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Toward machine-assisted tuning avoiding the
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projections
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Documenting the uncertainty of climate change projections is a fundamental objective of the inter-comparison
exercises organized to feed into the Intergovernmental Panel on Climate Change (IPCC) reports. Usually, each
modeling center contributes to these exercises with one or two configurations of its climate model, correspond-
ing to a particular choice of “free parameter” values, resulting from a long and often tedious “model tuning”
phase. How much uncertainty is omitted by this selection and how might readers of IPCC reports and users of
climate projections be misled by its omission? We show here how recent machine learning approaches can trans-
form the way climate model tuning is approached, opening the way to a simultaneous acceleration of model
improvement and parametric uncertainty quantification. We show how an automatic selection of model confi-
gurations defined by different values of free parameters can produce different “warming worlds,” all consistent
with present-day observations of the climate system.
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INTRODUCTION
Physics-based global numerical models have played a leading role in
warning about global warming. They have been used to demonstrate
human responsibility in certain observed climate changes by means
of detection-attribution simulations. They are also used to antici-
pate mitigation and adaptation policies. They are indeed the only
tools able to integrate all the scales and processes involved in
climate change and to provide physically consistent sequences of
meteorological variables under modified climate (1). All global
climate models agree on the fact that an increase in the concentra-
tion of greenhouse gases produces an increase of the global surface
temperature. There is, however, a factor of typically three between
the most and least sensitive models to this concentration increase.
There is a particular concern in the community that the last gener-
ation of climate models, documented in the sixth phase of the
“coupled model inter-comparison project” (CMIP6), was showing
an even larger spread in the simulated climate sensitivity, with a set
of state-of-the-art models being more alarmist than their previous
versions, despite substantial improvement in their representation of
the present-day climate (2). The range of equilibrium climate sen-
sitivity (ECS), defined as the global mean surface air temperature
change caused by a doubling of the atmospheric CO2 concentration,
was 1.8 to 5.6 K in CMIP6 simulations, compared with 2.1 to 4.7 K
in CMIP5 (not far from the Charney’s report estimate of 1.5 to 4.5
K) (3). An extensive study of the ECS uncertainty was conducted
recently, combining all the lines of evidence previously published
(4). It underlined the fact that there is no direct relationship
between ECS and the 20th-century warming, given the uncertainty
of the aerosol forcing and the so-called “pattern effect.” This study
increased the lower bound on the ECS from 1.5 to 2 K, compared to
previous assessment and estimated an 18% chance of being above
the previous upper value of 4.5 K.

A large part of the inter-model dispersion in the ECS is due to
the choices made in the representation of cloud and convective pro-
cesses, which occur at finer scale than the model grid mesh, through
so-called parameterizations (5, 6). Ever since the first Atmospheric
Model Intercomparison Project (AMIP) exercise (7), it is the quan-
tification of the errors associated with modeling choices that has
fundamentally motivated the climate “model inter-comparison pro-
jects” (MIPs), in which rigorous simulation protocols are shared
across modeling groups. Providing climate change projections
with an estimation of this modeling uncertainty is an essential
role of the Coupled Model Intercomparison Project (CMIP) exer-
cises, which are conducted about every 7 years, in advance of Inter-
governmental Panel on Climate Change (IPCC) reports. The multi-
model CMIP ensemble is used as an entry for so-called impact
studies, often using physical and statistical downscaling approaches,
and recent advances in Monte Carlo methods pave the way to a sys-
tematic use of the CMIP simulations ensembles in such studies (8).

However, the uncertainty quantification performed in CMIP is
only partial. In practice, each modeling group provides numerical
simulations performed with only one (or sometimes a few) model
configuration, i.e., a specific choice of physical content, grids, and a
particular set of values for the free parameters of the model. The free
parameter values result from a long explicit or implicit calibration
phase, often called tuning. Could other configurations of each
model also simulate reasonable climates with other parameter set-
tings? If so, how would this affect the range of ECS explored? What
are the implications for the uncertainty of model-based climate
change assessments and downstream impact studies? These issues
are prompting some modeling teams to rerun “perturbed physics
ensembles” (PPEs) with their particular model, in addition to
CMIP multi-model ensembles, to more systematically explore the
uncertainty in future climate projections to inform societal ques-
tions (9–12).

Although the issue of tuning was identified early in the history of
climate modeling (13) and documented in some model reference
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publications (14–18), it has not been really considered as a scientific
issue until recently and was not much publicized. Tuning was often
seen as an unavoidable, technical, and dirty part of climate model-
ing. There was also probably a fear that climate change denialists
may use the fact that models are tuned to cast a doubt on the
reality of climate change projections. Nevertheless, the situation is
changing fast and tuning is more and more discussed as a central
aspect of climate modeling (19–23). The use of objective methods
that explore the parameter space using fast surrogate models or em-
ulators is also becoming common practice (19, 24, 25).

We show here how insights into model tuning and the use of
objective methods can lead to systematic exploration of parametric
uncertainty and accelerated model improvement. Contrary to pre-
vious studies based on PPEs, the ensemble produced here is reduced
automatically to a subspace compatible with a priori defined tuning
targets, thus making parametric exploration and model tuning two
sides of the same exercise.

