guayaquil forearc basin and lateral corre-
lations in between based on the Corvina-40-X-1 (total depth ~4321 m Peru)
and Esperanza-1 (total depth ~ 4000 m Ecuador) wells (For location, See
Fig. 1). We have established a lateral correlation between the lithological na-
ture and the ages of the formations. The upper Oligocene shales of the Heath
Playa-Rica source rock correspond to top of overpressure conditions indicated
by a blue circle with arrow (Fildani et al., 2005; Lemgruber-Traby et al., 2020;
Perupetro S.A data). This blue circle indicates overpressured zone in the
Corvina-40-X-1 well (Perupetro S.A data). Fm: Formation. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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Riel et al., 2014; Espurt et al., 2018; Aizprua et al., 2019; Lajo-Yanez
et al., 2022; Jaillard, 2022, Fig. 1). In North Peru, the Amotape-Tahuin
basement is formed by Paleozoic to Triassic metamorphic and granitic
rocks, unconformably covered by terrestrial to marine Eocene or lower
Oligocene strata forming the Carpitas and Zorritos inner wedges along
the coast (Fernandez et al., 2005; Vega, 2009; Espurt et al., 2018). In
South Ecuador, the Pallatanga-Pinon basement shows upper Cretaceous
oceanic terranes unconformably covered by Paleocene to Eocene,
terrestrial and deep marine strata forming the Pallatanga and Santa
Elena inner wedges (Riel et al., 2014; Aizprua et al., 2019; Jaillard,
2022).

The sedimentary infill of the Tumbes-Guayaquil forearc depocenter
is underlined by the upper Oligocene ductile deep marine shales (Heath
Formation in Peru/Playa Rica Formation in Ecuador; Fig. 2). These
shales form a potential source rock and are expected to have generated
hydrocarbons in the deeper parts of the depocenters (Fildani et al., 2005;
Lemgruber-Traby et al., 2020). The upper Oligocene shales are overlain
by lower Miocene coarse-grained fluviodeltaic to deep-marine strata
(Zorritos Formation in Peru/Subibaja Formation in Ecuador). These
siliciclastic ~ strata are unconformably overlain by middle
Miocene-Pliocene marginal marine and deltaic strata (Cardalitos,
Tumbes, and Mal Pelo Formations in Peru/Progreso and Lower Puna
Formations in Ecuador), and finally by Quaternary claystones, sands,
and dolomitized limestones (La Cruz Formation in Peru/Upper Puna
Formation in Ecuador; Benitez, 1995; Deniaud, 2000; Fildani et al.,
2005; Cobos, 2010; Reynaud et al., 2018; Fig. 2). Distal equivalents of
the Tumbes-Guayaquil forearc depocenter sedimentary sequences are
involved in the Banco Peru and Domito outer wedges (Fig. 1).

3. Subsurface structural data and interpretations

To illustrate the structural architecture and kinematics of structural
growth of the offshore Tumbes-Guayaquil forearc basin, we show five,
E— to ESE-trending serial cross-sections (labelled 1 to 5; Fig. 4)
perpendicular to the forearc basin axis (approximately parallel to the
thrust transport direction) and three ~ N- to NE-trending cross-sections
(labelled 6 to 8; Fig. 5) parallel to the forearc basin axis (approximately
parallel to the extensional trend in Guayaquil basin) (Figs. 1 and 3).
Cross-sections 1, 2 and 6 are located in the Tumbes depocenter, and
cross-sections 3, 4, 5, 7 and 8 in the Guayaquil depocenter (Figs. 1 and
3). The geology of these cross-sections has been interpreted using fifteen
seismic reflection profiles (AIP92-19, Z1-3D extracted from Z1 seismic
cube, VMX09-23, PC99-01, AIP92-61, VMX09-71, OXY98-114, AIP92-
60, g83-s23e, g83-523, g83-s23w, gt83-w23, s-9, g83-s09, g83-01, g83-
nl6, g83-n29; Supplementary Material Figs. S1 and S2) in second two-
way travel time (sTWT) and six exploration wells (Marina-1X,
Corvina-40-X-1, Barracuda-15-X-1, Esperanza-1, Domito-1, Tiburon-1)
provided by Perupetro S.A. and Petroecuador (Figs. 4 and 5). The
cross-sections range from 44 km to 58 km in length and reach 6-8 sSTWT
(second two-way travel time) in depth. Well data indicate that the entire
sedimentary pile is relatively homogeneous across the basin. The seismic
velocity values increases with depth from ~1800 m/s to ~3000 m/s
through the Quaternary-Oligocene sedimentary section (Cobos, 2010;
Espurt et al., 2018). We also used all available seismic reflection profile
data and previously published data (Benitez, 1995; Deniaud, 2000;
Collot et al., 2002; Fernandez et al., 2005; Witt et al., 2006; Cobos, 2010;
Espurt et al., 2018; Aizprua et al., 2019, 2022) to construct an isopach
map of the Quaternary infill in sSTWT of the Tumbes-Guayaquil forearc
depocenter (Fig. 3).

