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ABSTRACT

Background. Leaf symbiosis is a phenomenon in which host plants of Rubiaceae
interact with bacterial endophytes within their leaves. To date, it has been found in
around 650 species belonging to eight genera in four tribes; however, the true extent
in Rubiaceae remains unknown. Our aim is to investigate the possible occurrence of
leaf endophytes in the African plant genera Empogona and Tricalysia and, if present, to
establish their identity.

Methods. Total DNA was extracted from the leaves of four species of the Coffeeae
tribe (Empogona congesta, Tricalysia hensii, T. lasiodelphys, and T. semidecidua) and
sequenced. Bacterial reads were filtered out and assembled. Phylogenetic analysis of
the endophytes was used to reveal their identity and their relationship with known
symbionts.

Results. All four species have non-nodulated leaf endophytes, which are identified
as Caballeronia. The endophytes are distinct from each other but related to other
nodulated and non-nodulated endophytes. An apparent phylogenetic or geographic
pattern appears to be absent in endophytes or host plants. Caballeronia endophytes are
present in the leaves of Empogona and Tricalysia, two genera not previously implicated
in leaf symbiosis. This interaction is likely to be more widespread, and future discoveries
are inevitable.

Subjects Biodiversity, Evolutionary Studies, Molecular Biology, Plant Science, Taxonomy

Keywords Africa, Bacteria, Burkholderia, Caballeronia, Coffeeae, Empogona, Endophyte, Leaf
symbiosis, Tricalysia, Rubiaceae

INTRODUCTION

Plant-bacteria interactions are considered ubiquitous and a common phenomenon in
angiosperms (Orozco-Mosqueda & Santoyo, 2021). Many studies have shown the beneficial
impact of such interactions; the most widely known example is the nitrogen-fixing Rhizobia
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bacteria that occur in the rhizosphere of several members of the Fabaceae family (Poole,
Ramachandran & Terpolilli, 2018).

An example of plant endophytes in the phyllosphere is bacterial leaf nodule symbiosis,
which is found in a number of taxa in eudicots (Primulaceae and Rubiaceae) and monocots
(Dioscoreaceae) (Miller, 1990). When leaf nodules are present, it is usually easy to recognize
the presence of this particular plant-bacteria interaction. Moreover, these distinctive
structures can sometimes be used for the taxonomic characterisation of certain plant
lineages in Rubiaceae (e.g., Van Oevelen et al., 2001; Razafimandimbison et al., 2017).
However, leaf nodules are not necessarily always present, and therefore putative leaf
endophytes often remain undetected (Verstraete et al., 2011; Lemaire et al., 2012b). With
the development of modern molecular methods and especially with the rapid increase
of different high-throughput sequencing techniques, an array of tools became available
to detect and study bacterial leaf endophytes (e.g., Carlier et al., 2016; Carlier et al., 2017;
Danneels et al., 2021; Schindler et al., 2021; Danneels et al., 2023).

The Rubiaceae family currently has the highest recorded number of species that are
characterized by bacterial leaf nodulation. The presence of “thickened, hard warts” in
Pavetta indica L. was already noted almost 130 years ago (Trimen, 1894) and it was later
discovered that these leaf nodules contain endophytic bacteria (Zimmermann, 1902). This
symbiosis between Rubiaceae and leaf bacteria was then more elaborately described by Von
Faber (1912). Currently, leaf nodules in Rubiaceae have been observed in the genera Pavetta
L. (ca 350 spp in the Pavetteae tribe), Psychotria L. (ca 80 spp in the Psychotrieae tribe), and
Sericanthe Robbr. (ca 12 spp in the Coffeeae tribe) (Lersten ¢» Horner, 1976; Miller, 1990;
Lemaire et al., 2011b; Lemaire et al., 2012a). Because the leaf bacteria cannot survive outside
the nodules, culture-independent methods were necessary to establish the identity of these
nodulated endophytes: they belong to the genus Burkholderia s.l. (e.g., Van Oevelen et al.,
2002; Lemaire et al., 2011a; Lemaire et al., 2012a; Pinto-Carbé et al., 2018). Furthermore,
most plant species seem to harbour unique bacterial lineages. Since the discovery of leaf
endophytes, the Burkholderia s.l. genus has undergone several taxonomic changes and
therefore names such as Paraburkholderia and Caballeronia can also be encountered in the
literature (Bach et al., 2022).