Tuning is usually seen as the search for an optimal set of param-
eters, with optimization approaches that typically minimize a cost
function (19), and this idea is only gaining traction rather than
losing credibility (26–28). Such a definition, however, automatically
results in “overtuning,” i.e., forcing the model to find the best pos-
sible agreement with a set of metrics at the potential expense of in-
ducing errors throughout the unused components of the climate
state vector and model projections. With these approaches,
adding or subtracting even just one metric can produce a completely
different “best model” or distribution for the best model in the case
of Bayesian methods (29), even when accounting for uncertainty in
those metrics in the optimization (30).

The history matching approach (31) advocated here avoids parts
of these defects. It defines tuning to be the identification of regions
of parameter space within which a set of simulated metrics match
their observed values to a given “tolerance to error” that includes, in
principle, both the observational and model structural uncertainty.
Because the structural uncertainty is generally not known a priori,
this approach cannot fully guarantee against overtuning, but it both
allows us to consider this problem directly and can help identify and
even quantify specific structural errors in the model (32–34). While
advocates of optimization approaches rightly point out that
methods such as history matching require more simulations than
a typical optimization, we advocate for the approach as it goes
beyond finding a unique reference version of a model and allows
us to explore the possible model worlds compatible with a set of ob-
servational constraints, given a model (physical and numerical)
content and grid configuration.

To illustrate this, we start from the Institut Pierre-Simon Laplace
(IPSL)–CM6A-LR (35) configuration (called IPSL-6A hereafter) of
the IPSL coupled model (IPSL-CM) used for CMIP6 and obtained
after a long and tedious phase of by-hand tuning (36). We revisit the
tuning of the atmospheric component of the model, LMDZ-6A-LR
(37), using history matching. We thus derive four coupled configu-
rations with ECS values ranging from 3.7 to 5.4 K.

The IPSL-6A configuration itself shows an ECS of 4.6 K in the
upper part of the very likely range given in the IPCC AR6 report: 2
to 5 K (38). However, 5 among the 33 members of an ensemble of
historical simulations with this IPSL-6A version (that differed only
by their initial state) showed climate trends over the 20th century
compatible with observations (39). In these simulations, the
warming over the past decades is in part compensated by a

centennial oscillation of the coupled system. This centennial oscil-
lation is quite strong in the IPSL model compared to others, but
both the amplitude and the phase in the two particular members
that match the 20th century the best were shown to be compatible
with observations. Because of the unicity of the observed climate
record, the part of the variability in the recent trend is however dif-
ficult to evaluate and should be taken into account as a major source
of uncertainty.

There is a desire in the community to use so-called emergent
constraints (40) or “multiple lines of evidence” (4) to further con-
strain ECS uncertainty and to select a subset of model configura-
tions as a basis for future projections (38) [the extent to which
emergent constraints accurately quantify uncertainty is discussed
by Williamson and Sansom (41)]. Some modeling teams even
provide simulations that target a given value of the ECS to the
CMIP database (42) (calling into question any method that uses
CMIP as a starting point for spanning ECS uncertainty). Given
the importance of the question and the remaining sources of uncer-
tainty in the most serious attempt to quantify it, we think that quan-
tification rather than artificial reduction of the uncertainty of the
ECS should be kept as one of the major targets of the future
CMIP programs.

Carefully curated PPEs are a way to explore this uncertainty, and
more precisely the uncertainty attributed to model free parameters
for a given model configuration. The curation is important. By re-
stricting our parametric exploration to a subset compatible with a
series of predefined metrics on the present-day climate, we can
meaningfully explore uncertainty induced by the model parameters
among models that could reasonably be submitted to a CMIP exer-
cise. Previous studies have used curated PPEs combined with CMIP
to explore uncertainty in precipitation trends over continents and
their relationship to the current climate representation (43, 44).
In the most recent study, the authors use multi-objective optimiza-
tion for a small collection of metrics important for emergent con-
straints. They identify a subset of the ensemble of simulations on a
Pareto front to quantify the uncertainty in precipitation change.
The authors present their approach as an alternative or a generali-
zation of the emergent constraint approaches. Our approach shares
similar motivations, but it deliberately avoids optimization, claim-
ing that perhaps models that are not on the Pareto front could offer
a better representation of climate (not only through the
given metrics).

Among the four model configurations derived here, the two with
the smallest and largest ECS represent the current climate with skill
similar to IPSL-6A. Given the criteria adopted for model qualifica-
tion, these two configurations could just as easily have been adopted
by IPSL for CMIP6 production instead of the IPSL-6A version if the
modeling team had stumbled upon them during the tuning phase.
With only five configurations (the IPSL-6A configuration plus the
four additional ones that we introduce here), we cover half of the
CMIP multi-model ECS range, suggesting that the modeling uncer-
tainty on the ECS might be underestimated by CMIP ensembles. We
conclude that these results should prompt substantial redesign of
CMIP exercises.
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RESULTS
Translating “by-hand tuning” into numbers
Following a previous study (45), the targets of the by-hand tuning of
the IPSL-6A configuration were translated into 14 scalar metrics.
Among them, 11 relate to annual mean top-of-atmosphere (TOA)
radiative fluxes, taking averages over the globe or specific regions
and decomposing between solar and thermal radiation or clear
sky fluxes and radiative effect of clouds, while three metrics relate
to the distribution of rainfall (see fig. S1 and table S1). P = 18 pa-
rameters were considered unknown (see table S2), typically those
modified during the tuning phase of the IPSL-6A configuration
[table 3 in (37)]. The prior ranges for these parameters were set
by expert judgment that did not account for knowledge of the
values used by IPSL-6A configuration. A real advantage in applying
objective methods like history matching is that it forces model de-
velopers to formalize their tuning choices through numbers. The
choice of metrics and parameter ranges is obviously subjective (as
it is with by-hand tuning) yet is made transparent by the process
(23). Details are given in Materials and Methods and in section SI1.

