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Abstract: The Sahara desert is a major global source of dust that is mostly transported southwest
over the ocean off West Africa. The presence of this dust impacts the remote sensing of ocean surface
properties. These aerosols have absorbing properties that are poorly accounted for in the standard
ocean color data processing algorithm. This can result in an overestimation of the atmospheric contri-
bution to the ocean color signal and consequently an underestimation of the oceanic contribution. A
two-step algorithm initially applied to the Sea-viewing Wide field-of-view Sensor (SeaWiFS) data
was adapted to the Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua) sensor in the
Northwest African region. The Northwest African region is a very productive region, where pelagic
resources are an important socio-economic sector. Improving atmospheric correction of ocean color
products is, thus, of particular interest for this oceanic region. The two-step approach of classifying
the top-of-atmosphere radiance spectra for a better estimate of aerosol type on the one hand, and
using an optimization method to fit the parameters of these aerosols and chlorophyll-a concentration
(Chla) on the other hand, allows for a better representation of the optical thickness, a correction of
the marine reflectance spectrum, and an increase in the spatio-temporal coverage of the area. To the
extent that the properties of the water color signal are improved by this data processing, the Chla
estimates should also be improved by this approach. However, it is difficult to conclude on this point
from the available in situ observations.

Keywords: ocean color; atmospheric correction; absorbing aerosols; canary current

1. Introduction

A first large-scale sampling of Chla at the surface of the ocean was made possible
in 1978 with the Coastal Zone Color Scanner (CZCS), the first instrument devoted to the
measurement of ocean color onboard a spacecraft [1]. After a ten-year gap in ocean color,
the JAXA Japanese Ocean Color Temperature Scanner was launched in 1996 followed by
the NASA SeaWiFS in September 1997. Contiguous ocean color era was then applied with
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a succession of missions of one-off instrument. The NASA MODIS-Aqua instrument was
launched in 2002 and has provided daily coverage since [2].

The ocean color signal emerging from the sea is a small portion (<10%) of the satellite-
detected top-of-atmosphere (TOA) radiance, because sensors also receive light scattered by
different components of the atmosphere (e.g., [3]). Highly accurate atmospheric correction
schemes are, thus, needed to retrieve the water signal [4]. A major limitation of standard
algorithms remains the determination of absorbing aerosol’s contribution. Aerosol is a
gaseous suspension of fine solid or liquid particles that can both absorb and diffuse light.
The absorption of an aerosol depends on its composition, often parameterized via its
particle size distribution and refractive index [5]. Absorbing can reach up to about 30% of
the solar irradiance [6] in both visible and infrared domains, modifying in particular the
earth radiation budget [7,8].

The Sahara desert is the world largest source of mineral aerosols, representing almost
40% of overall natural emissions (e.g., [9]). These absorbing aerosols can be transported
over considerable distances in the atmosphere (e.g., [10–12]) and primarily over the West
African coast at different altitudes according to the season or the synoptic situation [13,14].
Desert dust is present over the ocean off Mauritania and Senegal up to 50% of the time [15].
Dust aerosols are, thus, of particular relevance in the processing of the ocean color signal
over West African continental margins.

The general approach of the atmospheric correction algorithm is to use spectral bands
for which the water-leaving reflectance is known to make an assessment of the aerosol
contribution [16,17]. As water-leaving reflectance is essentially zero for near-infrared (NIR)
bands, these bands are used to assess the aerosol properties. Gordon and Wang [16]
highlighted two concerns in applying the older CZCS atmospheric correction algorithm
to the more sensitive sensors of the new generation: first, there is the extrapolation of the
spectral variation of the aerosol reflectance from the NIR into the visible; second, there is
the influence of multiple scattering. In [16], the authors proposed a new algorithm that
utilizes the NIR bands of SeaWiFS (centered at 765 and 865 nm) and MODIS (748 and
869 nm) for atmospheric correction. The basic principle of [16] is formulated based on the
single-scattering theory. In the single-scattering scenario, where photons undergo only one
scattering event, the reflectance resulting from the interaction between Rayleigh and aerosol
scattering (such as photons being successively scattered by air and then by aerosols, or vice
versa) is negligible and can be disregarded, provided that multiple scattering is minimal.
This condition holds true for small values of Rayleigh and aerosol optical thicknesses,
specifically 0.3, as defined in the current OBPG algorithm [18]. The underlying hypothesis
of [16] is that if the atmospheric correction parameter between the two spectral bands
falls between two aerosol models, then the aerosol contribution to the reflectance will
fall between the same two models in the same proportion as this atmospheric correction
parameter. Multiple-scattering effects are then added via numerical models using the
guidance of the single-scattering theory. NASA’s current standard algorithm (STD) [2,18],
which produces MODIS level 2 data, is based on [16], although the original aerosol models
and look-up tables of the optical effect of aerosols on the radiance distribution have been
updated [19]. The aerosol models used to make up these LUTs partition particles from fine
to coarse are based on the Angström exponent, which is inversely proportional to particle
size. LUTs are built for ten aerosol types and eight types of relative humidity, i.e., 80 tables.
These models, however, cannot account for the presence of strongly absorbing aerosols,
whose ability to absorb short wavelengths of the solar spectrum (violet, blue, and green) is
potentially highly variable. The STD algorithm can, therefore, render a weak marine signal
at blue wavelengths, due to subtracting too much aerosol signal from sensor measurement.

Machine-learning methodologies have also been applied to satellite data to overcome
the remaining issues to better estimate water quality parameters. Hassan and Woo [20]
carried out a systematic review in peer-reviewed literature from 2001 to 2021 and identified
113 eligible studies, from which Chla, temperature, salinity, colored dissolved organic
matter, suspended solids, and turbidity represent the water quality parameters extracted
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through various machine-learning techniques from satellite data. Approaches based on
data assimilation principle have been developed on SeaWiFS and MERIS (Medium Resolu-
tion Imaging Spectrometer) to better take into account absorbent aerosols in atmospheric
correction [21–25]. Diouf et al. [26] proposed a two-step algorithm for retrieving and mon-
itoring the concentration of Saharan dusts for sea-surface Chla retrieval from SeaWiFS
multi-spectral observations. The first step consists of classifying the TOA reflectance
spectra and geometric angles simultaneously, using a neuronal classifier, which provides
the aerosol type and a first-guess value of the aerosol parameters. A variational method
then allows to retrieve accurate measurements of the aerosol, and hence, Chla. More re-
cently, Song et al. [15] analyzed the effects of the vertical distribution of different absorbing
aerosols on the TOA reflectance and the retrieved water-leaving radiance quantitatively. In
most current atmospheric correction algorithms, it is assumed that the layer of aerosols is
either located below the layer of molecules (a two-layer atmosphere) or that aerosol con-
centration decreases with altitude according to an exponential distribution. Such treatment
may lead to underestimation of the retrieved water-leaving radiance over coastal waters
with strongly absorbing aerosols, particularly in the short blue bands. Song et al. [15] de-
veloped a new aerosol classification algorithm for obtaining the optical models of absorbing
aerosols over the ocean. They showed that not considering absorbing aerosols during at-
mospheric correction might produce 4 to 10% errors in the water-leaving radiance retrieval
at 412 nm over turbid waters. The results also showed that the influence of the vertical
distribution on the TOA radiance could be up to 8% for dust and 10% for fine-dominated
absorbing aerosols, which was comparable with the influence of aerosol optical thickness.

The Canary Upwelling System along the West African coast is one of the most pro-
ductive oceanic regions, where fishing activities are a key socio-economic sector. Because
the quality of atmospheric corrections is a key point in the precise determination of Chla,
and therefore, the estimation of the whole primary productivity of the system, their correct
quantification is of particular interest for this oceanic region. The study presented here is
an adaptation of the atmospheric correction scheme of [26] for MODIS-Aqua data. Data
and methods are described in Section 2, while the ability of this methodological approach
to define the AOT, to improve the reflectance spectra, and thus, to better estimate surface
Chla, is described in Section 3. A discussion is proposed in Section 4.