3.1. Structures

The structural architecture of the Tumbes-Guayaquil forearc basin,
off the coast of northern Peru and southern Ecuador, is described from
south to north, from the Tumbes forearc depocenter to the Guayaquil
forearc depocenter (Figs. 4-6).
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Fig. 3. Isopach map in STWT of the Quaternary infill (La Cruz and Upper Puna Formations; as described in Fig. 2). The map reveals the position of the Guayaquil and
Tumbes depocenters. The dotted contouring lines are 250 ms and intervals is 50 m. Location of available subsurface data are indicated: thin black lines are seismic
profiles and red circles are exploration wells. The lines with numbers labelled and wells annotated with a letter are those used in this study. M: Marina-1X well, C:
Corvina-40-X-1 well, B: Barracuda-15-X-1 well, E: Esperanza-1 well, D: Domito-1 well, T: Tiburon-1 well. Bathymetric data are extracted from the GEBCO site.
Coordinate system is UTM zone 17S. FD: Forearc depocenter. IW: inner wedge; OW: outer wedge. (For interpretation of the references to colour in this figure legend,

the reader is referred to the Web version of this article.)

3.1.1. The Tumbes forearc depocenter

The Tumbes forearc depocenter develops ahead of the Carpitas-
Zorritos inner thrust wedge system involving metamorphic/granitic
rocks and Cenozoic sediment (Fernandez et al., 2005; Vega, 2009;
Espurt et al., 2018). Cross-sections 1 and 2 (Fig. 4a and b and 6a),
perpendicular to the trend of the forearc basin, show that the Tumbes
forearc depocenter consists of a seaward-thickening sedimentary wedge
of about 40-45 km-long. It contains a sedimentary section thicker than
~6 STWT (~7.2 km) in thickness composed mainly by
Oligocene-Neogene strata and thin Quaternary section of ~0.6 STWT
(~400m) (Fig. 3). The sedimentary pile is deformed by NE-trending
listric normal faults of the Corvina fault system (Fig. 4a and b).
Normal faults dip regionally basinward (with rare counter-regional
faults) and branch downward onto a NW-dipping décollement level,
the Corvina décollement, developed in the Oligocene ductile shales of
the Heath Formation. The seaward sliding of the sedimentary cover of
the Tumbes depocenter along the Corvina décollement is associated with
typical rollover folds (Dula, 1991; Xiao and Suppe, 1992, Fig. 4a and b).
Neogene and Quaternary strata in the hanging walls of listric normal
faults are characterized by reflectors that exhibit fan-shaped geometries
(Fig. 6a).