All the radiative metrics but one were given a 1σ tolerance to
error of ±5 W/m2 for an observational uncertainty of about 4 W/
m2 for the CERES-EBAF L3b satellite product used as target (46).
An exception was made for the TOA global imbalance, for which
the value targeted was the global energy imbalance at TOA in the
standard IPSL-6A configuration and the tolerance to error was set
to 0.5 W/m2, much smaller than the observational uncertainty. The
rationale for targeting the value of a previous simulation rather than
observation is the following. We know that with an imbalance value
of 2.7 W/m2 in stand-alone atmospheric mode with the 6A-LR
tuning, the global mean sea surface temperature (SST) in coupled
mode is close to the observed value by a few tenths of K [note
that this global mean SST fluctuates by about 0.2 K on centennial
time scales in IPSL-6A (39)]. This is partly due to an imperfect
energy conservation in the global model (about 0.9 W/m2 in the
coupled IPSL-6A configuration, see table S3) and to the different
mean states of the coupled and stand-alone atmospheric simula-
tions modulating the energy fluxes at TOA. We also know from
past experiments that a change of 1 W/m2 of this imbalance
would result in a change of about 1 K in the global near-surface tem-
perature (about 0.7 K for the SST). By retuning the model in stand-
alone configurations targeting the global energy imbalance of the
IPSL-6A configuration, we in fact indirectly tune the global mean
SST in the coupled model (known to a few tenths of a degree
from observations). This strategy was already applied successfully
to the by-hand tuning of the IPSL-6A configuration (36) (see
section SI3 and table S3).

For rainfall, the three metrics retained are as follows: (i) the var-
iability over ocean around the maritime continent (underestimated
in the IPSL-6A version), with a target from The Tropical Rainfall
Measuring Mission (TRMM) daily rainfall product (47) and a rela-
tive uncertainty of 10%; (ii) the annual mean rainfall over Sahel,
with a target from the Global Precipitation Climatology Project
(GPCP) monthly climatology (48) and a relative uncertainty of
50%; and (iii) the frequency of days with rainfall above 50 mm/
day (to reduce the occurrence of so-called grid-point storms), tar-
geting the TRMM product with a relative uncertainty of 50%.

History matching: How does it work?
History matching starts by generating a set of N = 250 (typically
10×P) parameter vectors λ of the P unknown parameters by ran-
domly sampling the hypercube defined by the ranges of acceptable
values (defined a priori) for each parameter. Parameters whose
range span many orders of magnitude are first log-transformed
before sampling the hypercube to ensure uniform sampling across
the different orders of magnitude. For each parameter vector, we
run a 2-year-long stand-alone atmospheric simulation forced by ob-
served SST. The metrics are then computed on the second year of
simulations, as was the case for the by-hand tuning (36). For each
metric m(λ), the N simulations are used to fit an emulator or surro-
gate model using a Gaussian process (GP) (49). The GP treats any
finite collection of a metric with different parameter choices as a
multivariate normal distribution. Fitting a GP to a collection of sim-
ulations involves fitting a mean function, E½mðλÞ�, and a covariance
function Cov [m(λ), m(λ0)]. There are many methods and software
for fitting different types of GP (49); we used the method and code
detailed in (25). The emulators enable us to assess the match
between observed and simulated metrics at thousands or millions
of parameter vectors very quickly and to rule out those with poor
skill. A parameter vector is ruled out if, for a fixed number of the
metrics (usually 3 to avoid multiple testing), its implausibility

IðλÞ ¼ kE½mEMðλÞ� � mobs k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fεm þ Var ½mEMðλÞ�g

p
ð1Þ

is larger than a threshold, fixed to 3 here. The choice of threshold
can be made with the context that implausibility is a type of stan-
dardized distance between the observation and the model, where
the standardization accounts for the observational and structural
uncertainties, through εm, and the emulator uncertainty
Var[m(λ)] (so our fixing to 3 says that 3 SDs is too many if it
happens too often). The history matching procedure is then iterated
on a number of “waves,” each time running N 2-year-long simula-
tions and building an emulator for each metric.

In practice at wave Wi, a number N (≫N) of parameter vectors
is sampled in the original hypercube. The emulators from wave 1 to
Wi are then applied iteratively for each metric to rule out some pa-
rameter vectors, keeping at each wave a subsample in the Not Ruled
Out Yet (NROY) subspace. The sample of the N vectors for the fol-
lowing wave, Wi+1, is then randomly taken in the final NROY space.
Note that we compute the emulator N times for each metrics, while
N/N needs to be larger than the NROY fraction (compared to the
original hypercube), to have a sufficient sample in NROY space for
building the next emulator. This means that the emulators must be
extremely fast. The iteration progressively reduces the emulator var-
iance while refining the sampling around the region in which the
metrics match targets to a given tolerance to error. Note that,
here, N was reduced to 200 for wave 2 and 180 for wave 3.