2. Material and Methods
2.1. MODIS-Aqua Standard Data

MODIS-Aqua L2 data from 2003 to 2018 (16 years) covering the southern part of the
Canary Upwelling System (9–23◦N and 13–30◦W) are used in this study for comparison
with the processing proposed in the present study. These data and associated information
are available from NASA’s Ocean Color website (https://oceancolor.gsfc.nasa.gov/, last
access 6 April 2020) and are called standard data (hereafter STD). STD data have a spatial
resolution of 1 km at the nadir. The satellite follows a Helio-synchronous quasi-polar orbit
allowing a full view of the Earth’s surface in less than two days [2,27]. The atmospheric
correction algorithm of [18] is used to generate MODIS-Aqua Level 2 (L2) products. The
different contributions to the TOA radiance (Lt) can be broken down as in [28]:

Lt(λ) = [Lr(λ) + La(λ) + tdv(λ)L f (λ) + tdv(λ)Lw(λ)]tgv(λ)tgs(λ) fp(λ) (1)

where Lr is the radiance contribution of Rayleigh scattering by air molecules, La is the con-
tribution of aerosol scattering, including multiple scattering interactions with air molecules,
L f is the radiance contribution from surface whitecaps and foam, Lw is the water-leaving
radiance at sea surface, tdv is the transmittance of diffuse radiation from the sea surface to
the sensor, tgv is the transmittance of to absorbing gases for all upwelling radiations travel-
ing along the sensor view swath, tgs is the transmittance of downwelling solar radiation by
absorbing gases up to the sea surface, fp is an adjustment for polarization effects, and λ is
the wavelength. Most of the terms of Equation (1) are estimated from radiative transfer
codes using ancillary data (wind speed, atmospheric pressure, water vapor, etc.). For the

https://oceancolor.gsfc.nasa.gov/
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estimation of aerosol and marine contributions, the standard algorithm offers two cases
(see [5] for details):

For clear oceanic waters (case 1), the marine signal is assumed to be negligible in the
NIR spectral domain (dark pixel method [16]), which allows to quantify the contribution of
aerosols in the NIR. The spectral difference estimated at 748 and 869 nm (NIR MODIS wave-
length) allows to select the two most suitable aerosol models that will be used to estimate
the signal attributed to aerosols in the visible bands and to deduce the marine contribution.

When the marine signal is not negligible in the NIR (case 2 waters), the iterative
method of [29] is applied to simultaneously compute the aerosol contribution and the
marine reflectance.

Marine radiance Lw is then used to calculate marine reflectance ρw or its equivalent,
remote sensing reflectance (Rrs), and Chla as follows:

Rrs(λ) =
Lw(λ, θs, θv, ϕ)

Fo(λ) fs cos(θs)tds
fb(λ) fλ (2)

log10(Chl−a) = a0 +
4

∑
i=1

ai

[
log10

(
max

(
Rrs(λbleu)

Rrs(λgreen)

))]i
(3)

where ai refers to MODIS parameters for OC3M algorithm, θs and θv are, respectively, the
solar zenith angle and the sensor’s viewing angle, φ is the azimuthal angle, F0 and fs are
the extraterrestrial solar irradiance and its adjustment factor, respectively, fb and fλ are,
respectively, correction factors for bidirectional effect and out-of-band response, and tds is
the transmittance of diffuse radiation through the atmosphere in the viewing path from
Sun to surface. For ocean and shelf waters, the most common Chla algorithms are band
ratios of blue-green wavelengths constructed by regression of in situ observations. The
λblue corresponds to either 443 or 488 nm, i.e., the MODIS wavelength in the blue domain
of the light spectrum, whereas λgreen corresponds to 547 nm.

2.2. SOM-NV Processing of MODIS-Aqua Data

Equation (1) can be written in terms of reflectance ρ, to reduce the effects of solar
illumination and measurement geometry [16]:

ρt(λ)− ρR(λ)− Tρg(λ)− tρWC(λ) = [ρa(λ) + ρRa(λ)] + tρw(λ) (4)

The terms on the left-hand-side in Equation (4) are known with good accuracy for
diffuse transmittance t [30,31], Rayleigh scattering ρR [31], glitter ρg [32], and whitecaps
effects ρWC [33]; see also [18] for more details. NASA has made available a Multi-Sensor
Level-1 to Level-2 (MSL12) tool for atmospheric correction (l2gen contained in the SeaDAS
software), which compute the different terms of Equation (4). We used the standard l2gen
process (see SeaDAS 7.5.3 version) to generate the various left terms and partially correct
the satellite measurement, which now depends only on aerosols (ρA = ρa + ρRa) and
marine (tρw) terms for each wavelength:

ρcor(λ) = ρA(λ) + tρw(λ) (5)

where ρA is the atmospheric reflectance due to aerosols as well as due to molecule-aerosol
diffusion and ρcor is the quantity we seek to estimate from the approach [26], here applied
to MODIS, whose sensor’s wavelengths are close to the SeaWiFS spectral bands (Table 1).
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Table 1. SeaWiFS and MODIS sensor’s wavelengths used for SOM-NV processing.

SeaWiFS Band
Number

SeaWiFS
Wavelength

MODIS Band
Number MODIS Center Band

1 412 8 412
2 443 9 443
3 490 10 488
4 510 11 531
5 555 12 547
7 765 15 748
8 865 16 869

2.2.1. Algorithm Description

is a two-steps algorithm that uses two different statistical models applied sequentially:
the Self-Organizing Map (SOM) and the NeuroVaria method. SOM is an unsupervised
learning classification model [34]. It is well suited for visualizing and clustering high-
dimensional datasets.

NV is a variational inversion allowing the retrieval of accurate optical thickness and
ocean surface Chl. NV is based on an iterative method described in [22,35,36]. It uses
a neural network family called MultiLayer Perceptron (MLP), allowing the retrieval of
accurate oceanic and atmospheric constituents. One of the great difficulties of this method
is to find the accurate input parameters (for the atmosphere and for the ocean), which allow
to minimize the cost function. In basic versions of NV, a dedicated MLP inverts the signal
from the PIR to determine the input parameters for aerosols, while they are arbitrarily fixed
for the ocean.

Two datasets are used for the SOM-NV algorithm: Dataobs and a synthetic expert data
(Dataexpert), both composed of the reflectance and geometry variables. Reflectance is given
at eight wavelengths for SeaWiFS and seven for MODIS (Table 1) and for two angles: the
sun zenith angle θs and the scattering angle γ, defined as follows:

γ = arccos(− cos θv cos θs + sin θv sin θs cos(∆φ)) (6)

where ∆φ = φs − φv and φs and φv are the solar and sensor azimuthal angles, respectively.
The collection of these nine-dimensional vector (7 reflectances + 2 angles) constitutes the
observation dataset defined as Dataobs. Dataexpert includes three additional geophysical
variables, i.e., the type of aerosol, the AOT, and Chla. This database contains nearly
12,000,000 simulations using the two-layer radiative transfer code of [16], eight SeaWiFS
bands, the two angles, and aerosol models. Aerosol models are composed of one absorbing
aerosol (African dusts [37]) and four non-absorbing aerosols (maritime, oceanic, coastal,
and tropospheric [38]) computed at four different relative humidity (70%, 80%, 90%, and
99%). The size distribution of particles used in SOM-NV follows Junge’s law, as described
in [39]. The Angström coefficient, which allows the determination of the AOT, depends on
a parameter whose wide variation (from 2 to 4.5) allows to take into account more absorbent
aerosols than in the STD processing. Dataexpert was used to retrieve the aerosol type and the
AOT and Chla values and constitutes what will be called the Look-Up Table (LUT).

A set of one-year data (Learnobs) is used to train SOM and build a SOM-Angle-
Spectrum (SOM-A-S) map. The vectors of the learning dataset are then organized into
600 clusters (20 × 30 neurones), allowing a highly discriminative representation of the data.

Dataobs and Dataexpert (representing the expertise whose associated parameters or
labels—Chla, AOT, and aerosol type—are known), are used to label the 600 clusters of SOM-
A-S. A labeling of SOM-A-S has evolved since [23]. It is now based on the simultaneous
projection of reflectance and angles described in [26]. At the end of this labeling phase,
each cluster of SOM-A-S map has captured a set of “expert reflectance” (ρexp) and takes the
corresponding label. In [26], this label is used as input parameters (first-guess) of MLPs.
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The second statistical model analyze a satellite observation by projecting the nine-
component vector (reflectance and geometry) associated with each pixel on the labeled
SOM-A-S map. Pixels belonging to a given cluster are assigned to the Chla, the aerosol
type, and optical thickness associated with this cluster. These first guesses are retrieved
by the MLPs to start the iterative procedure. The MLPs compute ρsim

cor to be compared
to ρobs

cor for a pixel. NV minimizes iteratively a weighted quadratic cost function J by
adjusting geophysical variables to fit the observed reflectance [22]. Given that the terms in
Equation (5) are represented by neural networks, the cost function J is fully differentiable
and a gradient descent algorithm is used to minimize J. The different steps of the NV
algorithm are compiled in the Yao software [24], which works autonomously and saves
computation time.

At the end of the minimization, the AOT and an estimation of the three terms in
Equation (5) is available for each pixel, including ρw. Finally, Chla is re-computed using
OC3M. It has been discussed in [26] that recomputing Chla by inverting ρw was more
accurate (and better represents the variability) than using the raw value of Chla determined
during the minimization process.

