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A B S T R A C T   

CoastCams is an open-source collection of existing MATLAB scripts to quantify key wave parameters (e.g., wave 
height, wave period), mean water levels, and morphology (e.g., shoreline positions) in the nearshore environ
ment. The repository performs the analysis on oblique orthorectified timestack images from land-based coastal 
monitoring systems. The proposed approach is a combination of several key parameters that aims to get a better 
understanding of nearshore processes by leveraging the strength of existing codes. CoastCams provides a unified 
and simplified method that is accessible for coastal managers, engineers, and scientists with a user-friendly and 
practical method to monitor and identify key drivers in coastal zone. In this paper, we present the standalone 
remote video-based method and validate the estimated hydro parameters with sensors deployed in the nearshore 
on a rocky platform in Socoa, France. The software is freely available on GitHub (https://github.com/NuytsSie 
gmund/CoastCams.git) and is accompanied by step-by-step README documentation.   

1. Introduction 

Coastal zones are dynamic systems which are exposed to various 
natural hazards (e.g., storm surges), to the effects of global climate 
change (e.g., sea level rise), and anthropogenic pressures (e.g., urbani
sation) (Benveniste et al., 2019). The projected increase in these hazards 
and coastal urbanisation in the coming years (Li et al., 2018; Leaman 
et al., 2021), combined with rising sea levels, mean that coastal infra
structure and residents face growing threats, particularly when high 
tides coincide with intense storms (Oey and Chou, 2016). The response 
of coastal zones to these factors depends on the characteristics of the 
forcing agents and the internal properties of the dynamic coastal 
systems. 

To better understand the changes affecting coastal zones, long-term 
observations of nearshore hydrodynamics, topography, and bathymetry 
are crucial. However, collecting reliable in-situ measurements in highly 
dynamic and complex coastal zones is challenging. The interaction of 
various coastal processes (e.g., tides, waves, currents) can cause rapid 

changes in wave climate and sea levels at different spatial and temporal 
scales (Woodworth et al., 2019). Traditional in-situ measurements and 
survey techniques often provide spatially and temporally sparse data
sets, failing to capture the dynamic behaviour of coastal processes. In 
addition, existing long-term coastal monitoring programmes, based on 
in-situ measurements, are limited to only a few sites worldwide (e.g., 
Barnard et al., 2015; Pianca et al., 2015; Turner et al., 2016). Ideally, 
coastal monitoring programmes should span years to decades and 
consider local environmental factors, such as coastal morphology, rates 
of sea level rise, and nearshore and swash dynamics (Farrell et al., 
2021). However, the logistics of field monitoring, including time, cost, 
and travel, often hinder the collection of high-temporal-resolution 
datasets. Nonetheless, the advent of commercial, low-cost remote 
sensing techniques in coastal research has partially overcome this 
obstacle. 

Remote sensing techniques, including radar, satellite imagery, and 
video cameras, have already successfully been employed in coastal 
monitoring to measure various parameters. For instance, they have been 
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used for shoreline position detection (Boak and Turner, 2005), intertidal 
beach morphology analysis (Uunk et al., 2010; Osorio et al., 2012), 
(breaking) wave height estimation (Almar et al., 2012; Chen et al., 
2021), nearshore currents measurements (Radermacher et al., 2014; 
Almar et al., 2016) swash zone water level assessment (Ibaceta et al., 
2018), coastal sea level monitoring (Abessolo Ondoa et al., 2019; Thuan 
et al., 2019; Abessolo et al., 2020), as well as obtaining bathymetry 
estimation through depth-inversion algorithms (Holman and Haller, 
2011; Bergsma et al., 2016; Brodie et al., 2018), and wave celerity 
(Holman et al., 2013). Other tools have also been developed to address 
specific elements of coastal processes, such as sediment transport and 
beach profile changes (Li et al., 2002), diffusion of pollution on coastal 
waters (Yuan, 2007), and coastal flooding (Smith et al., 2012), to sup
port coastal managers and decision makers. Furthermore, open-source 
tools like CoastSat (Vos et al., 2019) and CASSIE (Almeida et al., 
2021) provide high-temporal-resolution datasets, albeit with lower 
spatial resolution. However, accurately measuring multiple key pa
rameters simultaneously remains a major challenge in comprehensively 
monitoring coastal environments. 

