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Abstract: Inundation dynamics are the primary control on greenhouse gas emissions from peatlands.
Situated in the central Congo Basin, the Cuvette Centrale is the largest tropical peatland complex.
However, our knowledge of the spatial and temporal variations in its water levels is limited. By
addressing this gap, we can quantify the relationship between the Cuvette Centrale’s water levels and
greenhouse gas emissions, and further provide a baseline from which deviations caused by climate or
land-use change can be observed, and their impacts understood. We present here a novel approach
that combines satellite-derived rainfall, evapotranspiration and L-band Synthetic Aperture Radar
(SAR) data to estimate spatial and temporal changes in water level across a sub-region of the Cuvette
Centrale. Our key outputs are a map showing the spatial distribution of rainfed and flood-prone
locations and a daily, 100 m resolution map of peatland water levels. This map is validated using
satellite altimetry data and in situ water table data from water loggers. We determine that 50%
of peatlands within our study area are largely rainfed, and a further 22.5% are somewhat rainfed,
receiving hydrological input mostly from rainfall (directly and via surface/sub-surface inputs in
sloped areas). The remaining 27.5% of peatlands are mainly situated in riverine floodplain areas to
the east of the Congo River and between the Ubangui and Congo rivers. The mean amplitude of
the water level across our study area and over a 20-month period is 22.8 ± 10.1 cm to 1 standard
deviation. Maximum temporal variations in water levels occur in the riverine floodplain areas and
in the inter-fluvial region between the Ubangui and Congo rivers. Our results show that spatial
and temporal changes in water levels can be successfully mapped over tropical peatlands using the
pattern of net water input (rainfall minus evapotranspiration, not accounting for run-off) and L-band
SAR data.
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1. Introduction

Wetlands and floodplains cover ∼8% of the Earth’s land surface [1,2] and store between
16 and 33% of the world’s land carbon [2]. In addition to forming an important ecosystem
for biodiversity [3], they play an important role in the global carbon cycle, dominating
inter-annual variability in methane sources [4–7], with between 20 and 25% of methane
emissions estimated to originate from them [8–10]. Peatlands are a type of carbon-rich,
high organic content wetland, formed under anoxic, water-logged conditions due to slow
litter decomposition and limits on respiration [11,12].

Greenhouse gas (GHG) fluxes from the peat vary significantly with water table depth.
Carbon dioxide emissions increase when the water table is below the peat surface and the
peat is exposed to the atmosphere, while increased methane production occurs through
methanogenic processes when the water level is close to or rises above the peat surface [5,13].
To understand the influence of hydrology on peatland GHG fluxes, it is important to quan-
tify the spatial and temporal variations in water table levels as accurately as possible.
By reducing gaps in our understanding of hydrological processes, we can improve our
knowledge of the impacts of hydro-climatic processes [14], leading to better-informed
policy-making in relation to land-surface dynamics and climate change. Specifically, im-
proved knowledge of inundation duration and extent will help us to quantify changes
in GHG fluxes from the peatland complex under projected climate or land-use change
and may also help with the validation of outputs from process-based models [15].

The central Congo Basin experiences significant seasonal and spatial variations in
inundation [16]. Frappart et al. [17] has compiled a comprehensive overview of the var-
ious methodologies used to assess surface water storage (SWS) anomalies in this region.
These methods include interferometric SAR (InSAR) [15,18,19], the use of digital elevation
models (DEMs) in conjunction with satellite-derived surface water extent for determining
SWS [20,21], employing altimetry-derived water levels combined with satellite-based es-
timates of water extent [22–24] and using a combination of remotely sensed products to
solve the water balance equation, which accounts for rainfall, groundwater input, runoff
and evapotranspiration [18,25].

Becker et al. [26] used the Global Inundation Extent from Multi-Satellite (GIEMS) data
and ENVISAT altimetry data to estimate water-level maps and SWS across the Congo
River Basin (CRB), including the floodplain and wetland regions, for the period 2003 to
2007. They calculated the mean annual variation in the CRB SWS as 81 ± 24 km3, which
aligns with more recent findings from Kitambo et al. [27], who estimated monthly SWS
dynamics over the CRB at 0.25° resolution, for the period 1995 to 2015, using a combination
of water level heights from virtual altimeter stations and the water extent from the updated
GIEMS-2 dataset [28]. They found strong seasonal and inter-annual variability in the SWS,
with the Middle-Congo sub-basin showing the highest variability in the mean amplitude
of the SWS volume.

Land-surface modelling techniques have also been used to estimate the CRB surface
water extent dynamics; for example, Tshimanga and Hughes [14] applied the Pitman model,
a semi-distributed rainfall-runoff model, across the CRB, with the aim of understanding
the processes of runoff generation. They were able to simulate the timings and magnitude
of water flow maxima and minima; however, the model was not able to generate water
level heights.

The Cuvette Centrale is the second largest wetland in the tropics and was recently
found to contain the largest region of tropical peatland [11], with an estimated extent of
167,600 km2, and to store 29.0 Petagrams of carbon (Pg C) (95% CI, 26.3–32.2 Pg C) [29].
It is situated in the central lowland region of the Congo Basin and spans the Republic
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of the Congo (RoC) and the Democratic Republic of the Congo (DRC). The two main
rivers running through the region are the Congo and the Ubangui, which separate the two
countries. Other large rivers within the region are the Sangha and Kasaï [30]. While the
peatlands to the east of the Congo River are largely in floodplain locations and receive
additional water inputs from riverine flooding and groundwater, those to the west, in the
RoC and parts of Northern DRC, are largely located in inter-fluvial basins, and, as they
are hydrologically separated from the river system, they receive most of their hydrological
input from rainfall [11,25,31], and may, therefore, be more vulnerable to dry periods and
climate change impacts.

The studies highlighted so far have improved our understanding of the surface water
extent and storage dynamics of the central Congo Basin, but are limited in their useful-
ness for assessing surface-water dynamics for the non-flood-prone regions of the Cuvette
Centrale peatland complex. Altimeters primarily measure water levels over permanent
water bodies, including lakes and rivers, and interpolation of these data is, therefore, best
suited for flood-prone regions, and would not be representative of ombrotrophic (rainfed)
peatland regions. There remains a gap in our knowledge relating to inundation dynamics
across the ombrotrophic peatland regions [32,33].

Alternatively, direct in situ water table data may be used, and some are available from
water loggers installed in the Cuvette Centrale region [32,33]; however, they are limited in
their spatial and temporal coverage. The peatlands are difficult to access to first place water
loggers and then to adequately service them, and the logger’s lifespan can be short due to
the harsh swamp conditions. Additionally, water logger data are at point locations, where
the conditions may not be representative of the hydrological dynamics of the surrounding
area due to micro-topographical features evident on a spatial scale of metres, which have
been shown to result in height variations of ±16 cm to 1 standard deviation in a natural
(undrained) tropical peatland in Central Kalimantan, Indonesia [34,35].

To adequately describe peatland inundation at the regional scale necessitates the
use of satellite observations covering large spatial extents and available over long time
periods. Such data can be validated to some extent using the more limited point coverage
of in situ measurements.

Synthetic Aperture Radar (SAR) is an active remote sensing instrument operating at
microwave wavelengths. It offers significant advantages for monitoring changes in tropical
peatland inundation. SAR’s capability to penetrate cloud cover and, at long-band (L-band)
wavelength, the tree canopy makes it particularly useful in the context of high humidity
conditions and the extensive tree cover prevalent in most tropical peatlands. SAR data can
be used to monitor the evolution of flooding across vegetated regions due to increased
backscatter, occurring via the double-bounce mechanism [36–38], as the water level in-
creases. Various studies have attempted to map wetland inundation using SAR imagery,
particularly L-band SAR in regions of dense forest, including the Japanese Earth Resources
Satellite, JERS-1 (available from 1992 to 1998) [39], The Advanced Land Observing Satellite
(ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) (2006 to 2011) [40] and
ALOS-2 PALSAR-2 (2014 to present) [38]. Rosenqvist et al. [39] used two JERS-1 SAR
images to investigate the usefulness of radar imagery for characterising seasonal flood-
ing dynamics across the Congo Basin, and found potential for the maximum extents of
flooding to be determined, while it was more challenging to determine the dynamics and
variability of the flooding due to the complex hydrological mechanisms across the basin.
The flood pulse seasonality varies north and south of the equator, making it challenging to
identify radar images representative of the minimum and maximum SWS corresponding
with the flood evolution dynamics of each [39]. Rosenqvist et al. [38] progressed on their
previously developed methods used to map inundation using JERS-1 and ALOS PALSAR
by mapping the minimum and maximum extents of inundation across the Amazon basin
using a decision tree classification algorithm applied to time series of ALOS-2 PALSAR-2
ScanSAR data. They were successful at capturing the inundation extents, but comparisons
with a network of river gauges showed that they were not able to estimate water level,
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attributing this in part to the low temporal availability of the SAR data (42-day return
cycle). Lee et al. [15] combined the water extent from L-band ALOS PALSAR images with
interpolated virtual altimetry station time series and vegetation density data, derived using
the Moderate-resolution Imaging Spectroradiometer (MODIS) Vegetation Continuous Field
(VCF) instrument, to produce the first high-resolution (100 m) water level maps across the
Cuvette Centrale wetlands for selected dates between 2006 and 2008 with ALOS PALSAR
scene availability. This enabled improved estimation of the evolution of the region’s SWS
and better constrained spatially interpolated water level maps.