The Rubiaceae family also contains species with leaf endophytes that are not housed in
conspicuous nodules (Van Wyk et al., 1990). Instead, this second phenotype is characterised
by endophytes occurring in the intercellular space between the leaf mesophyll cells
(Van Wyk et al., 1990; Lemaire et al., 2012b; Verstraete et al., 2013a)). This non-nodulating
phenotype has been observed in the genus Psychotria (22 spp in the Psychotrieae tribe;
Lemaire et al., 2012b) as well as in the genera Fadogia Schweinf., Fadogiella Robyns,
Globulostylis Wernham, Rytigynia Blume, and Vangueria Juss. (ca 191 spp in the
Vanguerieae tribe; Verstraete et al., 2011; Verstraete et al., 2013a; Verstraete et al., 2013b).
These non-nodulated endophytes have also been identified as Burkholderia s.1. but they are
not necessarily specific to a single host plant species (Lemaire et al., 2012b; Verstraete et al.,
2011; Verstraete et al., 2013a; Verstraete et al., 2013b). Because the same bacterial species
can be found in several host species or even in the soil, this interaction is believed to be less
specialised (Verstraete et al., 2013a; Verstraete et al., 2014).
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We currently know that leaf symbiosis (both nodulated and non-nodulated) is present
in eight genera in four tribes of Rubiaceae but the true extent remains unknown to date.
However, it is likely that leaf symbiosis is more widespread and could occur in other
genera as well. Tilney ¢» Van Wyk (2009) made histological sections of leaves of Keetia
gueinzii (Sond.) Bridson (Vanguerieae tribe) and saw “intercellular, non-nodulating,
slime-producing bacteria”, but this has not been confirmed with molecular data yet.
Several Burkholderia species have been found to be associated with the roots of coffee
plants (i.e., Coffea arabica L. and C. canephora Pierre ex A.Froehner in Caballero-Mellado
et al. (2004), and C. liberica W.Bull in Duong et al., 2021) or with the seeds (see review of
Vaughan, Mitchell & Mc Spadden Gardener, 2015). Burkholderia bacteria have also been
found to be associated with the leaves of C. arabica, although only as epiphytes and not as
endophytes (Vega et al., 2005).

The genus Coffea belongs to the Coffeeae tribe together with the genus Sericanthe, for
which leaf nodules have been reported (Lemaire et al., 2011a). So far, there have been no
reports of other taxa in this tribe that contain Burkholderia s.l. endophytes, not in leaf
nodules nor free between the mesophyll cells. The genera within the Coffeeae tribe that are
most closely related to Sericanthe are Diplospora DC., Empogona Hook.f., and Tricalysia
A.Rich ex DC (Arriola et al., 2018). Since none of these genera have visible nodules in their
leaves, if leaf endophytes were to be present, it would have to be non-nodulated ones.
Non-nodulated leaf endophytes in Rubiaceae have so far only been found in taxa occurring
in Africa (Lemaire et al., 2012b; Verstraete et al., 2013b). The genus Diplospora occurs in
(sub)tropical Asia, while the other three genera (Empogona, Sericanthe, and Tricalysia)
are found in continental Africa and Madagascar (POWO, 2023). It is plausible that the
highest likelihood of finding additional taxa with leaf endophytes are taxa closely related
to Sericanthe and occurring in Africa, and we therefore focus our efforts on Empogona and
Tricalysia.

Our specific aims are (1) to investigate the possible occurrence of non-nodulated leaf
endophytes in Empogona and Tricalysia, (2) if present, to establish their identity and
to explore their phylogenetic relationships with other nodulated and non-nodulated
endophytes, and (3) to look for patterns in the endophytes and host plants.

MATERIALS & METHODS

Plant material, DNA isolation, and sequencing

This study investigates four species of the Coffeeae tribe: Empogona congesta (Oliv.)
J.E.Burrows, Tricalysia hensii De Wild., T. lasiodelphys (K.Schum. & K.Krause) A.Chev.,
and T. semidecidua Bridson (Table 1). These species were included in a previous study
about chloroplast genome evolution in Rubiaceae (Ly et al., 2020). The plant material was
obtained from the collection of Meise Botanic Garden, Belgium. Total DNA isolation from
the leaves and DNA sequencing was done as described in Ly et al. (2020). Raw Illumina
reads (BGI-seq 500 platform, 2 x 100 bp paired-end) are available under the BioProject
PRJNA880288 (Table 1). While processing the raw sequencing reads, Ly et al. (2020)
encountered “contamination” (i.e., non-chloroplast reads) and removed those reads to be
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Table 1 Provenance of the material of the four investigated plant species, deposited at Meise Botanic Garden (https:/iwww.botanicalcollections.
be), and information about the raw sequencing reads obtained from the total DNA isolated.

