
Genome-wide association analysis identifies natural allelic 
variants associated with panicle architecture variation 
in African rice, Oryza glaberrima Steud 
Fabrice Ntakirutimana,1 Christine Tranchant-Dubreuil,1 Philippe Cubry,1 Kapeel Chougule,2 Jianwei Zhang,3,4 Rod A. Wing,3,5 

Hélène Adam,1 Mathias Lorieux,1 Stefan Jouannic1,* 

1DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France 
2Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA 
3Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA 
4National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China 
5Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 
Thuwal 23955, Saudi Arabia 

*Corresponding author: DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France. Email: stephane.jouannic@ird.fr 

African rice (Oryza glaberrima Steud), a short-day cereal crop closely related to Asian rice (Oryza sativa L.), has been cultivated in Sub- 
Saharan Africa for ∼ 3,000 years. Although less cultivated globally, it is a valuable genetic resource in creating high-yielding cultivars that 
are better adapted to diverse biotic and abiotic stresses. While inflorescence architecture, a key trait for rice grain yield improvement, has 
been extensively studied in Asian rice, the morphological and genetic determinants of this complex trait are less understood in African 
rice. In this study, using a previously developed association panel of 162 O. glaberrima accessions and new SNP variants characterized 
through mapping to a new version of the O. glaberrima reference genome, we conducted a genome-wide association study of four ma-
jor morphological panicle traits. We have found a total of 41 stable genomic regions that are significantly associated with these traits, of 
which 13 co-localized with previously identified QTLs in O. sativa populations and 28 were unique for this association panel. Additionally, 
we found a genomic region of interest on chromosome 3 that was associated with the number of spikelets and primary and secondary 
branches. Within this region was localized the O. sativa ortholog of the PHYTOCHROME B gene (Oglab_006903/OgPHYB). Haplotype 
analysis revealed the occurrence of natural sequence variants at the OgPHYB locus associated with panicle architecture variation through 
modulation of the flowering time phenotype, whereas no equivalent alleles were found in O. sativa. The identification in this study of 
genomic regions specific to O. glaberrima indicates panicle-related intra-specific genetic variation in this species, increasing our under-
standing of the underlying molecular processes governing panicle architecture. Identified candidate genes and major haplotypes may 
facilitate the breeding of new African rice cultivars with preferred panicle traits. 
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Introduction 
Panicle architecture is one of the essential morphological traits 
that directly influence grain yield in rice. Panicle architecture in 
rice is determined through a combination of different traits, in-
cluding panicle rachis length, panicle branch number, and spike-
let number (Crowell et al. 2016). The improvement of panicle 
architectural traits has long interested rice farmers and breeders. 
It has been reported that high-yielding rice cultivars produce 
longer primary branches and more secondary branches than 
low-yielding genotypes (Agata et al. 2020). Although an incremen-
tal increase in the sink size of the panicle has resulted in consid-
erably more spikelets in modern rice cultivars, several 
genotypes have failed to reach the expected grain yield potential 
due to poor grain filling. Therefore, attaining a balance between 
panicle traits is vital to optimize grain yield and this remains para-
mount in breeding programs (Panigrahi et al. 2019). Rice panicle 
architecture is a complex quantitative trait controlled by multiple 

genes and greatly influenced by environmental signals. By using 

QTL mapping, a number of genes associated with panicle develop-

ment were detected, several of which directly affect grain yield, 

such as Gn1a (Ashikari et al. 2005), DEP1 (Huang et al. 2009), 

IPA1/OsSPL14 (Jiao et al. 2010; Miura et al. 2010), qSrn7/FZP 

(Fujishiro et al. 2018), Prl5, and Pbl6 (Agata et al. 2020). 

Furthermore, several genes influencing panicle architecture vari-

ation were identified through mutant characterization. For in-

stance, the ABERRANT PANICLE ORGANIZATION1 (APO1) (Ikeda 

et al. 2007), LAX PANICLE1 (LAX1) (Komatsu et al. 2001), FRIZZY 

PANICLE (FZP) (Komatsu et al. 2003), and TAWAWA1 (TAW1) 

(Yoshida et al. 2013) genes determine panicle architecture in rice 

by modulating branching patterns and the number of spikelets. 

Although the identification of these genes has aided the elucida-

tion of the molecular basis of panicle development in rice, their 

application in breeding programs is challenging because most of 

the corresponding mutants produce plants with abnormal 
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morphological traits. Therefore, the natural sequence variations 
of key panicle-related genes have been studied in several rice po-
pulations and several superior haplotypes associated with panicle 
traits have been identified (Jang et al. 2018; Abbai et al. 2019). 
Although the divergent selection of such superior alleles has aided 
in diverse rice breeding initiatives (Miura et al. 2010; Yan et al. 2011;  
Lin et al. 2020), a large number of alleles potentially associated 
with panicle traits and grain yield remain to be fully exploited. 
In this connection, the identification of genes and large-effect al-
leles linked with panicle architecture phenotype will facilitate fu-
ture targeted genetic modifications to improve yield and enrich 
genetic diversity. 

Flowering time (FT) or heading date is another important char-
acter known to influence rice yield-related traits in relation to a 
wide range of environmental cues (Huang et al. 2012). Flowering 
time phenotype was a recurrent target of selection during rice do-
mestication and breeding. The introgression of superior gene al-
leles related to flowering from wild rice species, several of which 
are linked with panicle development and yield variations, revealed 
a great potential for the genetic improvement of cultivated geno-
types (Yan et al. 2011). Impressive examples exist for the GRAIN 
NUMBER PLANT HEIGHT AND HEADING DATE 7 and 8 (Ghd7 and 
Ghd8) genes (Gao et al. 2014; Lin et al. 2020) for which introgression 
of superior alleles of these genes from diverse genetic resources 
has resulted in a late heading phenotype under long-day condi-
tions and a consequent rice grain improvement yield by modulat-
ing primary and secondary branches (Xue et al. 2008; Lu et al. 2012). 
Flowering time phenotype in photosensitive rice is determined by 
photoperiod, the seasonal change in day-length, as one of the im-
portant environment signals for plants. Rice as the model for 
short-day species has been extensively studied to understand 
the photoperiodic control of its flowering pathway (Fan and 
Zhang 2018; Andrade et al. 2022; Molla 2022). Two independent 
regulatory pathways involving the GIGANTEA, HEADING DATE 1 
and HEADING DATE 3a (OsGI-Hd1-Hd3a) rice genes were identified 
to regulate heading date phenotype in rice under short-day and 
long-day conditions. The Hd1 gene activates rice flowering under 
short-day conditions by up-regulating the Hd3a gene (Kim et al. 
2007). When rice is in long-day conditions, however, Hd1 
down-regulates Hd3a to activate flowering. Moreover, day-length 
measurement by photoreceptors is essential to ensure flowering 
success in rice (Song et al. 2010). Phytochrome (PHY) members 
are the essential red/far-red light receptors of plant species. The 
rice genome contains three phytochrome genes (PHYA, PHYB, 
and PHYC), with each gene playing a distinct, but partially redun-
dant, role in light-mediated developmental processes, including 
floral induction (Kay et al. 1989; Takano et al. 2005). Molecular ana-
lyses indicated that rice phytochromes are day-length sensitive 
with the phyb mutant exhibiting late flowering under both short- 
and long-day conditions and the phyc mutant repressing flowering 
only under short-day conditions (Osugi et al. 2011). By contrast, the 
phya mutant exhibits an early flowering phenotype under both 
short- and long-day signals. It was also shown that rice phyto-
chromes PHYA and PHYB directly interact with Ghd7 by opposing 
OsGI-mediated Ghd7 degradation, thus delaying flowering under 
long-day conditions (Weng et al. 2014). 

African rice (Oryza glaberrima Steud.) is a short-day cereal crop 
closely related to Asian rice (Oryza sativa L.) and has been culti-
vated in west Sub-Saharan Africa for ∼ 3,000 years (Linares 
2002; Cubry et al. 2018). Compared with Asian rice, African rice 
is less grown globally, but it possesses special traits that are va-
lued to improve Asian rice, including strong resistance to diseases, 
pests, poor and acid soils, and environmental stresses (Wu et al. 

2017; Choi et al. 2019). With regard to panicle architecture, 
African rice displays a sparse panicle with fewer spikelets caused 
by lower number of secondary branches compared with Asian 
rice, suggesting a divergent genetic control of panicle architecture 
phenotype between the two species (Ta et al. 2017; Harrop et al. 
2019; Reyes et al. 2021). According to several studies, the wide gen-
etic diversity between Asian rice and African rice could serve as 
pool of potential genes for varietal improvement between these 
species (Oladokun 2006; Ishizaki and Kumashiro 2008). The most 
well-known example of introgression between the two species is 
the development of New Rice for Africa (NERICA) cultivars 
through recurrent back-crosses, which resulted in better resist-
ance to biotic and abiotic stresses compared to Asian rice and 
an improved grain yield with respect to African rice (Bocco et al. 
2012; Wang et al. 2014). In addition, researchers working on 
O. glaberrima populations have attempted to dissect the morpho-
logical traits and associated genetic mechanisms underlying the 
domestication of this species. A study by Ta et al. (2017) revealed 
that O. glaberrima has wider inflorescence meristems and more 
extensive branching patterns, resulting in larger numbers of spi-
kelets compared to its wild progenitor Oryza barthii. The authors 
suggested that this variation is a result of modifications in the 
expression of genes that act early in the determination of 
branching patterns. 