While previous studies have succeeded at mapping surface water extent and it has
been shown that L-band SAR data can be used to map water levels in densely forested
regions [15], we lack high spatiotemporal resolution maps of water level variation that
can capture inundation dynamics over rainfed regions of the Cuvette Centrale. To address
this, we used the high temporal (daily) pattern of net water input (rainfall minus evap-
otranspiration, not accounting for run-off or groundwater inputs) together with the less
frequent but higher spatial resolution (100 m) L-band ALOS-2 PALSAR-2 ScanSAR data,
which, at approximately 23.5 cm wavelength, can effectively see through the canopy to
the peat surface, to interpolate the SAR imagery to daily resolution. We then used in situ
water table depth measurements, recorded during expeditions along multiple transects in
the RoC and DRC [29,33], to develop a transfer equation between the SAR backscatter and
water level, enabling us to estimate the daily evolution of water level across a sub-region
of the Cuvette Centrale. In a rainfed hydrological system, the level of inundation corre-
lates directly with spatial and temporal variations in rainfall, while water level changes
in flood-prone regions will decorrelate quickly with the accumulated rainfall input at that
location due to the additional time-lag component of water input from upstream rainfall.
We use pixel-wise correlation statistics to compare the PALSAR-2 backscatter with the net
water input time series. High pixel-wise temporal correlation is indicative of largely rainfed
hydrological dynamics, while low or insignificant correlation statistics are indicative of a
region receiving additional water input, e.g., from flooding, run-off contributions, or net
groundwater output in sloped regions. The three key questions we seek to address within
this research are:

1. How does the inundation of tropical peatlands in the Cuvette Centrale vary spatially
and temporally?

2. How does water level correlate with net water input across the peatlands, and can this
be used to distinguish between areas of the Cuvette Centrale that are largely rainfed
and where flood or additional groundwater dynamics play a significant role?

3. What are the differences in peatland hydrological inputs to the east and west of the
Congo River?

The use of L-band SAR data to map surface-water dynamics on a high resolution, e.g., a
1-hectare grid, rather than for delineating the extent of flooding, as has been carried out in
previous studies, enables more precise mapping of water levels across the peatlands. This
is required for bottom-up estimation of GHG emissions from the peatlands. Additionally,
high-resolution maps of temporal variations in water level would enable us to make the best
use of recently developed land cover maps of the Cuvette Centrale [11,29] to distinguish
differences in GHG emissions between the two main peatland vegetation types, palm and
hardwood swamp. The Cuvette Centrale peatlands are vulnerable to drying and are on
a climatic threshold [41]. Increasing temperatures due to climate change will increase
evapotranspiration and may result in a reduction in net water input to the peatlands.
A high spatial and temporal resolution water level map at the basin scale could be used to
assess the seasonality of inundation and identify which peatland areas are most vulnerable
to climate change and becoming a carbon source through increases in carbon dioxide
emissions when water levels are low.

The methods we describe here for distinguishing rainfed from flood-prone regions
and to temporally interpolate SAR data using the pattern of net water input can usefully be
applied to estimate water levels in other vegetated ombrotrophic wetland regions.
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2. Methods and Materials
2.1. Study Area

We focused our study on a subset region of the Cuvette Centrale (Figure 1), corre-
sponding with the 350 × 350 km area of the PALSAR-2 imagery we used. The locations
where water table depths were measured are highlighted on the map.

Figure 1. (a) The green border shows the extent of our study area within the Cuvette Centrale region,
corresponding with the extent of the time series of PALSAR-2 scenes we used. The orange outline is
the footprint of the peatland complex, derived from Crezee et al. [29]. Highlighted are the transects
where water table depth measurements were taken during either the dry (red), wet (blue) or both
dry and wet (green) seasons [33]. Additionally, two water loggers are located in the Ekolongouma
region and three are in the Lokolama region. The inset map shows where our study area is located in
Central Africa. (b) Land cover corresponding with the study area, derived from Crezee et al. [29].

Figure A2 provides further information about the terrain characteristics of this region.
The peatland elevations vary from ∼300 to 340 m above sea level (Figure A2a). The terrain
slope characteristics are distinct between the peatlands to the west and east of the Congo
River, with fluvial-connected peatlands located in the eastern DRC region, while the
peatlands lie mainly in inter-fluvial basins to the west of the Congo River (Figure A2c).
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2.2. Data
2.2.1. SAR Data

The ALOS-2 satellite mission was launched in 2014 by the Japan Aerospace Exploration
Agency (JAXA), with the Phased Array L-band SAR 2 (PALSAR-2) instrument on board.
One of its main objectives was to monitor environmental changes globally, including the in-
undation dynamics of wetland regions [42]. We used 17 dual-polarisation PALSAR-2 scenes
obtained through the JAXA G-Portal interface (https://gportal.jaxa.jp/gpr/?lang=en, last
accessed: 13 April 2023) in CEOS format at the level 1.5 geo-referenced stage of processing.
These data include a basic radiometric correction but not speckle reduction, terrain correc-
tion, or geo-referencing. The polarisations they include are the Horizontally-transmitted,
Horizontally-received (HH) and Horizontally-transmitted, Vertically-received (HV) am-
plitude and intensity bands. Yuan et al. [43] used the ALOS PALSAR HH polarisation
together with altimetry data to map water level changes over Ĩle Mbamou in the Congo
Basin, due to its higher sensitivity to water level [40]. The HV polarisation is more sensitive
to vegetation characteristics, and the ratio of the two (HH:HV) has previously been used to
improve identification between flooded and non-flooded pixels when using Sentinel-1 SAR
data at C-band resolution [44].

All images obtained were taken in the descending orbit direction. The time series of
17 collocated SAR images we use includes a set of 15 subsequent scenes from 2019 to 2020,
each separated by 42 days in most cases and 28 days in two cases, and a second set of two
subsequent scenes from 2021. There is a gap of ∼11 months between the end date of the
first set and the start date of the second. Our final spatiotemporal water depth maps are
produced for dates that fall within the start and end dates of each of these two sets.

2.2.2. Meteorological Data

Rainfall is highly variable across the Cuvette Centrale both spatially and temporally,
and our study requires sufficiently high-resolution data to assess how rainfall variations
relate to temporal changes in backscatter in the PALSAR-2 imagery. We use the daily
Climate Hazards Center Infrared Precipitation with Stations version 2 (CHIRPS-2) rainfall
dataset [45], available at 0.05◦ resolution (5.55 km resolution at the equator). An inter-
comparison study of remotely sensed rainfall products showed it to be the highest reso-
lution product available that was effective at reproducing the spatial variability of Cen-
tral African rainfall and performed well on the inter-annual scale [46]. Additionally,
Santos et al. [47] highlighted the benefits of using CHIRPS-2 rainfall data within the Soil
and Water Assessment Tool (SWAT) model over the Congo Basin, in comparison to other
satellite-derived rainfall data.

Potential evapotranspiration (PET) is the maximum amount of water that could po-
tentially be evaporated from an area given sufficient water availability, while actual evap-
otranspiration (AET) is the amount of water evaporated, limited by water availability.
In swamp regions, where there is sufficient water availability either above or below the
surface, changes in the AET are controlled mainly by temperature and humidity varia-
tions, and the AET is equal to the PET [48]. We use daily PET data from the National
Oceanic and Atmospheric Administration (NOAA), available at 1° spatial resolution from
the USGS FEWS Net platform (https://earlywarning.usgs.gov/fews/product/81, last ac-
cessed: 18 April 2023) and MODIS SSEBop AET data at 1 km spatial and dekadal (10-days)
temporal resolution, also available from the FEWSNet platform (https://earlywarning.
usgs.gov/fews/product/461, last accessed: 18 April 2023).

2.2.3. In Situ Data

We used water table depth measurements taken at 250 m intervals along transects,
collected during multiple field sampling trips [29] (see Figure 1), to arrive at a transfer
function between the SAR backscatter and water level that we can then apply across the
full extent of the imagery. Further details about the transect sampling dates are included in

https://gportal.jaxa.jp/gpr/?lang=en
https://earlywarning.usgs.gov/fews/product/81
https://earlywarning.usgs.gov/fews/product/461
https://earlywarning.usgs.gov/fews/product/461
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Table A1, and details about the field campaigns are provided by Crezee et al. [29] and in
the PhD thesis by Crezee [33].

Additionally, we used measurements from five in situ automated water table log-
gers [29,32] to assess the spatial correlation between the derived water level patterns and
long-term time series of water levels at specific sites (see Table A2 for further details of their
locations and date ranges). Two are located in the Ekolongouma region of the RoC (Figure 1)
and log the water table depth at 10-min intervals, while three are located in the Lokolama
region of the DRC and log the water table depth at 20-min intervals. These data have been
corrected using local air pressure measurements from nearby barometric loggers.

2.2.4. Altimetry-Derived Surface Water Level

Satellite radar altimetry can estimate water levels by measuring the time it takes for a
microwave pulse to be backscattered from water and returned to the sensor. Currently, radar
altimetry processing is applied across selected permanent water body locations to produce
virtual station time series of water levels. Automation of the process requires identification
of where the altimeter crosses water bodies and, therefore, the easily identifiable rivers,
lakes, and reservoirs are most often used, rather than tropical peatland regions with their
variable surface-water dynamics [49]. We used four altimetry time series, collocated with
regions of peat swamp within our study area, to validate the derived daily water-level
data: two from the Sentinel-3A radar altimeter (27-day resolution), and two from the
Jason-3 radar altimeter (10-day resolution). The data were downloaded from the Hydroweb
site (https://hydroweb.theia-land.fr/, last accessed: 7 March 2023). Kitambo et al. [50]
provide a more detailed description of the analysis of altimetry virtual stations over the
Congo Basin.

2.2.5. Land Cover and Terrain Data

We used an approximately 50 m resolution land cover map of the Cuvette Centrale
region, developed by Crezee et al. [29], to mask our data for permanent water bodies
and non-peatland land class areas. Crezee et al. [29] included ALOS PALSAR yearly
mosaic HH polarisation data in their land cover map model but found that it did not
distinguish between peat swamp vegetation classes. We, therefore, use ALOS-2 PALSAR-2
HH data to explore the differences in derived water levels between the two dominant
peatland vegetation classes identified by Dargie et al. [11] and Crezee et al. [29]: palm and
hardwood swamp.