To address this gap in coastal monitoring, this study introduces 
CoastCams, an open-source MATLAB software toolkit designed for 
analysing timestack images collected from fixed video cameras along the 
coast. While previous efforts, such as the Coastal Imaging Research 
Network (CIRN), have made strides in providing tools for coastal anal
ysis through a community-GitHub repository (Bruder and Brodie, 2020; 
Palmsten and Brodie, 2022), CoastCams offers a simplified and unified 
method to capture multiple key parameters simultaneously from time
stack images that complement the existing capabilities of CIRN, 
including image georectification as well as creating timestack image. A 
timestack image is obtained by stacking a single cross-shore profile, over 
a period of time (e.g., 10 min), from snapshots of a region of interest to 
obtain a singular image. As such, timestack images display the time 
evolution at a given transect, with the vertical axis represent the 
cross-shore distance and the horizontal axis representing time (Simarro, 
2015). 

CoastCams builds upon the foundation laid by CIRN, while expand
ing on the capabilities by making the codes accessible to estimate 
nearshore processes, mean water levels, and morphological changes in a 
unified and simplified manner that is accessible to a wide range of users, 
i.e., from experts to novices. The toolkit is accompanied by a README 
file, a suggested workflow, and recommendations resulting from a case 
study discussed in this paper, allowing implementation on any coastline 
worldwide. To demonstrate the potential of the toolkit, this study fo
cuses on the validation of the calculated parameters. The case study 
particularly focuses on the hydrodynamic outputs from the toolkit, 
allowing CoastCams to be used as a ‘virtual’ tide gauge. More infor
mation on specific calculations can be found in the code and the 
accompanying README file. 

The case study’s location along a rocky platform proved advanta
geous in eliminating the uncertainties associated with changing ba
thymetry, ensuring the accuracy and reliability of the wave conditions 
and mean water levels derived from the coastal monitoring system. This 
successful validation against in-situ data from the sensors deployed in 
the study area highlights the potential of CoastCams to effectively esti
mate key parameters from coastal monitoring systems. Such positive 
outcomes could lead to an extension of traditional in-situ data collection 
approaches using in-situ sensors, providing researchers and coastal 
managers with a cost-effective and efficient solution to increase the 
spatial and temporal data coverage of nearshore processes, as it elimi
nates the need for deploying and maintaining multiple in-situ sensors in 
dynamic and challenging coastal zones. 

2. Methodology 

2.1. Environmental setting 

The coastal monitoring system is deployed on the Fort of Socoa, west 
of the Saint-Jean-de-Luz bay in the Basque Country of France on the 
Atlantic Coast (Fig. 1). The system monitors the rocky platform to the 
west of the Fort of Socoa, which is backed by cliffs representative of the 
rocky environment along the Basque coast (Prémaillon et al., 2021). 
Given the north-western cliff orientation and strong refraction on the 
forereef, the coast at this location is predominately exposed to nearly 
normal waves induced by North Atlantic swells coming from WNW di
rection (Fig. 2). The cliff and rocky platform expose the so-called flysch 
marno-calcaire de Socoa (i.e., marl and limestone flysch formation) 
(Mulder et al., 2009), a metre-scaled layered lithology, dipping 
approximately 45o, which shapes the cliff face (Prémaillon et al., 2021). 

2.2. Wave climate 

The statistical analysis of deep-water wave data collected between 
2011 and 2021, based on reanalysis data from the European Centre for 
Medium-Range Weather Forecast (ECMWF), reveals that the wave 
conditions in the vicinity of Socoa are characterised by a mean annual 
significant wave height Hs = 1.36 m, a mean annual wave period Tp =

11.21 s, and a mean annual wave direction of 315◦ (NW) (Fig. 2). The 
hydrodynamic characteristics of the area are dominated by semidiurnal 
tides, with a mean annual tidal range of 2.75 m (min = 0.88 m; max =
4.78 m). This classifies the study area as mesotidal. 