This iterative process is illustrated by showing the latitudinal var-
iations of the short-wave radiative forcing (SW CRE) for the 250 +
200 + 180 simulations of the 3 history matching waves, among
which 23 simulations (0 in wave 1, 9 in wave 2, and 14 in wave 3)
showed a maximum value of the error/tolerance across the metrics
smaller than 3 (Fig. 1A). Among those 23, we retained only 9
“BEST” simulations (red lines, Fig. 1A) for which the global TOA
imbalance effectively departed by less than 0.5 W/m2 from the im-
balance in the control configuration with tuning of IPSL-6A (al-
though the global TOA imbalance is one of the metrics used for
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tuning, the procedure does not warrant this constraint both because
of the emulator uncertainty and because of the cutoff of three used
on implausibility values).

Selecting atmospheric configurations with contrasted ECS
The reference method to evaluate the ECS of a climate model (50)
involves abruptly quadrupling the CO2 concentration, starting from
a control coupled atmosphere-ocean simulation. The ECS is then
estimated from a linear regression over the first 150 years of simu-
lation, between the energy imbalance coming from the CO2 in-
crease, which progressively returns to zero, and the temperature
difference between the control and perturbed experiment that pro-
gressively increases toward twice the ECS (see Materials
and Methods).

To select a subset of configurations with contrasted ECS without
running centennial simulations for all the BEST simulations, we
compute an approximate ECS from the difference between the
top of atmosphere energy budget obtained in two 10-year-long at-
mosphere-alone simulations, one with climatological SSTs and the
second one with the same SSTs increased by 4 K (42, 51). This
“clim+4K proxy” is thus only used here to identify simulations
with low and high ECS (see Materials and Methods and SI2 for a
discussion of this aspect).

The abrupt4×CO2 estimate of the ECS from the IPSL-6A and
CTRL experiments (orange and gray dots in Fig. 2, respectively)
show almost the same value of 4.6 K. The clim+4K proxy computed
for the CTRL configuration (gray star in Fig. 2) shows a smaller
value of 3.8 K. The clim+4K proxy computed for the nine “BEST”
simulations varies from 2.7 to 4.6 K. Four configurations were re-
tained among them for their contrasted ECS: one with an ECS in-
creased by 1 K as compared to the CTRL configuration and three
with an ECS decreased by more than 1 K.

Coupled simulation with contrasted ECS
For each of those four configurations, we then ran a pair of prein-
dustrial and abrupt4×CO2 experiments with the full coupled

climate model. The four experiments were a posteriori labeled
from Exp 1 to 4, from the smallest to the largest abrupt4×CO2
ECS estimates. If the ranking is not exactly the same as for the
clim+4K proxy, the range of amplitude is, however, similar
(Fig. 2). The ECS estimates vary from 3.7 to 5.3 K for a value of
4.6 K for the IPSL-6A and CTRL configuration.

To assess the skill of the four configurations to represent the
present-day climate, a series of metrics were computed on the cor-
responding coupled simulations (Fig. 3 and SI3). Note that the 14
metrics are not exactly those used for the tuning, but they are not
independent either.

We first assess the success of the method that consists in target-
ing the global radiative imbalance of a previous configuration in
stand-alone atmospheric simulations to adjust the global tempera-
ture of the coupled simulations (Fig. 3A). The five “worlds” gener-
ated with the model (CTRL and Exp 1 to 4) are all acceptable for the
ensemble of metrics examined, if taking the CMIP6 ensemble as a
measure of acceptability (Fig. 3, B to H). When looking in detail,
Exp 1 (purple dots in Fig. 3) appears very close to IPSL-6A for
most metrics, suggesting that we succeeded, with an automated pro-
cedure, to obtain one configuration with a very similar climate but
with an ECS smaller by almost 1 K (see complementary diagnostics
in SI3). In particular, it stands as IPSL-6A among the models with
the smallest SST errors within the CMIP5 and CMIP6 ensembles
(Fig. 3B). Both Exp 1 and 4 configurations also maintain a reason-
able overturning oceanic circulation [Atlantic Meridional Over-
turning Circulation (AMOC), Fig. 3D, which is generally
somewhat too weak in IPSL-CM] and a reasonable sea ice cover
(Fig. 3C). They would probably have been qualified by the IPSL
modeling group and retained for CMIP6 simulations if examined
before fixing the parameter values of IPSL-6A during the tuning
process. The intermediate simulations Exp 2 and 3 (blue and
green dots, respectively) both suffer from more notable defects:
Exp 2 is clearly missing clouds and underestimates the cloud radi-
ative forcing in Fig. 1, which translate into degraded radiative
metrics in Fig. 3 (E to G). Exp 3 has a very weak overturning

Fig. 1. Illustration of the iterative procedure for history matching. Both graphs display the latitudinal variations of the zonally averaged short-wave (SW) cloud
radiative effect (CRE) computed as the difference between the total and clear-sky TOA SW radiation. The CERES-EBAF L3b observations are shown in black with error
bars of ±4W/m2 (46). (A) SW CRE computed for the second year of an ensemble of 2-year forced-by-SST simulations for the three successivewaves of the historymatching
procedure with 250, 200, and 180 simulations for waves 1, 2, and 3, respectively. The nine “BEST” simulations are shown in red and the gray line corresponds to a control
simulation (CTRL) run with the parameters of the IPSL-6A configuration. (B) Ten-year average SW-CRE obtained in coupled ocean-atmosphere simulations in the multi-
model ensemble of CMIP5 (yellow) and CMIP6 (orange) and in the control and four experiments retained from the history matching because of both their good behavior
in present-day conditions [taken among the nine “BEST” configurations of (A)] and of their contrasted ECS (see themain text). For these last four experiments, we show the
SW CRE obtained in both the coupled (thick line) and stand-alone (thin, 1-year average) atmospheric simulations that are almost superimposed.
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oceanic circulation, which continues to decrease after 250 years of
simulations. Those two configurations would probably have been
rejected in the selection process.

