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Abstract
The	way	animals	select	their	breeding	habitat	may	have	great	impacts	on	individual	
fitness.	This	complex	process	depends	on	the	integration	of	information	on	various	
environmental	 factors,	 over	 a	 wide	 range	 of	 spatiotemporal	 scales.	 For	 seabirds,	
breeding	habitat	selection	integrates	both	land	and	sea	features	over	several	spatial	
scales.	Seabirds	explore	these	features	prior	to	breeding,	assessing	habitats'	quality.	
However,	the	information-	gathering	and	decision-	making	process	by	seabirds	when	
choosing	a	breeding	habitat	 remains	poorly	understood.	We	compiled	49	historical	
records	of	larids	colonies	in	Cuba	from	1980	to	2020.	Then,	we	predicted	potentially	
suitable	breeding	sites	for	larids	and	assessed	their	breeding	macrohabitat	selection,	
using	deep	and	machine	learning	algorithms	respectively.	Using	a	convolutional	neural	
network	and	Landsat	satellite	images	we	predicted	the	suitability	for	nesting	of	non-	
monitored	sites	of	this	archipelago.	Furthermore,	we	assessed	the	relative	contribu-
tion	of	18	land-		and	marine-	based	environmental	covariates	describing	macrohabitats	
at	 three	spatial	 scales	 (i.e.	10,	50	and	100 km)	using	random	forests.	Convolutional	
neural	network	exhibited	good	performance	at	training,	validation	and	test	(F1-	scores	
>85%).	Sites	with	higher	habitat	suitability	(p > .75)	covered	20.3%	of	the	predicting	
area.	Larids	breeding	macrohabitats	were	sites	relatively	close	to	main	 islands,	fea-
turing	sparse	vegetation	cover	and	high	chlorophyll-	a concentration at sea in 50 and 
100 km	around	colonies.	Lower	sea	surface	temperature	at	larger	spatial	scales	was	
determinant	to	distinguish	the	breeding	from	non-	breeding	sites.	A	more	comprehen-
sive	understanding	of	the	seabird	breeding	macrohabitats	selection	can	be	reached	
from	 the	 complementary	 use	of	 convolutional	 neural	 networks	 and	 random	 forest	
models.	Our	analysis	provides	crucial	knowledge	in	tropical	regions	that	lack	complete	
and	regular	monitoring	of	seabirds'	breeding	sites.

K E Y W O R D S
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1  |  INTRODUC TION

The	quality	of	environment	in	breeding	habitats	may	greatly	affect	
animal	 fitness	 (Danchin	 et	 al.,	 1998).	 Thus,	 individuals	 are	 under	
strong	 selective	 pressure	 for	 optimal	 breeding	 habitats	 (Orians	 &	
Wittenberger,	1991; Piper, 2011).	This	complex	selection	process	in-
volves	environmental	conditions	over	a	large	range	of	spatial	scales	
and	relies	on	hierarchical	and	sequential	decision-	making	by	animals	
(Block	&	Brennan,	1993).

Several	 factors	have	been	suggested	 for	explaining	how	sea-
birds	choose	a	place	to	breed:	geographical	features	of	the	nesting	
area	(area,	spatial	 isolation)	(Greer	et	al.,	1988;	Orians	&	Witten-
berger,	1991);	 vegetation	 characteristics	 (coverage,	 height,	 den-
sity)	(Muzaffar	et	al.,	2015;	Raynor	et	al.,	2012);	climate	variability	
(temperature,	 rainfall,	wind)	 (Córdoba-	Córdoba	et	al.,	2010;	Mu-
zaffar	et	al.,	2015)	and	socio-	ecological	factors	(competition,	ter-
ritoriality,	predation	pressure,	fidelity	to	the	breeding	site,	group	
cohesion,	 information	 exchange	 between	 individuals,	 colony	
recruitment,	 previous	 breeding	 experience)	 (Córdoba-	Córdoba	
et al., 2010;	García	Borboroglu	&	Yorio,	2007; Greer et al., 1988).	
Commonly,	 adult	 seabirds	 gather	 information	 on	 habitat	 quality	
(Doligez	et	al.,	2002)	over	a	 range	of	 spatial	 scales	 through	pro-
spective	 movements	 before	 breeding	 (Kristan,	 2006; Ponchon 
et al., 2013).	A	range	of	oceanographic	conditions	surrounding	the	
nesting	 sites	may	also	be	assessed	by	 seabirds	when	selecting	a	
place	 to	 nest:	 water	 masses	 characteristics	 (temperature,	 salin-
ity),	bathymetry	and	productivity-	related	variables	(chlorophyll-	a 
concentration,	 distance	 to	 food	 sources,	 prey	 availability	 and	
abundance).	In	particular,	water	mass	properties	and	zooplankton	
abundance	have	been	shown	as	 important	 factors	 for	 this	selec-
tion	process	in	boobies	and	auklets	(Oppel	et	al.,	2015;	Sorensen	
et al., 2009).