In our discussion of the results, we refer to terrain data, including the MERIT Hy-
dro Digital Elevation Model (DEM) and Height Above Nearest Drainage basin (HAND)
datasets [51] at 90 m resolution, retrieved from Google Earth Engine; the slope of the
terrain, which we derived from the MERIT DEM using GDAL tools and the Relative Topo-
graphic Position Index (RTPI) which we calculated from the DEM using the Whitebox tools
Python package. The MERIT DEM corrects for tree height bias, which results in terrain
slope distortion, significantly affecting low-lying tropical swamp regions, including the
Congo Basin [51].

2.3. Methods

In this section we describe our use of the PALSAR-2 data; the derivation of the net
water input data from rainfall, potential evapotranspiration (PET) and actual evapotran-
spiration (AET) data; the combined use of these data to interpolate the PALSAR-2 image
stack to daily resolution; the use of a transfer function and pixel-wise correlation statistics
to derive the final modelled time-series of water-level evolution across peatland regions
and validation of these data.

2.3.1. PALSAR-2 Data

For the purpose of inundation mapping, we rely on the double-bounce mechanism [36–38],
which happens when the radar signal undergoes specular reflection from a smooth surface

https://hydroweb.theia-land.fr/
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(e.g., water) and then encounters a vertical surface (e.g., a tree trunk) from which it is backscat-
tered to the sensor in the same direction as the incident signal, enhancing the signal return
from that location (Figure 2). Where this happens, locations appear brighter in the imagery,
enabling estimation of inundation, by defining relationships between surface-water level and
radar backscatter.

Figure 2. Summary of the backscattering mechanisms involved between L-band SAR data and
regions of tropical peatland.

The pre-processing stages for creating level 1.5 PALSAR-2 data included range com-
pression, multi-look azimuth compression and applying radiometric and geometric correc-
tions. We applied additional post-processing steps as detailed in Figure 3. A more detailed
description of these steps is included in Appendix A.1.

Figure 3. A summary of the post-processing steps applied to the ALOS-2 PALSAR-2 time series
of images [52].

2.3.2. Calculation of Daily Net Water Input

We re-gridded the 0.05° CHIRPS to the same resolution as the AET data (0.01°) using a
bilinear interpolation. This was carried out only for the purpose of the data grids being
co-located, rather than to enhance the resolution of the rainfall data.

To approximate the daily AET, we applied the temporal pattern of the daily PET data
to the dekadal (10-day) AET data. This involved summing the daily PET over the same
dekadal periods as the AET data and calculating daily weightings, corresponding with the



Remote Sens. 2023, 15, 3099 9 of 38

distribution of the daily PET over this period. We then applied these daily weightings to
the dekadal AET to estimate daily AET. This method effectively applied a pixel-by-pixel
multiplying factor to the daily PET to calculate the daily AET from the pattern of the PET.
In doing this, we made the assumption that the AET is approximately equal to the PET in
wetland regions, as there is always water available to be evaporated.

The Cuvette Centrale region experiences two dry seasons: December, January, and Febru-
ary (DJF) and June, July, and August (JJA), and two wet seasons: March, April, and May
(MAM) and September, October, and November (SON). To validate our assumption that
AET approximately equals PET within our study region, we first summed the PET over the
same dekadal periods as the AET, and then summed their differences over the three-month
dry and wet seasonal periods, to arrive at the total seasonal differences between the AET
and PET at each pixel. The daily net water input at each pixel was then calculated as the
difference between the daily rainfall and the derived daily AET estimate. It is important to
note that this method provides net water input estimations with the highest accuracy for
directly rainfed peatlands that do not experience significant additional surface or sub-surface
runoff contributions.

2.3.3. Determining Which Areas Are Rainfed

We calculated pixel-wise temporal correlations between the change in backscatter
between pairs of subsequent images in the PALSAR-2 HH time series stack (δHH) and
the time series of the corresponding accumulated net water input between each pair of
subsequent images. We used the resulting pixel-wise correlation statistics, including the
correlation, slope, p-value and standard error, to determine the extent to which each pixel
can be classed as rainfed, receiving its water inputs from direct rainfall.

We also calculated the number of days of net water accumulation that results in the
highest correlation between these two datasets, allowing us to map more clearly the extent
to which different areas are directly rainfed, receive additional surface or sub-surface
hydrological input or are flood-prone.

2.3.4. Mitigating for Terrain Variability When Estimating Pixel Water Level

As a result of spatial variations in the gradient of the pixel-wise correlation, we decided
that the interpolation to daily values of SAR data using the pattern of the rainfall data
should be applied using the best-fit pixel-wise correlation pattern for each individual pixel.
This means that any differences in backscatter due to differences in terrain, e.g., slope,
aspect, tree density or dominant vegetation type within a 1 ha pixel, can be accounted for
to some extent. As such, we were then able to apply a single linear regression equation
across the full image stack extent to transfer the derived daily HH backscatter time series
to a water level estimate.

2.3.5. Estimating the Daily Water Level

We describe here the processing steps involved in our use of the PALSAR-2 time se-
ries to calculate the evolution of the water table level at 100 m spatial-temporal and daily
temporal resolution.

Permanent water bodies have low SAR backscatter values, as the signal experiences
specular reflection from their surface, given that there is no vegetation with which it
can interact (Figure 2). By looking at the backscatter distribution across the images, we
identified permanent water bodies as pixels with a maximum time-series backscatter value
below −11 dB, which is in agreement with the value found by Kim et al. [53]. Using the
maximum value across the time series, rather than a single image, ensures that any areas
where the vegetation may sometimes be inundated to the point where the water level is
above the vegetation, are not falsely classified as permanent water bodies. Within the
Cuvette Centrale region, this is unlikely to occur as the water levels are not that high, with a
variation in river height of 1.5 to 4.5 m [50]; however, it would become important if the
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methods described here were to be extended to other wetland regions, e.g., the Pastaza
Marañon Foreland Basin (PMFB) in Peru where higher levels of inundation are experienced.

To interpolate the HH SAR time series from between 28 and 42 days to daily resolution,
using the pattern of the daily net water, we calculated the forward and backward evolution
of HH backscatter from the previous and next images in the stack, respectively.

We used the forward equation:

HHn = HHi0 +

n−1
∑

d=0
NWdaily

m
(1)

and the backward equation:

HHn = HHi1 −

i1−1
∑

d=n
NWdaily

m
(2)

where HHn is the daily HH backscatter value to be calculated; i0 is the start image and
i1 is the end image for each pair of subsequent images in the original HH stack; m is the
gradient of the pixel-wise correlation between the δHH and δNW time-series (unique on a
pixel-by-pixel basis) and NWdaily is the daily net water input.

We also investigated implementing the daily HH interpolation using two methods:
(1) only the forward equation described above and (2) a combination of the forward and
backward equations, each calculated to the mid-point between subsequent images, such
that every interpolated value is based on the closest image. However, although the range of
HH daily values was within the expected range in both cases, there were noticeable steps in
the values between the last and second-to-last days when using the forward-interpolation
only, and between the mid-interpolation dates when using both the forward and backward
interpolations. This occurred to a greater extent for pixels with a lower correlation between
the HH backscatter and the daily net water input. These locations are not fully rainfed and
the local slope could lead to water in/out flow, or there may be some flooding potential
in riverine areas. To mitigate this, we applied logistic growth and decay functions to the
forward and backward equation interpolated outputs. This resulted in a 50% influence
on the central interpolated date’s image values from each of the previous and following
HH backscatter images and an exponentially increasing contribution from the closest
image date as the interpolation tends towards it. The logistic decay function is calculated
as follows:

f (x) =
1

1 + e10(x−0.5)
(3)

and the growth function:

f (x) =
1

1 + e−10(x−0.5)
(4)

where x is the number of days between subsequent PALSAR-2 scenes. The value of −0.5 is
used to centre the function’s mid-point so that it lies halfway between subsequent scenes
and a scaling factor of 10 is used. These functions are shown graphically in Figure A1.

Additionally, we calculated a daily linear interpolation between subsequent image
dates. These data were used to gap-fill the final HH backscatter interpolation in regions
prone to flooding or where the rainfed contribution of a pixel’s total water input is low due
to surface or sub-surface run-off/run-in.

We performed a linear regression analysis between the water table depth measurements
along the transect (Figure 1) and the PALSAR-2 HH backscatter data. Subsequently, we
applied this derived transfer equation to the interpolated daily time series of HH backscatter,
enabling us to determine the spatial and temporal variations in the water levels.

We used pixel-wise correlation statistics to identify rainfed areas as being located
where there are significant correlations between the net water accumulations and the
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HH time series. For these regions, we used the pattern of daily net water accumulations
between subsequent image dates to model variations in the water table level. For all other
regions, where changes in water level do not correspond well with the net water input
(accounting for rainfall and evapotranspiration alone), we applied a linear interpolation
between image dates.

2.3.6. Determining Water Level Variability

To assess the spatial and temporal variability of the derived daily water level time
series, we calculated five metrics across peatland pixels within the study area for both
individual months and the full 20-month period: (1) the minimum and (2) maximum water
levels for each pixel, (3) the corresponding amplitude (maximum−minimum), (4) the mean
water level and (5) its standard deviation. Additionally, we calculated the percentage
of days that the water level was at or above the peat surface across the full 20-month
time series.

These metrics helped us to identify where the largest fluctuations in water level are
experienced; which areas of the peatlands are seasonally inundated and, therefore, might
be more susceptible to drying under future climate change scenarios and the differences in
variability between largely rainfed regions and those that receive additional water input
from riverine flooding or runoff.