Species name Barcode of voucher Country Number of reads Number of NCBI accession
nucleotides (Gb) number
Empogona congesta BR6202001591004 Zambia 2 X 65,763,918 13.15 SRR21547710
Tricalysia hensii BR0000012568055 D.R. Congo 2 x 61,592,477 12.31 SRR21547709
Tricalysia lasiodelphys BR0000009955950 Cameroon 2 X 62,973,455 12.59 SRR21547708
Tricalysia semidecidua BR6202001590007 Zambia 2 X 65,171,012 13.03 SRR21547707

able to reconstruct the chloroplast genomes of these four species. However, in this study,
we are interested in this “contamination” in the raw reads because it contains information
on possible leaf endophytes.

Read filtering and assembly

The contaminants in the [llumina reads were explored using metagenomic analysis tools.
First, Kaiju v.1.9 (Menzel, Ng & Krogh, 2016) was used to identify and classify raw reads
not belonging to the plant genome with the NCBI non-redundant RefSeq protein database
(NCBI nr_euk). When a significant number of contaminants was present, it was examined
in more detail in the Kaiju output. Second, the presence of contaminants was confirmed
by exploring the distribution of GC count per sample using FASTQC: several GC count
peaks in a single sample might suggest the presence of different organisms in the reads.
Finally, reads from contaminants showing different GC count were filtered out using KAT
v.2.3.4 (k-mer Analysis Tool; Mapleson et al., 2017). The reads were analysed with KAT
gcp to create a matrix of the number of k-mers found, given k-mer frequency (27-mer)
with GC count for each distinct k-mer to explore GC bias. The matrix was displayed via
a density plot of the k-mer coverage versus GC count. KAT filter tools were used to filter
out reads according to the GC bias (k-mer coverage of 100 to 500X and GC count of 10 to
22%). The reads left after filtering (without trimming, cleaning, or error correction) were
subsequently assembled using MaSuRCA v.3.2.6 (Zimin et al., 2013) into scaffolds (Table
2) with the default parameters. The draft genome assemblies of the four endophytes are
available on GenBank (Table 3) and on Zenodo (Verstraete et al., 2022a). Additionally,
the reads were assembled using metaSPAdes v.3.15.5 (Nurk et al., 2017) and those draft
assemblies are also available on Zenodo (Verstraete et al., 2023).

Analysis of the assembled bacterial draft genomes

The scaffolds obtained after assembly were compared to a Burkholderia s.]. sequence
database of 2,288 genomes (representing 22 Gb) downloaded from NCBI (https:
[frww.ncbi.nlm.nih.gov/assembly/term=burkholderia) as available in September 2019.
BLASTn v.2.2.26 (NCBI BLAST) was used for the comparison. Scaffolds with an e-value
<10 e~2% were kept. Assembly completeness was assessed using BUSCO v.5.4.3 (Seppey,
Manni ¢ Zdobnov, 2019) with the proteobacteria_odb10 database downloaded from
https:/busco.ezlab.org. The assembled draft genomes were annotated using Prokka v.1.14.5
(Seemann, 2014) and the annotations are available on Zenodo (Verstraete et al., 2023).
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Table 2 Statistics on the filtered and assembled bacterial reads in Empogona and Tricalysia.

Host species Number of filtered Number of Assembly Assembly Average
reads (100 bp) scaffolds N50 (bp) size (Mb) coverage
Empogona congesta 2 x 14,051,241 632 9,820 3.863 727X
Tricalysia hensii 2 x 11,799,331 736 48,029 7.818 301X
Tricalysia lasiodelphys 2 % 9,204,217 2,971 2,095 4.340 424X
Tricalysia semidecidua 2 % 23,251,991 1,578 22,085 4.082 1139X

Table 3 Statistics about the scaffolds after BLASTn filtering against Burkholderia s.l. genomes.

Host species Number of Assembly N50 Assembly size Complete Missing NCBI
scaffolds of filtered of filtered BUSCO BUSCO accession
with BLASTn scaffolds (bp) scaffolds (Mb) scores scores number

hits against Burkholderia
s.l. genomes

(e-value 10 e~29)
Empogona congesta 612 10,140 3.762 93.2% 1.8% JAQEFV]J000000000
Tricalysia hensii 369 60,447 6.951 99.6% 0.4% JAQFVG000000000
Tricalysia lasiodelphys 2,644 2,165 4.145 75.3% 6.4% JAQFVHO000000000
Tricalysia semidecidua 490 24,168 3.919 95.4% 1.4% JAQFVI000000000

Assembly of the 16S rRNA genes

A custom pipeline was developed to assemble targeted genes from the raw Illumina reads
(Mendez Silva et al., unpublished). In short, raw Illumina reads were mapped to a 16S
rRNA reference gene (CP000010.1: c2677815-2676328 Burkholderia mallei) using Bowtie2
v.2.4.4 (Langmead ¢ Salzberg, 2012). Mapped reads were subsequently filtered out and
assembled with ABySS v.2.2.1 (Jackman et al., 2017).