Although showing contrasted ECS, the simulations do not seem
to be that different in terms of simulation of climate change for a
given global temperature change: the mean 2 m temperature
change obtained for the standard configuration and for the Exp 1
and 4 simulations when reaching a global temperature change of 5.5
K (right column of Fig. 4) are much closer to each other than when
comparing them at a given time of the simulation (after 30 years in
the left column). The precipitation change in the three configura-
tions looks also very similar at first glance for a temperature target of
+5.5 K (left column in Fig. 5). Looking in detail, one can see some
slight differences. For instance, the equatorial Africa warms less in
Exp 1 than in IPSL-6A and Exp 4. The stronger warming in this
region in Exp 4 compared to Exp 1 could be attributed to a larger
increase in solar radiation reaching the surface (right column for
Fig. 5), but it is not the case for IPSL-6A. Note also the large increase
in surface radiation in Exp 4 compared to Exp 1 over South
America, which does not translate into a significantly different tem-
perature change, probably in part because of a larger evaporation in
Exp 4 (see fig. S15). Other illustrations of these differences are
shown in section SI4. Analyzing them in more detail is beyond
the scope of the present paper.

DISCUSSION
Given the complexity of the climate “vast machine” (52) and the im-
portance of the global warming issue, the quantification of the un-
certainty in climate change projections is a question of prime
importance. In view of this issue, the definition of the calibration
problem as an optimization, producing one particular model con-
figuration to the risk of compensation error, is more than question-
able. History matching, by fundamentally defining the calibration
process as the determination of the parameter subspace compatible
with some metrics, to a given tolerance to error, offers an opportu-
nity to reimagine the tuning process and the quantification of the
parametric uncertainty as a single exercise. It also offers a frame-
work for addressing the issues of error compensation and structural
uncertainty quantification.

The slow improvement of climate models has raised questions
whether coarse resolution global circulation models with parame-
trized physics may have become obsolete (1). The results presented
here give real hope for an acceleration of the model development
and improvement, providing an automatic way to return to an ac-
ceptable mean climate after adding new significant developments in
the model physics. It should be reiterated that the alternate config-
urations of IPSL-CM were obtained after automatic calibration with
the history matching procedure using 2-year-long stand-alone at-
mospheric simulations, ignoring the values of the IPSL-6A config-
uration, which were obtained after a long by-hand tuning phase.

The approach, of course, has a cost. About 800 2-year-long at-
mospheric simulations were needed to extract nine “acceptable”
configurations. Although this number may seem large, it is in fact
much smaller than the number of years simulated for the by-hand
tuning of the IPSL-CM6 configuration (36, 37), not to mention the
tremendous gain in human time. We showed in another study how
preconditioning by a multi-wave tuning of a single-column version
of the model against explicit high-resolution simulations of cloud
scenes may significantly accelerate the tuning process (25, 45).
The approach, not mature enough at the beginning of the present
study, is since used routinely for the tuning of the IPSL model.

Four among those nine acceptable configurations were used to
run coupled simulations. For all four, the standard metrics exam-
ined so far are in the spread of CMIP6 models. This success of
the automated procedure benefited from the expertise gained in
the team from decades of practice of by-hand tuning of the IPSL
model (14, 17, 18, 37). In particular, the rather good score in sim-
ulating SST in IPSL-6A comes from the fact that we targeted on
purpose some biases in the atmospheric fluxes that directly
impact persistent temperature biases as the East-Tropical-Ocean
(53) and Circum Antartica warm biases. These targets were thus in-
cluded in the tuning procedure used here. This underlines that ob-
jective methods such as history matching cannot and should not
replace the expertise and subjectivity inherent to the tuning
process (23). The fact that this physical expertise and subjective
choices are expressed in numbers, however, paves the way for it to
be shared between modeling groups, with the aim of accelerating
the improvement of climate models and gaining understanding in
the behavior of the climate system.

The Exp 1 to 4 configurations not only compare well with the
CMIP6 ensemble, but they also seem closer to IPSL-6A than to
the other CMIP6 simulations. Does this reflect that the various con-
figurations only differ by their parameter values while CMIP

Fig. 2. Estimation of ECS (K) for the various model configurations, including
the CMIP5 (yellow) and CMIP6 (orange) multi-model ensembles. The value of
the standard IPSL-6A configuration (orange) is isolated from the other CMIP6
models to serve as a reference point for the work presented here. For the CTRL
(with same parameters as IPSL-6A) and the four configurations selected (Exp 1
to 4), we show both the abrupt4×CO2 ECS estimate (circles) computed from
150-year-long coupled ocean-atmosphere simulations and the clim+4K ECS
proxy computed from forced by SST 10-year-long simulations (stars). This
clim+4K proxy is shown as well for the five best simulations not selected to run
coupled simulations (black stars).
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models also differ by their structural errors, linked to different
choices in physics content and numerics? Is it due, in part, to the
fact that the various configurations share the same unique parame-
ter settings for models of continental surfaces and ocean? Might it
also be due to the fact that the metrics selected for the automatic
tuning of the atmospheric free parameters were mostly inherited
from the by-hand tuning of the IPSL-6A version? The availability
of objective methods such as history matching will enable us to
explore these kinds of question for the first time. It would be en-
lightening to see, for instance, how applying the exact same
tuning procedure, with the same metrics and tolerance to errors,
to other CMIP models would reduce/increase the discrepancy in
the aggregated metrics considered here.