Existing	 studies	 on	 breeding	 habitat	 selection	 by	 seabirds	 are	
mostly	focusing	either	on	terrestrial	habitats,	where	nests	and	colo-
nies	are	installed,	or	on	the	surrounding	marine	areas,	that	birds	use	
to	forage	during	the	breeding	(e.g.	García	Borboroglu	&	Yorio,	2007; 
Raynor	et	al.,	2012).	Also,	most	of	 these	studies	focused	on	a	sin-
gle	spatial	 scale	of	analysis	and	were	often	species	or	colony	spe-
cific.	 More	 integrative	 (over	 land	 and	 seascapes),	 multi-	specific	
and	multi-	scale	 approaches	 should	 improve	 our	 understanding	 of	
the	 breeding	 habitat	 selection	 process	 by	 seabirds.	 In	 addition	 to	
these	existing	limitations,	seabird	habitat	selection	in	the	tropics	is	
much	less	understood	than	that	of	temperate	and	polar	species.	In	
tropical	waters,	 primary	productivity	 is	 generally	 low	and	 season-
ally	 stable	 compared	 to	 the	 cooler	waters	of	polar	 and	 temperate	
regions	(Hockey	&	Wilson,	2003;	Jaquemet	et	al.,	2008).	One	might	
therefore	expect	key	factors	for	habitat	selection	to	differ	between	
tropical,	temperate	or	polar	seabirds,	and	hypothesize	that	tropical	

seabirds	are	comparatively	more	influenced	by	terrestrial	than	ma-
rine	features.

Furthermore,	 many	 tropical	 regions	 lack	 a	 full	 and	 regular	
monitoring	of	seabirds'	breeding	sites	due	to	economical	and	 lo-
gistical	constraints,	as	well	as	the	scarcity	of	qualified	human	re-
sources.	For	instance,	Laridae	(gulls,	terns	and	skimmers;	Winkler	
et al., 2020)	in	Cuba	are	the	most	abundant	seabird	group	with	25	
species	 recorded	 (Navarro,	2021),	 36%	 of	 them	 breeding	 in	 the	
archipelago	(Jiménez	et	al.,	2009).	However,	information	on	their	
colonies	is	presently	very	limited:	scarce	records	of	sites,	species,	
number	of	breeding	pairs,	 and	basic	habitat	 features	and	breed-
ing	parameters	 (e.g.	Acosta	et	al.,	2022;	Jiménez	et	al.,	2009).	 In	
particular,	 the	most	 important	environmental	 variables	 affecting	
breeding	habitat	selection	remain	poorly	known.	 In	order	 to	pri-
oritize	the	areas	to	be	monitored,	an	important	prerequisite	is	to	
predict	potential	breeding	sites	as	well	as	to	identify	the	main	driv-
ers	of	breeding	habitat	selection	at	the	scale	of	the	entire	archipel-
ago.	Considering	both	terrestrial	and	marine	areas	should	provide	
a	more	 realistic	 and	 eco-	functional	 approach	 to	 predict	 tropical	
seabirds'	breeding	sites.