2.2.2. Adaptation to MODIS Data

The SOM-NV algorithm is then adapted to MODIS measurements. Seven of the
eight SeaWiFS spectral bands are close to those of MODIS (see Table 1). The SeaWiFS
sensor crosses the Equator at 12:00 in a descending mode, whereas MODIS crosses it at
13:30 in an ascending mode. See more information on the NASA Ocean Color ( https:
//oceancolor.gsfc.nasa.gov/ accessed on 17 February 2023). The two angles and seven
reflectances measured on board MODIS are then projected onto the clusters defined in
SOM-A-S. Since different conventions apply to SeaWiFS and MODIS, we modify the
azimuthal angle of MODIS (Φ = 180−Φ). This adaptation also implies that:

• The 510 nm band used by SOM-A-S (finding no equivalent on MODIS sensor) is
replaced by the 531 nm during the projection of the image;

• The 765 nm wavelength column of SeaWIFS is replaced by a null vector;
• F0 values are taken from the version 7.5 of SeaDAS software to remain in the same

standard as SeaWiFS.

According to the methodology described in the previous section, each pixel of the
image is associated with a cluster for which the corresponding atmospheric and oceanic
variables are known. Finally, we project the portion of each swath contained in our domain
on a fixed grid of 1/96 degrees resolution (1.1 km). The variables saved in the SOM-
NV archive of MODIS-Aqua are reflectance, AOT at 869 nm, and Chla and geographical
coordinates for each pixel.

2.2.3. Coverage Calculation

The percentage of coverage for a daily image (Covjr) was defined as the number
of valid pixels (containing a valid Chla; nPChla) divided by the total number of marine
pixels (nPT):

Covjr =
nPChla

nPT
(7)

Valid Chla is kept in the range 0.001–20 mg·m−3 in order to avoid case-2 coastal waters
that could be influenced by other optically active substances (resuspended mineral matter
and colored substances resulting from earth leaching and anthropogenic activity). Note
that our area of study, which borders the arid regions of eastern Sahel, is rarely subject to
important runoffs from the continent or estuaries.

https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/
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2.2.4. In Situ Data
AERONET Data

NASA has commissioned a network of stations called AERONET (for AErosol RObotic
NETwork) to assess aerosols by measuring optical thickness, using ground-based photome-
ters [40]. Although most of these data are located on the mainland, coastal stations can serve
to validate AOT given by the water color algorithms. In this study, we used data from two
AERONET stations: Mbour (14.394◦N, 16.959◦W) and Cabo Verde (16.733◦N, 22.935◦W). We
used the version 3 of the 2018 reprocessed L2 data ([41];
https://aeronet.gsfc.nasa.gov/new_web/aerosols.html accessed on 17 February 2023).
The L2 data are automatically cloud cleared and quality assured with pre-field and post-
field calibration applied. Measurements are made at noon local time; daily observations
are used here for comparison with SOM-NV MODIS estimates, and only common dates
are considered. MODIS AOT was calculated by taking the mean value in a 10 km radius
around AERONET stations.

HPLC Data

Pigment concentration data of surface waters were collected during field surveys
UPSEN-1 (7–17 March 2012; https://doi.org/10.17600/12020010), UPSEN-2 (21 February–3
March 2013; https://doi.org/10.17600/13110020), ECOAO (5–20 March 2013; https://doi.
org/10.17600/13110030), AWA (24 February–14 March 2014; https://doi.org/10.17600/140
01400), and MiniSCOPES 2015 (23–26 November) and 2017 (29 November–2 December).
Pigment concentration is obtained from the High Performance Liquid Chromatography
(HPLC) method, which is a technique of analytical separation of molecules present in a
complex mixture. Depending on organic matter concentration, one to two liters of sea
water were filtered onto 25 mm Whatman GF/F filters stored at −80◦C for later analysis.
The pigments were separated and quantified according to the method described by [42],
adapted from [43]. The analysis was performed with a complete Agilent Technologies
system comprising LC ChemStation software. After extraction in methanol, samples were
injected on a C8 Zorbax Eclipse XDB column (3 × 150 mm; 3.5 µm particle size). Pigment
concentrations were calculated from the peak areas with external calibration standards,
which were provided by DHI Water and environment (Denmark).

Multispectral Fluorometer Data (FluoroProbe)

The bbe Moldaenke FluoroProbe (hereafter FP) is a multispectral fluorometer which
illuminates a sampling chamber at six different wavelengths centered at 370, 470, 525,
570, 590, and 610 nm. Emission fluorescence is measured at 680 nm. The sequential and
differentiated illuminations provide a fluorescence spectrum used to differentiate four
algae groups: green, brown, and blue-green algae, and cryptophytes [44]. The 370 nm LED
is used to evaluate and correct the contribution of yellow substances to the fluorescence
signal. The inversion of this information to determine the Chla contribution for each algal
group is detailed in [44]. FP data were collected continuously (3 s interval) at the surface
along the tracks of MiniSCOPES 2015 and 2017. Data are averaged over a radius of 1 km
around the position of the satellite pixels to be compared with estimates produced by
SOM-NV and STD.

3. Results
3.1. Aerosol Optical Thickness Derived from the SOM-NV Algorithm

Diouf et al. [26] showed that the SOM-NV algorithm applied to SeaWiFS provided
a better estimate of AOT than the STD processing (better correlation coefficient) using
two stations of the AERONET observation network in Mbour and Cabo Verde. We also
evaluated the MODIS AOT estimates made from the STD and SOM-NV processing for
these two coastal stations: Mbour, which is located on “la petite côte” of Senegal, and
Cabo Verde, which is located in an open oceanic region (Figure 1). In total, 1435 (261)
and 1690 (181) collocated retrievals are used for SOM-NV (STD) over the 16-year dataset

https://aeronet.gsfc.nasa.gov/new_web/aerosols.html
https://doi.org/10.17600/12020010
https://doi.org/10.17600/13110020
https://doi.org/10.17600/13110030
https://doi.org/10.17600/13110030
https://doi.org/10.17600/14001400
https://doi.org/10.17600/14001400


Remote Sens. 2023, 15, 3613 8 of 21

at Cabo Verde and Mbour, respectively. As for SeaWiFS, absorbing Saharan dusts are
generally characterized by high AOT, which are not decoded by the STD MODIS algo-
rithm (threshold for the dust mask set at 0.30). The AOT values retrieved by SOM-NV
are consistent with the AERONET estimates, both in Mbour (Figure 1) and Cabo Verde
(Figure 1b,c), with a coefficient of determination of 0.423 (p-value = 1.57× 10−203) and
0.446 (p-value = 4.17× 10−186) for Mbour and Cabo Verde, respectively. At the opposite
end, weak and insignificant relation was found between collocated STD and AERONET
AOT estimates: R = 0.010 (p-value = 0.189) for Mbour and R = 0.002 (p-value = 0.478) for
Cabo Verde. The regression lines shown in Figure 1 indicate that both products tend to
overestimate AOT values < 0.15 for STD and <0.35–0.4 for SOM-NV, and to underestimate
higher values. The flat or descending regression of the SOM-NV product nevertheless
underlines the poor ability of STD processing to restore AOTs in this oceanic region.

Version July 7, 2023 submitted to Journal Not Specified 8 of 22

(a) (b)

(c)
Figure 1. Daily AOT observed at (a) Mbour and (b) Cabo Verde. AERONET stations as a function
of daily AOT estimated by standard (blue) and SOM-NV (red) algorithms processing of MODIS
Aqua data. Red and blue lines are the linear regressions between AERONET AOTs and SOM-NV
and STD, respectively. N, R and RMS are respectively Number of observations, R-squared, and
Root-Mean-Square. (c) corresponds to monthly time series of AOT at Cabo Verde’s station from 2003
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to 2018.
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Figure 1. Daily AOT observed at (a) Mbour and (b) Cabo Verde. AERONET stations as a function
of daily AOT estimated by standard (blue) and SOM-NV (red) algorithms processing of MODIS
Aqua data. Red and blue lines are the linear regressions between AERONET AOTs and SOM-NV
and STD, respectively. N, R, and RMS are, respectively, the number of observations, R-squared, and
Root-Mean-Square. (c) Monthly time series of AOT at Cabo Verde’s station from 2003 to 2018.

The average monthly distribution over the 16 years of study (2003 to 2018) shows a
seasonality of AOT for which AERONET and SOM-NV are in agreement Figure 1c. The
end of the dry season (June) is associated with maxima of AOT, while the lowest AOT
values are encountered between November and February. For SOM-NV, season-by-season
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correlations are highest in winter and lowest in spring (Table 2). AOT estimates from STD
processing are much less well correlated with AERONET AOTs, with the exception of
summer, when correlations are close.

