
Contemporary Clinical Trials Communications 34 (2023) 101168

Available online 29 June 2023
2451-8654/© 2023 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Performance of four centralized statistical monitoring methods for early 
detection of an atypical center in a multicenter study 

Serge Niangoran a,b,c,*, Valérie Journot a,b, Olivier Marcy a,b, Xavier Anglaret a,b,1, 
Amadou Alioum a,1 

a University of Bordeaux, National Institute for Health and Medical Research (INSERM) UMR 1219, Bordeaux Population Health Research Center, Bordeaux, France 
b Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux, France 
c Programme PACCI, Abidjan, Côte d’Ivoire   
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A B S T R A C T   

Background: Ensuring the quality of data is essential for the credibility of a multicenter clinical trial. Centralized 
Statistical Monitoring (CSM) of data allows the detection of a center in which the distribution of a specific 
variable is atypical compared to other centers. The ideal CSM method should allow early detection of problem 
and therefore involve the fewest possible participants. 
Methods: We simulated clinical trials and compared the performance of four CSM methods (Student, Hatayama, 
Desmet, Distance) to detect whether the distribution of a quantitative variable was atypical in one center in 
relation to the others, with different numbers of participants and different mean deviation amplitudes. 
Results: The Student and Hatayama methods had good sensitivity but poor specificity, which disqualifies them for 
practical use in CSM. The Desmet and Distance methods had very high specificity for detecting all the mean 
deviations tested (including small values) but low sensitivity with mean deviations less than 50%. 
Conclusion: Although the Student and Hatayama methods are more sensitive, their low specificity would lead to 
too many alerts being triggered, which would result in additional unnecessary control work to ensure data 
quality. The Desmet and Distance methods have low sensitivity when the deviation from the mean is low, 
suggesting that the CSM should be used alongside other conventional monitoring procedures rather than 
replacing them. However, they have excellent specificity, which suggests they can be applied routinely, since 
using them takes up no time at central level and does not cause any unnecessary workload in investigating 
centers.   

1. Background 

Clinical trials involving large numbers of participants can now be 
carried out more quickly at many clinical centers around the world due 
to the availability of increasingly efficient tools [1]. 

The quality of the data collected is essential for the credibility of the 
results of clinical trials [2]. To ensure quality, checks are carried out 
during collection of the data [3]. However, it is difficult to monitor all 
the data collected on site, and even more so to detect problems in time to 
resolve them [4]. Centralized statistical monitoring (CSM) of the data
base has been proposed to quickly identify one study center in which the 
distribution of a variable is atypical in relation to other centers, 
prompting action to confirm the problem and correct as necessary [5,6]. 

The ideal CSM method would enable the detection of problems as soon 
as possible after a new center is opened, and therefore has the fewest 
possible participants. 

Several CSM methods have been proposed in the literature [7–9]. 
The simplest one is the Student’s t-test comparing the variable mean in 
one site to the mean in all other sites. Other methods use more complex 
modeling, including those developed by Desmet et al. [10] using a linear 
mixed model approach, Hatayama and Yasui [11] using a Bayesian 
approach based on finite mixture models, and Pogue et al. [5] using the 
natural logarithm of the distance between the variable mean in one 
atypical center in relation to other centers [5,12,13]. 

In this paper, we first outline the basics of the Hatayama and Yasui 
[11] and Desmet et al. [10] methods, and we propose a new statistical 
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test, called the ‘Distance method’, for detecting atypical distribution, 
inspired by the work of Pogue et al. [5]. Then we describe how we 
simulated a study specifically built to compare the performance of the 
Student, Hatayama, Desmet and Distance methods in determining 
whether the distribution of a quantitative variable in a given site is 
atypical in relation to other sites. Finally, we present and discuss the 
results of the simulation study. 

2. Methods 

2.1. Basics of the CSM methods 

In this section, we consider a Gaussian-assumed quantitative Y var
iable, collected in a multicenter study with M sites. The observed jth 
value (j = 1, …, Ni) of the variable Y in site i (i = 1, …, M) is denoted yij, 
and the mean of yij in site i is denoted yi. =

1
Ni

∑Ni
j=1yij. 