Given that advances in sequencing technologies have provided 
useful genomic resources for several rice species, genome-wide 
association studies (GWAS) have become popular in rice, especial-
ly O. sativa, and have helped efforts to dissect causal biological 
mechanisms underlying various agronomically important traits 
(Song et al. 2018; Wang et al. 2020), including those related to pan-
icle architecture (Rebolledo et al. 2016; Reig-Valiente et al. 2018; Ta 
et al. 2018; Bai et al. 2021). However, only a few GWAS studies have 
been performed on O. glaberrima, some of which were based on 
traits related to salinity tolerance (Meyer et al. 2016) and transpir-
ation efficiency (Affortit et al. 2022). A recent GWAS study by Cubry 
et al. (2020), which employed a panel of 163 O. glaberrima genotypes 
(Cubry et al. 2018), identified several QTLs associated with flower-
ing time, resistance to Rice yellow mottle virus (RYMV), and panicle 
morphological traits, providing valuable resources for genetic 
analyses of agronomic traits in this species. Although several 
QTLs related to panicle architecture phenotype have been identi-
fied, the key genes and major effect alleles underlying 
panicle-related traits in African rice remain less well documented, 
and a global view of how genes related to flowering time interact 
with panicle traits in African rice is still lacking. 

Here, we evaluate the genetic mechanisms modulating panicle 
architecture across 162 O. glaberrima accessions obtained from a 
previously genotyped association panel representing a wide 
geographical range from West Africa to East Africa (Cubry et al. 
2018). For the purpose of this study, we used new SNP/InDel data-
sets obtained from mapping to an improved reference genome 
for O. glaberrima acc. CG14 (Tranchant-Dubreuil et al. 2022). 
Genome-wide association scans for primary branch number 
(PBN), secondary branch number (SBN), spikelet number (SpN), 
and rachis length (RL) revealed loci linked to each trait and iden-
tified genomic regions for candidate gene and major allele identi-
fication. We discuss the effects of allelic variation at the OgPHYB 
locus on variations in flowering time and panicle morphological 
traits. The findings of this study will contribute to the understand-
ing of the genetic basis of panicle morphological traits in the 
African rice. By dissecting the genetic mechanisms underlying 
these traits, our research provides crucial insights into the speci-
ficities of O. glaberrima compared to the Asian species O. sativa.  
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These findings can be applied in future rice breeding programs to 
improve panicle characteristics and enhance the productivity of 
African rice crops. 

Methods 
Plant material, growing conditions, and 
measurements 
The association panel under study is composed of 162 traditional 
accessions of O. glaberrima which originated mainly from West 
Africa, with some accessions sampled from Central East Africa. 
Additional details on this association panel and field experiments 
were previously described by Cubry et al. (2020). Briefly, the seed-
lings of all accessions were planted for phenotypic evaluation at 
the Institut de l’Environnement et de Recherches Agricoles 
(INERA) station in 2012 and 2014 under irrigated conditions. The 
field experiment was established using an alpha-lattice design 
with two replicates. Plants were sown at two different periods in 
the same year: the first at the beginning of June (“early sowing”) 
and the second in mid-July (“late sowing”). Plants were grown in 
0.5 m2 plots with 15 plants per plot. FT was observed for both early 
and late sowing over 2 years and was recorded as number of days 
from sowing to the date when 50% of the plants of an accession 
displayed heading panicles. About 14 days after the heading 
date, the three main panicles per accession per replicate were col-
lected (i.e. nine panicles/accession/sowing date/replicate) from 
central plants to measure panicle traits, from the early sowing 
only, over the 2 years. These panicles were photographed and 
analyzed using the P-TRAP software (AL-Tam et al. 2013). Eight 
phenotypic traits, including RL, SpN, PBN, SBN, primary branch 
length (PBL), secondary branch length (SBL), primary branch inter-
node length (PBintL), and secondary branch internode length 
(SBintL) were assessed. 

Phenotype statistical analyses 
The data for panicle traits used in this study have been previously 
assessed for normality by Cubry et al. (2020). As all panicle traits 
exhibited significant deviations from a normal distribution, the 
Box and Cox transformation method (Box and Cox 1964) was em-
ployed to identify the optimal transformation for each panicle 
trait, ensuring compliance with statistical model assumptions, in-
cluding normally distributed error terms and constant variance. 
The best linear unbiased estimate (BLUE) for each accession was 
estimated for all the transformed traits using a mixed linear mod-
el fitted in the lme4 R package (Zhang et al. 2011). The model incor-
porated accession as a fixed effect and year, as well as the year x 
accession interaction, as random effects. To calculate the broad- 
sense heritability (H2) of each trait, the model was modified by 
treating all the variables as random effects. The variance compo-
nent estimates obtained from each fitted model were utilized to 
estimate the broad-sense heritability following the methodologies 
described by Oakey et al. (2006). To identify which traits explained 
the most phenotypic variation among the O. glaberrima accessions 
under study, principal component analysis (PCA) was performed 
on the yearly phenotypic means and the BLUEs using the dudi.p-
ca() function from ade4 R package (Dray and Dufour 2007). 
Pearson’s correlation analyses and corresponding probability va-
lues were estimated between all pairwise combinations of traits 
using the chart.Correlation() function implemented in R package 
PerformanceAnalytics (Peterson et al. 2014). Before conducting 
BLUE-based correlation analyses, the BLUEs of each trait were 
subjected to a back-transformation procedure to restore them to 
their original scale. 

Genotypic data 
We used a set of 162 O. glaberrima accessions, which were previ-
ously subjected to high-depth re-sequencing (Cubry et al. 2018), 
to generate the SNP/InDel markers used in the present study. 
Paired-end read was filtered by quality (q < 20). Filtered reads 
were mapped to the CG14 reference genome (Accession 
GCA_000147395, https://www.ebi.ac.uk/ena/browser/view/GCA_ 
000147395; Tranchant-Dubreuil et al. 2022) using Burrow– 
Wheeler Aligner software v0.7.4 (Li and Durbin 2009). Reads 
mapped in proper pairs were extracted using the SAMtools-view 
command from SAMtools v1.3.1 (Li et al. 2009). SNP/InDel variants 
were called for each accession using the Haplotype Caller 
(emit-ref-confidence GVCF mode) module in GATKv4.1.9.0 
(McKenna et al. 2010; Auwera et al. 2013). The GATK Genomics 
DBImport and GenotypeGVCFs modules were employed for joint 
genotyping to produce raw VCF files for each accession. Raw 
SNP/InDel variants were filtered using GATK VariantFiltration 
based on the following criteria: quality higher than 200, depth 
coverage between 10 and 20,000, and less than three SNPs/ 
InDels within a 10-bp window. The SNPs and InDels identified 
by GATK were further filtered using BCFtools v1.16 (Danecek 
et al. 2021) and VCFtools v0.1.16 (Danecek et al. 2011) by applying 
the following criteria: only biallelic SNPs/InDels; minor allele fre-
quency (MAF) of 5%; maximum missing data of 20%; and 
homozygous-variant called in more 90% of samples. The remain-
ing missing genotypes were imputed using the impute() function 
of the LEA R package (Gain and François 2021). All filtered SNP 
and InDel variants were annotated according to O. glaberrima 
acc. CG14 (version OglaRS2) genome annotation (https://ftp. 
gramene.org/oryza/release-6/gff3/oryza_glaberrima/) using 
SnpEff software v5.1 (Cingolani et al. 2012). Genes were function-
ally annotated by aligning their protein sequences against the 
NCBI’s non-redundant database using the BLASTP v.2.12.0+ 
(e-value cut-off of 10−6) (Camacho et al. 2009). InterPro protein do-
main searches were performed using the software InterProScan 
v5.53–87 (Quevillon et al. 2005) based on these parameters: -appl 
pfam -dp -goterms -iprlookup -pa. GO annotations were charac-
terized with the tool Blast2GO v6.0.3 (Conesa et al. 2005) using de-
fault parameters. 

Linkage disequilibrium and population 
structure analysis 
Linkage disequilibrium (LD) between SNPs in the 162 accessions 
was estimated using the squared correlation coefficient (r2) using 
the PopLDdecay software (Zhang et al. 2019). LD data were sum-
marized by estimating the mean LD between a pair of SNPs in 
1,000 bp bins and was plotted against physical distance with a 
LOESS curve fitted to visualize LD decay. The population structure 
of the 162 accessions was evaluated using sparse nonnegative ma-
trix factorization (snmf) function in the LEA R package (Gain and 
François 2021) which implements the admixture model (Chikhi 
et al. 2001) to estimate ancestry proportions. The cross-entropy 
criterion was employed to calculate varying levels of ancestral 
groups (K = 1–10) and 10 replications were used for each K. To fur-
ther assess the population genetic structure of our panel, PCA was 
carried out using the -pca command in PLINK version 1.9 (Chang 
et al. 2015). 