Phylogenetic analysis of the endophytes

Three genes (16 rRNA, gyrB, and recA) were identified and used for phylogenetic analysis.
A FASTA file with these sequences is available on Zenodo (Verstraete et al., 2022b). The
16S rRNA sequences were obtained from the raw Illumina reads, while the gyrB and
recA sequences were obtained from the assembled scaffolds using the BLASTn tool.
The gyrB nucleotide sequence (NC_006348.1: 3081-5549 Burkholderia mallei) and the
recA nucleotide sequence (NC_006348.1: 290127-291197 Burkholderia mallei) were used
as queries. Sequences were extracted using the extractseq function as implemented in
EMBOSS (Rice, Longden & Bleasby, 2000).

The obtained sequences were combined with previously published datasets (Lemaire
et al., 2011b; Lemaire et al., 2012b; Verstraete et al., 2013b; Danneels et al., 2023) to assess
the phylogenetic position of the detected endophytes (Table S1). Automatic sequence
alignment was performed with MAFFT v.7.490 (Katoh et al., 2002), followed by manual
optimisation in Geneious R11. Possible incongruence among the different datasets was
tested using a partition homogeneity test (implemented in PAUP*4.0b10a; Swofford, 2003).
Due to sensitivity issues with the latter test (Barker ¢ Lutzoni, 2002), resolution and support
values of the different topologies were visually examined (hard versus soft incongruence;
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Johnson ¢ Soltis, 1998). The best-fit nucleotide substitution model for each gene marker
was selected using the Akaike information criterion in jModelTest v.2.1.10 (Posada, 2008).
The model selection test showed that the GTR+I+G model is the most optimal model for
16S rRNA, and that the GTR+G model is the best for gyrB and recA. Bayesian inference
analyses were performed with MrBayes v.3.2.7 (Huelsenbeck ¢» Ronquist, 2001) on three
individual data partitions and a combined data matrix under a mixed-model approach.
Ten million generations were run, and parameters and trees were sampled every 1,000th
generation. Chain convergence and ESS parameters were checked with Tracer v.1.7.2
(Rambaut et al., 2018). Bayesian posterior probability values above or equal to 0.95 are
regarded as statistically supported (Alfaro, Zoller ¢~ Lutzoni, 2003).

RESULTS

Read filtering and assembly

Several species of Rubiaceae were recently sequenced using a whole genome sequencing
approach with DNA extracted from leaves to establish their phylogenetic relationships (Ly
et al., 2020). During the quality analysis steps, two types of raw reads with very different
GC count per read (one peak at 39% and a second at 63%) were found, suggesting the
probable presence of multiple organisms in the raw reads. To understand the origin of the
different GC count peaks, a metagenomic approach was applied on the raw reads from
Empogona and Tricalysia species.

For E. congesta, 37% of all reads could be assigned to a taxon name based on the NCBI
non-redundant RefSeq protein database. About 30% of all reads or 80% of the named
reads is assigned to Burkholderiaceae (Fig. S1A). For T. semidecidua, 30% of all reads is
assigned to a taxon name and about 25% of all reads or 83% of the named reads is assigned
to Burkholderiaceae (Fig. S1C). For T. lasiodelphys, 23% of all reads is assigned to a taxon
name and about 18% of all reads or 75% of the named reads is assigned to Burkholderiaceae
(Fig. SIE). For T. hensii, 20% of all reads is assigned to a taxon name and about 14% of
all reads or 73% of the named reads is assigned to Burkholderiaceae (Fig. S1G). The Kaiju
output can also be found in Data S1.

To confirm the presence of raw reads belonging to bacteria, the levels of k-mer coverage
and GC count per distinct k-mer were analysed. The density plots of the k-mer coverage
and the GC count indicate a low to medium k-mer coverage with a wide spread of the GC
count (Figs. S1B, S1D, SIF and S1H, left part of the plots) suggesting the presence of reads
with sequencing error and a medium coverage genome (i.e., the plant genome). However,
the plots also show high coverage (approximately 700X) with GC counts of 15 to 20%
(Fig. S1B, S1D, S1F and S1H, upper right of the plots). These unexpected reads with high
coverage and high GC count were extracted from the set of raw reads using KAT.