Table 2. Seasonal correlations and significance of satellite and AERONET estimates of AOT869
Cabo Verde.

Autumn Winter Spring Summer

SOM-NV corr. 0.53 0.68 0.37 0.43
p-value <0.05 <0.05 <0.05 <0.55

STD corr. 0.21 0.02 −0.22 0.35
p-value 0.07 0.8346 0.0442 0.1352

3.2. Improved Data Coverage

Diouf et al. [26] showed that the dust classification provided by SOM-A-S (first step of
SOM-NV) is in agreement with the AERONET measurements of the Angström coefficient
and was capable of determining different types of aerosols and dust in particular (e.g.,
Figure 5d in [26]). This implies that SOM-NV better characterizes the optical effects of desert
dust particles, which represent a large proportion of the absorbing aerosols in our study
region [15]. The improvement in AOT estimation results from the better determination of
aerosol types. As shown in the previous section, the SOM-NV algorithm applied to MODIS-
Aqua also better estimates AOT. For instance, on the image of 4 January 2003 (Figure 2),
SOM-NV processing allows us to recover 86% of data (compared with 40% for STD),
with a clear spatial separation between Saharan dust and the opaque cloud cover. Note
however that a consequence of the presence of turbid waters in coastal subdomains (for
example Banc d’Arguin—between 20◦ and 21◦N—in Figure 2d) is an overestimation of the
contribution of aerosols, since these waters reflect NIR wavelengths, and this contribution
is inadequately considered to be of atmospheric origin.

In (Figure 3), we compare the distribution of Chla corresponding to the pixels that are
processed by both the SOM-NV and STD (Figure 3c) with the pixels that are processed by
SOM-NV only (Figure 3b). It appears that these distributions are not significantly different
(chi-square statistic of 8.6× 103, p-value = 0.25). Each distribution is also close to the overall
distribution of the SOM-NV map of 4 January 2003 (Figure 3a). This means that the Chla
of pixels masked in STD processing are consistent with the values of those not masked,
and that SOM-NV processing reliably recovers data not considered by STD processing.
SOM-NV processing applied to 16 years of MODIS data (2003–2018) has increased the data
coverage over the southern Canary Upwelling System (Figure 4). Whereas the standard
processing exhibits a maximum coverage of 20% off Cape Blanc, SOM-NV shows an average
annual coverage of more than 40% for the same area. The percentage of data recovered is,
however, not homogeneous in space and time (Figure 4). Altogether, the increase in the data
coverage varies between 150% and 400%, respectively, in the north-west and south-east
corner of our domain. These results, thus, confirm the capacity of the SOM-NV method to
strongly improve data coverage in the presence of Saharan dust.

(a) (b) (c) (d) (e)
Figure 2. Illustration of the impact of SOM-NV algorithm on AOT and Chla MODIS retrieval for 4
January 2003: (a) True color image, (b) STD Chla concentration, (c) STD AOT at 869 nm, (d) SOM-NV
Chla concentration, and (e) SOM-NV AOT at 869 nm. MR for Mauritania, SN for Senegal, CV for
Cabo Verde, and BG for Guinea-Bissau.
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Figure 2. Illustration of the impact of SOM-NV algorithm on AOT and Chla MODIS retrievements
for January 4th 2003 : (a) True colour image, (b) STD Chla concentration, (c) STD AOT at 869 nm, (d)
SOM-NV Chla concentration, (e) SOM-NV AOT at 869 nm.

Figure 3. An example of the SOM-NV’s Chla histogram in 3 cases for the January 4, 2003 image: (a)
distribution for all SOM-NV valid pixels, (b) distribution for pixels processed only by SOM-NV, (c)
distribution for pixels shared with STD processing.

(a) (b) (c) (d)
Figure 4. (a) Monthly mean coverage over the whole domain is exhibited on panel (b). (b and c)
Annual average of data coverage (%) over the whole domain based on daily L2 images for the years
2003 to 2018 is shown in (b) for SOM-NV and (c) for STD MODIS-Aqua processing. (d) Ratio of
annual mean coverage between SOM-NV and STD processing.
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Figure 3. An example of the SOM-NV’s Chla histogram in three cases for the 4 January 2003 image:
(a) distribution for all SOM-NV valid pixels, (b) distribution for pixels processed only by SOM-NV,
and (c) distribution for pixels shared with STD processing.

(a) (b) (c) (d)

Figure 4. (a) Monthly mean coverage over the whole domain is exhibited on panel (b). (b,c) Annual
average of data coverage (%) over the whole domain based on daily L2 images for the years 2003 to
2018 is shown in (b) for SOM-NV and (c) for STD MODIS-Aqua processing. (d) Ratio of annual mean
coverage between SOM-NV and STD processing.

This West African region is characterized by the asymmetric alternation of a dry
season (late autumn to late spring) and a rainy season (summer to early autumn). This
alternation is related to the position of the Inter Tropical Convergence Zone (ITCZ), which
migrates to the latitude of Senegal at the beginning of boreal summer (June). For the entire
domain, maximum coverage of around 50% and 15–20% is achieved in January–February
for the SOM-NV and STD processing, respectively (Figure 4a). This north–south variability
could be explained by the physical effects of the ocean (Figure A1a) and observation
constraints (Figure A1b), which seem to show the same meridional trend. The coverage
minima correspond to the monsoon season (July–August; 10% and 5%, respectively),
during which the ITCZ is at its northern extent and covers the region with clouds. The
seasonal northward (southward) migration of the ITCZ from April to August (September to
November) is clearly evident in the monthly coverage maps (Figure A2). The improvement
of the coverage between SOM-NV and STD processing is best from November to March
when aerosols are dominated by desert dust contained in the lower atmospheric boundary
layer [14].

3.3. Improving Reflectance Spectra

Chla differ between the SOM-NV and the STD processing, but all the small scale
structures (filaments, eddies, rib-width gradient) remain identical (Figure 2). The shape
of the reflectance spectrum in the visible range, especially of the three wavelengths used
to estimate the Chla (Equation (3)), differs very significantly between both processing
(Figure 5). Chla is known to reflect the signal in the green wavelengths, and to absorb in the
blue. Thus, a lower reflectance at 412 nm (blue) and a higher reflectance at 547 nm (green)
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is expected when waters contain higher Chla (e.g., coastal areas or upwelling region). It
decreases when we move from the coast to the open ocean. The open ocean is assumed to
have a contrary distribution. Moreover, the change in reflectance within each wavelength
is supposed to be gradual (e.g., [18,45,46]), and related to changes in the optical properties
of seawater [5,46–48]. The coherency is verified for SOM-NV processing, whereas the STD
processing displays fundamental incoherences to this scheme. Faced with such a response
of the reflectance spectrum in STD processing, one can expect a biased estimate of Chla
in surface waters of this coastal region of the global ocean affected by the presence of
desert dust.
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Figure 5. Mean reflectance as a function of Chla concentration for the five wavelengths of the
MODIS-Aqua sensor in the visible spectrum (412, 443, 488, 531 and 547 nm) : a) STD and b) SOM-NV
processing of MODIS-Aqua images for the period 2003-2018 and for the domain of investigation
(9-23◦N and 13-28◦W).
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Figure 5. Mean reflectance as a function of Chla concentration for the five wavelengths of the MODIS-
Aqua sensor in the visible spectrum (412, 443, 488, 531, and 547 nm): (a) STD and (b) SOM-NV
processing of MODIS-Aqua images for the period 2003–2018 and for the domain of investigation
(9–23◦N and 13–28◦W).

3.4. Consequences on Chla Estimates
Validation of Chla Estimated by SOM-NV

Between 2012 and 2014, four campaigns were conducted on the southern Senegalese
shelf between 21 February and 20 March, during the upwelling season, and two in Novem-
ber during the transition season (see Section 2). About 200 samples were analyzed by HPLC
to determine the surface Chla (see Figure A3). Between 13◦30′N and 14◦45′N, the average
February–March concentration for the years 2012 to 2014 is 4.1 mgChla·m−3 for in situ
data collected during UPSEN-1, UPSEN-2, ECOAO, and AWA campaigns over the shelf
(0–100 m). This concentration is much closer to 2.9 mgChla·m−3 than to 6.21 mgChla·m−3,
respectively, obtained from the SOM-NV and STD processing over the same shelf domain.