Genome-wide association analysis 
We conducted GWAS to identify genomic regions associated with 
panicle traits. SNP-trait association analyses were performed 
using 687,436 high-quality SNP markers while correcting for  
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population structure. The association analyses focused on four 
panicle traits (SpN, PBN, SBN, and RL) with high phenotypic vari-
ation and known to contribute to panicle branching biological pro-
cesses, specifically the number and order of branching. To capture 
the overall trait structure and variability, GWAS was also con-
ducted using the first three principal components (PC1 to PC3) de-
rived from the BLUEs of all eight panicle traits analyzed in this 
study. The GWAS was performed for each of these traits as de-
scribed by Cubry et al. (2020). Two models were considered in 
this study: (1) the latent factor mixed model (LFMM) implemented 
in LFMM v2 R package (Caye et al. 2019); (2) Fixed and random 
model Circulating Probability Unification (FarmCPU) implemen-
ted in the GAPIT R package (Lipka et al. 2012). LFMM tests for asso-
ciation of the phenotypes with each SNP marker were conducted 
with adjustment for confounding of population structure and 
other hidden variables by regression on the four latent factors. 
For FarmCPU, which implements a multi-locus linear mixed mod-
el and iteratively a fixed effect model and a random effect model 
(REM) to avoid model overfitting (Liu et al. 2016), we employed four 
PCs to control spurious associations. FarmCPU incorporates the 
kinship matrix (K) estimated from associated markers as an add-
itional covariate. GWAS analyses were initially conducted separ-
ately for each year using phenotypic means, and P-values 
obtained for the same phenotypic trait were subsequently com-
bined across the 2 years using Stouffer’s method (Riley, 1949). 
Furthermore, to account for the potential influence of genotype 
× year variance, additional GWAS analyses were performed using 
the BLUEs of the four panicle traits. FDR estimation was per-
formed for each trait to account for multiple testing, but the 
FDR-adjusted P-values were overly stringent, resulting in a very 
limited number of significant SNP-trait associations. Hence, a 
10−4 P-value threshold was employed to select candidate 
SNP-trait associations. Only association peaks identified under 
both LFMM and FarmCPU methods were considered for further 
analyses. Manhattan plots for all the associations and their corre-
sponding quantile-quantile (QQ) plots were drawn using the 
qmplot Python package (Huang and Libiseller-Egger 2022). 
Candidate SNP-trait associations were characterized in silico for 
the identification of genomic regions and search for potential can-
didate genes. To define genomic regions for the selection of candi-
date genes, local LD decay was employed and was calculated 
within a 1,000 kb region upstream and downstream of the signifi-
cant SNP markers. LD heatmaps surrounding the significant 
GWAS peaks were constructed using the LDBlockShow software 
using r2 > 0.6 (Dong et al. 2021). Local Manhattan plots and genom-
ic structure lollipop plots were generated using KaryoploteR pack-
age (Gel and Serra 2017). Association peaks identified under both 
LFMM and FarmCPU methods were considered for the screening 
of putative candidate genes, which was based on the functional 
annotation of the O. glaberrima acc. CG14 reference genome (ver-
sion OglaRS2). 

Haplotype analysis 
Haplotype analysis was performed for genomic regions and candi-
date genes using the Pegas R package (Paradis and Barrett 2010). 
Haplotypes within genomic regions were inferred using SNPs 
that met the P < 10−4 threshold in the GWAS analysis, focusing 
on regions exhibiting multiple candidate SNP-trait associations 
in the LD block. Only haplotypes represented by at least five acces-
sions (∼ 3% of the entire population) were considered for further 
analyses. Two main haplotypes (high- and low-value haplotypes) 
were identified for each genomic region based on significantly dif-
ferential phenotypic values. The polymorphic sites including both 

SNPs and InDels shared by two major haplotypes across all the ac-
cessions were assessed. The phenotypic values of different haplo-
types were compared using a Welsh t-test (P ≤ 0.05), allowing 
unequal variances between haplotypes. The haplotypes of identi-
fied candidate genes were defined using all the SNPs and InDels 
present within the gene after removing the variants with MAF <  
0.05 and missing data > 0.2. 

Results 
Variation of O. glaberrima panicle traits 
To understand the phenotypic variation of panicle architecture in 
African rice, we used an association panel of 162 genotypes grown 
in 2012 and 2014. Eight traits related to panicle architecture, in-
cluding PBN, SBN, SpN, RL, PBL, SBL, PBintL, and SBintL, were as-
sessed. Information relating to the mean, range, standard 
deviation, and coefficient of variation (CV) of the traits measured 
can be found in Supplementary Table 1. Overall, a wide range of 
phenotypic variability was observed among the 162 O. glaberrima 
accessions across 2 years. All the traits, except for RL, PBL, and 
PBintL, showed a CV higher than 20%. The highest phenotypic 
variation was observed for SBN (CV = 48.41%) followed by SpN 
(CV = 27.07%), SBintL (CV = 25.45%), and PBN (CV = 20.97). The 
panicle traits, namely SpN, PBN, PBintL, RL, and SBL, demon-
strated moderate to relatively high broad-sense heritability scores 
ranging from 0.53 to 0.66 (Supplementary Table 1), highlighting a 
substantial contribution of genetic factors to the observed vari-
ation in these traits. Conversely, traits such as PBL, SBN, and 
SBintL exhibited lower broad-sense heritability scores (0.33– 
0.41), indicating a more pronounced influence of environmental 
factors on the phenotypic variability of these traits. 

To explore the relationships among the panicle traits and iden-
tify underlying factors contributing to trait variation, PCA ana-
lyses were conducted using yearly phenotypic means and the 
BLUEs for all eight panicle traits. When considering the BLUEs, 
PC1 explained 43.47% of the total variance (Fig. 1, a and b). 
Notably, traits such as SpN, PBN, and RL exhibited positive load-
ings greater than 0.4 on PC1 (0.47–0.54), indicating that individuals 
with higher PC1 scores possessed larger panicle sizes, increased 
primary branches, and a higher number of spikelets per panicle. 
PC2 explained 38.81% of the total variance and exhibited high 
loadings for traits such as SBL, PBL, and PBintL (0.45–0.54). This in-
dicates that plants with higher PC2 scores had longer secondary 
branch length, primary branch length, and panicle internode 
length. Furthermore, the SBN trait displayed a high negative score 
on PC3 (−0.54), suggesting that plants with higher PC3 scores had a 
lower number of secondary branches. The results of the PCA using 
both the BLUEs and yearly phenotypic means showed consistent 
patterns, with slight variation observed for the 2012 phenotypic 
means (Supplementary Fig. 1, a and b). These findings suggest 
that PC1 and PC2 can serve as quantitative indices for character-
izing panicle architecture. To explore the phenotypic relation-
ships among the eight studied traits, Pearson’s correlation 
coefficients were calculated using both the BLUEs (Fig. 1c) and 
yearly phenotypic means (Supplementary Fig. 1, a and b). The 
correlation patterns observed were consistent between the 
BLUEs and phenotypic means. The SpN trait showed a significant 
positive correlation with PBN (R = 0.84, Fig. 1, c and d). This cor-
relation persisted across both years, with a particularly strong 
association observed in 2014 (Supplementary Fig. 1c). Similarly, 
SpN showed a significant positive correlation with SBN and RL 
with Pearson’s correlation coefficients of 0.59 and 0.60, respect-
ively (Fig. 1c). PBN exhibited a significant positive correlation  
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with RL (R = 0.65). Overall, traits related to length, such as 
SBL, PBintL, and SBintL, showed negative relationships with 
traits related to number, such as SpN, PBN (Fig. 1, b and c,  
Supplementary Fig. 1, a and b). 

Variant identification, population structure, and 
linkage disequilibrium 
In the present study, a set of 162 O. glaberrima genotypes that were 
previously fully sequenced (Cubry et al. 2018) were used for vari-
ant identification. After raw read filtering, alignment to the 
CG14 OglaRS2 reference genome, variant calling, and initial filter-
ing, we obtained a total of 6,851,320 SNP/InDels, with an average 
of 25 variants per kb. After discarding variants with MAF < 5%, 
missing data > 20%, and proportion of heterozygous-variants >  
10%, we reduced this number to 687,436 high-quality SNPs and 
∼ 400 K high-quality InDels.

Using SNP markers, we assessed the population structure of
the current panel using sparse nonnegative matrix factorization 
(snmf), which employs a Bayesian model-based method for clus-
tering. Ancestral populations were identified by varying levels of 
K means from 2 to 10 groups (Fig. 2a). With K = 2, the accessions 

of the panel were divided into two clusters corresponding to the 
Ogla I and Ogla II groups identified by Orjuela et al. (2014). 
Increasing K levels divided these two groups into admixtured sub-
groups. A cross-entropy criterion indicated a plateau at K = 4, as-
suming optimum number of ancestral groups at this point 
(Fig. 2b). Hence, for the purpose of this study, K = 4 was retained 
for subsequent association analysis. A PCA was performed based 
on SNP markers to evaluate the consistency of the ancestral 
groups identified by admixture analysis. The PCA results indi-
cated the first two PCs accounted for the Ogla I and Ogla II groups, 
with PC1 and PC2 explaining 37.32% and 17.26% of total genetic 
variance, respectively (Fig. 2c). Taken together, our population 
structure and PCA analyses indicated that the genotypes of this 
association panel do not depict a strongly structured population. 

Within our association panel, the average genome-wide LD de-
cays to r2 = 0.2 at ∼ 350 kb (Fig. 3), which is comparable with a pre-
vious study in O. glaberrima (Meyer et al. 2016). The magnitude of 
LD decay varied considerably among different chromosomes 
(Supplementary Fig. 2). The LD decay rate for all chromosomes ex-
cept chromosomes 6, and 10 decayed to r2 = 0.2 at a distance be-
tween SNP markers varying from ∼ 92 kb (Chr2) to ∼ 600 kb 

(a) (b)

(c) (d)

Fig. 1. Phenotypic analysis revealing panicle traits relationships. a) PCA of panicle traits using BLUE values and summary of the first three principal 
components (PC1, PC2, and PC3) for the eight panicle traits analyzed in O. glaberrima population. b) Loading plot of PC1 and PC2, illustrating the loadings of 
each panicle trait on these principal components. The percentages of variance explained by PC1 and PC2 are provided in parentheses. c) A heatmap 
depicting Pearson’s correlation coefficients among the BLUE values of panicle traits across all accessions of the panel. d) Scatter plot showing phenotypic 
correlation of PBN and SpN in the full panel.   
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(Chr3). Strong patterns of LD were detected for chromosomes 6 
and 10, with r2 = 0.2 for up to 1,000 kb. The very high extent of 
LD observed for some chromosomes could result in the inclusion 
of a large number of candidate genes within LD blocks which can 
complicate the search of candidate genes from significant peaks. 
Thus, we employed local LD decay (r2 = 0.6) around significant 
peaks to define genomic regions for candidate gene disclosure. 