All four configurations would have been available together with
the IPSL-6A configuration at the time of the choice for CMIP6 sim-
ulations, probably one would have been discarded for an underes-
timation in cloud cover compared to IPSL-6A and another one for
the rapid weakening of the AMOC intensity. Note that we are

lacking so far expertise to ensure a reasonable tuning of important
aspects of the coupled model such as sea ice cover or AMOC inten-
sity, and specific work has to be done in this direction. It may indeed
be by chance that three of the four selected experiments do not drift
further in terms of AMOC. Gradually building a list of metrics that
control more and more aspects of the simulated climate is a goal for
future research. Note, however, that dealing with the long time con-
stants of the deep ocean circulation can become computationally
demanding, requiring large ensembles of multi-centennial simula-
tions at each wave of the history matching process, unless proxies
are identified in shorter simulations.

In the end, two configurations obtained automatically by history
matching, Exp 1 and 4, could have been chosen instead of IPSL-6A
because they show very similar results in terms of standard metrics.
It turns out that these two configurations also show the most
extreme ECS.

The range covered is about half that of the CMIP ensemble
(Fig. 2). This means that part of the discrepancy in ECS observed

Fig. 3. Metrics computed on the CTRL and Exp 1 to 4 piControl coupled simulations. The dispersion across those five configurations is compared with the multi-
model spread for CMIP5 (yellow) and CMIP6 (orange) also computed from piControl simulations. It is compared as well with the multi-decadal variability in the IPSL-6A
piControl simulation (one of the orange dots in the CMIP6 column), computed from 32 successive 30-year-long periods starting in 1850 (“IPSL-6A pi” column), and with
the inter-member dispersion in the 33-member historical ensemble run with IPSL-6A for CMIP6 (“IPSL-6A Ens” column, brown). The period retained for the comparison of
the historical simulations with observations is 1979–2005. The comparison of the IPSL pi and historical runs gives an estimate of the error, which is made by comparing
with present-day observations simulations run in preindustrial rather than present-day conditions. (A) Global mean SST (°C). (B) Root mean square error computed on the
mean seasonal cycle of the SST, between 65°N and 65°S to avoid sea ice dispersion, and after removing the mean bias (RMSC stands for centered root mean square). The
mean bias is retrieved to minimize the impact of the global warming between 1850 and present day. (C) December-January-February-Marchmean sea ice extent. (D)
Maximum intensity of the Atlantic Meridional Overturning Circulation (AMOC, Sv). (E toH) Rootmean square error (RMSE) on themean seasonal cycle of the Outgoing SW
radiation [OSR, W/m2 (E)], Outgoing LW radiation [OLR, W/m2 (F)], total SW + LW Outgoing radiation [TOT RAD, W/m2 (G)], and rainfall [Precip, mm/day (H)].

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Hourdin et al., Sci. Adv. 9, eadf2758 (2023) 19 July 2023 6 of 12



in the CMIP ensembles might be the signature of the parametric
uncertainty, not documented in the CMIP multi-model ensembles,
and hence that the uncertainty in ECS might be underestimated by
CMIP exercises. Although we used stand-alone atmospheric simu-
lations to select configurations with contrasted ECS among the nine
configurations selected in the history matching procedure, the ex-
ploration is of course very partial. A recent study tried to more sys-
tematically explore the range of possible ECS in the CNRM model
under climatic constraints (54). On the basis of a PPE of stand-alone
atmospheric simulations and using emulators, the authors derived
23 optimal configurations (that minimize some cost functions based
on aggregate metrics), each one targeting an ECS value in the range
spanned by the initial ensemble. However, unlike the work we
present, there has been no attempt to confirm the results in
coupled mode, either in terms of climate performance relative to
CMIP or in terms of the range of ECS. It should be noted that a

more systematic exploration of the ECS range could also be done
with history matching, emulating the ECS in the last wave from
our analysis and designing an ensemble that maximizes the range
of ECS values according to that emulator.

There is an understandable temptation to use observed climate
trends over the last decades to constrain the ECS and even tune it, as
proposed by some groups (42), or to rule out some model configu-
rations. However, this should only be done after a rigorous estima-
tion of the uncertainty of the observations or of the emergent
constraints used in the tuning or selection procedure (41), and by
applying objective uncertainty quantification methods. This uncer-
tainty quantification should also take into account the contribution
of the multi-decadal internal climate variability which could signif-
icantly contribute to the recent climate trends (39). Until we care-
fully design CMIP simulations to capture all relevant uncertainties,
users who consider the CMIP database as providing the uncertainty

Fig. 4. Two-meter temperature (K) change in coupled simulations CTRL (IPSL-6A configuration), Exp 1, and Exp 4. Themaps correspond to differences between the
abrupt4×CO2 and piControl simulations, averaged over 21 consecutive years. For the left column, this time is centered at year 30 of the simulations. For the right column, it
is centered at the time when the global 2 m temperature has increased by 5.5 K, i.e., at year 33 for CTRL, year 65 for Exp 1, and year 17 for Exp 4.
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in future climate change for risk assessment will continue to
be misled.