2.3. Video camera system 

The acquisition system comprises two cameras (43◦ 23′ 45.6324″ N, 
1◦ 41′ 0.7548″ W), with different orientations to capture the rocky 
platform up to the toe of the cliffs (Camera 1) and offshore areas 
(Camera 2). The cameras use the KOSTASystem technology developed 
by AZTI (Liria et al., 2021). The camera calibration and orthor
ectification method applied to the cameras is based on the study of 
Holland et al. (1997), and involves a two-step calibration (i.e., intrinsic 
and extrinsic) to orthorectify the images on a uniform z-plane, obtaining 
the real xyz-coordinates in UTM, with vertical datum: Lowest Astro
nomical Tide (Table 1). The bottom-moored pressure sensors deployed 
during the field campaign (see Section 2.4) served as temporary Ground 
Control Points (GCPs), in combination of GCP targets at their location, 
and were positioned along the transect used for creating the timestack 
images. Their position was taken with a DGPS-RTK, with an accuracy of 
5 mm for vertical positioning. 

The images were captured using the SIRENA software (Nieto et al., 
2010), which generates four types of images from each camera; (1) 
Snapshot: an instantaneous image; (2) Timex: a single image averaging 
multiple snapshot images over one period, typically 10 or 15 min, (3) 
Variance: similarly to timex images, variance images contain the stan
dard deviation computed in time from the same set of snapshots used to 
generate the timex image; and (4) Timestack: intensity values saved at 
each time step at a selected array of pixels (i.e. transect) from snapshot. 
For this study, only timestack images were used. A transect was 
considered for each camera along the rocky platform and offshore area 
in order to generate timestack images, at 2 Hz with a total of 14 min per 
timestack (Fig. 3). The fixed cross-shore resolution of the timestack 
images is 0.1 m per pixel (i.e., each pixel equals to 0.1 m length), 
resulting in a cross-shore distance of 69 m for Camera 1, and 430 m for 
Camera 2. The specific locations of the transect were chosen here as 1) 
The wave crest would arrive parallel to the coastline; 2) The environ
ment serves as a typical location of the Basque country rocky cliffs; and 
3) It is easily accessible on foot, which aided in the deployment of the 
pressure sensors. 
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2.4. Field campaign sensors 

The Eulerian pressure measurements used here are part of a larger 
sensor network deployed October 2021. The selected measurement 
points are five (EZP9 to EZP13) bottom-moored pressure sensors (RBR 
Virtuoso), located in the intertidal zone along a single transect from the 
toe of the cliff to the end of the rocky platform (Table 2, Fig. 4). All 
sensors are continuously recording bottom pressure at 8 Hz, in order to 
monitor wave climate and water levels. Both the sensors and the camera 

cover the same transect, i.e., the continuously submerged rocky platform 
further offshore and the intertidal area. Incident wave conditions were 
measured by a Datawell wave buoy over 20 m water depth. 

Pressure measurements were first corrected from atmospheric pres
sure, measured from a weather station approximately 300 m from the 
study site (i.e., Météo France Station of the semaphore of Socoa - 
43◦23′39.336″ N, 1◦41′12.264″ W). The pressure time series were 
organised in 40-min bursts with 50% overlap and converted into free 
surface elevation using the linear reconstruction method described in 

Fig. 1. (Top) Location of the study area on the south-west coast of France; (Middle) Aerial photograph of Saint-Jean-de– Luz Bay detailing the Field of View of 
Camera 1 and Camera 2; and (Bottom) Field of View from Camera 1 (left) and Camera 2 (right) showing the Socoa cliffs. 
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Bonneton et al. (2018) (Equation (1)). Next, the spectrum densities were 
computed using discrete Fourier transform. Short waves (i.e., 0.04–0.4 
Hz) components of the significant wave heights are calculated as: 

Hs = 4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫0,4Hz

0,04Hz

E(f )df

√
√
√
√
√ (1)  

where E(f) denotes the spectrum density value at frequency f. 
Finally, mean water depths were computed by averaging the free 

surface elevation times series for the same bursts and converted into 
mean water level with vertical reference to the sensors. 

2.5. Quantification parameters 

The timestack images were analysed using in-house (https://github. 
com/NuytsSiegmund/CoastCams.git) developed MATLAB scripts 
(version R2020b). The toolkit requires the following toolboxes in 
MATLAB.  

• Image_toolbox;  
• Map_toolbox  
• Signal_toolbox; and  
• Statistics_toolbox. 