The	synergy	of	the	aforementioned	characteristics	(dependence	
on	terrestrial	and	marine	factors,	multi-	scale	influence,	multi-	species	
breeding)	makes	the	study	of	seabird	breeding	macrohabitat	(i.e.	the	
breeding	location	such	as	island,	peninsula,	beach)	complex.	Appar-
ently,	few	tools	have	enough	potential	to	assess,	holistically,	the	suit-
ability	 and	 selection	 of	 these	macrohabitats.	 But	 a	 solution	 could	
be	found	within	the	field	of	machine	 learning,	a	 family	of	artificial	
intelligence	 tools	 that	 aims	 to	 learn	 functional	 relationships	 from	
data	(Borowiec	et	al.,	2022;	Fincham	et	al.,	2020; Olier et al., 2021).	
Since	 their	 dissemination	 in	 the	 1990s,	 machine	 learning	 models	
have	shown	marked	statistical	and	predictive	superiority	over	classi-
cal	approaches,	such	as	the	maximum	likelihood	estimation	and	null	
hypothesis	significance	testing	(Pichler	&	Hartig,	2023).

Among	the	most	popular	models	are	the	neural	networks	(such	
as	convolutional	neural	networks	[CNN]),	and	random	forest	(RF).	
CNNs	 belong	 to	 the	 deep	 learning	 subfield	 and	 have	 become	 a	
state-	of-	the-	art	approach	 in	 the	field	of	computer	vision	and	re-
mote	 sensing	 (Borowiec	 et	 al.,	 2022;	 Ghanbari	 et	 al.,	 2021;	 Ma	
et al., 2019).	 CNNs	 are	 composed	 of	multiple	 layers	 of	 process-
ing	 units	 which	 can	 learn	 from	 complex	 features	 and	 represent	
data	with	a	high	 level	of	abstraction	at	multiple	scales.	They	are	
known	for	their	outstanding	ability	to	segment	and	classify	images	
within	end-	to-	end	 learning	framework,	 i.e.	without	requiring	any	
preliminary	feature	engineering	(Fincham	et	al.,	2020;	Kattenborn	
et al., 2021;	Ma	 et	 al.,	2019).	 RF	 (Breiman,	2001)	 is	 highlighted	
for	its	robustness	to	heterogeneous	predictors,	 its	high	accuracy	
(Ma	et	al.,	2019)	and	 its	ability	to	provide	a	contribution	 level	or	
importance	of	 each	 covariate.	CNNs	usually	outperform	RFs	 for	
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classification	 and	 prediction	 purposes	 (Kattenborn	 et	 al.,	 2021; 
Mahdianpari	 et	 al.,	 2018).	 Yet,	 an	 important	 advantage	 of	 RFs	
over	CNNs	is	their	more	explicit	understanding	of	the	associations	
between	 the	 response	variable	and	 its	 covariates.	 In	 the	 remote	
sensing	 research	 area,	CNNs	have	been	 identified	 as	 potentially	
well-	suited	 to	 prediction	 of	 habitat	 suitability	 for	 animals	 such	
as	 birds	 (e.g.	 Chilson	 et	 al.,	2019;	 Su	 et	 al.,	 2018).	 “A	 picture	 is	
worth	a	thousand	words”	and	a	satellite	 image	represents	an	ex-
cellent	example	of	that	due	to	its	stack	of	spectral	bands	with	high	
potential	 for	 seabird	 macrohabitat	 description.	 Su	 et	 al.	 (2018)	
used	 CNNs	 (and	 Support	 Vector	Machine)	 with	 satellite	 images	
to	 model	 the	 habitat	 suitability	 for	 a	 migratory	 geese	 species.	
Others,	as	Chilson	et	al.	(2019)	and	Wang	et	al.	(2021),	identified	
birds'	habitat	elements	using	radar	data	and	photographic	images,	
respectively.	Deneu	et	 al.	 (2021)	 used	CNNs	 to	 improve	 species	
distribution	modeling	by	capturing	complex	 spatial	 structures	of	
the	environment.