As expected, a decomposition of the model climate sensitivity in
terms of clear sky versus cloud effect, in both LW and SW, points to
a dominant role of the SW CRE (see SI2). Analyzing the origin of
the dispersion of ECS in a larger ensemble of simulations may be a
very powerful tool to get more insight into the processes that control
the ECS. Note that compared to previous PPEs (9, 11), such an en-
semble would be generated under the constraint of a series of global
metrics, with some a priori tolerances and an automated procedure
that could easily be shared among modeling groups. It would enable
us to explore the parametric dispersion of ECS and radiative feed-
backs not in general but under constraint given by a set of metrics
with values of targets and tolerances to errors, i.e., for an acceptable
representation of the present-day climate.

Despite the wide range spanned by ECS, the resemblance in the
climate change simulated by the various configurations is more
marked than their differences (Figs. 4 and 5). These results may ad-
vocate for working separately on the uncertainty quantification of
the ECS and that of the climate change at a given global tempera-
ture change.

Finally, we would like to advocate the need to give more impor-
tance to quantifying the model intrinsic and parametric uncertain-
ties in the forthcoming CMIP exercise, hence a reduction of the
number of scenarios and protocols.

Sharing small parametric ensembles with various models, con-
strained by present-day observations to help quantify parametric
and structural uncertainty in climate projections, would be a
strong improvement for future CMIP exercises. We are willing to
share the expertise and tools needed to build such ensembles.
These ensembles could be combined with or complement those

Fig. 5. Surface evaporation (mm/day) and surface net solar radiation change (W/m2) in coupled simulations for a global temperature change of 5.5 K. The maps
correspond to differences between the abrupt4×CO2 and piControl simulations, averaged over 21 consecutive years centered at year 33 for CTRL, year 65 for Exp 1, and
year 17 for Exp 4.
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quantifying the uncertainty associated with decadal to centennial
internal variability obtained by modifying the initial state of
climate change simulations (55) and those quantifying the impact
of various scenarios in the greenhouse gas trajectories, already pro-
vided in previous CMIP exercises.

The data used in tuning could be made available along with
those flagship CMIP simulations, enabling users to build emulators
that can propagate global climate uncertainties through to impacts
using rigorous statistical frameworks (56) or to run physics-based
impact models formulated within a statistical framework (57).
This would lead to a step change in the types of uncertainty quan-
tification that can be offered to those in society tasked with account-
ing for climate uncertainty on the outcomes of a decision or policy,
whether for a single business or a region or whether it affects a
whole country or continent.

The need for model calibration, for quantification of parametric
uncertainty and for long spin-up simulations, will not disappear
with global cloud resolving models. In these models, many
aspects of the cloud physics (microphysics, subgrid scale heteroge-
neities, shallow convection, or the 3D radiative effects which are not
accounted for so far) must still be parameterized. The same is true
for many other aspects of the climate system. This constitutes a
strong argument in favor of keeping a large part of the global
climate modeling community working and investing on rather
coarse resolution models. We must invest more on parameteriza-
tions, particularly for clouds and convection that are likely respon-
sible for the majority of the spread in future climate projections for a
given trajectory in greenhouse gas concentration.

MATERIALS AND METHODS
Climate simulations
The results presented here are based on analysis of climate simula-
tions performed with global climate models. The models are run
following well-established protocols that are summarized here.

The simulations are run either in full coupled mode between at-
mosphere, ocean, and continental surfaces, or in stand-alone atmo-
spheric + continental surface mode, forced by imposed SSTs. The
imposed SSTs are defined in the AMIP component of CMIP and
consist of monthly averaged SSTs, interpolated in time with spline
functions.

CMIP ensembles
To contextualize our results, we use the multi-model simulations of
the two last CMIPs, CMIP5 and CMIP6. The outputs of the CMIP
simulations are accessed through the Earth System Grid Federation
(ESGF), which provides robust and effective data management.
Details about ESGF are presented on the CMIP Panel website at
https://wcrp-cmip.org/cmip-data-access/.

Preprocessed files will be made available with a DOI if the paper
is accepted for publication, together with the scripts used to gener-
ate the figures.

We particularly use the following:
1. piControl simulations that are coupled simulations run with

constant radiative forcing corresponding to preindustrial
conditions.

2. abrupt4×CO2 simulations in which the atmospheric concen-
tration of CO2 is abruptly multiplied by four as compared to the
piControl simulation, starting from a state vector taken at a given

time of the piControl simulation. The abrupt4×CO2 and historical
simulations are run with the exact same model configuration so that
the climate sensitivity and climate change can be computed from
the difference between the two simulations.

3. Historical simulations consisting in reconstructions of the past
climate under observed and reconstructed external forcing. The
latter include atmospheric concentration of anthropogenic green-
house gases and aerosols, changes of surface land use, natural var-
iations of the solar irradiance, and volcanic eruptions. The historical
simulations start in 1850 and end in 2005 for CMIP5 and 2014 for
CMIP6. The initial states are taken from the piControl simulation
as well.

The IPSL coupled model IPSL-CM6A-LR
The tuning exercise and ECS exploration are done with IPSL-
CM6A-LR (called IPSL-6A), the standard configuration of the
IPSL coupled model designed for CMIP6 (35). It combines the
LMDZ6 Atmospheric model (37), the ORCHIDEE land surface
model (58), and the NEMO ocean model using the LIM3 sea ice
model (59). The atmospheric model resolution is 144 × 143
points in latitude and longitude and 79 vertical layers (with a
maximum height of about 80 km). The design of the IPSL-
CM6A-LR configuration was the result of a long phase of improve-
ments, bug corrections, and by-hand tuning (36).