Fig. 5 shows the workflow of the different steps undertaken in this 
study and Table 3 gives a detailed overview of the different parameters 
that were quantified and their method. CoastCams is then an integration 
of these previously published methods, highlighted in Table 3 and in 
order to provide a unified and simplified approach. Note that georecti
fied timestack images can be produced with the tools available at CIRN 
(Bruder and Brodie, 2020). 

CoastCams outputs the wave climate parameters, mean water levels, 
and morphological parameters as a.txt file which can be used for further 
analysis in other applications. 

3. Results 

Fig. 6 highlights the key parameters from the timestack image esti
mations with the measurements from the sensors deployed during the 

Fig. 2. Wave rose plot representing data between 2011 and 2021 at Socoa, with 
data from ECMWF. 

Table 1 
Statistics of intrinsic (focal lengths, principal point, radial distortions, tangential 
distortions) and extrinsic (azimuth, tilt, roll) image parameters used for camera 
calibration.  

Camera Parameters   

Camera 1 Camera 2 

Intrinsic Focal lengths (fx, fy) [Pixels] (1775.53, 
1795.18) 

(2108.65, 
2133.84) 

Principal Point (cx, cy) 
[Pixels] 

(1231.5, 1027.5) (967.5, 507.5) 

Radial distortions (k1, k2) [ ] (-0.321, 0.144) (-0.089, 0.328) 
Tangential distortions (p1, 
p2) [ ] 

(0.002, − 0.00) (0.005, − 0.004) 

Extrinsic Azimuth [o] 4.341 5.172 
Tilt [o] − 0.138 − 0.262 
Roll [o] − 0.032 − 0.067  

Fig. 3. a) FoV Camera 1 and location of transect (in red) to construct timestack image ‘e)’; b) FoV Camera 2 and location of transect (in green) to construct timestack 
image ‘d)’; and c) Orthorectified snapshot detailing the two transects. 
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field campaign. Note that these outputs focus on the hydro parameters as 
they can be correlated with the analysis from the pressure sensors but 
that multiple other parameters are analysed with the toolkit as well. In 

Fig. 6, we present timestack image derived computations for breaking 
position, mean water level, Hs and Tp. The computed mean water level, 
Hs and Tp are compared with records from the sensor closest to where 

Table 2 
Overview of the sensors deployed during the monitoring campaign in Socoa.  

Overview Sensors Field Campaign 

Station Time period Longitude Latitude Elevation MSL [m] Acquisition Frequency 

Datawell 05/10–06/11 1◦ 40′ 54″ W 43◦ 24′ 30″ N − 20 30 min 
EZP9 06/10–19/10 1◦41′6.9648″ W 43◦23′48.084″ N − 1.81 8 Hz 
EZP10 05/10–19/10 1◦41′6.540″ W 43◦23′47.220″ N − 1.58 
EZP11 05/10–01/11 1◦41′6.4716″ W 43◦23′47.148″ N − 1.08 
EZP12 05/10–19/10 1◦41′6.2592″ W 43◦23′46.824″ N − 1.35 
EZP13 05/10–06/11 1◦41′5.7804″ W 43◦23′46.176″ N − 1.45  

Fig. 4. (Top) Map detailing the sensor locations, and (Bottom) bathymetry profile of nearshore area in Socoa, sensor locations, and the full extent of the timestack 
image of Camera 1. Note that the characteristically flysh layer spacing is visible in both documents. 
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these parameters are calculated (e.g., the significant wave height from 
the timestack images is compared with the pressure sensor closest to the 
breakpoint location for each time step). The x-axis represents the time 
period of the field campaign, noting that timestack images were only 
available during daylight hours (6h–19h) but are shown here as a 
continuous dataset. Additionally, it is worth noting that occasionally the 
water level did not reach EZP13 (i.e., sensor closest to breakpoint 
location) and consequently did not record any data (e.g. 9, 10, and 11 
October 2021). The overall distribution of the horizontal errors of the 
different parameters is presented in Section 3.1, 3.2, and 3.3. 