2.1.1. Hatayama Method [11] 
This method uses a Bayesian finite mixture model approach. A model 

based on a finite mixture of probability distributions assumes, by defi
nition, that the observed data set is from a source containing several 
homogeneous subpopulations, called components. The term ‘mixture’ 
therefore refers to the underlying assumption that the observed data is 
not generated from a single probability distribution but is sampled from 
K probability distributions (K > 1). The probability density of the 
mixture distribution is consequently written as follows: 

f (y|ϴ)=
∑K

k=1
πkfk(y|θk) (1)  

where:  

• fk is the probability density function of the kth component.  
• y = (y1, y2,…, yq) is the q-vector of the values of the quantitative 

variable of interest.  
• πk represents the k component mixture proportion, with 0 < πk ⩽ 1 

and 
∑K

k=1πk = 1. 
• θk is the unknown parameter specific to the kth component distri

bution of the mixture. 

In this approach, the data set is taken from a mixture of distributions, 
the components of which are distributions for atypical and non-atypical 
sites. With Gaussian mixture models, the values yij for participants in the 
non-atypical centers follow a Gaussian distribution N (μ, σ2), and the 
values yij for participants in the atypical centers are also observed as 
being Gaussian N (μ + Δ, σ2). Using moments of order 1 and 2 for 
estimating the expectation and variance of the mixture model, obser
vations yij resulting from the mixture of the two types of site, therefore, 
have the following distribution: 

Table 1 
Simulation parameters.   

Base case Range 

Sample size in the atypical center Na 50 10 to 300 
Sample size in the overall study N Na* 10 Na ∗ 4 to Na ∗ 20 
Continuous variable Y    
Y mean in non-atypical centers yna. 10 10 to 10,000 
Mean shift in the atypical center (ya.- yna.)/ yna. 10% 10%–100% 
Intracenter variance (all centers) σ2

s 1 – 
Residual variance (all centers) σ2

ε 4 –  

Fig. 1. Sensitivity and specificity of each centralized statistical monitoring method to detect the atypical center under base case scenario 
Footnotes to Fig. 1 
This figure explores the sensitivity and specificity of each of the four methods to detect that a center is atypical in the distribution of a continuous variable Y, in a 
simulated trial including 10 centers with the same number of participants (50) in each center. 
The results are shown with: 
• (ya.- yna.)/ yna. varying from 10 to 100% (horizontal axis); With yna. = mean of the Y values in the non-atypical centers and ya. = mean of the Y values in the atypical 
center. 
• yna. absolute values of 10, 100, 1000 and 10,000 (coloured curves), to ensure that the model is robust and shows similar results irrespective of the absolute value of 
the continuous variable studied. 
In these simulations, the ratio Na/N remains constant (1/10). 
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yij ∼ N
(
μ+ rΔ, σ2 + r(1 − r) Δ2) with i= 1,…M and j= 1,…,Ni (2) 

where r (0 < r < 1) is the ratio of participants from atypical sites over 
all participants. 

Accordingly, the mean yi. =
1
Ni

∑Ni
j=1yij follows a Gaussian distribu

tion: 

yi. ∼ N

(

μ+ rΔ,
σ2 + r(1 − r) Δ2

Ni

)

Assuming a finite mixture of Gaussian models of data from atypical 
and non-atypical centers, the Bayesian statistical model is summarized 
by the formulation of likelihood 

∏M

i=1

∏Ni

j=1

(
∑K

k=1
πkf
(
yij
⃒
⃒θk
)
)

where f(yij

⃒
⃒
⃒θk) is the density of a Gaussian distribution N (μk, σk). The 

parameters πk, μk, σk are estimated from all the data using a Bayesian 
approach by specifying prior distributions for these parameters [11]. 

The majority distribution indicated by kb = argmax E(πk|Y) (also 
called the “Body distribution”) is then used to calculate the posterior 
predictive distributions of the means of each center and the quantiles 
needed for center evaluation, using Equation (3). 

pkb (yi.|Y)=
∫

f
(
yi.