Station by station, spatial and temporal correspondences between concentrations
measured in situ and estimated by satellite are rare. Out of 200 samples, only 13 values
could be compared by fixing a maximum radius of 4 km between in situ sampling and
the satellite pixel (Figure 6b). The 1 km resolution of the SOM-NV product compared to
the characteristic velocities on the shelf are of the order of 10 cm/s ( 10 km/d), which
explains the limited accuracy of the matchups. Furthermore, in an upwelling system
where mesoscale and submesoscale activity is important (e.g., [49]), the proximity to a front
and/or a temporal lag can easily induce significant differences between in situ and satellite
Chla values (see Figure A4 as an illustration). Correlation is better between HPLC data and
STD estimates than with SOM-NV processing (71% and 23%, respectively, not significant),
but the number of points retained is very low (Figure 6).



Remote Sens. 2023, 15, 3613 12 of 21

(a) (b)

Figure 6. (a) Chla measured by HPLC as a function of MODIS-Aqua Chla. (b) Chla measured by
HPLC as a function of SOM-NV Chla. Colored dots correspond to the date of MODIS-Aqua tracks
over our studied region. The HPLC data considered in this validation must be located within 4 km of
a valid satellite pixel and collected within 4 h of the satellite’s time of passage.

FP data collected during MiniSCOPES 2015 and 2017 (November) are used to validate
the ability of SOM-NV to retrieve spatial variability of Chla. These data are superposed
on MODIS images in Figure 7. Only a couple of hours recorded along the ship track are
compared to MODIS image of 23 November 2015. A much longer transect can be compared
on 30 November 2017. The determination coefficients between FP observations and satellite
estimates are 0.73 (RMSE = 2.99, p < 0.05) and 0.71 (RMSE = 2.68; p < 0.05), respectively, for
SOM-NV and STD (Figure A5). For low concentrations of offshore waters, SOM-NV values
of Chla are closer to FP data (Figure 7e,f). Both forms of processing capture the coastal
enrichments, but the results can be far from in situ measurements. On November 30th, both
processing types miss a feature observed by FP around 5:30 pm. A bloom with Chla up to
40 mgChla·m−3 is measured the next day during a second passage at the same location.
The delay between the passage of the satellite and the presence of the ship is, therefore, a
good candidate for this discrepancy.

Figure 7. Cont.
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Figure 7. (a,b) Chla STD MODIS-Aqua and SOM-NV, along with the ship-track FP Chla November
23rd 2015 (2 pm). Numbers along the ship track correspond to daily hour. (c,d) are STD (blue) or
SOM-NV (red) satellite and FP (plain and dashed lines) Chla time series along the ship track. Chla
regression between HPLC and FP (Figure A6) shows a systematic overestimation of Chla by FP. A
factor of 0.58 was, thus, applied to the correct FP Chla (black line). Raw FP Chla is represented by a
dashed line. (e–h) are equivalent to (a–d) for 30 November 2017 (2:40 pm).

4. Discussion

The marine reflectance is a key quantity to study the properties of the surface layers in
the field of ocean color. Atmospheric correction algorithms, which is part of the processing
that SOM-NV aims at improving, have a direct impact on the retrieval of atmospheric
parameters, i.e., AOT and the variability of spectral marine reflectance, which is at the
basis of the Chla algorithms as well as in the determination of dominating plankton groups
(e.g., [50]).

As in [26], we saw that SOM-NV processing applied to MODIS-Aqua observations
outperformed STD processing in estimating AOTs in our study region, which is dominated
by desert dust and high AOT values (e.g., [51]). The correlation coefficients between
SOM-NV estimates and AERONET measurements are best in autumn and winter, with
the lowest correlation in spring. Senghor et al. [14] showed that the seasonality of AOT,
which is an integrated measure of aerosol content, is associated with a very different
vertical distribution by season. In the early dry season (December to February), particles
are concentrated in the surface atmospheric boundary layer, while from spring onwards
to the warm season, they are concentrated in the Saharan Air Layer (2–3 km altitude in
spring and 3–4 km in summer). The particles are also larger in the wet season as the
particles absorb some of this moisture (condensation nucleus) and change their refractive
index [18]. Their Single Scattering Albedo (SSA), which represents the ratio (ranging
between 0 and 1) of the scattering coefficient to extinction coefficient, provides information
about the absorbing properties of the aerosols. Estimates of SSA by OMI (Ozone Monitoring
Instrument) are smaller during the warm season [14], indicating that absorption effects are
stronger [52]. The atmospheric model of [37] used to build the SOM-NV LUTs assumes
that dust is distributed down to the ocean surface and that only the altitude of the top of
this homogeneous layer of absorbing aerosols varies (2, 4, and 6 km). They mentioned that
the vertical structure of the dust layer has a strong impact on the atmospheric reflectance in
the blue. Using a radiative transfer model, Song et al. [15] studied the effect of a Gaussian
distribution of particles in the atmosphere on potential reflectance errors estimated at the
TOA when considering an exponential distribution or a two-layer atmosphere. The authors
show that the more the Gaussian distribution is centered on a high height, the greater the
error is. Similarly, the higher the AOT, the greater the error. Song et al. [15] showed that
simplified exponential and two-layer atmospheric vertical distribution models can lead
to errors of water-leaving radiance retrieval up to 12–15% and 30–40%, respectively. In
our study, region, the greatest potential errors would, therefore, be associated with the
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late-spring-early-summer period, when aerosols are highest and AOTs are strongest. As
the latitudes of our domain are below 20◦N, the solar zenith angle remains low [53] and
the errors made remain in the lower range of the estimates made by [15].

SOM-NV processing’s determination of the contribution of absorbing aerosols to re-
flectance at the TOA results in a better determination of the marine contribution across the
entire visible spectrum, and particularly at blue wavelengths (Figure 5). The mean STD
reflectance spectrum, on the other hand, shows a number of inconsistencies, particularly in
the blue, where, for instance, reflectance is underestimated at low Chla. STD processing
uses the NIR response to determine the contribution of aerosols over the entire reflectance
spectrum [16] and may, therefore, not be sufficiently constrained in the presence of strongly
absorbing aerosols which are likely to introduce variability into the response depending
on their origin and size, which can vary greatly depending on the source region [54,55]
and relative humidity [17]. Song et al. [15] showed that not considering absorbing aerosols
during atmospheric correction might produce 4–10% errors in the water-leaving radiance
retrieval at 412 nm over coastal waters with strongly absorbing aerosols under the assump-
tion of a Gaussian distribution. Overall, an imperfect vertical distribution assumption and
aerosol model selection might induce uncertainty in water-leaving radiance retrieval from
10% to 80% under absorbing aerosol conditions.

Better characterization of aerosols and their impact across the spectrum means we can
exploit more pixels in our study region. A better coverage of SOM-NV is, thus, associated
with the region between the mainland and Cabo Verde Islands (Figure 4), where plumes of
Saharan dust transported by the north-east Harmattan wind are commonly observed [15,37].
These dust patterns are characterized by higher AOT values (e.g., [51]) and are mostly
masked in the standard processing, as the MODIS algorithm does not provide an estimate
of reflectance in the presence of highly absorbent aerosols or tends to underestimate aerosol
absorption, as also shown by [56].

Although coverage is higher off Cape Blanc ( 20◦N) than off southern Senegal, SOM-
NV recovers more pixels in the south than in the north (Figure 4). The annual mean sea
surface temperature distribution shows a marked meridional gradient (Figure A1a), and
thus, a greater amount of water vapor in the southern part of the domain. According
to [57], relative humidity is between 70 and 90% in the region. As mentioned earlier,
this humidity shifts the particle size spectrum towards larger particles and changes their
refractive index [18]. Occurrence of observations also diminishes from the north to the
south of the dust plume (Figure A1b). All these parameters combine to make atmospheric
correction of this region with its complex properties difficult. The obvious improved
coverage pattern downwind of the Cabo Verde islands for both the SOM-NV and the STD
processing (Figure 4b,c), however, illustrates the effect of moisture on the ability of the
algorithms to correct the atmosphere. Indeed, the conservation of potential energy when
passing over a mountainous terrain, called the foehn effect, is characterized by a warming
and drying of the air mass downwind of this mountain. Both algorithms, thus, performed
better at lower relative humidity. Nevertheless, the reason why SOM-NV is able to better
characterize the surface water properties when the air is more humid remains difficult to
explain based on the proposed algorithm.