3.1. Mean water level 

The timestack image-derived mean water level and the in-situ ob
servations have a coefficient of determination (r2) of 0.95 and a Root 
Mean Square Error (RMSE) of 0.289 m. The overall distribution of the 
horizontal error for the mean water level is presented in Fig. 7. The Mean 
Absolute Error (MAE) is 0.55 m, with a standard deviation (Std) of 0.72 
m, and a bias of 0 m. From Figs. 6 and 7, it is clear that the mean water 
level match in time but amplitudes are underestimated by the timestack 
image estimations compared to the measured values from sensor 13. 

3.2. Significant wave height 

The significant wave height estimated from the timestack images has 
a r2 = 0.58 with the sensors (Fig. 6). It is only during energetic wave 
conditions that the timestack images fail to estimate the significant wave 
height correctly. Indeed, once the significant wave height reaches a 
height above 1 m, the estimations from the timestack images are not 
representative. This is mainly due to the length of the transect from 
Camera 1 and consequently the dimensions of the timestack image. As 
discussed in Table 2, the wave height is estimated in the breaker zones. 
As such, the breaker zone should ideally be located within the di
mensions of the timestack image. It is, however, clear from Fig. 8 (top) 
that the breaker zone on 09 October 2021 at 7h45 extends beyond the 
dimension of the timestack image, resulting in an erroneous estimation 
of the significant wave height. On 13 October 2021 at 8h30, Fig. 8 
(bottom), the significant wave height is indeed correctly estimated from 
the timestack image. 

Fig. 9 details the correlation between the estimation of Hs from the 
timestack images and the measurements from the pressure sensor. The 
overall r2 value of Hs is 0.58, with an RMSE = 0.408 m (Fig. 9 – in grey). 
Selecting the values of Hs (Hs < 1 m) that in theory can be determined 
correctly by the dimensions of the timestack images, allows for a better 

understanding of the estimation from this parameter. Fig. 9 (in orange) 
shows the estimations of Hs that are not restricted by the timestack 
image dimensions. The r2 increases to r2 = 0.78 and the RMSE decreases 
to RMSE = 0.162 m, with a lower MAE (MAE = 0.16 m) and a lower 
standard deviation of Std = 0.17 m. Although the RMSE decreases and 
the r2 increases, the bias shows that, on average, the estimated values 
are 0.09 m higher than the values from the pressure sensor. Conversely, 
after selecting Hs < 1 m, on average, the estimated Hs is 0.09 m lower 
than the Hs measured by the pressure sensors (bias = - 0.09 m). 

3.3. Peak wave period 

The estimation of the peak wave period from the timestack images 
has a r2 = 0.53 with the measurements from the sensors (Fig. 10). 
Nevertheless, the peak wave period is approximately normal distributed, 
with MAE = 1.35 s and the standard deviation Std = 1.71 s, with the 
toolkit underrepresenting the estimations, on average, by 0.92 s (bias = - 
0.92). However, there are a few outliers during lower peak periods (Tp <

10 s). 

4. Discussion 

The detailed analysis presented here of timestack image-derived 
wave climates, mean water levels, and morphological changes, in
dicates that this low-cost system is suitable for capturing patterns and 
trends of key parameters in the nearshore. The study conducted on a 
rocky platform in Socoa, France, provided a valuable opportunity to 
eliminate some of the uncertainties associated with estimating wave 
climates, water level changes, and morphological changes from coastal 
monitoring systems (e.g., changing of bathymetry on sandy coasts). 
Additionally, the sensors deployed in the cross-shore direction along the 
rocky platform during the field campaign allow for the identification of 
shortcomings and recommendations when implementing a similar set- 
up in different locations, as well as the validation of the results. 

Firstly, the data point used to derive mean water levels from the 
timestack images is located in the centre of the FoV of the camera and 
coincides with the location of pressure sensor EZP13. Fig. 11 indicates 
that the r2 indeed decreases further away from the camera as well as an 
increasing RMSE. As a result, it is recommended to extract mean water 
levels close to the image centre of the camera, while taking into account 
bottom friction and, potentially, a changing bathymetry when imple
menting on sandy coasts. Note that the size of the timestack image used 
for cross-correlation calculations decreases in size in order to eliminate 
noise near the edge of the timestack images. 