To explore the relationship between water level and swamp vegetation type, we ran
a one-way ANOVA test between the categorical variable, peat swamp type (hardwood
and palm swamp) and the standard deviation, minimum, maximum and mean values
of the water level. We used the outputs of the ANOVA tests to calculate the Eta squared
(η2) values. η2 has parallels with the R2 value in that it measures the degree to which the
variance in the categorical variable is related to the variance in the continuous variable. We
also calculated the mean value of each of the water level variability metrics for palm and
hardwood swamp types. Additionally, we calculated the mean values for each of these
metrics across all time steps for hardwood and palm swamp pixels respectively.

2.3.7. Validation of Modelled Water Levels

To validate the modelled daily water level maps, we assessed the correlation between
the patterns of the modelled and measured water level data using time series of in situ
water level logger data, available at five locations within our study area. These water logger
data were held aside specifically for validation purposes. The peatland micro-topography
can be highly variable and is characterised by raised hummocks and depressed hollows
that become inundated first [34]. It is not known if the water logger placements were
representative of the average elevation and, therefore, the average water level conditions
across the 1 ha area they lay within, corresponding with the SAR pixel from which we
retrieved the backscatter values. We were therefore more interested in the direction and
rate of change between the time-series patterns than the absolute values. We calculated
correlative statistics, including the non-parametric Pearson’s R (and R2), Kendall’s τ and
Spearman’s ρ, to compare these two-time series. Pearson’s R and Spearman’s ρ provide
measures of the strength of the relationship between two variables. R measures the linear
correlation and R2 is a measure of the percentage of variability in the first (independent)
variable that can be explained by the second (dependent) variable, while ρ measures the
rank correlation, which disregards the order of the original data and is useful where the
rate of change in the relationship between two variables is not constant. This can be the
case when comparing modelled (large spatial area) and water logger (point location) data,
where the rate of change in water level may not be representative between the two spatial
scales. Kendall’s τ additionally provides a measure of how correlated the directions of the
relationship between two variables are. In our case, this would be a measure of whether the
water logger and modelled data are in agreement about whether the water level is rising
or not.
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We also normalised the altimetry and modelled water level data and compared their
patterns, as we did with the water logger data. We used the patterns, rather than the
absolute values, for three reasons: the altimetry data is referenced to the geoid (height
above sea level); the altimeters measure at C-band and can have large uncertainties in
estimated water level heights, especially over wetlands where there is dense vegetation
and increased signal attenuation and the altimeter virtual stations are likely located over
stream areas that traverse the 1 ha pixel area, such that the altimeter-measured variations
in water level may be greater than those over the neighbouring swamp vegetation due to
the flood protection provided by levees.

2.4. Use of Elevation Data in the Discussion of the Results

The relative topographic position index (RTPI) is a measure of the difference in ele-
vation between a pixel and the mean elevation of its surrounding pixels within a defined
filter box extent [54]. We derived the RTPI from the 90 m MERIT DEM using the Whitebox
Tools Python package RTPI function, with a 56 by 56 (approximately 5 × 5 km) filter kernel.

3. Results
3.1. Validation of the Combined Use of Actual- and Potential-Evapotranspiration

We confirmed that our assumption, that AET approximates PET in wetland regions,
is a valid one across our study area. The total seasonal differences between the dekadal
AET and PET are shown in Figure 4 for the peatland region within the ALOS image stack
extent. These were small compared to the corresponding total evapotranspiration, with a
mean summed difference of 10.9 mm over the three-month seasonal periods (Figure 4b).
In some areas of the Cuvette Centrale, flooding continues or increases into the dry seasons
(December to February and June to July) due to the time lag in local river level increases
resulting from upstream hydrological inputs [50].

Figure 4. (a) The seasonally summed differences in accumulated 10-day Potential Evapotranspiration
(PET) and Actual Evapotranspiration (AET) over the study area for the two dry seasons: December,
January, February (DJF) and June, July, August (JJA), and two wet seasons: March, April, May (MAM)
and September, October, November (SON). (b) A histogram showing the full spread of differences
between the 10-day PET and AET accumulations.

3.2. The Applicability of the Derived SAR Metrics for Flood Mapping

Over peatland areas, we observed the highest inter-season variability in backscatter
in the HH image stack (Figure 5). We tested the use of both the HH and HH:HV image
stacks and we found that the HH data alone was the most useful for understanding
the evolution of water level over our study area, as the division by HV resulted in the
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dampening of the time-series variation and a reduced ability to identify changes in water
level under the canopy. Additionally, the mean pixel backscatter values for peatland
regions, calculated temporally across the image stack, are lower for the HV polarisation
(−15.5 to −10.5 dB) than for the HH polarisation (−3.5 to −8 dB). There is a striping effect
in the original PALSAR-2 data corresponding with the instrument scan lines. These stripes
are barely noticeable for individual scenes, as the change in backscatter due to them is very
low, and their impact is minimal in comparison to the collocated features that represent
changes in water level/vegetation conditions. However, due to the lower HV polarisation
backscatter signal, the cumulative impact of the striping effect is more apparent when
calculating statistics across the image stack. We, therefore, progressed with our study using
the HH image stack.

Figure 5. The standard deviation, across all image stack time steps for ALOS-2 PALSAR-2 polarisation:
(a) HH, (b) HV and (c) HH:HV. Only peatland pixels are included.

3.3. Identification of Rainfed Regions

We distinguished rainfed and flood-prone regions using pixel-wise correlation statis-
tics between the SAR backscatter and net water input time series. These classifications
determined our use of the net water input interpolation model for rainfed pixels (see Meth-
ods Section 2.3.5) and a linear interpolation model between the SAR backscatter values
for flood-prone regions. In this section, we summarise our classification of rainfed versus
flood-prone areas; the period over which the pixel HH backscatter and, therefore, the water
level, remains correlated with the net water input and spatial variations in the pixel-wise
correlation statistics.

3.3.1. Pixel-Wise Correlations—Statistical Summary

Table 1 provides summary statistics of the pixel-wise correlations and Figure 6 shows
the corresponding mapped pixel-wise correlation, p-values, gradients and standard errors.

The pixel-wise correlation statistics (Figure 6) provide an indication of the degree to
which locations are rainfed or influenced by additional flood inputs in riverine locations.
These were calculated between the changes in SAR backscatter and net water accumulations
over the 42-day intervening period between available PALSAR-2 scenes and, therefore,
cannot capture where there may be significant correlations that persist over shorter pe-
riods of time, as there will likely be decorrelation as this period progresses for locations
which are not directly, or only partially, rainfed (e.g., the cumulative impacts of additional
hydrological inputs or outputs from groundwater due to pixels being located in sloped
regions, or prone to flooding at certain times of the year). For locations with a pixel-wise
correlation p-value < 0.15, the average length of time over which the SAR backscatter
remains correlated with the net water input is 20 days. Since our model interpolates the
SAR backscatter using the pattern of net water accumulation to/from the nearest image
date, at a maximum interval of 21 days, we used a threshold p-value of 0.15 to delineate the
locations where the rainfed model could be applied and where the linear model should
alternatively be used. The mean standard error in water level of the pixel-wise regressions
for these pixels is 3.2 cm (Table 1).
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Table 1. Pixel-wise correlation summary statistics using different thresholds of p-values associated
with the correlation between the net water input and the change in SAR backscatter between succes-
sive PALSAR-2 scenes. The column entries show the mean values across all peatland pixels within
the study area that meet each p-value threshold.

p-Value
Threshold

% of Total Study
Area Pixels R2

Average Value for
Maximum Length of
Correlation (Days)

Gradient of
Pixel-Wise

Correlation (cm/dB)

Standard
Error (cm)

<0.001 6 0.65 29 11.52 2.43
<0.01 24 0.5 25 9.87 2.8
<0.05 50 0.38 22 8.42 3.04
<0.1 64 0.33 21 7.75 3.12
<0.15 73 0.3 20 7.35 3.17
≥0.15 27 0.01 12 1.34 3.48

Figure 6. Pixel-wise correlations calculated between time series of the change in SAR backscatter
between subsequent PALSAR-2 scenes, δHH, and the corresponding net water accumulations across
the ALOS-2 PALSAR-2 HH backscatter stack. (a) Correlations, (b) p-values, (c) gradients and (d) stan-
dard errors of the pixel-wise correlation. Permanent water bodies and non-peatland land cover have
been masked.

While all areas receive some direct input from rainfall, the pixel-wise correlations
indicate whether a significant portion of the variation in water level can be explained by
direct rainfall input. The pixel-wise correlations were applied across the full time-series
of the PALSAR-2 imagery, including across all seasons. As a result, some pixels may be
classed as rainfed for part or most of the year, while receiving additional groundwater or
flood inputs during the wettest times. Our use of a threshold p-value < 0.15 (corresponding
with an R2-value > 0.3) allowed for the inclusion of areas that are largely, but not necessarily
fully rainfed. Overall, 72.5% of all pixels had pixel-wise correlation p-values < 0.15, 64.2%
with <0.1, and 50% with <0.05, so we conclude that 72.5% of the peatlands are rainfed to
an extent.

Due to the high pixel density (1 ha resolution) of the pixel-wise correlation maps
(Figure 6), it can be difficult to draw conclusions visually without zooming in to a much
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higher resolution. To address this, we compared the locations of the pixels with the 10%
highest and 10% lowest pixel-wise correlations (Figure 7). This distinguishes more clearly
peatland locations where the water level is strongly related to the net water input, which
lie largely to the west of the Congo River and, especially, to the southwest of the study
area (Figure 7a). We also observe negative correlations in some of the floodplain peatlands
bordering the Congo River. We determine that the RoC peatlands within our study area
(a subset of the Cuvette Centrale peatland complex) are largely rainfed (Figure 6), while
riverine locations in the DRC have no direct correlation with rainfall input and are flood-
prone, with their water levels correlating more with the hydrological dynamics of the
river system.