Detection of genomic regions associated with 
panicle traits by GWAS 
To identify associations between SNP markers and variations in 
the panicle traits under study in a collection of 162 O. glaberrima 
accessions, we employed the set of 687,436 high-quality SNPs 
(MAF > 0.05 with no missing data) uniformly distributed across 
the 12 O. glaberrima chromosomes. The phenotypic values of the 
evaluated traits were previously checked for normality and were 
transformed (Cubry et al. 2020). In our GWAS analyses, BLUEs 

were utilized instead of best linear unbiased predictions to ad-
dress potential issues with double shrinking. Comparing the 
GWAS results obtained with BLUEs and the yearly phenotypic 
means showed a concordance, particularly in the main regions 
(Fig. 4, Supplementary Figs. 3–5). However, the use of BLUEs led 
to the exclusion of some GWAS regions featuring a single 
SNP-trait association at 10−4 P-value threshold, predominantly 
observed with the FarmCPU method (Supplementary Figs. 3 and 
4). GWAS analyses using panicle traits identified 1,351 associa-
tions (P-value < 10−4) between 1,302 SNPs and 1,140 associations 
(P-value < 10−4) between 1,132 SNP markers across all 12 chromo-
somes for LFMM (Fig. 4, a–d) and FarmCPU (Supplementary Fig. 5, 
a–d) methods, respectively. The QQ plots indicated that the two 
GWAS methods fitted well to the data, the observed P-values being 
uniformly distributed with some apparent inflation producing 
higher values compared to the expected P-values (Fig. 4, e–h,  
Supplementary Fig. 5, e–h). Using PC scores, we detected a total 

(a)

(c)

(b)

Fig. 2. Population structure analysis of 162 O. glaberrima accessions. a) Population structure of the panel inferred using snmf() function from LEA R 
package. The 162 accessions were assigned into two groups (Ogla I and Ogla II). Each color denotes one population. b) Cross-entropy criterion shows the 
number of populations that best explains the panel under study. Maximum likelihood was observed at K = 4, which indicates the four populations from 
the panel under study. c) PCA of 162 O. glaberrima accessions based on all SNP markers. PC1 and PC2 denote the score of principal components 1 and 2, 
respectively. The proportion of variance explained by PC1 and PC2 is indicated in parentheses.   
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of 746 and 326 associations (P-value < 10−4) for LFMM and 
FarmCPU, respectively, with 210 associations overlapping be-
tween the two methods (Supplementary Fig. 6, a–f). 

We focused on those association signals that were detected 
using both the LFMM and FarmCPU methods to reduce the propor-
tion of spurious associations. Based on the PC scores, a total of 14 
GWAS sites were identified, with five regions specific to PC1, six re-
gions specific to PC2, and two regions shared by both PC1 and PC2 
(Supplementary Fig. 6, a–f). However, only two regions were asso-
ciated with PC3, providing further support for our hypothesis that 
PC1 and PC2 effectively capture the variation in panicle architec-
ture within the studied O. glaberrima population. GWAS results of 
the four panicle traits identified a total of 41 candidate regions 
that were common to the two methods, with 29 supported by 
more than one SNP-trait association at 10−4 P-value threshold 
(Table 1, Supplementary Table 2). The largest number of candi-
date regions was observed for the SBN trait with a total of 23 
regions distributed throughout all chromosomes except chromo-
somes 6 and 8. The SpN and RL traits were associated with 9 and 
11 genomic regions, respectively. The smallest number of genom-
ic regions (6) was observed for the PBN trait. Notably, we detected 
several genomic regions that contained significant associations 
for more than one trait. A genomic region on chromosome 6, 
which overlapped with associations for PC1, exhibited associa-
tions with both SpN and PBN. Additionally, two regions on 
chromosome 11, which overlapped with associations for PC1 
and PC2, demonstrated associations with both SpN and SBN traits. 
These findings suggest that these genomic regions play a crucial 
role in regulating the key panicle traits contributing to the vari-
ation captured by PC1 and PC2 in O. glaberrima. 

Unlike the correlations we observed between RL and number- 
related traits, such as SpN and PBN, no common genomic region 
was shared between RL and these traits, suggesting that the gen-
etic network controlling RL operates independently of other pan-
icle traits tested in this study. On chromosome 3, we found a 
genomic region for PBN which overlapped with genomic regions 
for SpN and SBN traits (Fig. 4, a–c). Notably, this candidate region 
also overlapped with associations for PC1, as determined by the 
LFMM method (Supplementary Fig. 6a), providing evidence for 
the genetic underpinnings of their co-variation observed in PC1. 
Based on local Manhattan plots and LD, the candidate region 

was delineated to 10.039–10.053 Mb based on pairwise LD correl-
ation (r2 > 0.6) and consists of three genomic regions (Fig. 5a): 
qPBN3 (positions 10,038,624 to 11,052,717), qSpN3 (positions 
10,157,280 to 11,052,717), and qSBN3.2 (positions 10,266,019 to 
11,052,717). The genomic regions qPBN3 and qSpN3 consisted of 
114 and 85 SNPs, respectively, that exceeded the threshold of 
P < 10−4 in the GWAS analyses using the LFMM method, of which 
30 were common to both regions (Table 1, Supplementary 
Table 2). The qSBN3.2 region contained six SNPs that exceeded 
the threshold of P < 10−4 based on the LFMM method and never 
shared exactly the same significant SNPs with qPBN3 and qSpN3. 

As some panicle morphological traits tested in this study 
exhibited a phenotypic relationship with flowering time 
(Supplementary Fig. 7), we performed a GWAS analysis for flower-
ing time to test whether significant panicle-related traits associa-
tions from this region could be confounded with associations to 
flowering time. GWAS results identified significant association 
signals on chromosome 3 (positions 10,038,624 to 12,730,361) as-
sociated with flowering time assessed for early sowing (DFTa) 
based on the LFMM method (Supplementary Fig. 8, a and b), 
some of which overlapped with some GWAS peaks for the SpN 
and PBN traits. However, these association signals were not de-
tected using the FarmCPU method (Supplementary Fig. 8, c and d). 

We also assessed whether the GWAS signals detected in this 
study overlapped with known QTL sites detected in other GWAS 
studies and mapping populations relating to panicle morphology. 
To find co-locations of genomic regions of this study with QTL 
sites previously reported in O. sativa, we first converted the coor-
dinates of the GWAS regions of this study into corresponding O. sa-
tiva coordinates using NUCmer alignment (Marçais et al. 2018). 
The results revealed a total of 36 QTLs across all 12 chromosomes 
from previously reported QTLs which co-localized with 13 candi-
date regions identified in the present study (Supplementary 
Table 2). Only two of these co-localized QTLs shared the same 
traits with our GWAS regions, namely qPBN-10 and Q_127 on 
chromosome 10, which co-localized with qPBN10 for the PBN trait 
and qRL10 for the RL trait, respectively. Other co-localized QTL 
sites had been previously mapped for different panicle traits 
and/or grain yield-related traits. In addition, we compared the 
GWAS regions found in this study with those detected by Cubry 
et al. (2020) for panicle traits, the latter study having employed 

(a) (b)

Fig. 3. SNP variants and LD decay of 162 O. glaberrima genotypes. a) SNP distribution and density along the 12 chromosomes of O. glaberrima accessions. 
The colors correspond to the number of SNPs in a 1-Mb region. b) Genome-wide average LD decay indicated by relationship of smoothed (r2) values and 
physical distance between SNP pairs. The horizontal dashed line, along the x-axis corresponding to physical positions, depicts the LD threshold of 0.2 for 
pairwise r2.   
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the same association panel but an O. sativa reference genome for 
SNP calling and different criteria for defining candidate regions. 
Nine overlaps were identified, three of which shared the same 

traits, namely two genomic regions for the RL trait localized on 
chromosomes 3 and 9 and one genomic region for the SBN trait lo-
cated on chromosome 12 (Supplementary Table 2). 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 4. Genome-wide association mapping using LFMM method. (a–d) Manhattan plots using two years of phenotypic data for PBN, SpN, SBN, and RL. The 
dashed black lines represent the genome-wide significance threshold (−log10 P = 4). (e–h) QQ plots for the panicle traits tested. Arrows correspond to the 
candidate regions that co-localized with genes associated with panicle traits. The candidate regions in purple denote genomic regions on chromosome 3, 
which contain overlapping associations.   
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Identification of candidate genes and haplotypes 
associated with panicle-related traits 
Several genes ascribed to rice panicle development have been 
characterized and some have been cloned (Li, Cheng, et al. 2021). 
To assess whether any of these genes could be linked with 
trait-associated markers, we evaluated the regions around the 
peaks delineated by haplotype blocks with strong LD patterns 
(r2 > 0.6). Our study identified several candidate genes that 
mapped within or flanking GWAS regions displaying a relation-
ship to panicle development and architecture. Moreover, by using 
significant markers, we identified haplotypes for the 28 genomic 
regions that encompass at least two significant SNP markers. 
The two main haplotypes were classified into high-value and low- 
value haplotypes based on their effects on panicle traits tested 
here. These analyses were focused on genomic regions that co- 
localized candidate genes related to panicle architecture, al-
though consistent results were obtained for other regions 
(Supplementary Table 3). Subsequently, the polymorphisms 

shared by two major haplotypes were evaluated to elucidate func-
tional polymorphic sites. 