Despite	 the	 development	 of	 some	 alternative	 procedures,	 the	
main	limitation	of	CNNs	(and	deep	learning	in	general)	 is	that	they	
operate	as	a	“black	box,”	which	prevents	the	ecological	 interpreta-
tion	 of	 the	 processes	 under	 study	 (Borowiec	 et	 al.,	2022; Pichler 
&	Hartig,	2023).	However,	considering	the	main	strengths	of	CNN	
(high	 performance	 for	 prediction)	 and	 RF	 (assessing	 of	 ecological	
hypotheses	 through	 the	 covariates	 contribution),	 the	 complemen-
tary	use	of	both	methods	could	increase	our	understanding	of	the	
patterns	 and	processes	 involved	 in	macrohabitat	 selection	 and	be	
helpful	 for	 developing	 effective	 management	 and	 conservation	
strategies	(Figure 1).	Here,	we	predict	the	suitability	of	macrohabitat	
for	the	breeding	of	Laridae	in	Cuba	(using	CNN)	and	investigate	the	
ecological	 variables	 driving	 their	 habitat	 selection	 (using	RF)	 from	
satellite	data.	More	precisely	we	(1)	predict	the	breeding	macrohab-
itat	suitability	of	Laridae	at	the	scale	of	the	entire	Cuba	archipelago	
using	CNN,	and	(2)	assess	the	selection	of	the	breeding	macrohabitat	
by	these	seabirds	considering	the	contribution	of	landscape	and	sea-
scape	covariates,	at	different	spatial	scales,	using	RFs.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

This	 study	 focuses	 on	 the	 marine	 coastal	 ecosystems	 of	 the	
Cuban	archipelago	 (Figure 2).	Cuba	 is	 the	 largest	Caribbean	 island	
(length = 1256.2 km,	maximal	width = 191 km)	 and	 includes	 four	 in-
sular	groups	(Los	Colorados,	Sabana-	Camagüey,	Canarreos	and	Jar-
dines	de	la	Reina)	featuring	>1600	cays	(small,	low-	elevation,	sandy	
islands	on	the	surface	of	the	coral	reef)	and	islets	with	large	variation	
in	relief,	geology	and	landscapes.	Climate	is	tropical	hot	and	season-
ally	 wet	 with	 marine	 influence	 and	 semi-	continental	 traits	 (www.
insmet.cu).	Annual	mean	 temperature	 varies	 between	24°C	 in	 the	
plains	of	the	main	island	and	>34°C	at	the	eastern	coasts.	Mean	rela-
tive	humidity	in	the	island	is	high	(≈82%–	90%)	and	mean	annual	pre-
cipitation	≈1375 mm.	Daily	weather	variations	are	more	 important	

between	November	and	April	while	the	weather	is	more	stable	dur-
ing	May–	October	due	 to	 the	 influence	of	 a	North	Atlantic	 anticy-
clone	(www.insmet.cu).	The	mean	sea	surface	temperature	over	the	
continental	shelf	varies	from	~23	to	28°C	in	January	and	from	~29 
to	32°C	in	September,	from	North	to	South,	with	the	largest	spatial	
gradients	at	the	vicinity	of	the	shelf	break.	The	mean	chlorophyll-	a 
varies	from	~0.5 to >10 mg m−3	with	the	largest	values	observed	be-
tween	the	coast	and	the	northern	islands	as	well	as	in	the	Southwest	
region,	with	moderate	seasonal	variations.

2.1.1  |  Breeding	and	available	sites

We	compiled	and	filtered	(deletion	of	duplicates,	erroneous	and	im-
precise	 data	 about	 species	 identification,	 location	 of	 colonies	 and	
date	 of	 breeding)	 all	 available	 informations	 on	 observed	 breeding	
sites	of	 Laridae	 (i.e.	 cay,	 islet	 or	 coastal	 site)	 from	 scientific	 publi-
cations,	 books,	 thesis,	 project	 reports	 and	 unpublished	 data.	 A	
database	was	 built	with	 the	 names	 and	 spatial	 coordinates	 of	 the	
49	reported	breeding	sites	 (Figure 2),	years	of	observation	 (1980–	
2020),	 breeding	 species	 and	 information	 sources	 (Table S1).	 Ob-
served	breeding	species	of	Laridae	were	Laughing	Gull	Leucophaeus 
atricilla	 (LAGU),	 Brown	Noddy	Anous stolidus	 (BRNO),	 Sooty	 Tern	
Onychoprion fuscatus	 (SOTE),	 Bridled	 Tern	Onychoprion anaethetus 
(BRTE),	Least	Tern	Sternula antillarum	 (LETE),	Gull-	billed	Tern	Gelo-
chelidon nilotica	(GBTE),	Roseate	Tern	Sterna dougallii	(ROST),	Royal	
Tern Thalasseus maximus	(ROYT)	and	Sandwich	Tern	Thalasseus sand-
vicensis	 (SATE).	 Breeding	 records	 of	 Common	 Tern	 Sterna hirundo 
were	treated	as	ROST	due	to	the	misidentification	of	these	species'	
colonies	 (Navarro,	 2021;	 Nisbet,	 2020).	 Additionally,	 we	 selected	
(non-	randomly)	52	sites	distributed	along	the	coast	of	Cuba	where	
none	of	the	nine	species	was	observed	breeding	in	2020	(Figure 2, 
Table S1).	These	non-	breeding	sites	represented	the	potential	mac-
rohabitat	available.	Both	terrestrial	and	marine	features	surrounding	
the	observed	breeding	sites	were	considered	for	predicting	suitable	
breeding	macrohabitats.