Figure 7. Maps showing the peatland pixels within the study area with (a) the highest 10% of
pixel-wise correlations and (b) the lowest 10% of pixel-wise correlations.

3.3.2. Assessing the Maximum Period of Correlation between SAR Backscatter and Net
Water Input

We further identified the degree to which areas are directly rainfed or receive addi-
tional flood or surface/sub-surface water inputs using our calculation of the maximum
number of days that the HH backscatter remains correlated with the prior accumulated
net water input. Figure 8 shows the period of maximum correlation between the HH
backscatter and net water input time series. The areas with the highest maximum time of
correlation are most likely directly rainfed as the temporal pattern of backscatter does not
diverge from the net water accumulation as quickly.

Most images within the stack had 42 days between them (2 with a 28-day gap) and for
any date within the daily HH interpolation, there was at most a 21-day time step to
the closest image. Generally, the areas with the highest overall pixel-wise correlation
(Figure 6a) and lowest corresponding p-values (Figure 6c) have a longer period of correla-
tion with net water input (Figure 8). The correlation time between net water accumulation
and SAR backscatter varies directly with the correlation between net water accumulation
and water-level changes. We observe that inter-fluvial locations in the RoC, to the west of
the Ubangui River, and regions of the DRC that are bounded between the Ubangui and
Congo rivers have longer periods of continued correlation between net water accumulation
and water level.
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Figure 8. The period of maximum correlation across the extent of the study area—the number of days
of net water accumulation that result in the maximum correlation between the ALOS-2 PALSAR-2
HH backscatter and the net water time-series data.

3.3.3. Variability in the Pixel-Wise Correlation Gradient

There is large variability in the gradient associated with the pixel-wise correlation
across the peatland area (Figure 6c). The gradient of the pixel-wise correlation is a measure
of the quantity of net water input that results in a 1 dB change in the HH backscatter.
The lowest gradients are found in floodplain areas, which receive additional water from the
river system, while the highest are found in hilly regions that lose some of their water input
from rainfall through net run-off (Figure 6c). We also observe that the rainfed, inter-fluvial
areas of the RoC have lower pixel-wise gradients at the central points between the rivers
that do not flood. This is indicative of water pooling due to the slight terrain slope in these
areas (Figure A2c). Over the period of the SAR image stack, the mean value of the gradient
was 7.35 cm/dB and the p-value is less than 0.15.

3.4. Transfer Equation between HH Backscatter and Water Level

We arrived at a transfer function between the HH backscatter and water level by
calculating a linear regression (Figure 9) between the median transect water depth and the
HH backscatter, using data from multiple transect locations (see Figure 1):

WTD = 7.45σ0 + 53.2, (5)

where WTD is the water table depth and σ0 is the HH backscatter. Only transect pixels with
a minimum water level of 15 cm below the peat surface were included in the final linear
regression, as we found that the HH backscatter cannot clearly resolve differences in water
level below this depth.

It is interesting to note that the slope of this best-fit relationship, 7.45 cm water level
rise/dB, nearly matches the mean gradient over rainfed pixels that we calculated earlier
of 7.35 cm net water input/dB. This may indicate that pixels with this value of gradient
associated with the pixel-wise correlation are representative of locations where, on average
across time steps, the net water input largely translates into water level rises at that
particular point without the need to account for additional inputs or outputs from flooding,
groundwater or runoff.
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Figure 9. (a) Locations of the peatland transects we used within our regression analysis, with water
levels above 15 cm below the peat surface. Here, only one marker for each transect is shown for
readability and the full transects are shown in Figure 1a. Also shown are the water logger and virtual
altimetry station locations. (b) A linear regression calculated between the HH backscatter (σ0) and the
median water level depth recorded at each transect location. The dry and wet labels correspond with
the seasons during which the measurements were taken, defined in terms of climatological rainfall
variability. Further information is provided in Table A1.

3.5. Variability in Derived Water Levels

We applied the transfer equation to the HH backscatter to calculate the daily water
level at 1 ha pixel resolution. Figures 10 and 11 show the derived water level summary
metrics over our 20-month study period. Figure 10a shows the water level amplitude,
calculated as the difference between the minimum and maximum water levels over the
study period on a pixel-by-pixel basis (Figure 11a,b). Figure 11c,d shows the mean and
standard deviation of the water level variations at 1 ha pixel resolution. We identify the
maximum variations in water level in the flood-prone riverine locations to the east of the
Congo River, along the edges of the smaller tributary rivers in the DRC (e.g., the Ruki),
and in the Southern inter-fluvial region between the Ubangui and Congo rivers. Across the
study area, the average pixel water level varies by between 5 and 70 cm, with a mean value
of 22.8 ± 10.1 cm to 1 standard deviation (Figure 10b). Broadly, in the DRC, the highest
water level amplitudes are in flood-prone regions, while, in the RoC, they are found in
inter-fluvial rainfed regions. There is some localised inundation on the <1 ha scale with
higher water level amplitudes due to terrain variability and micro-topographical effects
where there are hollows and hummocks.

The corresponding monthly mean, minimum, maximum and amplitude water level vari-
ation plots for the full 20-month study period can be found in Appendix B.4, Figures A3–A6.
During this period, December 2019 was the wettest month and experienced the maximum
water levels (see Figure A5), the maximum range of water levels (Figure A6) and the
maximum extent of flooding around the Congo mainstem.
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Figure 10. (a) The amplitude of the water level across the study area and over the 20-month period
March 2019 to October 2020 and (b) the corresponding histogram showing the full variability in the
amplitude of water levels across all the 1 ha pixels.

Figure 11. A summary of the variations in water level over the 20-month period from March 2019 to
October 2020. (a) Minimum, (b) maximum, (c) mean and (d) standard deviation of the water level.

Figure 12 shows the percentage of days during our study period when the water level
was above the peat surface. This is an important metric, as it gives us an indication of the
amount of time the water level was sufficiently high for the process of methanogenesis to
occur and for the net flux of methane from the peatlands to the atmosphere to be positive.
There are some regions of peatland that were permanently inundated during this period,
including (1) the floodplain regions to the east of the Congo River and between the Ubangui
and Congo rivers; (2) rainfed regions in the inter-fluvial basins; (3) the southwest rainfed
region of the study area (see Figure 12b).
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Figure 12. For peatland locations, (a) the percentage of days between March 2019 and October
2020 when the water level was at or above the peat surface and (b) locations where the water level
was always at or above the peat surface—some examples include (1) a floodplain region, (2) an
inter-fluvial rainfed region, (3) a large rainfed region in the southwest of the study area that was
largely permanently inundated during this period.

3.6. Assessing the Relationship between Water Level Variation and Swamp Vegetation Type

We identified large differences between palm and hardwood swamp water levels for
the mean value of the maximum water level, at 45% higher for palm swamp; the mean
value of the mean water level, at 86% higher for palm swamp and the mean value of the
standard deviation of the water level, at 33% higher for palm swamp (Table 2). The range
of the mean HH backscatter calculated across all SAR image time steps largely overlaps
between these two vegetation classes (Figure 13) and the differences between the water
level mean, maximum and standard deviation values are likely to be representative of
actual differences in water level between the two swamp vegetation types, rather than due
to differences in backscatter from different vegetation cover.

Figure 13. Distribution of mean HH polarisation backscatter across the PALSAR-2 image stack for
palm and hardwood swamp types.

By comparison of swamp vegetation type (Figure 1b) and the maximum and standard
deviation of the water level (Figure 11b,d), we observe similarities between the large-scale
pattern of peat swamp type and the variability in the water level, with higher water levels
in areas dominated by palm swamp. We summarise our comparisons between palm and
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hardwood swamp for the minimum, maximum, mean and standard deviation metrics in
Table 2.

Table 2. Statistics corresponding with the correlation between swamp vegetation type and water
levels above the peat surface, calculated using ANOVA regression. The total sample size across the
hardwood (HWS) and palm swamp (PS) land cover types is 8,646,611.

Metric Tested ANOVA F-Stat p-Value η2 Mean for HWS (cm) Mean for PS (cm)

Minimum water level 2687 0.0 0.0003 −5.91 −5.72
Maximum water level 1,230,110 0.0 0.125 14.93 21.6
Mean water level 898,409 0.0 0.094 3.40 6.32
Std. dev. of water level 898,284 0.0 0.094 4.41 5.86

The ANOVA test η values show a low but significant correlation for the maximum,
mean and standard deviation of the water level in relation to swamp vegetation type.
While we only refer to the two principal swamp vegetation types, palm and hardwood,
Crezee [33] concluded that there may be a further seasonally inundated vegetation type,
located in the floodplain swamps to the east of the Congo River. The conditions favoured
by this third class may contribute to some of the variability in water level statistics shown
in Table 2.

3.7. Comparison between Modelled Water Level and Water Logger Data

In Figure 14, we compare the modelled and in situ water logger data for five water
loggers located in two regions of the Cuvette Centrale: Lokolama in the DRC and Eko-
longouma in the RoC (see Figure 9). The corresponding statistics are shown in Table 3.
Kendall’s τ statistics of >0.3 have been classified as strongly correlated [55], and we find
that the statistics for all logger locations are significant to some degree and that the direction
of the water level rise and fall is correlated between the modelled and logger recorded data.
However, we find that the significance of their correlation is more variable with reference to
their R2 (0.22 to 0.56) and ρ values (0.47 to 0.73). This indicates that, although the direction
of change in water levels is generally well represented within our model, the model has
variable success in representing the magnitude of the change in water levels. The Ekolon-
gouma (EKG) logger locations have the most significant pixel-wise correlation and model
validation statistics (see Table 2).