Seaward, the sedimentary pile is deformed by the 15 km-long Bar-
racuda antiform (Fernandez et al., 2005; Vega, 2009; Brusset et al.,
2018) mainly developed on cross-section 2 (Fig. 4b and 6a). This
structure is formed by thin-skinned imbrications of NW-verging thrusts
connected at depth into the Oligocene ductile shales of the Heath For-
mation. The thrust branches upward into several blind back-thrusts that
define a triangle zone (Fig. 6a). The Barracuda antiform can be

interpreted as a compressional structure accommodating the downdip
gravitational sliding of the Corvina fault system as proposed by Vega
(2009). The interpretation of the seismic profiles suggests that the
Corvina décollement connects downdip to the Banco Peru outer wedge
(Fig. 4b and 6a). This wedge is made of off-scrapped distal Cenozoic
sediments including oceanic mafic bodies (intrusive and volcanic)
accreted above the subducting oceanic Nazca crust (Fig. 4a and b;
Shepherd and Moberly, 1981; Fernandez et al., 2005; Espurt et al.,
2018). The southwestern side of the Banco Peru wedge is cut by the
NNE-trending SE-dipping Banco Peru normal/strike-slip fault zone
(Figs. 3 and 4a). This latter is only developed of the Tumbes depocenter
and intersects the sea floor.

The NE- trending cross-section 6 (Fig. 5a), parallel to the trend of the
depocenter, reveals that the NE-trending geometry of the basin remains
similar to those revealed by the NW-trending cross-sections. However,
the cross-section 6 shows NW-trending fault system including NE- and
SW-dipping listric normal faults involves the Oligocene to Quaternary
strata (Witt et al., 2006; Auguy et al., 2017; Brusset et al., 2018). This
fault system and these several thin-skinned imbricates are connected at
depth into the flat-lying Oligocene shale level of the Heath Formation
(Fig. 4a and b and 5a).

3.1.2. The Guayagquil forearc depocenter

The Guayaquil forearc depocenter develops above the Pallatanga-
Santa Elena inner thrust wedge system involving upper Cretaceous
oceanic terranes and Paleocene-Eocene sediments (Aizprua et al., 2019).
The wedge system is cut by the Puna crustal fault zone (Fig. 3). This fault
zone runs SW-ward into the Guayaquil forearc depocenter through the
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Amistad antiform as suggested by seismic reflection and seismicity data
(Witt et al., 2006; Vaca et al., 2019; Aizprua et al., 2019, 2022, Figs. 3
and 4c,d,e). It probably extends farther SW beneath the Barracuda
antiform, although seismic reflection profiles do not show a fault zone
beneath the Corvina décollement (Fig. 4b). Cross-sections 4, 5 and 6
(Fig. 4d and e), perpendicular to the trend of the Guayaquil forearc
depocenter, show that the depocenter consists of a seaward-thickening
sedimentary wedge of a maximum length of 50 km (decreasing to 30
km northward) and has an up to ~7.3 sSTWT (~9 km-thick) Oligocene to
Quaternary sedimentary section in its center. The Guayaquil forearc
depocenter is marked by a much thicker Quaternary section than in the
Tumbes depocenter, in excess of ~5 sTWT (~6 km) (Figs. 3 and 4d).
Cross-sections show that the sedimentary pile is deformed by
NW-trending listric normal faults of the Posorja fault system along the
southern edge of the uplifted Santa Elena High (Fig. 3). In cross-sections
3, 4 and 5, the structural style consists of a broad deep rollover fold
along the hanging wall of the Posorja décollement developed into the
Oligocene ductile shales of the Playa Rica Formation (Fig. 4c,d,e). Up-
ward, the décollement connects to inter-sequence lithologic contrast
zones (e.g., erosional unconformities (Benitez, 1995; Deniaud, 2000);
intra Neogene or Neogene-Quaternary interface along cross-sections 3
and 4) or reach the surface (northern cross-section 5). Like in the
Tumbes forearc depocenter, the rollover folding is characterized by re-
flectors depicting spectacular fan-shaped geometries in the upper
Neogene and especially in the Quaternary sediments (Fig. 4c,d,e and
6b).