⃒
⃒θkb

)
p
(
θkb

⃒
⃒ Y
)
dθkb (3)  

where p(θkb

⃒
⃒ Y) is the a posteriori density function of parameter θkb of 

the body distribution, knowing the set of observations Y. 

By choosing a risk α, a decision rule can be used to define the critical 
region for detecting atypical sites. A given site i will therefore be 
considered atypical if yi. ∕∈ [γα

i - γ1− α
i ], where yi. is the observed mean and 

γα
i is the 100 α − th percentile of the pkb (yi.

⃒
⃒Y). 

2.1.2. Desmet Method [10] 
This method is based on a hybrid model which combines data from 

two normal distributions. It assumes a continuous variable with a 
Gaussian distribution, with two subsets of observations. The first subset 
of size n0, mean μ0 and standard deviation σ is called the null model, and 
corresponds to a normal model followed by the majority of the obser
vations. The second subset of size n1, mean μ1 and the same standard 
deviation σ is called the alternative model, and contains the data whose 
mean is shifted with respect to the null model; μ1 is assumed to be equal 
to μ0 + δ, where δ can be positive or negative. The data resulting from 
the fusion of these two distributions (the hybrid model) show normal 
distribution N (μhybrid, σ2

hybrid). The hybrid model is a good approximation 
of the null model when n1 is sufficiently small compared to n0. 

Desmet et al. proposed a linear mixed − effects model : yij = μ + γi + εij

(4)  

with γi i.i.d.∼N
(
0, σ2

s

)
and εij i.i.d. ∼ N

(
0, σ2

ε
)

where γi is the random effect for the site, i.e. the variability linked to the 
site, εij the random residual error, σ2

s the within-center variance and σ2
ε 

the residual variance. 
Under the assumption of the model, the mean Yi. in site i follows a 

Fig. 2. Sensitivity and specificity of each centralized statistical monitoring method to detect the atypical center when different number of participants are included in 
the atypical center 
Footnotes to Fig. 2 
This figure explores the sensitivity and specificity of each of the four methods to detect that a center is atypical in the distribution of a continuous variable Y, in a 
simulated trial including 10 centers with the same number of participants in each center. 
The results are shown with: 
• (ya.- yna.)/ yna. varying from 10 to 100% (horizontal axis); With yna. = mean of the Y values in the non-atypical centers and ya. = mean of the Y values in the atypical 
center. 
• the number of participants per center varying from 10 to 300 (coloured curves). 
In these simulations, the ratio Na/N remains constant (1/10). 
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N

(
μ, σ2

s +
σε

2

Ni

)
and can be used to detect atypical sites. The parameters μ, 

σ2
s , σ2

ε are unknown but can be estimated from the linear mixed-effects 
model using all the data as the hybrid model to obtain μ̂hybrid, σ̂2

s , σ̂2
ε . 

For each site i, we can assign a p-value using the statistic test 

Ui =
Yi − μ̂hybrid
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ̂2
s +

σ̂
2
ε

Ni

√ ∼ N (0, 1)

by applying the following rule  

• If the calculated value ui of Ui is negative , that is if yi. ≤ μ̂hybrid, then 
the p-value is p(yi.) = 2P(Ui < ui).  

• If the calculated value ui of Ui is positive, that is if yi. > μ̂hybrid , then 
the p-value is p(yi.) = 2P(Ui > ui). 

For a fixed threshold α, a center i is considered atypical only if the p- 
value p(yi.) < α. This means that atypical centers are those with means 
located at the tail of the distribution of the hybrid model, delimited by 
the α/2 and 1-α/2 quantiles for a fixed α value. 

2.1.3. Distance method 
Pogue et al. [5] defined the distance di that measures how far away 

the data of center i are from the overall mean across all centers (y), 
standardized by the overall standard deviation(s) by: 

di =
∑Ni

j=1

(yij − y
s

)2  

where y=
1

∑M

i=1
Ni

∑M

i=1

∑Ni

j=1
yij and s2 =

1
(
∑M

i=1
Ni

)

− 1

∑M

i=1

∑Ni

j=1

(
yij − y

)2 

They used the natural logarithm of this distance as a predictor in 
models for detecting fraud and other systematic data irregularities in 
clinical trials [5]. 