The water loggers provide us with point information, whereas the PALSAR-2 data and
the derived (modelled and interpolated) water levels are indicative of the average water
level evolution within a 1-hectare area. Due to differences in the topography, the logger
water levels may not be indicative of the wider pixel average water levels. We can see an
example of this by comparing the time series of the two Ekolongouma water loggers, which
are separated by only 1.7 km, but measure considerably different water levels (Figure 14).
In this case, the modelled data more closely represents the actual water levels recorded by
the EKG03 water logger. It is possible that the EKG02 logger was positioned in a hollow
(a micro-topographical feature at a lower level than the surrounding terrain) which is,
therefore, less likely to be representative of the water levels corresponding with the wider
1-hectare pixel area. Further, convective precipitation events resulting in higher localised
daily rainfall totals when compared to the larger 0.05° × 0.05° area will not be well captured
by the modelled water level time series. An example of this may be evident in November
2019 for the EKG03 logger time series, where the reducing water level modelled using the
larger area CHIRPS rainfall data does not correspond well with the increase in water level
in the Ekolongouma area.
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Figure 14. Comparison between modelled and logged water levels for (a) three sites in the Lokolama
region of the DRC and (b) two sites in the Ekolongouma region of the RoC.

Table 3. Pixel-wise correlation statistics, calculated between the PALSAR-2 image stack and the
net water accumulations; and the model validation statistics, calculated between the interpolated
(modelled) water level data and the water logger data. The p-values corresponding with the model
validation statistics are all <0.01 (not shown in the table). The first four logger locations in the
table have pixel-wise correlation statistics with p-value < 0.15 (our threshold for using the rainfed
algorithm) and the final one (LOK5_4.0) has a lower pixel-wise correlation with the net water input
and, therefore, the modelled estimate of its water level used the linear interpolation method.

Pixel-Wise Correlation Statistics Model Validation Statistics

Logger Latitude Longitude R2 p-Value Slope
(cm/dB)

Std
Error
(cm)

R2 Kendall’s
τ

Spearman’s
ρ

EKG02 1.191986 17.84694 0.37 0.01 7.53 2.85 0.41 0.45 0.63
EKG03 1.188695 17.83192 0.28 0.03 5.28 2.45 0.56 0.53 0.73

LOK5_1 −0.303200 18.20069 0.25 0.04 6.65 3.35 0.22 0.32 0.47
LOK5_3 −0.314950 18.18710 0.1 0.14 3.93 3.45 0.34 0.40 0.60
LOK5_4 −0.317950 18.18378 0.07 0.18 4.15 4.28 0.26 0.35 0.53

3.8. Comparison between Modelled Water Level and Altimetry Data

Figure 9 shows the locations of the four altimetry stations we use in these comparisons.
Only one (KM1374) showed indications of being in a rainfed region, with significant pixel-
wise correlation statistics. The water levels at the other locations are largely influenced by
upstream hydrological dynamics, and, overall, they have a non-significant correlation with
rainfall in their vicinity. The rainfed algorithm was therefore used only for the KM1374
altimeter, where there is an indication from the pixel-wise correlation statistics of some
correlation with the net water input (R2 = 0.26, p-value = 0.03). Linearly interpolated values
were extracted for the other altimeter locations. Figure 15 shows a comparison between the
temporal patterns of the derived water level data and the altimetry data, and Table 4 shows
the corresponding statistics. The model validation statistics are significant at all locations.
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Figure 15. Comparison between the patterns of modelled and radar altimetry-derived water levels
for four altimetry virtual station locations over peatland. KM1355 and KM1374 are from the Jason-3
altimeter (10-day repeat cycle), and KM1263 and KM1360 are from the Sentinel-3 altimeter (27-day
repeat cycle). The locations of these virtual stations are shown in Figure 9.

Table 4. Pixel-wise correlation statistics, calculated between the PALSAR-2 image stack and the
net water accumulations; and the model validation statistics, calculated between the interpolated
(modelled) water level data and the available altimetry data over peatland areas corresponding with
each altimeter location. The rainfed model was used for KM1374’s location. Otherwise, the linear
model was applied. The p-values corresponding with the modelled data validation statistics are all
<0.01 (not shown in the table).

Pixel-Wise Correlation Statistics Model Validation Statistics

Altimeter Latitude Longitude R2 p-Value Slope
(cm/dB)

Std
Error
(cm)

R2 Kendall’s
τ

Spearman’s
ρ

KM1355 −0.24 19.23 0.04 0.24 1.38 1.87 0.64 0.51 0.67
KM1374 0.36 19.01 0.26 0.03 1.89 0.92 0.58 0.54 0.74
KM1263 0.27 18.47 0.00 0.47 0.10 1.34 0.79 0.72 0.87
KM1360 −0.39 19.26 0.07 0.19 0.95 1.03 0.85 0.84 0.94

4. Discussion

In this section, we discuss the applicability of our methods and results in a broader
context, as well as the relevance of our findings to our original research questions. We also
address the limitations of our study and explore the potential for improved accuracy of the
water level maps by incorporating additional remotely sensed data.



Remote Sens. 2023, 15, 3099 23 of 38

4.1. Applicability of the Modelled Water Level Maps

We generated daily water level maps with a resolution of 100 m (1 hectare) across
the Cuvette Centrale region for a 20-month period from 29 March 2019 to 9 October 2020.
These maps have various practical applications, which we describe here.

4.1.1. Facilitating Scaling Up of Methane and Carbon Dioxide Fluxes

Our study aimed to provide high-resolution water level maps that can help us to
understand the spatiotemporal patterns of methane and carbon dioxide emissions from
peatlands. By comparing the estimated water levels with in situ greenhouse gas mea-
surements, it becomes possible to develop a transfer function for estimating fluxes at the
regional scale.

4.1.2. Supporting Model Calibration and Validation

Lee et al. [15] produced water level maps for the central Congo Basin which corre-
sponded with the availability of ALOS PALSAR satellite imagery. They suggested that
these maps could be valuable for both validating and calibrating hydrodynamic models’
representations of variations in water level and surface water extent. Our interpolation of
the ALOS-2 PALSAR-2 HH backscatter data using the net water input provides the first
high temporal (daily) resolution map of water level evolution over a region of the Cuvette
Central peatlands, and these maps could be used within the development and assessment
of hydrological models. Additionally, extending our study over a longer time frame would
enable a more accurate assessment of spatiotemporal water level variations with net water
input and a more accurate derivation of pixel-wise relationships. This, in turn, would
facilitate estimating future changes in land surface water storage under different climate
change scenarios. Given that the Congo Basin is on a climatic threshold [41], future changes
in rainfall patterns could have significant implications for the peatlands’ status as a carbon
store, as well as impacting forest use and livelihoods.

4.1.3. Enhancing Understanding of Water Transfer between River Systems and
Surrounding Wetlands at High Spatiotemporal Resolution

Previous hydrological mapping studies over the central Congo Basin have focussed on
surface water extent (SWE) and storage (SWS). Frappart et al. [17] provide a comprehensive
overview of these studies. Our generated maps allow for the calculation of SWS temporal
evolution at a 100 m pixel level by multiplying water level with pixel area, accounting for
tree stem area/density. For rainfed pixels, the water level at each pixel correlates with the
net water input approximation, without considering groundwater inputs. For flood-prone
pixels, the water transfer between the river system and the surrounding wetlands could
be approximated by calculating the difference between the daily net water input (rainfall
minus evapotranspiration) and the daily, linearly interpolated, HH backscatter-derived
estimate of water level. This analysis would be valuable for understanding the daily,
monthly and seasonal contributions of water transfer between the river system and the
adjacent peatlands.

4.1.4. Forecasting Short-Term Water Level Changes

The period of maximum correlation metric (Table 1, fourth column) shows the potential
to forecast water level changes in different regions. By using weather forecast outputs
to determine the expected net water input in the coming days and weeks, Equation (1)
could be used to forward interpolate the SAR backscatter data. The transfer equation we
derived between σ0 and water level (Equation (5)) could then be used to forecast water
level for the time during which changes in the SAR backscatter remain correlated with net
water accumulation for that location.
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4.2. Our Results in the Context of the Original Research Questions

We began by posing three key research questions. Here, we discuss how our findings
contribute to addressing these questions.

4.2.1. Distinguishing Rainfed and Flood-Prone Peatland Areas

The use of pixel-wise correlation statistics between the estimated net water input
and the change in SAR backscatter between subsequent image dates proved useful for
distinguishing between rainfed and flood-prone regions within our study area. The regions
with the highest correlation, largely located in the inter-fluvial regions of the RoC and
the southwest of the study area (Figure 6a), predominantly receive their net water input
directly from rainfall. In contrast, areas along the banks of the Ubangui and Congo rivers,
which are subject to flooding, have the lowest correlations.

Overall, we identified 72.5% of the study area as containing partially or fully rainfed
peatlands. Significant correlations (p < 0.05) were calculated for 50% of the study area,
indicating direct rainfed conditions, while a further 22.5% of the study area may be classed
as being partially rainfed. Partially rainfed areas may experience flooding for a limited
period, for example, during periods of intense or prolonged rainfall when local levees
may be breached. Although the elevation of the Cuvette Centrale peatlands varies little
(Figure A2a), sloped areas (Figure A2c) contribute to surface and sub-surface runoff and
water pooling, especially during periods of heavy rainfall. Peatlands in these locations, even
when isolated from river system inputs, were classified as partially rainfed in our study.