Along-dip cross-sections 3, 4 and 5 (Fig. 4c,d,e) show that the Posorja
décollement connects downdip with a ~25 km-large zone dominated by
thin-skinned compressional structures deforming the Oligocene-
Quaternary sequences. Seismic profiles show that some thrusts deform
the rollover fold developed along the hanging wall of the Posorja
décollement, while other thrusts, farther downdip, are associated with
the Domito outer wedge (Fig. 4c,d,e and 6b). Cross-sections 7 and 8,
parallel to the basin trend (Fig. 5b and c) show that the Posorja and
Domito fault systems are associated with secondary NW-trending listric
normal/strike-slip faults connected downdip into the Oligocene flat-
lying shale layer.

3.2. Kinematics and timing of deformations
The subsurface data presented in the previous sections clearly show

that the structural architecture of the Tumbes-Guayaquil forearc basin is
characterized by two thin-skinned deformation domains: an updip

extensional zone defined by raft structures and a downdip contractional
zone defined by fold-thrust systems (Figs. 4 and 5). The two domains are
connected by narrow translational zones (~7 km) through décollements
located in the Oligocene ductile shales (Heath and Playa Rica Forma-
tions) that lie directly above the seaward slope of the inner wedges
(Fig. 6). The downdip fold-thrust structural systems are complex and
comprise interference between structures related to frontal accretion-
subduction and gravitational tectonics. In the Tumbes forearc depo-
center, we interpret that the downdip Barracuda compressional struc-
ture balances part of the extension accommodated higher on the slope
by the Corvina fault system (Fig. 4a and b). Thus, the growth of the
Barracuda structure was mostly controlled by the downdip gravitational
sliding of the Corvina raft system (Vega, 2009). Like the Tumbes forearc
depocenter, part of the sedimentary infill of the Guayaquil depocenter is
gravitationally rafted along the Posorja décollement toward the sea
(Fig. 4d and e). Although the structures of the Banco Peru and Domito
wedges are more compatible with frontal accretion related to subduc-
tion, we interpret that part of the thrusting and folding in these outer
wedges could be therefore associated to gravitational tectonics. For
instance, we interpret the current form of the rollover fold in
cross-section 5 (Fig. 6a) as significantly deformed by a series of three
thrusts connected onto the seaward-dipping Posorja décollement.

The sedimentary infill of the Tumbes-Guayaquil forearc basin con-
tains syntectonic horizons that constrain the timing of deformation.
Growth strata and submarine unconformities reveal that the Corvina-
Barracuda structure of the Tumbes depocenter was active in the
Middle(?)-Late Neogene (Fig. 4a and b; Brusset et al., 2018; Espurt et al.,
2018). The onlap of the Quaternary strata on the Barracuda antiform
and the truncation of its crest domain at the seafloor suggest ongoing
deformation and uplift through the Quaternary until the present-day
(Fig. 4b and 5). Seaward, the deformation of the Banco Peru outer
accretionary wedge is attested by the pinch out of the
Neogene-Quaternary strata (Fig. 4a and b; Brusset et al., 2018; Espurt
et al., 2018). In the Guayaquil forearc depocenter, the activity of the
Posorja raft system is recorded by spectacular Late Neogene and Qua-
ternary growth strata fanning (Witt et al., 2006, Fig. 4c,d,e). The strong
Quaternary sedimentation in the Guayaquil basin is related to large
extensional displacement along the Posorja raft system. Synchronous
and somewhat younger thrusting and folding in the Domito outer thrust
wedge is locally recorded by upper Neogene and Quaternary growth
strata (Fig. 4c,d,e). Deformation in this outer thrust wedge might
therefore result from the combined effect of frontal accretion and
gravitational sliding of the Posorja raft system.
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The Quaternary to present-day emplacement of a regional transten-
sional stress regime in the forearc basin is partly accommodated by
potential recent submarine strike-slip structures. For instance, the ac-
tivity of the Puna fault-related Amistad antiform is recorded by Qua-
ternary growth strata on the northwestern limb of the antiform (Fig. 4c;
Witt et al., 2006). The recent activity of some fault segments (e. g., Puna
and Banco Peru transtensional faults) is attested by fault scarps off-
setting the seafloor (Fig. 4a; Witt et al., 2006).