2.2  |  Acquisition and formatting of breeding 
macrohabitat data

2.2.1  |  Satellite	images

For	each	breeding	and	available	site	we	extracted	satellite	imagery	
of	 Landsat	 5	 and	 7	 (Table S2)	 from	 EOS	Data	 Analytics	 platform	
(https://eos.com).	The	date	of	the	image	was	matched	to	the	year	of	
the	breeding	colony	presence	record,	while	images	from	2020	were	
used	for	non-	breeding	sites.	Several	images	were	associated	to	each	
site	 (depending	on	availability)	 to	ensure	a	good	representation	of	
the	natural	variability	during	the	breeding	period	(May–	August)	and	
to	reduce	the	influence	of	clouds	in	some	images.	In	some	cases,	we	
incorporated	images	of	both	months	of	April	and	September	(clima-
tology	similar	to	the	May–	August	period)	when	none	was	available	

http://www.insmet.cu
http://www.insmet.cu
http://www.insmet.cu
https://eos.com
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from	May	to	August	of	the	current	year.	In	total,	we	selected	136	sat-
ellite	images	describing	the	conditions	of	the	study	sites	(Table S2).

We	then	 resized	 the	Landsat	 images	 into	scenes	 (9.0 × 9.0 km	
square	 areas	 centered	 on	 the	 sites)	 and	 standardized	 them	
through	 the	 “Dark	 Subtraction”	 (based	 on	 the	 bands	 minimum	

digital	number)	to	apply	atmospheric	scattering	corrections	to	the	
imagery	data	and	“SLC	Gap-	Filled”	correction	for	Landsat	7	imag-
ery	since	31	May	2003.	In	the	end,	GeoTIFF	files	(299 × 299	pixels,	
30 m-	spatial	resolution)	were	created	that	included	the	visible	and	
infrared	 bands.	 Panchromatic	 and	 thermic	 bands	were	 excluded	

F I G U R E  1 Complementarity	approach	between	convolutional	neural	networks	and	random	forests	models	to	study	seabird	breeding	
macrohabitat.

F I G U R E  2 Map	of	the	study	area	and	the	sites	used	to	train	and	validate	the	modeling	of	the	breeding	macrohabitat	suitability	of	nine	
Laridae	species.	Blue	diamonds = breeding	sites,	red	diamonds = non-	breeding	sites.
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because	these	do	not	match	between	Landsat	satellites.	The	defi-
nition	of	scene	size	followed	a	balanced	criterion:	sufficiently	large	
image	size	that	included	land	and	sea	components,	and	sufficiently	
small	 to	 minimize	 the	 inclusion	 of	 other	 breeding	 and	 available	
sites	in	the	same	image	scene	(which	would	affect	the	prediction	
quality).	We	organized	the	data	into	two	datasets	considering	the	
quality	of	scene	images	related	with	cloud	cover	(Table S3)	to	con-
trol	 for	 cloud-	related	 confounding	 effects.	We	 randomly	 mixed	
the	images	database	of	both	types	of	sites	(i.e.	with	and	without	
breeding	colonies)	and	then	split	them	into	two	groups	containing	
70%	(training)	and	30%	(validation)	of	the	data	(Table S3)	for	the	
building	and	selection	of	the	best	CNN.