With respect to the GWAS locus on chromosome 3 containing 
three overlapping candidate regions (qPBN3, qSpN3, and 
qSBN3.2), the region in question co-localized with three candidate 
genes associated with the development of the panicle (Table 1;  
Fig. 5, a and b). A cluster of highly significant SNPs associated 
with PBN and SpN traits along with a significant SBN signal was lo-
cated in the sixth block near the Oglab_006890/OgSET1 gene ortho-
logous to O. sativa SET PROTEIN 1 (OsSET1) (Fig. 5, a and b). This 
gene encodes an enhancer of zeste [E(Z)] homolog, a key compo-
nent of the Polycomb Repressive Complex2 (PRC2), that is in-
volved in short day signaling to mediate the accurate 
photoperiodic control of flowering time (Liang 2003; Lu et al. 
2013; Liu et al. 2014). Another cluster of significant signals for 
PBN, SpN, and SBN traits located in the seventh block overlapped 
with a gene encoding the ortholog of O. sativa PHYTOCHROME B 
gene (Oglab_006903/OgPHYB). The rice PHYB gene was shown to 

Table 1. GWAS regions associated with panicle architecture-related traits obtained using LFMM and FarmCPU methods. 

GWAS site Trait Chr. Physical position Significant SNPs Colocated genes (OglaRS2) 

Start End LFMM FarmCPU  

qPBN1 PBN  1  33,064,198  34,064,198  3  5 Oglab_004326/OgqSH1 
Oglab_004365/OgQHB 

qSpN1.1 SpN  1  861,855  872,749  1  1   
qSpN1.2 SpN  1  10,605,869  10,650,025  38  24   
qSBN1 SBN  1  27,511,040  27,989,047  2  2 Oglab_003422/OgMADS32 
qPBN2 PBN  2  4,616,401  4,650,455  2  21   
qSBN2.1 SBN  2  22,294,110  22,327,093  1  1   
qRL2 RL  2  329  124,799  12  13   
qSBN2.2 SBN  2  34,066,865  34,144,989  13  6   
qSBN3.1 SBN  3  4,238,189  4,262,556  9  1 Oglab_005985/OgMADS47 
qRL3 RL  3  6,397,785  6,501,994  40  41 Oglab_006320/OgBRR1 
qPBN3 PBN  3  10,038,624  11,052,717  114  39 Oglab_006903/OgPHYB 

Oglab_006890/OgSET1 
Oglab_006896/OgNRL2 

qSpN3 SpN  3  10,157,280  11,052,717  85  5   
qSBN3.2 SBN  3  10,266,019  11,052,717  6  5   
qSBN3.3 SBN  3  11,980,837  11,991,756  1  1   
qSBN4.1 SBN  4  16,885,547  17,048,779  8  4   
qSBN4.2 SBN  4  17,560,791  17,618,502  1  1   
qRL4 RL  4  27,321,847  27,322,998  3  1   
qSBN5 SBN  5  22,448,666  22,458,772  1  1   
qSpN5 SpN  5  22,467,801  22,491,369  6  3   
qPBN_SpN6 PBN&SpN  6  1,428,722  1,443,690  22  28   
qSBN7.1 SBN  7  7,764,781  10,028,291  6  261   
qSBN7.2 SBN  7  22,721,981  22,772,209  7  7   
qSBN7.3 SBN  7  25,959,373  26,319,903  23  11   
qSpN8 SpN  8  17,725,053  17,867,343  1  1   
qSBN9.1 SBN  9  612,106  711,298  1  1   
qSBN9.2 SBN  9  4,548,529  4,956,162  36  7   
qSBN9.3 SBN  9  13,780,682  13,827,435  15  8   
qSBN9.4 SBN  9  15,684,086  15,698,634  2  2   
qSBN9.5 SBN  9  17,802,099  17,884,077  1  1   
qRL9 RL  9  129,49,371  12,958,859  8  5   
qPBN10 PBN  10  5,683,746  5,935,141  27  61   
qSBN10.1 SBN  10  1,553,226  1,922,495  1  1   
qSBN10.2 SBN  10  15,071,623  15,418,109  236  226 Oglab_036752/OgLAC19 
qRL10 RL  10  19,710,668  19,725,628  13  13   
qRL11 RL  11  20,212,990  20,549,402  1  1   
qSpN_SBN11.1 SpN&SBN  11  20,936,988  21,091,576  121  93   
qSpN_SBN11.2 SpN&SBN  11  24176983  24192991  3  1   
qPBN_SpN11 SpN&PBN  11  24,240,766  24,244,301  2  1   
qSBN12.1 SBN  12  800,654  1,066,600  6  6   
qRL12 RL  12  15,089,822  15,114,283  3  3   
qSBN12.1 SBN  12  17,527,841  17,922,786  8  6     
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(a)

(b)

(g)

(d)

(e)

(f)

(c)

Fig. 5. Genomic organization and haplotype analysis for the overlapping regions on chromosome 3. a) Local Manhattan plots for qPBN3 (bottom), qSpN3 
(middle), and qSBN3.2 (top). Green, red, and blue lines indicate the physical position of qPBN3, qSpN3, and qSBN3.2 respectively. The x-axis represents the 
physical location of SNPs across each genomic region under study, and the y-axis represents −log10 P-values. The ideogram represents the genes that are 
expressed (black) and not expressed (gray) in the panicle based on the publicly available databases and RNA-seq data. Candidate genes known to be 
associated with yield potential are highlighted. b) Heatmap showing LD patterns for the chromosomal region around qPBN3, qSpN3, and qSBN3.2. Green, 
red, and blue horizontal lines indicate the physical position, and black triangles are the observed LD blocks for qPBN3, qSpN3, and qSBN3.2, respectively. 
LD is depicted by r2 statistic. The light lime to red gradient depicts the range of r2 values. c) Haplotype network analysis using significant SNP markers 
observed in the region. Haplotypes are denoted by circles with size corresponding to the number of accessions carrying that haplotype. (d–f) Boxplots with 
individual dots for PBN, SpN, and SBN based on four major haplotypes (n > 5 accessions), namely H1, H2, H3, and H4. The frequency for each haplotype is 
highlighted below the x-axis label. The statistical difference between haplotypes was assessed by Welch’s t-test. g) Lollipop plot showing the 
polymorphisms shared among accessions carrying haplotypes H1 and H3. The schematic view of the candidate region (middle) depicts genes expressed 
in the panicle (black) and genes not expressed in the panicle (gray) according to the publicly available databases and RNA-seq data. The genes that are on 
the forward strand (positive strand) are presented above the x-axis and those that are on the reverse strand (negative strand) are presented below the 
x-axis. The different polymorphic sites between H1 and H3 are represented by colored lollipops. To simplify the plot, only SNPs/InDels affecting protein 
sequences were represented (excluding synonymous changes and UTR/intronic sites) as well as only the INDELs in the intergenic regions (full SNP/InDel 
list in Supplementary Table 4).   
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be involved in day-length-dependent flowering time regulation 
(Ishikawa et al. 2011; Gao et al. 2014). Overexpression of this gene 
in rice results in pleiotropic effects including reduced panicle 
number and total grain yield (Hu et al. 2020). Another candidate 
gene, Oglab_006896/OgNRL2, encoding an ortholog of NARROW 
AND ROLLED LEAF 2 (NRL2) gene (Zhao et al. 2016), was mapped 
at 21.24 kb from the marker in block six (position 10,390,700) 
that showed significant association with the SpN trait, and 
35.87 kb from the marker in block seven (position 10,456,656) 
that also showed significant association with SpN trait, but was 
in weak LD with its closest flanking markers. The NRL2 gene has 
pleiotropic effects on vegetative organs, reproductive organs, 
male sterility, and grain shape (Zhao et al. 2016; Xu et al. 2018). 
Furthermore, we employed all the significant SNP markers from 
this region to evaluate haplotype diversity. The results showed 
32 distinct haplotypes (Fig. 5c), with four haplotypes shared by 
at least five accessions. Of these haplotypes, two main ones (H1 
and H3) exhibited significant differences for PBN values (Fig. 5d). 
When looking at SpN and SBN however, genotypes harboring H1 
exhibited a slight increase in phenotypic values for these traits 
compared to those carrying H3, although the differences were 
not significant (NS) (Fig. 5, e and f). We evaluated the polymorph-
isms shared by genotypes carrying haplotypes H1 and H3. The re-
sults indicated that the region contained 691 polymorphisms 
shared among accessions carrying H1 and H3, including both 
SNPs and InDels (Supplementary Table 4). Of these polymorph-
isms, 40 were localized in the coding regions of 24 genes, including 
OgPHYB and OgSET1, and 72, including 4 InDels, were localized in 
the intergenic regions (Fig. 5g, Supplementary Table 4). 