The filtered bacterial reads from E. congesta were assembled into 632 scaffolds with an
assembly size of 3.8 Mb, while the bacterial reads from T. hensii, T. lasiodelphys, and T.
semidecidua were assembled into 769, 736, and 1,578 scaffolds with assembly sizes of 5.7,
7.8, and 4 Mb, respectively. The assembly N50 ranged from 9.8 to 48 Kb (Table 2).
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Analysis of the assembled bacterial draft genomes

For the host species E. congesta, 612 of the 632 scaffolds (97%) resulted in a strong hit
against the Burkholderia s.l. database (e-value cut-off 10 e=2°). For the draft genomes of
the host species T. lasiodelphys, T. hensii, and T. semidecidua, there was a lower proportion
of hits (89%, 50%, and 31%, respectively) (Table 3). Removing scaffolds without a strong
hit against the Burkholderia s.l. genome database increased the N50 of the assemblies.
However, this did not result in a large decrease in assembly sizes, indicating that only
small-size scaffolds were discarded. BUSCO analysis indicated high completeness of the
assemblies (>90%), except for the draft genome of the host species T. lasiodelphys (75.3%).
In contrast to the other species, the large number of scaffolds and low N50 value for T.
lasiodelphys suggest a fragmented and incomplete assembly. The genome assemblies should
be considered as rough drafts, since bias might have been introduced when filtering the
sequences by k-mer/GC count and BLAST. However, it is unlikely that host plant sequences
remain present in the assemblies.

Phylogenetic analysis of leaf endophytes in Empogona and Tricalysia
The phylogenetic position of the endophytes found in Empogona congesta, Tricalysia
hensii, T. lasiodelphys, and T. semidecidua were inferred from the 16S rRNA, gyrB, and
recA sequences. The combined dataset demonstrated that all four non-nodulating leaf
endophytes of Empogona and Tricalysia belong to Burkholderia s.1., more specifically,

to the genus Caballeronia (Fig. 1). The non-nodulated endophyte of T. lasiodelphys is
related to the nodulated endophytes of Sericanthe andongensis (Hiern) Robbr. and the
non-nodulated endophytes of Psychotria psychotrioides (DC.) Roberty (BPP: 0.63). The
non-nodulated endophyte of E. congesta falls within a highly supported clade of nodulated
endophytes of several Pavetta species and non-nodulated endophytes of several Globulostylis
species (BPP: 1.00). The non-nodulated endophyte of T. hensii is found as sister to the
nodulated Candidatus Burkholderia kikwitensis (BPP: 1.00), nested within a clade of
several other nodulated endophytes of Psychotria species. The non-nodulated endophyte
of T. semidecidua falls in a clade with Caballeronia fortuita and C. novacaledonica (BPP:
0.97).

DISCUSSION

Detection of non-nodulated leaf endophytes in Empogona and Tricalysia
The majority of the studies on phylogenetic relationships within the Rubiaceae family to date
has relied on phylogenetic approaches using individual nuclear or plastid DNA markers,
or a combination of both (Wikstrim, Bremer ¢» Rydin, 2020). However, phylogenomic
approaches using more comprehensive amounts of genetic data are becoming more and
more common, e.g., mitochondrial genomic data (Rydin, Wikstrém ¢ Bremer, 2017),
plastid genomes (Ly ef al., 2020; Wikstrom, Bremer ¢ Rydin, 2020), or a combination of
hundreds of nuclear genes (Antonelli et al., 2021; Thureborn et al., 2022). The onset of
the high-throughput sequencing methodology provides a novel tool to also detect leaf
endophytes in Rubiaceae. High-throughput sequencing allows for the sequencing of total
DNA, which is subsequently cleaned using bioinformatic filtering to only retain desired
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Candidatus Burkholderia bifaria OL707
Candidatus Burkholdera bifaria SD2862A
Candidatus Burkholderia humilis SD1497
Candidatus Burkholderia humilis SD3175
Candidatus Burkholderia nigropunctata
Candidatus Burkholderia brevipaniculata SD2916
Candidatus Burkholderia kimuenzae PS7
Candidatus Burkholderia rhizomatosa SD2432
Candidatus Burkholderia rhizomatosa SD2223
Candidatus Burkholderia rhizomatosa SD23

Candidatus Burkholderia alatipes SD2547
Candidotus Burkholderia alatipes SD2555
Candidatus Burkholderia pendulothyrsa SD2438
Candidatus Burkholderia pendulothyrsa OL6478