Overall, this atmospheric correction has implication on the recovery of cross-shore
Chla. Three regions with fairly different upwelling dynamics characterize the seasonal
variability of surface Chla in the Canary Upwelling System [58]. The northern region of
the subtropical gyre is characterized by a weak seasonality and Chla confined at the coast,
but it is not considered in this study. The inter-gyre region off Cape Blanc (19–24◦N) is
characterized by the weakest seasonality and a persistent large offshore extension of Chla
(Figure 8a). The region of the recirculation gyre between 10◦ and 19◦N is characterized by
a strong seasonality and a large offshore extension of Chla from February to May followed
by an abrupt Chla drop that propagates northward from May to June (Figure 8a). Chla
is maximum inshore throughout the year and remains high in winter and spring in the
coastal transition zone (Figure 8b), where destabilization of the upwelling jet occurs and
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generates filaments and eddies (e.g., [59]). In general, STD processing produces higher
Chla than SOM-NV except in summer (July to September) when coverage is very poor (10%
for SOM-NV and 5% for STD; Figure 4a). West of 21◦W, towards the open oligotrophic
ocean, Chla is higher for SOM-NV than for STD, except in summer. The largest differences
between both forms of processing occur in the coastal transition zone. In winter, dust
aerosols are maintained in the atmospheric boundary layer above the surface of the ocean,
whereas in spring, they are uplifted by convection over the continent and are advected
westward within the Saharan Air Layer at 3 km height over the ocean [14]. However, AOT
is two to three times higher in spring (and summer) than in winter. Note that the difference
between STD and SOM-NV is the greatest during spring. Autumn is characterized by low
dust levels over the ocean and consequently the lowest difference between the two types
of processing. Unfortunately, we lack observations to validate these differences in Chla
between STD and SOM-NV in the transition zone between the coast and the open ocean.

(a)

(b)

Figure 8. (a) Seasonal averages of surface chlorophyll a concentrations for, from left to right, winter
(DJF), spring (MAM), summer (JJA), and fall (SON). Top panels correspond to SOM-NV, bottom
panels to STD. (b) Latitudinal cross-shore distribution of Chla between the coast and 24◦W over
latitude bands 13–13.5◦N and 18–18.5◦N (red and yellow for SOM-NV and blue and green for STD).
From top to bottom: winter, spring, summer, and fall seasons.
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5. Conclusions

Taking into account the contribution of absorbing aerosols to better estimate the
different components of the signal at the TOA is essential in this oceanic region covered
most of the time by air masses loaded with desert dust. The adaptation of SeaWiFS
to MODIS-Aqua data processing from the SOM-NV algorithm shows the robustness of
the method in retrieving oceanic parameters from satellite radiances measured by multi-
spectral ocean-color sensors. Indeed, the two-step approach of classifying the TOA radiance
spectra for a better estimate of aerosol type on the one hand, and using an optimization
method to fit the parameters of these aerosols and Chla on the other hand, allows for a better
representation of the optical thickness, a correction of the marine reflectance spectrum, and
a considerable increase in the spatio-temporal coverage of the area.

To the extent that the properties of the water color signal are improved by this pro-
cessing scheme, the Chla estimates should also be greatly improved by this approach.
However, dedicated and numerous in situ data are still necessary to conclude on this
point. SOM-NV Chla is closer to HPLC Chla, as shown in March for two different years.
Chla, AOT at 869 nm, reflectance at 412, 443, 488, 531, and 547 nm resulting from the
SOM-NV processing of MODIS-Aqua from 2003 to 2018 are archived in netcdf format as a
regional dataset that is published in https://zenodo.org/, last access on 17 June 2023 (DOI:
https://doi.org/10.5281/zenodo.7971187).

Author Contributions: Conceptualization, E.M., H.D., K.C. and D.D.; methodology, D.D., E.M., J.B.,
H.D. and K.C.; software, D.D., J.B. and H.D.; validation, K.C., H.D. and E.M.; formal analysis, E.M.,
H.D., J.B. and K.C.; resources, E.M. and H.D.; data curation, K.C., E.M., D.D., H.D. and J.B.; writing—
original draft preparation, D.D., E.M. and K.C.; writing—review and editing, K.C., E.M., H.D. and
J.B.; supervision, E.M., H.D. and S.M.S.; project administration, K.C. and E.M.; funding acquisition,
E.M. and K.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by SOLAB project, grant number ANR-18-CE32-0009; University
of Western Brittany (UBO) through the “Ecole Doctorale des Sciences de la Mer et du Littoral”
(EDSML); IRD (Institut de Recherche pour le Développement) for ARTS project; and International
Joint Laboratory ECLAIRS.

Data Availability Statement: Data available at https://doi.org/10.5281/zenodo.7971187.

Acknowledgments: K. Correa was supported for this study by a scholarship from IRD (Institut de
Recherche pour le Développement) and by a grant from Région Bretagne. The French National
Research Agency (ANR) partly funded this research (SOLAB project; grand ANR-18-CE32-0009). The
authors also acknowledge support from the International Joint Laboratory ECLAIRS. The authors
thank S.M. Sall for their constant support to this work. We thank NASA Ocean Biology Processing
Group. (2017). MODIS-Aqua Level 2 Ocean Color Data Version R2018.0 [OC]. NASA Ocean Biology
Distributed Active Archive Center. https://doi.org/10.5067/AQUA/MODIS/L2/OC/2018. We
would like to thank Aida Beye (aida.beye@ird.fr) for processing the FP data. We thank also Didier
Tanré and their staff for establishing and maintaining the Dakar, Senegal site used in this investigation.
We thank Philippe Goloub and their staff for establishing and maintaining the Cabo Verde site used
in this investigation.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Appendix A.1. Coverage Pattern

Here, we attach an average SST map (Figure A1a) and an average daily observation
(Figure A1b), and show the average SOM-NV coverage map per month (Figure A2). The
cold region of northern Mauritania is associated with a better coverage.

https://zenodo.org/
https://doi.org/10.5281/zenodo.7971187
https://doi.org/10.5281/zenodo.7971187
https://doi.org/10.5067/AQUA/MODIS/L2/OC/2018
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(a) (b)
Figure A1. (a)Mean MODIS sea surface temperature at 4 km resolution for the period 2003-2015;
(b) average (%) of daily observation resulting from standard L3 atmospheric flags (including water
vapour and clouds)

Figure A2. Average SOM-NV coverage over the period 2003-2018, from January (M1) to December
(M12). MR for Mauritania, SN for Senegal and CV for Cabo Verde.

(b)

Figure A1. (a) Mean MODIS sea surface temperature at 4 km resolution for the period 2003–2015;
(b) average (%) of daily observation resulting from standard L3 atmospheric flags (including water
vapor and clouds).

Figure A2. Average SOM-NV coverage over the period 2003–2018, from January (M1) to December
(M12). MR for Mauritania, SN for Senegal, and CV for Cabo Verde.

Appendix A.2. Chla Validation

In the middle of the 2012, 2013, and 2014 upwelling seasons, several surface HPLC
measurements were made on the southern Senegalese shelf between the latitudes of 13.5◦

to 15◦N (Figure A3).
In Figure 6b, differences between HPLC and satellite Chla are important. The prox-

imity of productive innershelf waters in 24 February Figure A4a illustrates the significant
potential difference that can occur between the two estimates associated with small time
and space lags, i.e., 1 h 45 and 2.5 km, respectively. Furthermore, since 2015, FP mea-
surements have been taken on campaign days. The FP is continuously towed along the
ship, and performs high-frequency measurements. Several measurements are made for a
single satellite pixel. Figure A5 shows the distribution of Chla measurements for two dates
(23 November 2015 and 30 November 2017). FP measurements have been averaged for
each pixel crossed.
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Figure A3. Surface HPLC stations during UPSEN-1 and -2, ECOAO, and AWA sampling.

(a) (b)

Figure A4. Circles are associated with stations carried out during UPSEN-2 (panel (a)): 24 February
2013) and MiniSCOPES 2017 (panel (b): 30 November 2017) November. The color of the circle
corresponds to the chlorophyll-a pigment concentration, the colorbar being common with SOM-NV
MODIS-Aqua images.
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Figure A5. (a) Chla (FP vs. SOM-NV) along ship track and (b) Chla FP vs. STD along ship track

Figure A6. Regression between HPLC and FP. Only the data of the year 2017 is considered.
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Appendix A.3. HPLC vs. FP Regression

For 2017, the regression between HPLC and FP measurements show that FP
overestimates Chla (Figure A5). In Figure 7, and thus, we applied an offset to FP data
(FPNew = 0.58xFP).

Figure A6. Regression between HPLC and FP. Only the data of the year 2017 are considered.

References
1. Hovis, W.; Clark, D.; Anderson, F.; Austin, R.; Wilson, W.; Baker, E.; Ball, D.; Gordon, H.; Mueller, J.; El-Sayed, S.; et al. Nimbus-7

Coastal Zone Color Scanner: System description and initial imagery. Science 1980, 210, 60–63. [CrossRef] [PubMed]
2. Franz, B.; Werdell, P.; Meister, G.; Bailey, S.; Eplee, R., Jr.; Feldman, G.; Kwiatkowska, E.; McClain, C.; Patt, F.; Thomas, D. The

continuity of ocean color measurements from SeaWiFS to MODIS. Earth Obs. Syst. X 2005, 5882, 58820W.
3. Clarke, G.; Ewing, G.; Lorenzen, C. Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll

concentration. Science 1970, 167, 1119–1121. [CrossRef] [PubMed]
4. Wang, M.; Son, S.; Shi, W. Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data.