4. Discussion: gravity tectonics in a forearc basin

The large-scale gravity-driven deformation system observed in the
Tumbes-Guayaquil forearc basin is similar to that classically observed in
deltaic systems along passive continental margins (e.g., Morley and
Guerin, 1996; Stewart, 1999; Hooper et al., 2002; Rowan et al., 2004;
Bilotti and Shaw, 2005; Ahmed et al., 2022). In the following, we discuss
some of the key tectono-stratigraphic features responsible for the
establishment of the gravity tectonic style through an active accre-
tionary prism (Fig. 7).

4.1. Oblique convergence and crustal-scale transtensional deformation

The Northern Peru-Southern Ecuador accretionary prism system
exhibits a complex three-dimensional structural architecture resulting
from successive stages of deformation through the Mesozoic to Cenozoic
period, including the Farallon-Nazca Plate subduction dynamics, crustal
block accretion, ridge collision, and motion of forearc sliver (Benitez,
1995; Deniaud, 2000; Gutscher et al., 2002; Jaillard et al., 2004; Witt
and Bourgois, 2010; Riel et al., 2014; Espurt et al., 2018; Hernandez
et al., 2020; Aizprua et al., 2022; Jaillard, 2022). Post-Oligocene
clockwise rotations in the coastal areas of Ecuador and Northern Peru
(Kissel and Laj, 1989; Mitouard et al., 1990; Siravo et al., 2021) are
related to oblique convergence and partitioning of the deformation in
the Northern Andes subduction zone (Fig. 7; Alvarado et al., 2016). This
induced change and vertical rotation of the maximal stress in the forearc
zone and the oblique reactivation of inherited fault and suture zones
between crustal blocks (Aizprua, 2021). For instance, the development
of NE-trending strike-slip fault (e.g., NE-trending Banco Peru and Puna
strike-slip faults) and NW-trending normal faults could be the conse-
quence of the NE-ward tectonic escape of the continental North Andean
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Sliver during at least the Quaternary (Deniaud, 2000; Witt et al., 2006;
Bourgois, 2013; Nocquet et al., 2014; Villegas-Lanza et al., 2016; Espurt
et al., 2018). This modern crustal-scale transtensional regime in the
accretionary prism (Noda and Miyakawa, 2017) might have favored the
creation of accommodation space for gravity-driven deformation in the
Tumbes-Guayaquil forearc basin (Fig. 7).

4.2. Basal décollement slope tilting

Gravity tectonics can be influenced by the dip of the basal
décollement level (Mauduit et al., 1997; Rowan et al., 2004). For
instance, Mauduit et al. (1997) demonstrated that an increase in basal
slope dip increases noticeably the gravity sliding and the amount of
extensional deformation. This increase in basal slope dip can be caused
by a margin tilt induced by differential uplift across the margin. Indeed,
the coastal domain of the Tumbes-Guayaquil forearc basin shows evi-
dences of uplift characterized by the presence of large Plio-Pleistocene
perched marine terraces sequences (called Tablazos), located at more
than 300 m above sea level (Séranne, 1987; DeVries, 1988; Pedoja et al.,
2006). These morpho-tectonic markers recorded the uplift of the
Carpitas-Zorritos, Pallatanga and Santa Elena inner wedges during at
least the Quaternary period (Pedoja et al., 2006; Regard et al., 2012;
Bourgois, 2013; Espurt et al., 2018). We propose that the gravitational
failure in the offshore Tumbes-Guayaquil forearc basin is partially
controlled by the seaward tilting margin related to the uplift of the inner
wedges. This is comparable to the continental passive margin of
Namibia where the uplift event controlled the gravity sliding in the
Orange basin (De Vera et al, 2010). The Quaternary uplift of the
Northern Peruvian and Southern Ecuadorian active margins largely
coincides with the major sedimentary and gravity tectonic activity in the
Tumbes-Guayaquil depocenter (Fig. 7).