Candidatus Burkholderia verschuerenii SD1760
Candidatus Burkholderia anthocleistifolia SD1875
Candidatus Burkholderia rubristipulata SD2107
Candidatus Burkholderia rhizomatosa SD1785
Candidatus Burkholderia mannii SD1807
Candidatus Burkholderia mannii SD2375
Candidatus Burkholderia manni SD2299
Candidatus Burkholderia rubripilis SD1973
Candidatus Burkholderia rubripilis SD2077
Candidatus Burkholderia rubripilis SD2295
Candidatus Burkholderia rubripilis SD3174
Caballeronia zhejiangensus BCC 1706
Caballeronia cordobensis LMG27620
Cabaleronia arvi LMG29317
Cabaleronia catudaia LMG29318
Caballeronia glebae LMG29325
Caballeronia pedi LMG29323
Caballeronia concitans LMG29315
Caballeronia grimmiae R27
Caballeronia insecticola RPE64
Caballeronia ptereochthonis LMG29326
Endophyte of Tricalysia semidecidua
Caballeronia fortuita LMG29320
leronia novacaledonica LMG28615
Caballeronia calidae LMG2932
Caballeronia temeraria LMG29319
Candidatus Burkholderia petitii OL658
Candidatus Burkholderia petiti SD1512
Candidatus Burkholderia gardeniifolia BL276
Candidatus Burkholderia gardeniifolia BLI36
Candidatus Burkholderia catophylla BL219
Candidatus Burkholderia catophylla BL180
Candidatus Burkholderia cooperi BL247
Candidatus Burkholderia cooperi BL7S
Candidatus Burkholderia kirkii BR2000 194661
Candidatus Burkholderia kirkii BR19536779
Candidatus Burkholderia kirkii BR2001051392
Candidatus Burkhold kil BR200103624
Candidatus Burkholderia harborii BL49A
Candidatus Burkholderia harborii BL49B
Candidatus Burkholderia eylesii BL87

Endosymbionts of Empogona
Endosymbionts of Tricalysia
Endosymbionts of Sericanthe
Endosymbionts of Vanguerieae

Endosymbionts of Psychotria

Endosymbionts of Pavetta

Endosymbionts of Ardisia (Primulaceae)

Candidatus Burkholderia vanwykii BLI 54
Candidatus Burkholderia vanwykii BLI81
Candidatus Burkholderia vanwykii BL168

005 _{2 Non-nodulating endophytes of Psychotria

Nodulating endophytes of Psychotria

Figure 1 Phylogenetic tree of Burkholderia. s.1., focussing on Caballeronia, based on 16S rRNA, gyrB,
and recA sequences. The four non-nodulated endophytes in Empogona and Tricalysia belong to the genus
Caballeronia and are indicated in bold. Thick lines indicate Bayesian Posterior Probability (BPP) values
higher than or equal to 0.95, thin lines indicate BPP support values lower than 0.95.

Full-size Gl DOI: 10.7717/peerj.15778/fig-1

sequences, i.e., plant DNA sequences in most cases (e.g., Charr et al., 2020). For example,
in the study of Ly er al. (2020), the objective was to obtain whole chloroplast genomes

from 27 species in the Rubiaceae family. Before chloroplast genome assembly, the raw data
was “checked in order to detect potential contamination”, with the unwanted reads being
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removed from further analysis. However, this contamination could be valuable on its own
and possibly contain information on the presence of leaf endophytes. In fact, previous
studies that used a DNA sequencing approach to detect leaf endophytes in Rubiaceae (e.g.,
Van Oevelen et al., 20015 Lemaire et al., 2011b; Verstraete et al., 2013a) also extracted total
DNA but then eliminated the plant DNA by targeting bacterial DNA.

Our study is based on the unpublished raw data of Ly et al. (2020) (but made available
here) and looks for evidence of leaf endophytes in the read contamination, specifically
focusing on the genera Empogona and Tricalysia. These two genera belong to the Coffeeae
tribe and are closely related to Sericanthe (Arriola et al., 2018), a genus known for its leaf
nodulated symbiosis (Lermnaire et al., 2011a). Unlike Sericanthe, Empogona and Tricalysia
do not have visible nodules in their leaves; the detected leaf endophytes are therefore
non-nodulated endophytes. In fact, by examining total DNA, we detected bacterial reads in
E. congesta, T. hensii, T. lasiodelphys, and T. semidecidua (Table 3), indicating the presence
of leaf endophytes.

Our reassessment of the original reads of the study of Ly et al. (2020) shows that we are
dealing with leaf endophytes that are present in large proportions. Epiphytic contamination
is unlikely because the leaves were cleaned with sterile water before the extraction of the
total DNA. We have found that for each of the four investigated species, a large proportion
of the reads is assigned to a limited taxonomic group. In T. semidecidua, this even reaches
83% of the named reads. This finding is in line with all previous studies about Rubiaceae
endophytes. Although at this point, we cannot rule out that there might be more complex
communities within the leaves, the fact remains that the particular Burkholderia-Rubiaceae
interaction has been demonstrated for this new group of plants.

As such, the fact that leaf endophytes are detected in plants previously not implicated
in leaf symbiosis is not unexpected. The wider occurrence of plant-bacteria interactions
in Rubiaceae has been suggested before (Lemaire et al., 2012b; Verstraete et al., 2013a). It
is therefore likely that additional hidden plant-bacteria interactions will be found when a
systematic survey of leaf symbiosis in Rubiaceae is done.