On chromosome 3, we identified another peak (qRL3) encom-
passing 40 significant SNPs associated with the RL trait. The can-
didate region was mapped from 6.40 Mb to 6.50 Mb based on 
pairwise LD correlations (r2 > 0.6), and contained seven LD blocks 
(Supplementary Fig. 9, a and b). In the third block, a significant 
SNP (position 6,455,795; −log10(P) =  4.84) was mapped in the cod-
ing region of the Oglab_006320/OgBRR1 gene orthologous to BLAST 
RESISTANT RELATED 1 (OsBRR1), which encodes a leucine-rich re-
peat receptor-like kinase (Supplementary Fig. 9) involved in sev-
eral developmental and defense-related activities (Peng et al. 
2009). This gene is also closely related to the A. thaliana BARELY 
ANY MERISTEM 1 and 2 genes (BAM1 and BAM2) that play an im-
portant role in meristem activities and in the development 
of male organs (DeYoung et al. 2006; Wang et al. 2022). Another 
GWAS signal found in the seventh block (position 6,491,017) 
was mapped in the intergenic region at 7.9 kb from the 
Oglab_006323/OgGS3.1 gene orthologous to O. sativa GRAIN 
SIZE3.1 (GS3.1) encoding a MATE (multidrug and toxic compounds 
extrusion) transporter, regulating grain size and flavonoid and lig-
nin biosynthesis (Zhang et al. 2021). When conducting haplotype 
analysis using 40 significant SNPs present in this region, eight hap-
lotypes were found, with two main haplotypes (n > 5 accessions), 
designated as H1 and H2 (Supplementary Fig. 9c, Supplementary 
Table 5). Comparative phenotype analysis revealed that acces-
sions carrying H1 have globally higher RL values (P ≤ 0.01) than 
those carrying the H2 haplotype (Supplementary Fig. 9d). The ana-
lysis identified 42 polymorphisms shared by these two main hap-
lotypes, including a non-synonymous variant (position 6,455,795) 
within the Oglab_006320/OsBRR1 gene. No polymorphisms were 
shared by the two haplotypes observed for the OgGS3.1 gene. 

On chromosome 10, a genomic region for SBN (qSBN10.2) was 
mapped from 15.072 Mb to 15.418 Mb (346.49 kb) with a cluster 
of signals with strong LD values (Supplementary Fig. 10). This re-
gion contained 236 significant markers based on the LFMM 

method (Table 1, Supplementary Table 2), 14 of which mapped 
in the coding region of the Oglab_036752/OgLAC19 gene, which en-
codes the ortholog of the O. sativa LACCASE 19 (OsLAC19) gene. 
The O. sativa OsLAC19 regulates lignin biosynthesis involved in 
plant development and stress responses in rice (Liu et al. 2017). 
LACCASE genes were also reported to play an important role in 
panicle elongation when overexpressed in rice (Swetha et al. 
2018). Haplotype analysis using significant SNPs of this QTL iden-
tified 19 haplotypes (Supplementary Fig. 6c, Supplementary 
Table 6), of which two main ones (H1 and H2) showed distinct va-
lues for the SBN (Supplementary Fig. 10d). Accessions carrying H1 
showed significantly higher SBN values compared to those carry-
ing H2. Next, we assessed the polymorphic sites shared by these 
two major haplotypes and found 275 variants, including an 
InDel variant (position 15,345,029) leading to a translation stop 
gain and 11 non-synonymous variants observed for the 
Oglab_036752/OsLAC19 gene (Supplementary Fig. 10). 

In addition to these candidate genes, we noted that some strong 
GWAS signals detected in this study were found within or in close 
proximity to genes whose functions in panicle development are 
not yet known. This is the case for the most significant SNP for 
the PBN trait localized in the qPBN6_SpN6 region on chromosome 
6 (position 1,441,882; −log10(P) = 5.74), which was mapped in the 
coding region of Oglab_018111 orthologous to the O. sativa 
LOC_Os06g03390 gene. The LOC_Os06g03390 gene was annotated 
as a homolog to a NUCLEOTIDE BINDING SITE–LEUCINE-RICH 
REPEAT (NBS-LRR) gene (Wang et al. 2013), but its potential func-
tion in panicle development remains to be demonstrated. 
Moreover, the SNP showing the strongest association with the 
SpN trait in this study located in the qSpN5 region (position 
22,482,789; −log10(P) = 4.82) on chromosome 5 mapped closely to 
various hypothetical genes, none of which is known to be related 
to panicle architecture. 

Association of the OgPHYB gene to panicle 
morphological traits and flowering time variation 
To further characterize the nucleotide diversity in the GWAS lo-
cus on chromosome 3 where the qPBN3, qSpN3, and qSBN3.2 re-
gions were co-localized, we analyzed in more detail the 
polymorphic sites within this region. Amongst the multiple poly-
morphisms identified, we detected two frameshift InDels (posi-
tions 10,388,879 and 10,402,042) leading to high impact at 
protein level for two annotated genes of unknown function 
(Supplementary Table 4). In addition, 34 non-synonymous SNPs 
were observed in the coding region of 22 genes. We focused on 
the OgSET1, OgNRL2, and OgPHYB genes for further analysis, con-
sidering polymorphisms from haplotypes H1 and H3 that were lo-
cated within and around (5 kb upstream and downstream) these 
genes. Regarding OgNRL2, no H1/H3 polymorphic sites were iden-
tified in the vicinity of this gene, suggesting that it is not of signifi-
cance within this genomic region in relation to panicle 
architecture. The OgSET1 gene was characterized by two non- 
synonymous SNPs (positions 10,400,716 and 10,400,736) shared 
by haplotypes H1 and H3. Concerning the OgPHYB gene, only a 
C/A mutation located in exon-2 (position 10,465,781) of this gene 
was detected in the two haplotypes, with H3 accessions carrying 
the reference allele C (i.e. that of the CG14 accession) and H1 ac-
cessions carrying the alternate A allele (Fig. 6a). Sequence com-
parison between the two haplotypes at the OgPHYB locus 
revealed that this mutation led to a non-synonymous amino 
acid change of A–E at position 917 in the protein sequence of H1 
accessions, and that the mutation is located in the HisKA protein 
domain (Fig. 6b) known to be involved in signal transduction.  
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Further sequence comparisons indicated that the O. sativa 
OsPHYB protein from the reference genome O. sativa ssp. japonica 
cv Nipponbare carries the E amino acid (C allele in nucleic se-
quence), as for O. glaberrima haplotype H1 (Fig. 6, a and b). 

Given that the analysis of OgPHYB and OgSET1 gene poly-
morphic sites suggested functionally distinct alleles in this associ-
ation panel, we investigated in more detail the haplotype 
structure of these genes based on SNPs and InDels detected for 
the whole O. glaberrima population. A total of 11 SNPs/InDels 
were detected for the OgSET1 gene in the full O. glaberrima panel, 
with three variants leading to non-synonymous changes at pro-
tein level. Haplotype analysis identified eight haplotypes, with 
three main haplotypes (i.e. representing more than five acces-
sions) covering 97% of the full population (Supplementary 
Tables 3 and 7). Haplotype and phenotype association analysis re-
vealed that the three main haplotypes (Ha, Hb, and Hc) did not ex-
hibit a significant difference for SpN and PBN traits 
(Supplementary Fig. 11). Significant differences in the SBN trait 
were observed for these three haplotypes, with higher values de-
tected for accessions harboring Hc than for those harboring Ha 
and Hb. 

A total of 25 SNPs/InDels were detected for the OgPHYB gene in 
the full panel, with six sites located in the coding sequence, two of 
which led to non-synonymous changes at protein level (Fig. 7a,  
Supplementary Tables 3 and 7). Ten haplotypes were identified 
in the full panel, among which three (Ha, Hb, and Hc) were carried 
by more than five accessions (Fig. 7a). The haplotype Ha showed 
the highest frequency with 72 accessions, while haplotypes Hb 
and Hc occurred in 51 and 31 accessions, respectively. These 10 
haplotypes were classified into two haplogroups based on the 
non-synonymous SNP in exon 2 of OgPHYB (position 10,465,781), 
namely OgPHYBcyt for haplotypes with a C allele (e.g. Hb and Hc) 
and OgPHYBade for haplotypes with A allele (e.g. Ha). These hap-
logroups correspond to the two aforementioned haplotypes H1 
and H3 from the overlapping candidate regions qPBN3, qSpN3, 
and qSBN3.2, with H1 accessions carrying OgPHYBade allele and 
H3 accessions carrying OgPHYBade allele. The haplotypes Ha and 
Hc were distinguished by the C/A mutation at position 
10,465,781. The haplotypes Hb and Hc carry both the A allele at 
position 10,465,781 but possess different alleles in the other five 
polymorphic sites of the coding sequence. Analyses indicated 
that 54% of the accessions carry the OgPHYBcyt allele, while 46% 

of the accessions carry the OgPHYBade allele, indicating that this 
mutation is present at a high frequency in this O. glaberrima panel. 

Given the function of the PHYB gene and the co-location of the 
GWAS site for flowering time, we tested the association of OgPHYB 
haplotypes with flowering time and observed that the OgPHYBcyt 

alleles were associated with earlier flowering compared to the 
OgPHYBade alleles in both early and late sowing conditions 
(Fig. 7b). In parallel, the OgPHYBade alleles exhibited higher PBN va-
lues than the OgPHYBcyt alleles, while the impact of these alleles 
on variations of SpN and SBN trait values was not significant. 
These results illustrate the parallel effect of OgPHYB alleles on 
panicle architecture, especially primary branching, and flowering 
time. We then evaluated the geographical distribution of the 
OgPHYB haplogroups in Africa (Fig. 7c). The accessions of this pa-
nel are distributed mainly in West Africa, with a few accessions 
from Central East Africa. It was found that most of the 13 
countries represented in our O. glaberrima panel harbor the two 
haplogroups, but in different proportions. Although the geograph-
ical distribution of these two haplogroups is not clearly distinct, a 
higher allelic proportion of OgPHYBcyt appears to be observed in 
the western part of Sub-Saharan Africa. 