Fig. 5. Visual representation of the workflow carried out in this study.  
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Secondly, it is recommended to select a transect in the cross-shore 
direction with a sufficient length in order to always cover the full 
extent of the breaker zone. Identifying the breaker zone on the timestack 
images is vital for correctly estimating the wave breaker height (i.e., 
significant wave height in the breaker zone). As demonstrated in Fig. 6, 
and the consequent analysis carried out in Section 3.2, indicates that r2 

significantly increases (i.e. from r2 = 0.58 to r2 = 0.78) and the RMSE 
decreases (i.e. from RMSE = 0.408 m to RMSE = 0.162 m) when the 
timestack image dimensions allow for the breaker zone to be partly 
included or fully included. Increasing the transect/FoV from the camera 
would improve the results. It should be noted, however, that merely 
extending the timestack domain may not entirely resolve this issues, as 
other factors, such as the type of breaking (e.g., plunging, spilling), can 

Table 3 
Overview of the existing codes combined in the CoastCams toolkit.  

Parameter Method Outputs in 
CoastCams 

Reference 

Breakpoint 
location 

The breakpoint location 
refers to the location 
where waves start to break 
as they approach the 
shoreline. In this toolkit, 
the breakpoint location is 
determined on the 
timestack images by 
discriminating the pixel 
intensity of breaking 
waves compared to non- 
breaking waves. The pixel 
intensity of breaking 
waves is significantly 
higher than for non- 
breaking waves. A 
threshold is then 
determined to 
discriminate between 
breaking and non- 
breaking pixels. Pixels 
above the threshold are 
grouped by proximity and 
associated to individual 
breaking waves.  

- Breakpoint 
Location [m] 

-Depth at 
breakpoint 
location [m] 

Almar et al. 
(2012) 

Wave breaker 
height 

Once individual 
breakpoints are localised, 
the breaker height is 
extracted based on 
intensity signals and basic 
geometrical relations (e.g., 
length and angle of wave 
face). Note that wave 
height can only be 
determined at the 
breakpoint location.  

- Hs: significant 
wave height 
[m]  

- Dissipated 
Energy [Joule]  

- Roller length 
[m] 

Wave celerity Initially, timestack images 
are pre-processed in order 
to improve the wave 
intensity signal using a 
pass-band filter between 
0.05 and 0.5 Hz. This 
removes low-frequency (e. 
g., variations due to 
clouds) and high- 
frequency (e.g., camera 
adjustments) components. 
Afterwards, the signal is 
normalised by dividing the 
intensity wave signal with 
the local maximum. 
Secondly, a temporal 
cross-correlation method 
is applied in order to 
invers timestack images 
for water depth, which 
derives wave celerity from 
temporal cross- 
correlation. At each 
location X, a correlation is 
computed between time 
series of neighbouring 
locations ΔX, with a time 
lag ΔΦ. The use of the time 
lag ΔΦ results in the 
wavelength L for an 
associated wave period, 
then the wave celerity is 
computed according to C 
= L/T.  

- C: wave 
Celerity [m/s]  

- Tp: peak wave 
period [s]  

- Tm: Mean wave 
period [s]  

- Wavelength  
- Water depth 

[m] 

Almar et al. 
(2009) 
Almar et al. 
(2014) 
Abessolo 
Ondoa et al., 
2016 
Thuan et al. 
(2019) 

Wave period-  

Shoreline 
Position 

Shoreline positions are 
estimated using the 
difference in pixel  

- Average 
shoreline 
position [m] 

Andriolo, 
2019  

Table 3 (continued ) 

Parameter Method Outputs in 
CoastCams 

Reference 

intensity from the water 
compared to the rocky 
platform. Timestack 
images are converted into 
grayscale, resulting in 
dark pixels for the rocky 
platform and lighter pixels 
for shoreline edges. 
For sandy coasts, the 
toolkit also has the 
difference between the 
red- and blue- channel. 
This method calculates the 
difference in intensity 
between the red and blue 
colour channels of the 
timestack image. The blue 
channel will show stronger 
reflection from the water, 
while the red channel will 
show stronger reflections 
from the sand on the 
beach. By subtracting the 
blue channel from the red 
channel, the resulting 
image will have higher 
values at shoreline edges. 