Remote Sens. Environ. 2009, 113, 635–644. [CrossRef]
5. Mobley, C. Others the Oceanic Optics Book; International Ocean Colour Coordinating Group (IOCCG): Dartmouth, NS, Canada, 2022.

[CrossRef]
6. Ogunjobi, K.; Kim, Y.; He, Z. Aerosol optical properties during Asian dust storm episodes in South Korea. Theor. Appl. Climatol.

2003, 76, 65–75. [CrossRef]
7. Andreae, M. Raising dust in the greenhouse. Nature 1996, 380, 389–390. [CrossRef]
8. Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M. Climate Change 2007—The Physical Science Basis: Working Group I

Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007.
9. Tanaka, T.; Kurosaki, Y.; Chiba, M.; Matsumura, T.; Nagai, T.; Yamazaki, A.; Uchiyama, A.; Tsunematsu, N.; Kai, K. Possible

transcontinental dust transport from North Africa and the Middle East to East Asia. Atmos. Environ. 2005, 39, 3901–3909.
[CrossRef]

http://doi.org/10.1126/science.210.4465.60
http://www.ncbi.nlm.nih.gov/pubmed/17751151
http://dx.doi.org/10.1126/science.167.3921.1119
http://www.ncbi.nlm.nih.gov/pubmed/17829405
http://dx.doi.org/10.1016/j.rse.2008.11.005
http://dx.doi.org/10.25607/OBP-1710
http://dx.doi.org/10.1007/s00704-003-0006-7
http://dx.doi.org/10.1038/380389a0
http://dx.doi.org/10.1016/j.atmosenv.2005.03.034


Remote Sens. 2023, 15, 3613 20 of 21

10. Ganor, E.; Osetinsky, I.; Stupp, A.; Alpert, P. Increasing trend of African dust, over 49 years, in the eastern Mediterranean. J.
Geophys. Res. Atmos. 2010, 115. [CrossRef]

11. Ansmann, A.; Baars, H.; Tesche, M.; Müller, D.; Althausen, D.; Engelmann, R.; Pauliquevis, T.; Artaxo, P. Dust and smoke
transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest. Geophys. Res. Lett. 2009, 36.
[CrossRef]

12. Prospero, J.; Glaccum, R.; Nees, R. Atmospheric transport of soil dust from Africa to South America. Nature 1981, 289, 570–572.
[CrossRef]

13. Senghor, H.; Machu, É.; Durán, L.; Jenkins, G.; Gaye, A. Seasonal behavior of aerosol vertical concentration in Dakar and role
played by the sea-breeze. Open J. Air Pollut. 2020, 9, 11–26. [CrossRef]

14. Senghor, H.; Machu, É.; Hourdin, F.; Gaye, A. Seasonal cycle of desert aerosols in western Africa: Analysis of the coastal transition
with passive and active sensors. Atmos. Chem. Phys. 2017, 17, 8395–8410. [CrossRef]

15. Song, L.; Bi, X.; Zhang, Z.; Li, L.; Dai, Q.; Zhang, W.; Li, H.; Wang, X.; Liang, D.; Feng, Y. Impact of sand and dust storms on the
atmospheric environment and its source in Tianjin-China. Sci. Total. Environ. 2022, 825 153980. [CrossRef] [PubMed]

16. Gordon, H.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A
preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [CrossRef] [PubMed]

17. IOCCG. IOCCG Atmospheric Correction for Remotely-Sensed Ocean-Colour Products. 2010. Available online: http://www.
ioccg.org/reports/report10.pdf (accessed on 20 June 2023).

18. Mobley, C.; Werdell, J.; Franz, B.; Ahmad, Z.; Bailey, S. Atmospheric Correction for Satellite Ocean Color Radiometry; National
Aeronautics: No. GSFC-E-DAA-TN35509, 2016. Available online: https://ntrs.nasa.gov/api/citations/20160011399/downloads/
20160011399.pdf (access on 20 June 2023).

19. Ahmad, Z.; Franz, B.; McClain, C.; Kwiatkowska, E.; Werdell, J.; Shettle, E.; Holben, B. New aerosol models for the retrieval of
aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and
open oceans. Appl. Opt. 2010, 49, 5545–5560. [CrossRef] [PubMed]

20. Hassan, N.; Woo, C. Machine learning application in water quality using satellite data. In IOP Conference Series: Earth Furthermore,
Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 842, p. 012018.

21. Brajard, J.; Moulin, C.; Thiria, S. Atmospheric correction of SeaWiFS ocean color imagery in the presence of absorbing aerosols off
the Indian coast using a neuro-variational method. Geophys. Res. Lett. 2008, 35. [CrossRef]

22. Brajard, J.; Jamet, C.; Moulin, C.; Thiria, S. Use of a neuro-variational inversion for retrieving oceanic and atmospheric constituents
from satellite ocean colour sensor: Application to absorbing aerosols. Neural Netw. 2006, 19, 178–185. [CrossRef]

23. Niang, A.; Badran, F.; Moulin, C.; Crépon, M.; Thiria, S. Retrieval of aerosol type and optical thickness over the Mediterranean
from SeaWiFS images using an automatic neural classification method. Remote Sens. Environ. 2006, 100, 82–94. [CrossRef]

24. Thiria, S.; Badran, F.; Sorror, C. YAO: Un Logiciel pour les Modèles Numériques et l’assimilation de Données (Schéma Direct Adjoint et
Assimilation Variationnelle); LOCEAN: Paris, France, 2006.

25. Moulin, C.; Gordon, H.; Chomko, R.; Banzon, V.; Evans, R. Atmospheric correction of ocean color imagery through thick layers of
Saharan dust. Geophys. Res. Lett. 2001, 28, 5–8. [CrossRef]

26. Diouf, D.; Niang, A.; Brajard, J.; Crépon, M.; Thiria, S. Retrieving aerosol characteristics and sea-surface chlorophyll from satellite
ocean color multi-spectral sensors using a neural-variational method. Remote Sens. Environ. 2013, 130, 74–86. [CrossRef]

27. Esaias, W.; Abbott, M.; Barton, I.; Brown, O.; Campbell, J.; Carder, K.; Clark, D.; Evans, R.; Hoge, F.; Gordon, H.; et al. Others An
overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1250–1265. [CrossRef]

28. Franz, B.; Bailey, S.; Werdell, P.; McClain, C. Sensor-independent approach to the vicarious calibration of satellite ocean color
radiometry. Appl. Opt. 2007, 46, 5068–5082. [CrossRef]

29. Bailey, S.; Franz, B.; Werdell, P. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Opt.
Express 2010, 18, 7521–7527. [CrossRef]

30. Yang, H.; Gordon, H. Remote sensing of ocean color: Assessment of water-leaving radiance bidirectional effects on atmospheric
diffuse transmittance. Appl. Opt. 1997, 36, 7887–7897. [CrossRef]

31. Wang, M. The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness. Int.
J. Remote Sens. 2002, 23, 2693–2702. [CrossRef]

32. Wang, M.; Bailey, S. Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products. Appl. Opt. 2001, 40,
4790–4798. [CrossRef]

33. Gordon, H.; Wang, M. Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors. Appl. Opt. 1994, 33,
7754–7763. [CrossRef] [PubMed]

34. Kohonen, T.; Kohonen, T. The basic SOM. Self-Organizing Maps; Springer: Berlin/Heidelberg, Germany, 2001; pp. 105–176. .
[CrossRef]

35. Brajard, J.; Niang, A.; Sawadogo, S.; Fell, F.; Santer, R.; Thiria, S. Estimating aerosol parameters above the ocean from MERIS
observations using topological maps. Int. J. Remote. Sens. 2007, 28, 781–795. [CrossRef]

36. Jamet, C.; Thiria, S.; Moulin, C.; Crépon, M. Use of a neurovariational inversion for retrieving oceanic and atmospheric constituents
from ocean color imagery: A feasibility study. J. Atmos. Ocean. Technol. 2005, 22, 460–475. [CrossRef]