4.2.2. Spatial and Temporal Variation in Inundation across the Study Area

Approximately 27.5% of 1-hectare pixels in our study area showed no correlation
between net water input and changes in SAR backscatter/water levels. The majority of
these pixels are located in the flood-prone peatland areas to the east of the Congo River
and between the Congo and Ubangui rivers. In these areas, there is a time lag between
increases in rainfall and subsequent water level rise, as it can take 1 to 3 months for
the increased water input upstream to contribute to riverine flooding downstream [50].
Lagged correlations were not explored in this study. We observed the highest water level
amplitudes in these flood-prone locations. This is likely due to combined rainfall and
floodwater inputs during the wet season leading to high water levels, while during drier
periods, the receding floodwaters and rainfall inputs are channelled into the river system
via the same pathways from which they receive flood inputs.

Lee et al. [15] used differential interferograms to examine water level changes in the
Cuvette Centrale using two sets of fine-beam ALOS PALSAR scenes. They found distinct
spatial variations in fringe patterns, observing densely packed fringes along the Congo
mainstem, while the inter-fluvial regions had broader and more diffuse patterns. These
findings suggested different hydrological input/flow mechanisms between the two regions
and are in agreement with our categorisations of rainfed and flood-prone areas.

Our study period included the impacts of an extended heavier-than-normal rainfall
event between October 2019 and January 2020, resulting in elevated water levels (see
Figures A5 and A6). Under climatological rainfall conditions, some areas would not
experience the same degree of flood inputs and would be classified as directly rainfed
for a greater portion of the year. A longer time series of PALSAR-2 data would enable
an assessment of seasonal pixel-wise correlations and enhance our understanding of the
seasonality of rainfed versus flood-prone classifications.

Water level variability was 5 to 70 cm at the 1 ha scale, with maximum variations in
the flood-plain areas and a mean water level amplitude of 22.8 ± 10.1 cm to 1 standard
deviation. These variations are close to the seasonal variability estimated by Lee et al. [15]
of 20 to 60 cm over flooded forest areas that they derived using a single altimetry track
over the Cuvette Centrale for the years 2002 to 2010. Additionally, using ALOS PALSAR
ScanSAR data, Lee et al. [15] estimated maximum water levels of 1 to 1.5 m along a narrow
fluvial region bordering the Congo mainstem, while an inter-fluvial region between the
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Congo River mainstem and the Ubangui/Ngiri rivers had shallower water levels of up to
60 cm.

By applying our methods to ALOS-2 PALSAR-2 data available over the longer term,
we will be able to better constrain the long-term water level variability across the Cu-
vette Centrale.

4.2.3. Distinct Optimal Water Levels for Different Swamp Vegetation Types

Our analysis of water level metrics in relation to peatland vegetation type showed
significantly higher mean, maximum and standard deviation values of water level for palm
swamp pixels in comparison to hardwood swamp. This suggests palm swamps have a
preference for locations with higher rainfall and inundation levels. However, due to the
significantly wetter wet season in our study period compared to the climatological average,
we were unable to assess the seasonal correlation between minimum water level and swamp
vegetation type. It is possible that everywhere met the minimum water requirements to suit
all swamp vegetation types. To better quantify the optimal inundation levels and duration
for each swamp type, it would again be beneficial to generate inundation maps over a
longer time period and across the entire Cuvette Centrale. For instance, in our current
study area, most palm swamp regions are situated west of the Congo River (in the RoC
and northern DRC). However, another extensive region of palm swamp is located south of
our study area, in the DRC floodplains, which receive significantly higher rainfall inputs in
addition to flood inputs. Calculating mean water level statistics for palm and hardwood
swamp vegetation types across this wider region would allow us to determine if there is
an upper limit on inundation extent or water level for palm swamps. By improving our
understanding of this, we will be better equipped to assess the potential impact of future
climate change on the current distribution of swamp vegetation. Additionally, Crezee [33]
found indications of a third seasonally flooded peat swamp vegetation type, principally
located in the floodplain regions of the DRC, but which had not yet been accounted for in
landcover maps. Its distribution should be taken into account when examining the water
level preferences of different peat vegetation types.

4.2.4. Differences in Peatland Hydrological Inputs to the East and West of the Congo River

We identified the most directly rainfed peatland areas in the RoC to the west of the
Congo River and in the northern part of the DRC region between the Congo and Ubangui
rivers (Figure 7a). Conversely, the most flood-prone peatland regions were situated east of
the Congo River and surrounding the Congo mainstem (Figure 7b). These differences in
sources of hydrological input to the east and west of the Congo River can be attributed to
variations in levee heights between the river, its tributaries and the surrounding peatland
regions. To illustrate this, Figure 16 shows a map of the Relative Topographic Position
Index (RTPI) covering peatland pixels within our study region. Comparing the pixel-wise
correlation in Figure 6a with the RTPI, we observe that areas with the lowest correlation
correspond to locations along the banks of the Ubangui and Congo rivers, where the RTPI is
closest to zero, indicating that the river banks in these locations are closer to the level of the
surrounding terrain. We observe higher levees along the banks of the Sangha and Ubangui
rivers. We also observe that the majority of the area composed of hardwood swamps to
the east of the Congo River has RTPI values below zero, indicating that its peatlands are
hydrologically linked to the main river system via tributaries. In contrast, the neighbouring
palm swamp regions have RTPI values above zero, indicating a higher likelihood of being
directly rainfed and less susceptible to floodwater inputs.
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Figure 16. The Relative Topographic Position Index (RTPI), the relative difference in elevation
between a pixel and its surrounding neighbours, is derived from the MERIT 90 m DEM using a
56 × 56 filter kernel. Its values are masked to show only peatland areas. Positive values indicate
that an area is elevated relative to its neighbours and negative values indicate that an area is on a
lower level.

4.3. Accuracy of Interpolated Inundation Maps and Limitations

The pattern of the temporally interpolated data in rainfed regions follows that of the
daily net water input. While all locations receive some contribution to their groundwater
storage from the daily net water input at that location, regions that receive additional water
inputs from river flooding will have a time-lag component [50] corresponding with the
delay in upstream rainfall contributing to downstream flooding. In flood-prone regions,
our linear interpolation between PALSAR-2 dates, which are mostly separated by 42 days,
fails to capture the shorter-term fluctuations resulting from the combined variations in the
rainfall patterns both upstream and at the given floodplain pixel. As a result of applying
a pixel-wise correlation threshold, 72.5% (Figure 6d) of peatland pixels within our study
region have had their daily water levels modelled using the rainfed algorithm.

In flood-prone regions, the higher temporal resolution of Sentinel-1 C band data could
be used in conjunction with the ALOS-2 PALSAR-2 data to better capture shorter-range
temporal changes in flooding. This would be especially applicable along the edges of rivers
where there is less dense swamp vegetation limiting the shorter wavelength C-band signal
from resolving changes in water level over the peat surface.

Additionally, flood models that are based on river hydrodynamics would be useful
for infilling or complementing the water level maps in floodplain areas.

4.4. Microtopography Considerations

The landscape is characterised by spatial variations in the distribution of vegetation
and root systems, resulting in a series of tree roots/hummocks (dryer elevated regions)
with depressions (hollows) in between where water pooling can occur. These features
can vary over spatial scales of less than 2 m. However, the SAR data we used is at
100 × 100 m resolution after speckle filtering, which is not high enough to capture such
micro-topographical features and may, therefore, underestimate the highest flood levels
while overestimating the lowest ones. Additionally, the water-logger depth measurements
used to validate the SAR data may have been taken in hollows, on hummocks or in an
area that is not representative of the average elevation of the surrounding area. We see
indications of this in the comparisons with the in situ water logger data. To address this,
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we recommend that future placement of water loggers should be at a level approximately
equal to the average terrain level in the surrounding hectare region. This approach would
facilitate a more direct comparison between logger measurements and satellite instrument
measurements, which reflect the mean conditions of water level or other environmental
parameters over a larger area. Additionally, a larger-scale network of water loggers would
be beneficial.

4.5. Recommendations for Enhancing Map Accuracy

Our interpolation of the HH backscatter to daily resolution was performed at 1 ha
resolution, using the relationship calculated between the backscatter and the net water
input at each pixel. The pixel-wise linear regressions were calculated across the whole time
series and covered all seasons. However, due to the non-linear hydrological dynamics in
many locations, the slope of the relationship between the backscatter and the net water
input is likely to vary seasonally. For example, a location that is primarily rainfed may
receive additional inputs from groundwater flow or runoff during the wettest periods,
or some pixels may be considered rainfed for most of the year but receive floodwater inputs
during the wettest season. Accounting for these variations could be achieved by using
the full time-series of PALSAR-2 data available since 2014, calculating seasonal pixel-wise
correlations and applying the resulting varying relationships to the interpolation of the
HH backscatter.

The daily water level maps include a period that was significantly wetter than the
climatological average. By calculating the water level metrics for each pixel (minimum,
maximum, mean, amplitude and standard deviation) over a longer-term period, we could
produce climatologies of the expected water level variations at each pixel.

In our study, we used daily 0.05° resolution rainfall data, which captures mesoscale
rainfall variability well. However, it is important to note that this resolution cannot capture
microscale convective storm events, potentially resulting in the omission of short-term high
rainfall occurrences. Higher-resolution rainfall data would help to address this.

Currently, there is a lack of sufficient virtual altimetry station data coverage over
peatland locations, which limits comprehensive validation of the peatland water levels we
derived. However, the recently launched Surface Water and Ocean Topography (SWOT)
mission [56,57] will help to address this gap. The SWOT mission uses interferometric
altimetry at Ka-band to measure both land and ocean water surface topography at high
spatial resolution and its measurements are available as gridded global datasets [56].
In future studies, these data could be used to validate SAR-derived water level estimates,
particularly over some of the less vegetated, floodplain regions of the Cuvette Centrale.