Thuan et al. 
(2019) 

Sea level 
variations 
and Tidal 
Elevation 

The mean water levels are 
extracted as a time 
anomaly of the inverted 
depth at distinct locations 
along the timestack image. 
They are estimated based 
on the assumption that the 
reference points 
correspond to a known 
vertical distance on the 
timestack image, i.e., 
wave height, which has 
previously been estimated 
in the toolkit. It uses this 
information then to 
quantify sea level 
variations.  

- Mean water 
level [m]  

- Relative tidal 
range [m] 

Abessolo 
Ondoa et al., 
2019 
Abessolo 
et al., 2020 

Bathymetry Bathymetry is derived 
from the linear dispersion 
relation for free surface 
waves using the video- 
derived wave celerity and 
wave period. The linear 
dispersion for free surface 
waves is a relationship 
between wave frequency, 
wavelength, and water 
depth, and can 
consequently be used to 
estimate water depth and 
bathymetry.  

- Bathymetry 
[m] 

Bergsma and 
Almar 
(2018) 
Abessolo 
et al. (2020)  
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also influence the accuracy of the estimated parameters. Unfortunately, 
in this study, Camera 2’s maintenance problems prevented it from 
recording timestack images during significant events, which hindered 
the elimination of this particular limitation. 

Thirdly, using this method the wave height is a function of the 
camera height, as the wave height takes into account the known ge
ometry of the camera, and therefore their measurement errors are pro
portional. Hence, the camera height above mean sea level must be 
determined correctly in order to estimate the wave height correctly. 

Lastly, the estimation of the peak wave period has a low r2 due to some 
outliers during lower peak wave periods. This is caused by choppy wave 
conditions. 

Overall, this study highlights the potential of low-cost camera sys
tems in coastal monitoring, while also pointing out the need for careful 
consideration of study design and implementation in order to obtain 
accurate results. 

Fig. 6. a) The average timestack image in greyscale together with the breakpoint location (blue), when no breakpoint location could be identified (red), and the 
shoreline positions (yellow); Comparison of the timestack image estimations with the measurements of the sensors deployed during the field campaign, with in b) The 
mean water level from the timestack images (black) and the sensors (red); in c) The significant wave height (Hs) from the timestack images (black), the sensors when 
breakpoint location could be identified (solid red), and sensors when no breakpoint location could be identified (empty red); and d) The peak wave period (Tp) from 
the timestack images (black) and the sensors (red); On the x-axis is the time period, with dashed line showing the start of a new day. The vertical grey bars represent 
times when sensors were not under water. 

Fig. 7. Overview of correlation between observed and estimated mean water level, with in a) Scatter plot of the estimated mean water level (x-axis), observed mean 
water level (y-axis), and the colour bar representing data density; and in b) Probability density function of mean water level estimations. 
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Fig. 8. (Top) Timestack image from 09 October 2021 at 7h45; and (Bottom) Timestack image from 13 October 2021 at 8h30.  

Fig. 9. Overview of correlation between observed and estimated significant wave height, with in a) Scatter plot of the estimated significant wave height (x-axis), 
observed significant wave height (y-axis) in grey, in orange the adjusted Hs, and the colour bar representing data density. Also shown are the 1:1 (solid) and 
regression (dashed) lines; and in b) Probability density function of significant wave height estimations. 

Fig. 10. Overview of correlation between observed and estimated peak wave period, with in a) Scatter plot of the estimated peak wave period (x-axis), observed peak 
wave period (y-axis), and the colour bar representing data density. Also shown are the 1:1 (solid) and regression (dashed) lines; and in b) Probability density function 
of peak wave period estimations. 
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4.1. Current limitations of the toolkit  

• Requirements for the creation of timestack images: To utilise 
CoastCams, it is necessary to obtain georectified timestack images. 
These timestack images are not readily available from standard video 
cameras and require additional processing steps. Users should be 
aware that the creation of timestack images is an essential prereq
uisite for utilising the toolkit, e.g., through the CIRN tools;  

• Alternative approaches for bathymetry and shoreline estimation: 
While CoastCams provide a unified approach to estimate multiple 
key parameters simultaneously, it is important to note that there are 
alternatives approaches that enable the estimation of 2D-bathyme
tries by working with full images or videos. It is worth acknowl
edging that the choice of using timestack images in CoastCams, while 
useful through the multitude of estimating other key parameters 
simultaneously, may not represent the most advanced techniques 
currently available;  