An examination of OsPHYB haplotypes in the 3 K Rice Genome 
population (Wang et al. 2018) considering only exonic polymorphic 
sites (n > 5 accessions; MAF > 5%; missing data < 20%) revealed six 
main haplotypes, of which none showed evidence for polymorph-
ism at the site corresponding to the OgPHYBcyt and OgPHYBade al-
leles (Supplementary Table 8). This would suggest that this 
mutation is specific to O. glaberrima (or African rice species) or 
was filtered out in the 3 K Rice Genome datasets. 

Discussion 
Differential contribution of panicle morphological 
traits to variation in spikelet number between 
Asian and African rice species 
We evaluated the phenotypic data of eight traits related to panicle 
morphology in a diversity panel of African rice (O. glaberrima) over 
a two-year period. High variability and heritability were observed 
for four major traits (PBN, SBN, SpN, and RL), with strong correla-
tions detected among them, except for the SBN and RL traits, for 
which the pairwise relationship was not significant. Compared 
to the other traits measured here, the PBN and SpN traits 

(a) (b)

Fig. 6. Polymorphism of OgPHYB gene between H1 and H3 haplotypes. a) A lollipop plot depicting variants observed in the region containing 5 kb upstream 
and downstream of OgPHYB gene between haplotypes H1 and H3. The black box represents OgPHYB gene structure. The green, gray, and blue boxes below 
the x-axis represent UTRs, introns, and CDS regions of the two annotated transcripts, respectively. b) Full protein structure and amino acid sequence 
alignment of OgPHYB and OsPHYB proteins in the region of HisKA domain for the O. glaberrima H1 and H3 haplotypes and O. sativa cv. Nipponbare. The 
different protein domains are indicated by colored boxes.   
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(a)

(b)

(c)

Fig. 7. Allelic diversity and geographical distribution of OgPHYB in the whole O. glaberrima panel. a) Haplotype analysis of OgPHYB (bottom) in 162 
O. glaberrima genotypes using all the SNPs/InDels within the gene. Two haplogroups were formed based on a synonymous variant (position 10465781). 
OgPHYBcyt accessions carry cytosine (C) allele, while OgPHYBade accessions carry adenine (A) allele. The gene structure and polymorphic sites and their 
frequency in O. glaberrima population are shown at the top. The different polymorphic sites within the gene are represented by colored lollipops. The 
green, gray, and blue boxes represent UTRs, introns, and CDS regions of the longest OgPHYB annotated transcript, respectively. b) Boxplots with 
individual dots for flowering time assessed at early and late sowing, PBN, SpN, and SBN based on two haplogroups OgPHYBcyt and OgPHYBade. The 
statistical differences between haplogroups were statistically assessed using Welch’s t-test (NS; *P < 0.05, **P < 0.01, and ***P < 0.001). c) Geographical 
distribution of OgPHYBcyt and OgPHYBade haplogroups by country in Africa. The proportions of alleles observed in a given country are denoted by pie charts 
with size corresponding to the number of accessions carrying that allele.   
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contributed most to panicle diversity in this panel. Variation of the 
spikelet number per panicle in O. glaberrima relies most on vari-
ation of primary branch number per panicle. As indicated in this 
study, these traits are more under genetic than environmental in-
fluence in this panel. Similar phenotypic relationships were re-
ported in various diversity panels for the Asian rice O. sativa 
(Rebolledo et al. 2016; Ta et al. 2018; Bai et al. 2021) and bi-parental 
populations (Li, Zhang, et al. 2021). However, in most of these stud-
ies, although not all, the SBN trait contributed more to variation of 
the SpN than did the PBN trait. This variability in panicle architec-
ture was also reported among O. sativa subspecies, with larger pa-
nicles observed for the japonica subspecies than for the Indica 
one. This divergence in the contribution of individual morpho-
logical traits to differences in spikelet number per panicle be-
tween the two subspecies mirrors morphological differences 
observed between different rice species. Indeed, the O. glaberrima 
panicle is globally less branched with a lower complexity (i.e. few-
er secondary branches) compared to that of O. sativa (Harrop et al. 
2019), indicating a de facto lower contribution of the SBN trait to 
spikelet number variation in O. glaberrima compared to O. sativa. 
This in turn suggests that primary and secondary branching influ-
ence spikelet number differently in O. glaberrima and O. sativa, im-
plying that a divergence in the underlying regulatory mechanisms 
might exist between the two species. 

Contribution of genomic regions to panicle 
architectural diversity in O. glaberrima 
Given the environmental dependency of several panicle traits and 
extensive LD patterns in rice that are attributable to self- 
pollination (Crowell et al. 2016), GWAS studies in this species 
have revealed only a limited number of panicle trait associations. 
Using the four main morphological components of panicle archi-
tecture, namely RL, PBN, SBN, and SpN, we identified a total of 41 
genomic regions that are consistent between two GWAS methods, 
29 of which were supported by more than one significant 
SNP. Of these 29 regions, five were associated with two or three 
morphological traits (e.g. qPBN3/qSpN3/qSBN3.2, qPBN_SpN6, 
qSpN_SBN11.1, qSpN_SBN11.2, and qPBN_SpN11). These results 
reflect the relationship between these morphological traits, with 
branch number contributing to the diversity of spikelet number 
per panicle. Overall, no overlap was observed between the associa-
tions identified for PBN and SBN traits, with the exception of the 
GWAS signals on chromosome 3 (i.e. qPBN3 and qSBN3.2), for 
which no significant SNP common to these traits was detected for 
these traits. This finding would suggest that primary and secondary 
branch numbers in O. glaberrima are controlled by different genetic 
mechanisms, as similarly reported for O. sativa populations (Ta 
et al. 2018; Bai et al. 2021). This is consistent with the panicle devel-
opment process, in which all the axillary meristems produced on 
the rachis axis contribute to primary branches, in contrast to the 
axillary meristems from a primary branch which balance between 
branch meristem (i.e. leading to a secondary branch) and spikelet 
meristem (i.e. leading to a lateral spikelet) fates (Itoh et al. 2005). 
Consequently, the intra-specific diversity for spikelet number per 
panicle in O. glaberrima is, at least in part, related to the rate of ax-
illary meristem establishment from the rachis meristem. 
Moreover, although the RL trait exhibited a significant phenotypic 
relationship with the PBN and SBN traits, distinct genomic regions 
were detected for the RL trait, suggesting that the genetic network 
controlling this trait operates independently of other panicle traits 
tested in this study. Differences in genetic determinants between 
number-related traits and length-related traits have been also 

reported in several O. sativa association panels (Huang et al. 2012;  
Crowell et al. 2016; Ta et al. 2016). 

Comparison of GWAS results obtained in this study with those 
from Cubry et al. (2020) performed using the same association panel 
identified nine overlaps, with only three co-locations detected for 
similar traits. Compared with the present results, no genomic re-
gions for the SpN and PBN traits, the two main contributors of pan-
icle architecture diversity, were identified in the previous study. 
The relatively small overlap between the two studies is mostly ex-
plained by the different thresholds used to select the significant 
SNPs (10−5 P-value cutoff in the previous study and 10−4 in this 
study), and to a lesser extent by the different SNP datasets and 
methodology used to delineate genomic regions. The present study 
benefits from SNP/InDel datasets obtained through mapping to the 
high-quality O. glaberrima acc. CG14 (version OglaRS2) reference 
genome (Tranchant-Dubreuil et al. 2022), which limited mapping 
biases from intra-specific divergence. Moreover, this reference gen-
ome and a new gene annotation provided here allowed the accur-
ate prioritization of genes from GWAS loci in this study and 
might be helpful for the dissection of the regulatory mechanisms 
underlying agronomically important traits in this species. 

By comparing the GWAS loci obtained in this study with previ-
ously reported QTLs related to panicle morphology derived from 
GWAS studies and mapping populations in O. sativa, 13 GWAS 
loci were found to co-localize with 37 previously identified QTLs 
in O. sativa populations. Eight QTLs related to the four morphologic-
al panicle traits tested in this study were identified, with only two 
QTLs sharing a similar trait (Yonemaru et al. 2010; Crowell et al. 
2016). This may correspond to the specificities of the panels used, 
to the adopted methodologies, or to environmental conditions. In 
addition, up to 20 co-locations with QTLs from mapping popula-
tions were found to be related to other panicle-related traits, 
such as panicle length, rachis thickness, exertion length, and inter-
node number (Ogawa et al. 2021). This observation is not surprising 
because related traits might be controlled by linked genetic me-
chanisms. In addition, several overlaps with QTLs detected in 
GWAS studies and bi-parental linkage analyses were found to be 
associated with yield-related traits, such as grain number per pan-
icle, thousand-grain yield, and yield per plant (Yonemaru et al. 
2012; Zhong et al. 2021), mirroring the relationship between panicle 
architecture and parameters of grain yield in rice. Of note, GWAS 
associations for the SBN trait on chromosome 4 (e.g. qSBN4.2) co- 
localized with a cluster of GWAS signals related to panicle and yield 
traits reported in O. sativa (Crowell et al. 2016), suggesting a genomic 
region of interest. 