Note that this distance as defined by Pogue et al. does not follow a 
particular theoretical distribution. However, by rewriting di in the form 

di =

∑Ni

j=1

(
yij − y

)2

s2  

it was observed that, dividing the numerator by the degree of freedom 
(Ni − 1), the quantity: 

Di =

1
(Ni − 1)

∑Ni

j=1

(
yij − y

)2

1(
∑M

i=1
Ni

)

− 1

∑M

i=1

∑Ni

j=1

(
yij − y

)2
=

di

(Ni − 1)

can be expressed as the ratio of two variances, which follows a 
Fisher-Snedecor distribution with degrees of freedom df1 = (Ni − 1) and 
df2 = (

∑M
i=1Ni) − 1: Di ∼ F(df1,df2). 

Based on F-test in classical one-way analysis of variance (ANOVA) for 
the comparison of means, we had the idea to propose in this paper to use 
the quantity Di as a statistic test to detect atypical site according to the 
following rule:  

• If Di > F(1− α)(df1,df2), then center i is considered as atypical. 

Fig. 3. Sensitivity and specificity of each centralized statistical monitoring method to detect the atypical center when varying the ratio Na/N of the number of 
participants in the atypical center on the overall number of participants in the study 
Footnotes to Fig. 3 
This figure explores the sensitivity and specificity of each of the four methods to conclude that a center is atypical in the distribution of a continuous variable Y in a 
simulated trial including a varying number of centers with the same number of participants in each center. 
The results are shown with: 
• (ya.- yna.)/ yna. varying from 10 to 100% (horizontal axis); With yna. = mean of the Y values in the non-atypical centers and ya. = mean of the Y values in the atypical 
center. 
• The number of trial centers varies from 4 to 20, and therefore the ratio Na/N varies from ¼ to 1/20 (coloured curves). 
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• If Di ≤ F(1− α)(df1, df2), then center i is considered as non-atypical. 

Where F(1− α)(df 1, df 2) is the (1 − α) × 100% centile of the Fisher 
distribution F(df1,df2) for a fixed risk α. 

We can thus compare the performance in terms of sensitivity and 
specificity of this new distance method to three other existing CSM 
methods. 

2.2. Simulation study 

2.2.1. Overview 
We simulated multicenter clinical trials to assess the sensitivity and 

specificity of four CSM methods to detect as early as possible whether 
the distribution of a continuous variable Y was “atypical” in one trial 
center in relation to the other centers. The four methods were the Stu
dent, Hatayama, Desmet and Distance methods. 

We assumed that: (i) All trial centers had the same number of par
ticipants; (ii) Only one center had an “atypical” distribution of Y, 
regardless of the number of centers; (iii) The distribution of Y was 
Gaussian in both the “atypical” and “non-atypical” centers. 

Each simulation was replicated 1000 times. The sensitivity and 
specificity of each method to detect the atypical center were computed 
by counting in each simulation the number of true positives (#TP), true 
negatives (#TN), false positives (#FP), and false negatives (#FN). 
Sensitivity and specificity were calculated as follows: 

sensitivity=
#TP

#TP +#FN  

specificity=
#TN

#FP +#TN  

2.2.2. Data Generation and transformation 
yij values were generated using a two-level hierarchical model: the 

sites were generated at the first level and the participants in each site at 
the second level (equation (4)). Data was generated in one atypical 
center and a number of non-atypical centers. The mean value of Y was 
similar in all non-atypical centers (yna.). In the atypical center, the mean 
value of Y was ya. = yna. + δ. The deviation of the mean between the 
atypical center and the other centers was expressed as a percentage [(ya.- 
yna.)/ yna.]. 

To eliminate any effect that absolute values of Y could have on the 
performance of the CSM methods, we transformed the yij values with 
expectation E(yij) = μ and variance V(yij) = σ2

s + σ2
ε into centered- 

reduced values zij, using the following formula: 

zij =
yij − E

(
yij
)

̅̅̅̅̅̅̅̅̅̅̅̅
V(yi.)