4.3. Sediment accumulation

The Tumbes-Guayaquil forearc basin is characterized by a 7 to 9 km-
thick upper Neogene-Quaternary coarse-grained fluviodeltaic to deep-
marine sedimentary pile (Deniaud et al., 1999; Deniaud, 2000; Witt
et al., 2006; Cobos, 2010, Figs. 4 and 5). The Quaternary sedimentary
pile alone can exceed 5 km-thick in the Gulf of Guayaquil basin and
records sedimentation rate with a maximum rate of up to 8600 m/Ma
(Deniaud, 2000). Today, ongoing basin filling is sustained by more than
twenty rivers (the Guayas river in Ecuador and the Tumbes river in Peru
are the major ones) draining the Andean reliefs towards the Pacific
margin (Salomons et al., 2005), associated with a sedimentary particle
discharge estimated about 30 Mt/a (Milliman and Farnsworth, 2013).
Thus, the massive sedimentary load could have strongly controlled
gravitational raft tectonic instabilities in the Tumbes-Gulf of Guayaquil
forearc basin. For instance, Mauduit et al. (1997) demonstrated that the
sedimentation increases the rate of displacement and overall extension
along a décollement. This implies that the shear stress parallel to the
décollement is a function of the overburden of the sedimentary pile for a
given angle of the basal slope. Furthermore, this massive sedimentary
load would cause an increase in the shear stress within the décollement
which, deforms and controls the geometry of the décollements. Further
quantitative analyses of the bed-parallel slip along décollements are
required to better illustrate the development of these shales
décollement-related gravitational raft tectonics (e.g., Chapman and
Williams, 1984; Delogkos et al., 2017; Alsop et al., 2020). In addition,
restored cross-sections are needed to quantify the amounts of exten-
sional and compressional deformations and to evaluate lateral
compaction in the downdip fold-thrust systems (Butler and Paton, 2010;
De Vera et al., 2010; Scarselli et al., 2016). Meanwhile, the geometry of
the tectonic system is conformable with gravitational raft tectonics type
described in passive continental margins (e.g., Rowan et al., 2004; De
Vera et al., 2010; Scarselli et al., 2016). This indicates that massive
sedimentary load strongly controlled gravitational raft tectonic
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instabilities in the Tumbes-Gulf of Guayaquil forearc basin.
4.4. Overpressured shales

Shales and fluid pressures are very important in gravity tectonics
(Hesthammer and Fossen, 1999; Oldenziel et al., 2002; Rowan et al.,
2004). Shale can behave as a viscous-plastic solid involving brittle and
ductile fractures if the deviatoric stress approaches the strength of the
shale (Rowan et al., 2004; Wood, 2010; Soto et al., 2021). Interestingly,
fluid pressures are observed in the Corvina-40-X-1 well, located at the
southeastern border of the Tumbes depocenter (Figs. 1 and 2). They can
be found below fluid retention depth (zRFD) of ~3.1-3.3 km where
extensional stress exists based on the deviated borehole failure analysis
(data provided by Perupetro S.A.). The sonic data acquired in the
Corvina 40-X-1 well show that there is a high sonic slowdown at 3.7
km-depth, above Oligocene Heath Formation sequences. This implies a
different compaction and burial history and an overpressure stress state
(Fig. 2; data provided by Perupetro S.A.; Fildani et al., 2005; Lem-
gruber-Traby et al., 2020). The top of the overpressure zone corresponds
to the top of the ductile shales of the Oligocene Heath Formation (Fig. 2)
and results in a reversal of the Vp (2500 m/s to 3000 m/s; data provided
by Perupetro S.A) in the ductile deep-marine shales of the Oligocene
Heath/Playa Rica Formation compared to the overlying coarse-grained
fluviodeltaic to deep-marine strata. According to our structural in-
terpretations, the sedimentary cover of the Tumbes-Guayaquil forearc
basin is detached below the overpressure zone in the ductile shales of the
Oligocene Heath/Playa Rica Formation (Figs. 2, 4, 5 and 7; Corvina and
Posorja décollements). As in many continental passive margins, the pore
fluid pressures would promote the development of the Corvina and
Posorja normal fault systems which are connected at depth in the
décollement layer (Figs. 2, 4, 5 and 7; e.g., Mourgues et al., 2009; Ahmed
etal., 2022). Moreover, in the context of a prograding deltaic system like
in the study area, fluid pressures can decrease near the coast and in-
crease in the seaward side of the basin, where the sedimentary thickness
increases (Mourgues et al., 2009). This is coherent with the location of
Posorja décollement that develops in the deepest depocenter of the
Guayaquil forearc depocenter (Figs. 2, 4, 5 and 7). Consequently, fric-
tion at the level of the overpressured shales is reduced throughout the
Tumbes-Guayaquil forearc depocenter. Thus, the sedimentary load of
the Tumbes-Guayaquil forearc basin and the presence of overpressured
shales promote low frictional properties at depth, which might control
the trenchward displacement of the Banco Peru and Domito outer thrust
wedges.