Taken together, although some common QTLs for panicle- 
related traits were observed between this panel and diverse O. sa-
tiva populations and some orthologs of genes identified in O. sativa 
were found to be involved in the control of these traits in O. glaber-
rima, these findings suggest that intra-specific variation in African 
rice species for panicle architecture might rely more on species- 
specific factors. In addition, quantitative variations in panicle 
morphology may be attributable to divergences at different stages 
of panicle development, at the cultivar, subpopulation or species 
level, involving differences in the expression of numerous genes 
(Ikeda et al. 2004). 

OgPHYB may play important role in determination 
of the panicle architecture diversity in 
O. glaberrima 
One genomic region of interest corresponds to the overlap of three 
identified genomic regions on chromosome 3, namely qPBN3, 
qSpN3, and qSBN3.2, which are associated with the three main  
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traits contributing to panicle architecture diversity. Based on the 
polymorphic sites present within the diversity panel, we hypothe-
sized that Oglab_006903/OgPHYB is a strong candidate gene for 
this genomic region because: (i) this gene was mapped in an LD 
block with several association peaks for the PBN, SBN, and SpN 
traits; (ii) several significant SNPs of this region were found in 
close proximity to significant SNPs associated with flowering 
time; and (iii) when comparing the polymorphisms shared by 
the two major haplotypes (H1 and H3) of this genomic region, 
one mutation located in exon-2 of OgPHYB (position 10,465,781) 
was found to alter the protein sequence in the HisKA domain in-
volved in signal transduction. GWAS peaks associated with head-
ing date phenotype were previously detected in several O. sativa 
populations. OsPHYB was found to be localized near a GWAS sig-
nal for photoperiod sensitivity in an O. sativa population 
(Jadamba et al. 2022). OsPHYB was also co-localized in a QTL for 
heading date detected in a RIL population resulting from a cross 
between the japonica variety SN265 and indica variety R99 (Li 
et al. 2018). These results collectively indicate that PHYB contri-
butes to the variation of flowering-time phenotype in diverse gen-
etic backgrounds. 

Phytochromes, as the sole photoreceptors for perceiving red/ 
far-red light in rice, are required for critical day-length recognition 
in relation to flowering time (Takano et al. 2005; Ishikawa et al. 
2011). The flowering time regulation pathway is well documented 
in Asian rice O. sativa, and numerous additional key genes, includ-
ing OsGI and Ghd7, were identified to be involved in photoperiodic 
flowering pathway controlling the two florigen genes Hd3a and 
RICE FLOWERING LOCUS T 1 (RFT1) through the Hd1 flowering 
gene (Sun et al. 2022; Osnato 2023). Hd1 alone can essentially act 
as a flowering promoter and repressor under short-day and long- 
day conditions, respectively, through the regulation of Hd3a. 
However, phytochromes are required for the critical day-length 
recognition (Ishikawa et al. 2011). Previous genetic analyses re-
vealed that when PHYB is functional, Hd1 physically interacts 
with Ghd7 to repress the expression of Hd3a, thus delaying flower-
ing under short-day conditions (Ishikawa et al. 2011). Under long- 
day conditions however, two active regulatory pathways were 
identified: (i) OsGI promotes Ghd7 protein degradation, thus pro-
moting early flowering phenotypes; and (ii) phytochromes, mainly 
PHYA and PHYB, compete with the OsGI-Ghd7 complex to stabilize 
the Ghd7 protein, thus delaying flowering (Zheng et al. 2019). 

The reported polymorphic site in OgPHYB is located in the 
HisKA domain in the C-terminal output module (OPM) of phyto-
chrome. The OPM mediates dimerization and signal transmission 
to the downstream effectors, through differential interactions 
with other proteins necessary for nuclear localization and interac-
tions with several nuclear proteins, including transcription 
factors (Cheng et al. 2021). The OgPHYBcyt and OgPHYBade alleles 
are associated with differential impact on flowering time with 
shorter flowering time for OgPHYBcyt in both long-day and short- 
day conditions but with higher impact under long-day conditions 
(June, early sowing). The OgPHYBade allele is equivalent to the 
OsPHYB gene in O. sativa cv. Nipponbare, while OgPHYBcyt allele 
showed no equivalent in the 3 K O. sativa genomes panel. 
OgPHYBcyt-induced early flowering could mirror the loss of 
function mutant of PHYB in O. sativa (Takano et al. 2005, 2009). 
This mutation could impact upon the dimerization, the kinase ac-
tivity and/or interaction with other protein partners, leading to 
lower repression of flowering notably through the Ghd7 gene. 
Besides the regulation of flowering time, rice phytochromes are 
key regulators that control a series of events during photo-
morphogenesis, including de-etiolation and plant shape 

formation (Takano et al. 2005, 2009). Recently, it was shown that 
rice PHYA and PHYB genes may synergistically affect anther devel-
opment and pollen viability (Sun et al. 2017). In parallel, it was re-
ported that phytochromes promote vegetative branching in 
Sorghum bicolor and A. thaliana through the regulation of TEOSINTE 
BRANCHED1 (TB1)-like genes by suppressing auxin signaling 
(Kebrom et al. 2006, 2009; Krishna Reddy and Finlayson 2014), indi-
cating that PHYB could have impact on meristem functioning. 
However, even if PHYB transcripts are detected in panicles at early 
stages of development, until recently there was no evidence that 
this gene could be directly involved in the panicle branching pro-
cess through the regulation of meristem activity. Therefore, it 
would appear more likely that there is an indirect effect of PHYB 
on panicle branching through its role in flowering time regulation. 

Panicle number and size (branch number and length) are plas-
tic traits prone to mutual compensation under competition for 
pre-floral assimilate resources in O. sativa (Dingkuhn et al. 2015;  
Adriani et al. 2016). A longer vegetative stage would impact upon 
assimilating resources which in turn would affect reproductive 
meristem activity at the flowering stage, leading to higher 
branched panicle in O. glaberrima. Cui et al. (2019) have reported 
that early flowering mutants of rice, including phyb mutant, ex-
hibit lower biomass and grain yield per plant. However, the 
sources of yield loss were different between mutants, with the sin-
gle phyb mutant exhibiting a decrease in the number of grains per 
panicle and the setting rate. This is supported by genetic studies 
that indicated that introgressed beneficial alleles of Ghd7 and 
Ghd8 from diverse genetic resources might have interacted to in-
duce a late heading phenotype in rice under long-day conditions, 
which in turn improved rice grain yield by modulating primary 
and secondary branches (Xue et al. 2008; Lu et al. 2012). A similar 
example was observed for West African pearl millet, in which a 
polymorphism of another phytochrome-encoding gene, PgPHYC, 
was associated with flowering time diversity, spike length, and 
adaptation to various ecosystems in West Africa (Saïdou et al. 
2014; Diack et al. 2017; Faye et al. 2022), supporting the strong rela-
tionship between flowering time, local adaptation, and yield in 
crop species in West Africa. 

Conclusions 
In this study, a detailed phenotypic analysis of panicle architec-
ture in a diversity panel of O. glaberrima revealed that variation 
in primary branch number per panicle is the main contributor 
to spikelet number variation. Several GWAS loci related to panicle 
architecture diversity were identified in O. glaberrima, notably a 
genomic region of interest on chromosome 3 with three overlap-
ping regions affecting numbers of spikelets and primary and sec-
ondary branches. We hypothesize that OgPHYB is the strongest 
candidate gene for this genomic region, supporting the concept 
of a functional relationship between flowering time and panicle 
architecture, which could reflect adaptation to local ecosystems. 
Nevertheless, single gene variations do not in general explain fully 
the genetic basis of rice cultivar adaptation to different ecological 
regions. Thus, it will be of interest to analyze the geographical dis-
tribution of haplotype combinations of panicle and flowering 
time-related genes. Moreover, most of the genomic regions identi-
fied were specific to O. glaberrima, rather than being co-localized 
with the QTLs reported in the Asian rice O. sativa, suggesting 
that intra-specific variation in the African rice species for panicle 
architecture might rely on specific factors and that O. glaberrima 
may harbor a unique diversity. To apply the findings of this study 
for rice crop improvement, it is crucial to conduct further 
characterization and validation of functionally significant  

African rice panicle architecture GWAS | 15 



polymorphisms. This will not only deepen our understanding of 
the genetic elements that underlie the diversity and local adapta-
tion of panicle architecture, but also contribute to enhancing yield 
potential. By harnessing this knowledge, future rice breeding pro-
grams can strategically target and improve specific panicle traits, 
leading to overall improvements in crop productivity in this spe-
cies. Additionally, the observed phenotypic relationships between 
panicle traits and flowering time highlight the potential for fur-
ther investigations using a multi-trait GWAS model. Such an ap-
proach would provide a comprehensive analysis of the genetic 
associations between these traits and flowering time, revealing 
the intricate relationships between them. 

Data availability 
The genotypic data used for association analyses have been de-
posited in the Zenodo repository at https://doi.org/10.5281/ 
zenodo.7755851. The gff file with structural and functional anno-
tation using O. glaberrima reference genome (version OglaRS2) has 
been deposited at https://ftp.gramene.org/oryza/release-6/gff3/ 
oryza_glaberrima/. The O. glaberrima reference genome (version 
OglaRS2) has been deposited in the ENA repository at https:// 
www.ebi.ac.uk/ena/browser/view/GCA_000147395. All other 
data are included in this article and/or supporting information. 
Previously published phenotypic data were used for this work 
(https://github.com/Africrop/gwas_african_rice). 

Supplemental material available at G3 online. 
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