√ (5)  

such that zi. =
1
Ni

∑Ni

j=1
zij ∼ N (0, 1)

2.2.3. Scenarios 
We first simulated a set of trials with 10 centers, in which the number 

of participants per center was 50 and the deviation of the mean between 
the atypical center and the other centers [(ya.- yna.)/ yna.] varied between 
10% and 100%. To estimate the robustness of the model and its ability to 
give identical results regardless of the absolute value of the mean of the 
untransformed variable Y, yna. was also varied from 10 to 10,000. 

After this first set of analysis, the number of participants in the 
atypical center Na was varied from 10 to 300, keeping a number of 
centers at 10 (and therefore a ratio Na/N at 1/10). Then, the number of 

Fig. 4. Sensitivity and specificity of each centralized statistical monitoring method to detect low values of the deviation of the mean (10%, 20%, 30%), when 
different number of participants are included in the atypical center and when the ratio Na/N varies 
Footnotes to Fig. 4 
This figure explores the sensitivity and specificity of the Desmet and Distance methods to conclude that a center may be atypical in the distribution of a continuous 
variable Y for low deviations of the mean and for different Na and Na/N ratios. 
The results are shown with the number of participants in the atypical center Na varying from 10 to 300 (horizontal axis) and the overall number of centers of the same 
size varying from 4 to 20 (coloured curves). 
For each method, the sub-figure on the left (A) shows the result for (ya.- yna.)/ yna. = 10%; the sub-figure on the middle (B) shows the result for (ya.- yna.)/ yna. = 20%; 
and the sub-figure on the right (C) shows the result for (ya.- yna.)/ yna. = 30%; With yna. = mean of the Y values in the non-atypical study centers, and ya. = mean of Y 
values in the atypical center (a). 
In these simulations, the ratio Na/N varies from 1/4 to 1/20. 
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centers was varied from 4 to 20 (and therefore the ratio Na/N from 1/4 
to 1/20), keeping the number of participants Na in the atypical center at 
50. Both Na and Na/N were then varied simultaneously (see Table 1). 

Finally, the consequences of atypicality contamination were 
explored, assuming successively that: among the supposed “non atyp
ical” there was another “atypical” center with the same number of 
participants as the atypical center on which the analysis was focused; 
among the supposed “non atypical” centers there were two other 
“atypical” centers, each with the same number of participants as the 
atypical center on which the analysis was focused. 

All programs and functions were carried out using the R software 
(version 4.2.1) and the simulations were carried out on the computing 
clusters of the Aquitain Intensive Computing Mesocenter (MCIA). 

We choose three components (K = 3) for Bayesian modelling of finite 
mixtures, as proposed by Hatayama. 

For the implementation of the Hatayama method, we used Markov 
Chain Monte Carlo (MCMC) methods for the estimation of the parame
ters of the finite mixture model. To do this, we used the jags function of 
the jagsUI package under the R software. 

3. Results 

Fig. 1 shows the results of the base case analysis. With 50 participants 
in the atypical center and 500 participants across all centers (i.e. Na/N 
ratio = 1/10), sensitivity in detecting atypicality reached or exceeded 
95% for each of the four methods where deviation of the mean in the 
atypical center reached or exceeded 50%. For a deviation of 40%, the 
Student method showed the best sensitivity (100%), followed by the 

Hatayama and Distance methods (both 97%), far ahead of the Desmet 
method (81%). For a deviation of 30%, the sensitivity of the Student 
method (98%), and the Hatayama method (87%) remained high, while 
that of the Distance method (83%) and Desmet method (54%) fell 
steadily. For deviations of 10% and 20%, the Distance method (24% and 
52%) and Desmet method (7% and 26%) showed low sensitivity, while 
the Student method (69% and 90%), and the Hatayama method (61% 
and 73%) still performed well. However, the specificity of the Student 
and Hatayama methods never exceeded 45%, while that of the Desmet 
and Distance methods always exceeded 90% and tended towards 100% 
with increasing levels of mean deviation. The Desmet method had 
higher specificity than the Distance method for mean deviations ranging 
from 10% to 50%. The specificity of both the Desmet and Distance 
methods was close to 100% when the mean deviation exceeded 50%. All 
these results were similar whatever the absolute value of the mean of the 
variable studied. 