5. Conclusions

We have presented a method for combining the daily pattern of net water input
with high-resolution L-band SAR data to estimate daily, 100 m resolution time series
of water levels across a largely rainfed region of the Cuvette Centrale tropical peatland
complex. We have also introduced a technique for distinguishing between rainfed and
flood-prone areas. We show that 50% of the region is directly rainfed, while 22.5% is
partially rainfed. The remaining 27.5% is located in floodplains or locations that receive
significant groundwater input and have a low correlation with direct rainfall. With the
recent open release of ALOS-2 PALSAR-2 level 2.2 ScanSAR data, the methods we describe
can be adapted and applied across the entire peatland complex from 2014 to the present,
allowing for higher-resolution estimates of water levels, inundation extents and surface
water storage evolution. This is important because carbon accumulation in the peatlands is
sensitive to surface-water levels. By mapping long-term water level variations and their
relationship to net water input, we will be better equipped to understand the impact of
climate change on the region’s inundation patterns. Such an improved understanding can
contribute to assessing the future security of the peatland complex as a carbon store.
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Appendix A

Appendix A.1. Post-Processing Applied to ALOS-2 PALSAR-2 Scenes

We used the European Space Agency (ESA) SNAP software and the Snappy Python
interface package to apply the majority of the necessary post-processing steps detailed in
Figure 3 to the SAR scenes as follows:

1. We converted the CEOS format SAR images into BEAM–DIMAP format, the default
format used to produce all outputs when using SNAP, and separated the HH and HV
polarisation bands into individual files such that the post-processing steps could be
applied to each band individually;

2. Due to some small location differences in the footprint of each co-located scene, it was
necessary to stack the images multi-temporally, defining a single image (the first date)
as the one to which all the other images were aligned. Within the radar co-registration
process, we specified product geolocation as the initial offset method and used a
nearest neighbour resampling method;

3. Speckle is a feature of SAR images that results from coherent backscatter from multiple
targets, leading to a granular appearance. We applied the Improved Lee Sigma speckle
filter [52] to each individual image in the co-registered stack. This is recommended
when assessing the temporal evolution of surface-water inundation, as multi-temporal
speckle filtering could dampen the signal of seasonal variations too much. The Im-
proved Lee Sigma filter is commonly applied to SAR data as it reduces blurriness [58].
It takes into account possible edges where the local variance around a pixel exceeds a
certain threshold and is used to remove coherent noise. It is important to note that
speckle filtering comes at the expense of image resolution. For the additional filter
settings, we used a single look option and ran the process within a moving 7 × 7
window with resampling performed over a smaller target 3 × 3 window within this
domain. The 7 × 7 window was used to detect whether an area contained speckle or
realistic structures, and then the speckle filtering was applied over a smaller 3 × 3
window. Lee et al. [52] found that a 3 × 3 target window gave good results specifically
with ALOS PALSAR data. Additionally, we used the default sigma value of 0.9;

https://github.com/SelenaGeo/InundationMapping/
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4. Due to variations in the incident angle across the longitude axis of the PALSAR-2
imagery, of between 25.6° and 49.1°, there was an antenna pattern effect that required
correction. The mean latitudinal backscatter values decreased linearly across the
image extent from the satellite’s position, corresponding with the linear increase in
incident angle. To correct this, we performed the following steps:

(a) Identified and masked permanent water bodies by applying a threshold of
−11 dB to the backscatter. This value was arrived at by observing the backscat-
ter over the time series for the lake and river bodies within the study area and
is in agreement with the value used by Kim et al. [53];

(b) Calculated the mean latitudinal backscatter across the full longitudinal extent
of each image within the stack;

(c) Calculated a linear regression across these values;
(d) We applied this correction on an image-by-image basis due to environmental

or SAR instrument differences that affect backscatter amplitude. However, it
was also important that the slope of the antenna pattern correction applied is
the same for all images, such that we could later analyse temporal changes in
backscatter on a pixel-by-pixel basis. Temporal changes in hydrology impact
the antenna pattern correction slope. We calculated the average slope of the
linear regression across all time steps and applied a unique intercept value for
each image that maintained the original backscatter values at pixels with the
lowest incident angle;

(e) We defined the reference backscatter amplitude to be at the lowest incident
angle (closest to the satellite). We calculated the difference between this value
and the regression line values across longitude. Finally, we added these differ-
ences to the original averaged backscatter values at each longitude to arrive at
an antenna-pattern corrected image;

(f) We visually inspected each corrected image in the stack to ensure that the
backscatter pattern was balanced.

This effectively acted to rotate the pattern of each image’s backscatter values across
longitude, using the longitude with the lowest incident angle as the pivot point. The east-
to-west backscatter patterns in the resulting images are noticeably more balanced;

5. The original resolution of the ALOS-2 PALSAR-2 scenes was 25 m but the effective
resolution was reduced following the application of the speckle filter. We geocoded
the scenes within the co-registered stack to 100 m resolution using the SAR-Mosaic
function with a bilinear resampling option. The final geocoded product was in the
WGS84 projection;

6. To express the data in units of decibels (dB), we applied the Sigma nought (σ0)
backscatter calculation across each image within the co-registered stack, using the
following equation:

σ0 = 10 ∗ log10DN2 + calibration f actor (A1)

where DN is the digital number value of the amplitude, or DN2 is that of the intensity,
and the calibration factor specific to ALOS-2 PALSAR-2 level 1.5 SAR data is −83 dB;

7. We then calculated the ratio HH:HV (HH−HV when calculated in dB), a metric that
we used to test its usefulness for assessing water level changes.
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Appendix B

Appendix B.1. Data Collected along Transects

Table A1. Summary of the transects along which water table depth, co-located with methane flux
samples, were taken. Included are the date range of the sampling expedition along each transect
and the number of samples taken for each of the dry and wet seasons. The dry and wet season
sampling categorisation is representative of the climatological season and not of the actual water
level conditions experienced in the region at the time.

Transect Name Country Dry Season Wet Season Sampling Dates

Boboka DRC 23 0 26 January–9 February 2020

Bondzale RoC 24 0 4–6 March 2019

Ekolongouma RoC 30 0 15–22 February 2019

Ikelemba DRC 15 0 17–19 January 2020

Ipombo DRC 30 29 Three sampling periods:

1. 13–15 March 2020 (dry)
2. 15–17 September 2020 (dry)
3. 27–30 October 2020 (wet)

Itanga RoC 24 0 10–11 March 2019

Lobaka DRC 29 0 21 February–3 March 2020

Lokolama DRC 0 23 10–13 October 2020

Mpeka DRC 35 40 Two sampling periods:

1. 18 June–1 July 2019 (dry)
2. 19–24 October 2020 (wet)

Totals 210 92 All measurements: 302

Appendix B.2. Water Logger Data Summary

Table A2. Summary of the available water logger data corresponding with our study period.

Location Water Logger Name Start Date End Date Lat lon Corrected?

GEM EKG02 16 March 2019 21 March 2021 1.191986 17.84694 Y
GEM EKG03 15 March 2019 17 March 2021 1.188695 17.83192 Y

Lokolama LOK5_1.0 1 February 2018 21 December 2019 −0.3032 18.20069 Y
Lokolama LOK5_3.0 1 February 2018 21 December 2019 −0.31495 18.1871 Y
Lokolama LOK5_4.0 1 February 2018 21 December 2019 −0.32095 18.18046 Y

Appendix B.3. ALOS-2 PALSAR-2 Summary

Table A3. Summary of the ALOS-2 PALSAR-2 image stack used within this research.

Date Scene ID Centre lat Centre long Shift Area Zone

29 March 2019 ALOS2261753600-190329 0.872 17.817 0 2 33
10 May 2019 ALOS2267963600-190510 0.871 17.818 0 2 33
21 June 2019 ALOS2274173600-190621 0.857 17.814 0 2 33
19 July 2019 ALOS2278313600-190719 0.872 17.819 0 2 33
30 August 2019 ALOS2284523600-190830 0.872 17.82 0 2 33
11 October 2019 ALOS2290733600-191011 0.873 17.821 0 2 33
22 November 2019 ALOS2296943600-191122 0.873 17.821 0 2 33
3 January 2020 ALOS2303153600-200103 0.873 17.821 0 2 33
14 February 2020 ALOS2309363600-200214 0.873 17.817 0 2 33
27 March 2020 ALOS2315573600-200327 0.872 17.816 0 2 33
8 May 2020 ALOS2321783600-200508 0.871 17.821 0 2 33
19 June 2020 ALOS2327993600-200619 0.857 17.817 0 2 33
17 July 2020 ALOS2332133600-200717 0.857 17.817 0 2 33
28 August 2020 ALOS2338343600-200828 0.872 17.821 0 2 33
9 October 2020 ALOS2344553600-201009 0.872 17.821 0 2 33
8 October 2021 ALOS2398373600-211008 0.873 17.82 0 2 33
19 November 2021 ALOS2404583600-211119 0.874 17.821 0 2 33
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Appendix B.4. Additional Figures

Figure A1. The logistic function growth and decay functions applied to the forward- and backward-
calculated interpolated daily HH time series to arrive at a final HH daily time series.

Figure A2. Terrain characteristics corresponding with peatland pixels that lie within the extent of our
PALSAR-2 study region. (a) MERIT Hydro elevation, (b) MERIT Hydro height above nearest drainage
basin (HAND), (c) slope, derived from the MERIT DEM, (d) the relative topographic position index
(RTPI), also derived from the MERIT DEM.
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Figure A3. The modelled mean monthly water levels for locations with peat swamp land cover types.
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Figure A4. The modelled minimum monthly water levels for locations with peat swamp land
cover types.
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Figure A5. The modelled maximum monthly water levels for locations with peat swamp land
cover types.
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Figure A6. The amplitude (maximum−minimum) of the monthly water levels for locations with
peat swamp land cover types.
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