The identity of leaf endophytes and their phylogenetic relationships
Our metagenomic analysis revealed that the bacterial leaf endophytes in Empogona congesta,
Tricalysia hensii, T. lasiodelphys, and T. semidecidua belong to the family Burkholderiaceae.
This is fully expected as so far, all leaf endophytes in Rubiaceae host plants have been
identified as Burkholderia s.1. (e.g., Lemaire et al., 2012b; Verstraete, Janssens ¢» Ronsted,
2017; Pinto-Carbé et al., 2018; Sinnesael, 2020; Georgiou et al., 2021).

After finding out the preliminary identity of the leaf endophytes, three genetic markers
were extracted in order to achieve a more accurate identification, as well as to include the
newly discovered leaf endophytes in a phylogenetic framework. Analysis of 16S rRNA, gyrB,
and recA has already been extensively used to delineate species within Burkholderia s.l.,
as well as to unravel phylogenetic relationships at the generic level (Verstraete et al., 2011;
Verstraete et al., 2013a; Lemaire et al., 201 1a; Lemaire et al., 2011b). The use of these three
markers particularly allows for comparison with other leaf endophytes and Caballeronia
type strains. Even though the use of genomic data would be preferable and is common in
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recent literature about free-living Burkholderia s.1. (Bach et al., 2022), genomic information
about leaf endophytes is often lacking. Such genomic data is usually extracted from pure
cultures, but this is not possible for nodulated leaf endophytes, as they cannot be cultivated
(Sinnesael et al., 2019). The study of the genomes of non-nodulated endophytes shows
more promise but this has only just begun (Danneels et al., 2023).

The endophytes of Empogona and Tricalysia are identified as members of the genus
Caballeronia (Fig. 1). The non-nodulated endophyte of T. lasiodelphys is most closely
related to nodulated endophytes of Sericanthe and non-nodulated endophytes of Psychotria,
while the endophyte of E. congesta is related to nodulated endophytes of Pavetta and non-
nodulated endophytes of Globulostylis. The endophyte of T. hensii is most closely related to
nodulated and non-nodulated endophytes of Psychotria. The endophyte of T. semidecidua
falls in a clade with Caballeronia fortuita and C. novacaledonica. The type strain of C.
fortuita was isolated from Fadogia homblei (Rubiaceae) rhizosphere soil in South Africa
(Verstraete et al., 2014; Peeters et al., 2016), while the type strain of C. novacaledonica was
isolated from Costularia (Cyperaceae) rhizosphere soil in New Caledonia (Guentas et al.,
2016). Besides the fact that all these endophytes belong to the genus Caballeronia, there
does not seem to be much of a phylogenetic pattern.

The study of Van Oevelen et al. (2001), which was the first to identify leaf endophytes
in Rubiaceae host plants (i.e., in a few Psychotria species), found that the 16S rRNA
sequences of the endophytes were similar to that of Burkholderia glathei. As a result, they
assigned the Rubiaceae leaf endophytes to the genus Burkholderia (Van Oevelen et al.,
2001). However, since then, several changes have been made to the taxonomy of this
genus. First, all leaf endophytes were transferred to Paraburkholderia, when Burkholderia
s.l. was split into a pathogenic group (Burkholderia s.s.) and a lineage of environmental
bacteria (Paraburkholderia) (Sawana, Adeolu ¢ Gupta, 2014). Later, Paraburkholderia was
further subdivided and a new genus was created, Caballeronia (Dobritsa ¢ Samadpour,
2016), which holds all nodulated endophytes as well as the non-nodulated endophytes
of Globulostylis and Psychotria. The present study also designates the newly discovered
non-nodulated endophytes of Empogona and Tricalysia as species of the genus Caballeronia
(Fig. 1). The non-nodulated endophytes of the Vanguerieae genera (Fadogia, Fadogiella,
Rytigynia, and Vangueria) remain in Paraburkholderia, except for those of Globulostylis
(Data S2). This is in agreement with what was previously known (Verstraete et al., 2013b).

None of the investigated host plants has conspicuous bacterial leaf nodules in their
leaves, and the endophytes are therefore non-nodulated endophytes. When looking at
the phylogenetic tree of the leaf endophytes (Fig. 1), there is no apparent phylogenetic
pattern for nodulation. The non-nodulated endophytes in Empogona and Tricalysia are not
clustered, although they all belong to the genus Caballeronia. The newly found endophytes
are related to other nodulated or non-nodulated leaf endophytes. Also, when analysing the
results in a larger framework, no phylogenetic pattern is apparent for all non-nodulated
endophytes in Rubiaceae since the majority of the Vanguerieae endophytes are situated
within the genus Paraburkholderia (Data S2). However, we hypothesize that leaf nodulation
should be considered as a character of the host plants, rather than of the leaf endophytes
(see also Lemaire et al., 2012b).
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Patterns in the host plants

In this study, we found Burkholderia s.l. endophytes in two genera of Rubiaceae that
were previously not known to take part in leaf symbiosis. This brings the total number of
genera in Rubiaceae for which leaf symbiosis is (molecularly) confirmed to ten: Psychotria
(Psychotrieae tribe), Pavetta (Pavetteae tribe), Fadogia, Fadogiella, Globulostylis, Rytigynia,
Vangueria (Vanguerieae tribe), and Empogona, Sericanthe, Tricalysia (Coffeeae tribe).