Fig. 2 shows the influence of decreasing (from 50 to 10) or increasing 
(from 50 to 300) the number of participants in the atypical center, while 
keeping the ratio Na/N at 1/10. Increasing the number of participants in 
the atypical center while keeping Na/N constant resulted in increased 
sensitivity and decreased specificity in all tests where deviation of the 
mean was equal to or below 50%. For higher deviations, the specificity 
of the Student and Hatayama methods also decreased with fewer par
ticipants in the atypical center. 

Fig. 3 shows the influence of increasing the ratio Na/N (from 1/10 to 
1/4) or decreasing it (from 1/10 to 1/20), while keeping Na at 50. 
Decreasing the Na/N ratio while keeping the Na constant resulted in 
increased sensitivity and decreased specificity in all tests where mean 

Fig. 5. Sensitivity and specificity of each centralized statistical monitoring method to detect an atypical center when other centers are atypical 
Footnotes to Fig. 5 
This figure explores the sensitivity and specificity of the Desmet and Distance methods to conclude that a center may be atypical in the distribution of a continuous 
variable Y in the scenario where there are other atypical centers. 
The results are shown with the number of participants in the atypical center Na varying from 10 to 300 (horizontal axis) and the number of centers of the same size 
varying from 4 to 20 (coloured curves). 
All analyses are performed with (ya.- yna.)/ yna. = 40%. With yna. = mean of the Y values in the non-atypical study centers, and ya. = mean of the Y values in the 
atypical center (a). 
For each method, the sub-figure on the left (A) shows the result when the only atypical center is that being analysed; the sub-figure on the middle (B) shows the 
results when there is another atypical center with the same number of participants; the sub-figure on the right (C) shows the results when there is another atypical 
center with twice the same number of participants. 
In these simulations, the ratio Na/N varies from 1/4 to 1/20. 
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deviation was equal to or below 50%. For higher deviations of the mean, 
the sensitivity of the Desmet method also decreased with an increased 
Na/N ratio. 

Figs. 4 and 5 only show the results for the Desmet and Distance 
methods. 

Fig. 4 explores the influence of varying the number of participants in 
the atypical center (from 10 to 300) and the Na/N ratio (from 1/4 to 1/ 
20) simultaneously for low mean deviations (10%, 20% and 30%). With 
the Desmet method, sensitivity improved with a decreased Na/N, but 
increasing the Na had little influence irrespective of the Na/N ratio. The 
sensitivity of the Desmet method never exceeded 75%. With the Dis
tance method, the increase in sensitivity was intensified by both 
increasing the Na and decreasing the Na/N 

(that is increasing the number of centers), reaching 90% with a 
combination of Na = 100 and Na/N = 1/7. 

Fig. 5 explores the possibility that there are one or two atypical 
centers in addition to the atypical center to be detected. With one or two 
other atypical centers among the “other” centers, the sensitivity to 
detecting the atypical center on which the analysis was focused was 
decreased, unsurprisingly, especially for the Desmet method when the 
Na/N was high, and for the Distance method when the Na was low and/ 
or the Na/N was high. 

4. Discussion and conclusions 

In this paper, the performance of four CSM methods is compared for 
the early detection of an atypical center in multicenter trials. “Early 
detection” means applying the method to each new center when it still 
has relatively few participants, without anticipating either the higher 
number of participants that the center will reach later in the study, or the 
total number of participants already included in other centers at the time 
of the analysis. 

Conceptually, the Desmet and Hatayama methods rely on the exis
tence of several merged distributions and an approximation of the 
hybrid model by the majoritarian distribution [10,11], and the Distance 
and Student methods rely on a sole data distribution [5]. Our simula
tions show that in terms of performance, however, the Distance method 
is close to the Desmet method and the Hatayama method is close to the 
Student method. 