4.5. Seismicity

The study area is characterized by low interseismic coupling on the
subduction interface (Chlieh et al., 2014; Nocquet et al., 2014; Ville-
gas-Lanza et al., 2016). Few historical subduction earthquakes with in-
termediate magnitudes are located in the region (e.g., Beauval et al.,
2013). However crustal faults are seismically active in the onshore and
offshore region of the Gulf of Guayaquil basin (e.g., Puna dextral fault
zone; Fig. 5), as revealed by national earthquakes catalogue (Alvarado
et al., 2018). The gravitational sliding on the basal décollement levels is
slow and appears aseismic, due to overpressured shales, sedimentary
loading and tectonic strains. This raises the question of whether the
basal décollement levels could accommodate stresses such as fault. It
follows that we cannot exclude that aseismic slip on the basal
décollements may be triggered by either dynamic or static stress changes
(Du et al., 2003). One is dynamic stress change or transient deformation
generated by the passage of seismic waves and the other is the static
stress change associated with a nearby faulting process. Both possibil-
ities are likely under the local seismo-tectonic conditions. Concerning
the gravity sliding at the sea-bottom, the absence of slope (since we are
on the continental shelf), of overhanging sedimentary mass (the
sea-bottom is rather flat) and of an above significant water layer (only
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several tens of meters to some hundreds of meters), make that potential
intra-basin tsunamis are unlikely and the associated tsunami hazard is
therefore almost null.

In addition, a potential tsunami that could be triggered by an
earthquake on the Puna dextral strike-slip fault is also unlikely because
of the dominant strike-slip component of the event and its short-length
segments that imply moderate magnitudes along the fault. Instead, in
the study area and nearby coastal areas, the tsunami hazard is related to
a subduction earthquake occurring near the trench on the subduction
interface (loualalen et al., 2014).

5. Conclusion

We propose a new structural interpretation for the Tumbes-
Guayaquil forearc basin involving a tectonic style reported for the first
time in the dynamics of the area. Our results provide a model for the
evolution of a forearc basin, belonging to an accretionary prism, which
exhibits widespread gravitational tectonic instabilities in the Late
Neogene-Quaternary interval. Subsurface data and the construction of
structural cross-sections show that the forearc basin is detached seaward
from the underlying accretionary prism and deformed by large-scale,
updip listric normal fault systems (Corvina and Posorja raft systems)
associated with downdip fold-thrust systems (Barracuda and part of the
Domito thrust systems). The décollement layer is located within the
Oligocene ductile shales of the Heath/Playa Rica Formation. We propose
that this gravity tectonic style, rather observed in passive continental
margins, is primarily controlled by the combination of tectonostrati-
graphic features including crustal-scale transtensional deformation
related to oblique convergence along the Northern Andean margin and
opening of the basin along the Puna fault zone, basal décollement slope
tilting related to the Quaternary coastal uplift, the massive sediment
accumulation, and the presence of overpressured shales.
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