37. Moulin, C.; Gordon, H.; Banzon, V.; Evans, R. Assessment of Saharan dust absorption in the visible from SeaWiFS imagery. J.
Geophys. Res. Atmos. 2001, 106, 18239–18249. [CrossRef]

http://dx.doi.org/10.1029/2009JD012500
http://dx.doi.org/10.1029/2009GL037923
http://dx.doi.org/10.1038/289570a0
http://dx.doi.org/10.4236/ojap.2020.91002
http://dx.doi.org/10.5194/acp-17-8395-2017
http://dx.doi.org/10.1016/j.scitotenv.2022.153980
http://www.ncbi.nlm.nih.gov/pubmed/35217037
http://dx.doi.org/10.1364/AO.33.000443
http://www.ncbi.nlm.nih.gov/pubmed/20862036
http://www.ioccg.org/reports/report10.pdf
http://www.ioccg.org/reports/report10.pdf
https://ntrs.nasa.gov/api/citations/20160011399/downloads/20160011399.pdf
https://ntrs.nasa.gov/api/citations/20160011399/downloads/20160011399.pdf
http://dx.doi.org/10.1364/AO.49.005545
http://www.ncbi.nlm.nih.gov/pubmed/20935700
http://dx.doi.org/10.1029/2008GL035179
http://dx.doi.org/10.1016/j.neunet.2006.01.015
http://dx.doi.org/10.1016/j.rse.2005.10.005
http://dx.doi.org/10.1029/2000GL011803
http://dx.doi.org/10.1016/j.rse.2012.11.002
http://dx.doi.org/10.1109/36.701076
http://dx.doi.org/10.1364/AO.46.005068
http://dx.doi.org/10.1364/OE.18.007521
http://dx.doi.org/10.1364/AO.36.007887
http://dx.doi.org/10.1080/01431160110115591
http://dx.doi.org/10.1364/AO.40.004790
http://dx.doi.org/10.1364/AO.33.007754
http://www.ncbi.nlm.nih.gov/pubmed/20962986
.
http://dx.doi.org/10.1007/978-3-642-56927-23
http://dx.doi.org/10.1080/01431160600821101
http://dx.doi.org/10.1175/JTECH1688.1
http://dx.doi.org/10.1029/2000JD900812


Remote Sens. 2023, 15, 3613 21 of 21

38. Shettle, E.; Fenn, R. Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties;
Technical Report, Air Force Geophysics Laboratory, Air Force Systems Command, United States Air Force; Environ. Res. Paper
676, AFGL-TR-79-0214; Hanscom Air Force Base: Bedford, MA, USA, 1979.

39. Chomko, R.; Gordon, H. Atmospheric correction of ocean color imagery: Use of the Junge power-law aerosol size distribution
with variable refractive index to handle aerosol absorption. Appl. Opt. 1998, 37, 5560–5572. [CrossRef] [PubMed]

40. Holben, B.; Eck, T.; Slutsker, I.; Tanre, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al. Others
AERONET—A federated instrument network and data archive for aerosol characterization. Remote. Sens. Environ. 1998, 66, 1–16.
[CrossRef]

41. Giles, D.; Sinyuk, A.; Sorokin, M.; Schafer, J.; Smirnov, A.; Slutsker, I.; Eck, T.; Holben, B.; Lewis, J.; Campbell, J.; et al. Others
Advancements in the Aerosol Robotic Network (AERONET) Version 3 database–automated near-real-time quality control
algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech.
2019, 12, 169–209. [CrossRef]

42. Ras, J.; Claustre, H.; Uitz, J. Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean:
Comparison between in situ and predicted data. Biogeosciences 2008, 5, 353–369. [CrossRef]

43. Van Heukelem, L.; Thomas, C. Computer-assisted high-performance liquid chromatography method development with applica-
tions to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A 2001, 910, 31–49. [CrossRef]

44. Beutler, M.; Wiltshire, K.; Meyer, B.; Moldaenke, C.; Lüring, C.; Meyerhöfer, M.; Hansen, U.; Dau, H. A fluorometric method for
the differentiation of algal populations in vivo and in situ. Photosynth. Res. 2002, 72, 39–53. [CrossRef]

45. Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res. Oceans
1988, 93, 10749–10768. [CrossRef]

46. Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Oceans 2001, 106, 7163–7180.
[CrossRef]

47. Pope, R.; Fry, E. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 1997, 36,
8710–8723. [CrossRef]

48. Bricaud, A.; Morel, A.; Prieur, L. Others Absorption by dissolved organic matter of the sea (yellow substance) in the UV and
visible domains. Limnol. Oceanogr. 1981, 26, 43–53. [CrossRef]

49. Capet, X.; Estrade, P.; Machu, E.; Ndoye, S.; Grelet, J.; Lazar, A.; Marié, L.; Dausse, D.; Brehmer, P. On the dynamics of the
southern Senegal upwelling center: Observed variability from synoptic to superinertial scales. J. Phys. Oceanogr. 2017, 47, 155–180.
[CrossRef]

50. Alvain, S.; Moulin, C.; Dandonneau, Y.; Bréon, F. Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS
imagery. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2005, 52, 1989–2004. [CrossRef]

51. Skonieczny, C.; McGee, D.; Winckler, G.; Bory, A.; Bradtmiller, L.; Kinsley, C.; Polissar, P.; De Pol-Holz, R.; Rossignol, L.; Malaizé,
B. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 2019, 5, eaav1887. [CrossRef] [PubMed]

52. Jethva, H.; Torres, O.; Ahn, C. Global assessment of OMI aerosol single-scattering albedo using ground-based AERONET
inversion. J. Geophys. Res. Atmos. 2014, 119, 9020–9040. [CrossRef]

53. Horváth, Á.; Seethala, C.; Deneke, H. View angle dependence of MODIS liquid water path retrievals in warm oceanic clouds. J.
Geophys. Res. Atmos. 2014, 119, 8304–8328. [CrossRef]

54. Wagener, T. Le fer à l’interface océan-atmosphère: Flux et processus de dissolution dans l’eau de mer. Ph.D. Thesis, Université de
la Méditerranée-Aix-Marseille II, Marseille, France, 2008.

55. Ryder, C.; Highwood, E.; Lai, T.; Sodemann, H.; Marsham, J. Impact of atmospheric transport on the evolution of microphysical
and optical properties of Saharan dust. Geophys. Res. Lett. 2013, 40, 2433–2438. [CrossRef]

56. Shi, W.; Wang, M. Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing. Remote Sens.
Environ. 2007, 110, 149–161. [CrossRef]

57. Pfahl, S.; Sodemann, H. What controls deuterium excess in global precipitation? Clim. Past 2014, 10, 771–781. [CrossRef]
58. Lathuilière, C.; Echevin, V.; Lévy, M. Seasonal and intraseasonal surface chlorophyll-a variability along the northwest African

coast. J. Geophys. Res. Oceans 2008, 113. [CrossRef]
59. Barton, E.D.; Arıstegui, J.; Tett, P.; Cantón, M.; Garcıa-Braun, J.; Hernández-León, S.; Nykjaer, L.; Almeida, C.; Almunia, J.;

Ballesteros, S.; et al. Others The transition zone of the Canary Current upwelling region. Prog. Oceanogr. 1998, 41, 455–504.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1364/AO.37.005560
http://www.ncbi.nlm.nih.gov/pubmed/18286040
http://dx.doi.org/10.1016/S0034-4257(98)00031-5
http://dx.doi.org/10.5194/amt-12-169-2019
http://dx.doi.org/10.5194/bg-5-353-2008
http://dx.doi.org/10.1016/S0378-4347(00)00603-4
http://dx.doi.org/10.1023/A:1016026607048
http://dx.doi.org/10.1029/JC093iC09p10749
http://dx.doi.org/10.1029/2000JC000319
http://dx.doi.org/10.1364/AO.36.008710
http://dx.doi.org/10.4319/lo.1981.26.1.0043
http://dx.doi.org/10.1175/JPO-D-15-0247.1
http://dx.doi.org/10.1016/j.dsr.2005.06.015
http://dx.doi.org/10.1126/sciadv.aav1887
http://www.ncbi.nlm.nih.gov/pubmed/30613782
http://dx.doi.org/10.1002/2014JD021672
http://dx.doi.org/10.1002/2013JD021355
http://dx.doi.org/10.1002/grl.50482
http://dx.doi.org/10.1016/j.rse.2007.02.013
http://dx.doi.org/10.5194/cp-10-771-2014
http://dx.doi.org/10.1029/2007JC004433
http://dx.doi.org/10.1016/S0079-6611(98)00023-8

	Introduction
	Material and Methods
	MODIS-Aqua Standard Data
	SOM-NV Processing of MODIS-Aqua Data
	Algorithm Description
	Adaptation to MODIS Data
	Coverage Calculation
	In Situ Data


	Results
	Aerosol Optical Thickness Derived from the SOM-NV Algorithm
	Improved Data Coverage
	Improving Reflectance Spectra
	Consequences on Chla Estimates

	Discussion
	Conclusions
	Appendix
	Appendix A.1
	Appendix A.2
	Appendix A.3

	References