The piControl, historical, and abrupt4×CO2 simulations run
with the IPSL model are used first as one member of the CMIP6
ensemble. In addition, to account for the natural variability in the
assessment of the sensitivity experiments in Fig. 3, we use the 33-
member ensemble of historical simulations run with the IPSL
model for CMIP6 (39). The members differ only by their initial
states, which correspond to different years in the piControl simula-
tion. Each simulation of the ensemble follows the CMIP6 protocol
for historical simulations (60) for the period 1850–2014.

Sensitivity experiments with IPSL-6A
The specific simulations run for this paper are done with a more
recent model version, both for the atmospheric model and the
other components. However, the changes are essentially technical
and the grid configuration and physics content are the same as
for the IPSL-6A configuration. To check that the results were not
significantly affected by these technical changes, a CTRL configura-
tion was rerun with exactly the same grid configuration and same
values of the free parameters as for the CMIP6 standard simula-
tions. The ensemble of tuning simulations as well as the coupled
simulations Exp 1 to 4 were run by only changing the value of 18
atmospheric free parameters as compared to the CTRL simulation.
As explained in "History matching: how does it work?", the atmo-
spheric tuning is based on 2-year atmospheric simulations run with
imposed climatological SSTs, computing metrics on the second year
of the simulation. For CTRL and Exp 1 to 4 configurations, we run
both piControl simulations and abrupt4×CO2 experiments follow-
ing the CMIP6 protocol for 250 and 150 years, respectively.

History matching
The principle of the history matching procedure, central to this
work, is explained in "History matching: how does it work?". In
practice, we use the High-Tune Explorer tool described in (25) at
length. The application to the 3D global atmospheric component
of the IPSL coupled model is very close to the description given
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in (45) with only two differences: (i) we do not use the precondi-
tioning of the global tuning by 1D test cases; (ii) we add three pre-
cipitation metrics as explained in "History matching: how does it
work?", in addition to the radiative metrics. The description of
the metrics and the values of the metrics computed on the ensemble
simulations of the successive waves of tuning are given in SI1.

Equilibrium climate sensitivity
By definition, the ECS is the change in global-mean near-surface air
temperature (Tg) due to an instantaneous and uniform doubling of
the atmospheric CO2 concentration once the coupled ocean–atmo-
sphere–sea ice system has achieved a statistical equilibrium (i.e., at
the TOA, incoming solar shortwave radiation is balanced by reflect-
ed solar shortwave and outgoing thermal long-wave radiation).
Computing this ECS with a coupled model requires to run the
model for thousands of years to let the slowest component of the
model adjust.

In practice, abrupt4×CO2 simulations are preferred to
abrupt2×CO2 simulations because of a better signal-to-noise ratio
(the noise corresponding here to the natural climate variability). In
practice also, the ECS is computed from the relationship between
the difference of the imbalance in the TOA global net radiative
balance ΔRnet and the global atmospheric temperature difference
ΔTg computed from a pair of abrupt4×CO2 and piControl simula-
tions, to remove the common drift or common long-term variabil-
ity of the two simulations. Although some models show a more
complex behavior, the relationship is generally quite linear, and
this extrapolation is deduced from a linear regression over the
first 150 years, ΔRnet = aΔTg + b, using yearly averages for ΔRnet
and ΔTg (50). The radiative forcing at equilibrium for a doubling
of CO2 is the intercept of the regression line with the y axis
divided by 2 (ERF = b/2) while the ECS is the intercept with the x
axis divided by 2 as well [ECS = −b/(2a)]. This regression is shown
in fig. S7 of section SI2 for the CTRL and Exp 1 to 4 simulations.

Proxies of the ECS can be computed as well from simpler setups.
Here, we use an effective ECS computed on stand-alone atmospher-
ic simulations run on climatological SSTs (clim) and SSTs increased
by 4 K (clim+4K). The ECS is computed as the ERF divided by the
climate sensitivity, defined as the ratio of the change in global TOA
radiation divided by the change in the global near-surface atmo-
spheric temperature ECSatm = ERF × ΔTg/ΔRnet. Because the ERF
is known only a posteriori, from the coupled simulations, we use
a constant value of 4 W/m2, somewhat overestimated compared
to the effective values obtained in coupled simulations (fig. S7).
For a number of reasons (51), this ECSatm computation gives a
rather poor estimate of the effective ECS of the coupled model. Al-
though some propositions exist to account for the difference
between ECScpl and ECSatm (51), we prefer here to use the simplest
estimate of ECSatm, the proposed correction not affecting generally
the ranking of the ECS values (see section SI2 and fig. S7).

Note that because the tuning was done with a more recent
version of the model code, we run a control (CTRL) configuration
with this version, but with the same parameter values as the IPSL-
6A configuration, to check that they yield similar results.

Model evaluations
The most relevant way of comparing coupled simulations with ob-
servations of the past decades is to consider averages of the historical
simulations for the same period. Here, we selected, for evaluation

purposes, the period 1979–2005. However, since we did not run his-
torical simulations for configurations Exp 1 to 4, most of the eval-
uation is done by comparing piControl simulation to present-day
observations. To estimate both the part of the errors that comes
from this choice as well as the possible contribution of the natural
variability to the evaluation metrics in Fig. 3, we also include IPSL-
6A 33-member ensemble of historical simulations (brown circles
in Fig. 3).

Supplementary Materials
This PDF file includes:
SI1 to 4
Figs. S1 to S20
Tables S1 to S3
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