Finding phylogenetic patterns is however challenging. For the five Vanguerieae genera,
the presence of Burkholderia s.l. endophytes is consistent at the genus level (Verstraete et
al., 2013a) and the plants with leaf symbiosis only occur in Africa and Madagascar. For the
genus Pavetta, it is generally assumed that most of the species have leaf nodules (Lersten ¢
Horner, 19765 Miller, 1990; Lemaire et al., 2011b) and these are found in the Paleotropics
(POWO, 2023). The presence or absence of nodules, as well as their form, has been used in
the past to classify subgeneric taxa (e.g., P. series Enodulosae; Bremekamp, 1939). However,
within Pavetta, the phylogenetic distribution of species without nodules is irregular
(Bremekamp, 1934). Within the pantropical genus Psychotria, the situation is even more
complex. The number of (known) species with nodules (ca 80 spp; Lemaire et al., 2012b) is
rather limited compared to the total number of species in the genus (ca 1645; POWO, 2023,
meaning that the nodulated form of leaf symbiosis is not a frequent character in Psychotria.
Also, nodulating Psychotria plants are restricted to Africa and Madagascar. Unfortunately, a
detailed list with the presence and absence of nodules is missing, so it remains uncertain to
date to what extent leaf nodulation is present in Psychotria. The few nodulating Psychotria
species that were included in molecular studies were not recovered as a monophyletic group
(Razafimandimbison et al., 2014). Besides nodulating species, there are also some species
without nodules but with non-nodulated endophytes (Lemaire et al., 2012b). Although
these non-nodulating Psychotria plants were found in a clade (clade III in Lemaire et al.,
2012b) separate from the nodulating species (clade Il in Lemaire et al., 2012b), they also
do not form a monophyletic group. Finally, the species Psychotria lucens Hiern was used
in the past as a negative control (Van Oevelen et al., 2001) and later several other species
without bacterial endophytes were found (Lemaire et al., 2012b). This means that all three
conditions occur in Psychotria. However, the taxonomic delimitation of Psychotria has
changed many times (Razafimandimbison et al., 2014) and finding evolutionary patterns
within this megagenus remains challenging.

The genera Empogona, Sericanthe, and Tricalysia are closely related (Arriola et al., 2018),
and the species of Empogona (Tosh et al., 2009) and Sericanthe (Robbrecht, 1978) were once
included in Tricalysia. Perhaps it is therefore not so surprising to find leaf endophytes
in these genera. The difference between Sericanthe on the one hand and Empogona and
Tricalysia on the other, is that the former has leaf nodules, while the latter do not. A next
step would be to investigate additional species of Empogona and Tricalysia to elucidate the
true extent of leaf symbiosis in these two genera and to find out whether leaf symbiosis
has any phylogenetic signal. Another observation worth investigating is that all tree genera
are related to Diplospora (Arriola et al., 2018) and Discospermum Dalzell (Tosh et al., 2009).
However, the major difference is that these two genera are found in (sub)tropical Asia,
while the other three genera (Empogona, Sericanthe, and Tricalysia) are exclusively found
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in continental Africa and Madagascar (POWO, 2023). So far, the nodulated symbiosis is
predominantly found in Africa (except for a few noduled Pavetta species in (sub)tropical
Asia) and non-nodulated symbiosis is even restricted to that area. A broader screening of
the Coffeeae tribe would therefore be useful to demonstrate the presence or absence of a
geographic pattern in leaf symbiosis. However, for this, a new phylogenetic framework of
the Coffeeae is needed, which shows the relationships between the different genera and
onto which the character “leaf symbiosis” can then be plotted.

CONCLUSIONS

Metagenomic analysis revealed that bacterial endophytes are present in the leaves of
Empogona and Tricalysia, two genera not previously implicated in leaf symbiosis. This result
is another step towards discovering the true extent of leaf symbiosis (both nodulated and
non-nodulated) in the Rubiaceae family. The endophytes belong to the genus Caballeronia
and are not housed in leaf nodules. No phylogenetic signals have been found in the
endophytes, nor does there appear to be a phylogenetic or geographical pattern in the host
species. However, leaf symbiosis is predominantly found in Africa (as are both Empogona
and Tricalysia), so additional plant-bacteria interactions are likely to be found on this
continent.
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