• Limited accuracy during low peak wave periods: The method may 
have limited accuracy during low peak wave periods, as it relies on 
discriminating between breaking and non-breaking pixels in the 
timestack images. During low peak wave periods, it may be more 

difficult to accurately distinguish between breaking and non- 
breaking waves, which could affect the accuracy of the estimated 
parameters;  

• Estimating celerity and bathymetry from timestack images: Creating 
timestack images from the same transect has the drawback that the 
obtained celerity is projected to the transect. Although it was not 
apparent during the field campaign, the assumption is that the 
transect is always in the direction of the wave propagation, which is 
not always the case since wave direction changes in time;  

• Limited measurement capabilities during night-time: The method is 
dependent on image analysis, which requires daylight conditions to 
capture the necessary imagery. Therefore, it is not able to measure 
during night-time, which limits its potential for continues 
monitoring;  

• Restricted identification of the breaker zone: In some cases, the 
timestack image dimensions were too restricted to accurately iden
tify the breaker zone, which is a key parameter for the estimation of 
the other parameters. As such, it is important that the timestack 
image/transect is of sufficient length in order to always capture the 
full extent of the breaker zone; and 

Fig. 11. r2 and RMSE from the tidal elevation from pressure sensor 13 compared to the tidal elevation derived from the timestack images, with on the y-axis the 
cross-shore distance of the timestack. 
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• Dependency on the quality of the timestack images: The accuracy of 
the estimated parameters is dependent on the properties of the 
timestack images, which could be affected by various factors such as 
environmental conditions (e.g., rain, lighting conditions) and camera 
positions (e.g., height of the camera, FoV, timestack domain). 

5. Conclusion 

This study presents a toolkit to estimate key parameters in the 
nearshore by leveraging the strength of existing codes and providing a 
unified and simplified method that can be utilised by a wide range of 
users. Identifying parameters, such as wave height, mean water levels, 
and morphological parameters, in the nearshore using a coastal moni
toring system will allow us to obtain remotely sensed datasets to better 
understand coastal processes in a particular location. Historically, 
measuring these parameters required in-situ instruments (e.g., pressure 
sensors, buoys, wave gauges), which are generally expensive and lead to 
spatially scarce datasets. Moreover, these instruments are subject to 
corrosion and biofouling, which increases their maintenance costs. 

This publicly available MATLAB code estimated the mean water level 
with a good degree of accuracy (r2 = 0.95 and RMSE = 0.289 m) and the 
significant wave height that are not restricted by the timestack image 
dimensions by r2 = 0.78 and RMSE = 0.162 m, while also providing the 
specific location of wave breaking. Therefore, this approach is suitable 
for use in the swash and surf zone with variations in mean water levels, 
wave breaking heights, and wave breaking positions. However, errors 
may arise during low peak wave periods and when the timestack image 
dimensions are too restricted to identify the breaker zone. In addition, 
this method is not able to measure during night-time. 

The software is easy to use, requires limited inputs from the user, is 
freely available and open source. For these reasons, CoastCams repre
sents a valuable tool for a range of potential users such as researcher 
evaluating impacts of rising sea levels, hydrodynamic forcing, and 
shoreline positions in the coastal zone, as well as for coastal managers 
and policy makers for regulating coastal development or implementing 
coastal protection. 

Overall, the low cost, easy implementation, and automated approach 
of this method make it suitable for multiple site deployment and tar
geted evaluation, which could be used to improve model physics and 
parameterisation. Particularly for those regions that are known to be 
problematic within model domains (e.g., swash zone). Implementing 
this method along coasts with different environmental settings will 
improve the further development and recommendations of the toolbox. 

Software and data availability section 

Software name: CoastCams. 
Developer: Siegmund Nuyts, Rafael Almar, Jennifer Montaño 

Muñoz. 
Contact information: s.nuyts@deakin.edu.au. 
Year first available: 2023. 
Program language: MATLAB. 
Cost: free. 
Software and sample data availability: https://github.com/NuytsSie 

gmund/CoastCams.git. 
Program size: 10.4 MB (code) and 3.70 MB (sample data). 
License: GPL-3.0. 
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