The Desmet and Distance methods have low sensitivity overall for 
low mean-deviation values but very high specificity for detecting all 
deviations of the mean (including small values), and the Student and 
Hatayama methods have better sensitivity for low mean-deviation 
values but very low specificity for detecting all deviations of the 
mean. Increasing the number of participants in the atypical center, or 
increasing the ratio of the number of participants in the atypical center 
to the number of participants in the study, did not fundamentally alter 
the findings. Although the Student and Hatayama methods are more 
sensitive than the other two, their low specificity disqualifies them for 
practical use in centralized statistical monitoring. The profile would lead 
to too many alerts being triggered, which would result in additional 
unnecessary control work to ensure data quality. 

The high specificity of the Desmet and Distance methods gives them 
more potential for practical use in CSM [14–16] and merits more 
detailed discussion of their use. Both methods are very specific but have 
weakness in sensitivity, being highly sensitive only for high deviations of 
the mean, which does not necessarily correspond to a relevant clinical 
situation [17,18]. For variables such as weight and hemoglobin, for 
example, it is difficult to conceive a measurement error that would result 
in a mean in one atypical center being 50% lower (or higher) than the 
mean in the other centers [19,20]. For detecting deviations of the mean 
between 10% and 50%, especially with a low number of participants in 
the atypical center and/or a high ratio of number of participants in the 
atypical center to number of participants in the study, the Distance 
method seems to show somewhat higher sensitivity than the Desmet 
method. This advantage is offset by a decrease in specificity when the 

number of participants in the atypical center is increased. For detecting 
mean deviations of less than 50%, the best compromise between sensi
tivity and specificity therefore seems to be the Distance method with a 
low number of participants in the center studied, and the Desmet 
method with a high number of participants. For practical use, however, 
two comments can be added: (i) as long as a CSM method gives a very 
specific result, poor sensitivity does not prevent its routine use. The 
purpose of CSM is to detect problems in order to introduce controls; it is 
not a substitute for traditional monitoring, it is an additional tool [21, 
22]. If a problem is detected by the CSM method and the result is spe
cific, it saves time. If the problem is not detected by the CSM method, it 
can be detected by other monitoring actions; (ii) interpretation of the 
sensitivity and specificity parameters could suggest a solution 
combining two methods [6,23], starting with the method with the best 
sensitivity and confirming with the one with the best specificity. 

The four methods differ in terms of both theoretical conceptualiza
tion and software implementation. Although the data used were 
generated in accordance with a two-level model, calculating the pa
rameters (mean and standard deviation) in the Student, Hatayama and 
Distance methods does not take this hierarchical structure into account, 
unlike the Desmet method which does take it into account with its use of 
the random effects linear mixed model. In contrast to the Distance, 
Student and Hatayama methods, where the performance is theoretically 
not calculated, note also that the sensitivity and specificity of the Desmet 
method can theoretically be predicted by formulas. Using these for
mulas, Desmet et al. [10] showed that for arbitrarily large center sizes, 
the denominator of the test statistic decreases until it reaches the center 
variance, and the sensitivity of the method increases until it reaches its 
maximum value. 

The main limitation of our work is that it is a simulation using 
artificially-generated data. To assess the value of applying these CSM 
methods in real-life conditions, they would need to be applied in several 
multicenter trials, and outcomes would need to be collected to judge 
their usefulness. These outcomes include acceptability, feasibility, time 
consumption, ability to detect a real problem, ability to improve the 
quality of the data, and time and money actually saved [24,25]. Another 
limitation is that the purpose of CSM is to detect an atypical distribution, 
not to conclude that this atypical distribution is the result of a problem. 
In a multicenter trial, distributions may differ for some variables because 
the population is different. 

In conclusion, two CSM methods, the Desmet and Distance methods, 
showed theoretical strength which makes them eligible for real-life use 
in multicenter trials. They could be proposed for early use, for example 
every 10 or 20 new participants in each new center. Both methods have 
low sensitivity when the deviation from the mean is less than 50%, 
suggesting that the CSM should not be the only tool used for detecting 
atypicality, but should be used alongside other conventional monitoring 
procedures rather than replacing them. However, both methods have 
excellent specificity, which suggests they can be applied routinely, since 
using them takes up no time at central level and does not cause any 
unnecessary workload in investigating centers. The Distance method is a 
little more sensitive with low numbers of participants. 
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