Satellite	images	from	2021	at	12	breeding	and	52	non-	breeding	
sites	(verified	as	such	that	year)	were	used	as	test	dataset	to	assess	
the	 predictive	 performance	 of	 the	 CNN.	 For	 predicting	 breeding	
macrohabitat	 suitability,	 we	 applied	 the	 same	 preprocessing	 to	
Landsat	7	images	of	2021	(Table S2)	that	covered	the	entire	Cuban	
archipelago.	A	mosaic	was	built	with	these	images,	masking	mainland	
to	retain	only	the	marine-	coastal	ecosystems	up	to	the	insular	shelf.	
Images	with	open	water	only	or	predominance	of	land	of	the	main	
two	 islands	 (Cuba	 and	 Juventud)	 were	 excluded	 since	 they	 were	
irrelevant	 to	 Laridae	 breeding	 (Jiménez	 et	 al.,	 2009).	 Finally,	 this	
mosaic	image	was	gridded	into	793	scenes	(63,805.5 km2)	with	the	
same	format	and	structure	than	train	and	validation	datasets.	Satel-
lite	images	were	processed	using	the	ENVI	4.7	(ITT	VIS	Inc)	software.

2.2.2  |  Physical	and	geographical	covariates

Because	 of	 the	 absence	 of	 information	 on	 the	 foraging	 ranges	 of	
Cuban	seabirds	during	their	breeding	period,	we	did	a	bibliographic	
compilation	of	all	information	available	on	the	same	species	observed	
elsewhere	during	breeding,	from	polar	to	tropical	zones.	From	this	
review,	we	estimated	the	potential	maximum	foraging	ranges	during	
breeding	for	each	studied	species	(Table S4).	Then,	we	defined	three	
spatial	scales	(radius	of	10,	50	and	100 km	from	the	breeding	site)	ap-
proximately	corresponding	to	the	estimated	foraging	ranges	of	our	
study	species,	and	computed	several	oceanographic	characteristics	
at each spatial scale.

Twelve	 potentially	 important	 features	 for	 the	 establishment	
of	 Laridae	 breeding	 colonies,	 described	 through	 18	metrics,	were	
considered	 at	 the	 defined	 spatial	 scales	 (Table 1):	 11	 of	 them	de-
scribed	the	conditions	of	the	nesting	landscape,	and	seven	of	them	
described	the	conditions	of	the	surrounding	seascape.	The	variables	
were	measured	at	the	date	of	the	colony	observation,	and	in	2020	
for	the	non-	breeding	sites.

Using	 the	Landviewer	product	of	 the	EOS	Data	Analytics	plat-
form,	we	calculated	 the	Normalized	Difference	Water	 (Gao,	1996)	
and	Vegetation	 (Rouse	 et	 al.,	 1973)	 Indexes	 (NDWI	 and	NDVI	 re-
spectively)	from	satellite	 images	(using	Green,	Red	and	Near	Infra-
red	bands)	of	the	Landsat	series.	Dates	of	 images	ranged	between	
May	and	August,	matching	the	breeding	season	of	Laridae	in	Cuba	
(Jiménez	et	al.,	2009).	Both	spectral	indices	vary	between	−1	and	1	

with	higher	numbers	 corresponding	 to	higher	humidity	 (NDWI)	or	
green	vegetation	(NDVI).	Based	on	the	NDWI	we	then	calculated	the	
drought	emerged	areas	(NDWI	range = −1	to	0.2)	and	the	percentage	
of	non-	flooding	cover	(NDWI	range = −1	to	0).	The	NDVI	allowed	to	
quantify	the	total	(NDVI	range = 0.2–	1)	moderate	and	dense	vegeta-
tion	covers	(NDVI	range = 0.4–	1).	Thus,	the	area,	non-	flooding	zone	
cover	and	vegetal	covers	of	each	nesting	site	were	computed	from	
the	satellites	images.	The	perimeter	was	calculated	after	vectoriza-
tion	of	the	imagery	scenes.

We	calculated	the	index	of	shape	complexity	for	islets	and	cays	
(Hu	 et	 al.,	 2011)	 as	 SI = P/[2 × (π × A)1/2],	 where	 SI = shape	 index,	
P = perimeter	and	A = area	of	the	site.	A	SI	value	of	1	indicates	an	islet	
or	cay	with	a	perfect	circular	 shape	and	SI	 increases	as	 the	shape	
becomes	more	irregular	and	complex.	Isolation	variables	(minimum	
distances	 to	Cuba/Isla	 de	 la	 Juventud	 (IJ)	 and	 to	 nearest	 cay,	 and	
cays/islets	number	at	the	three	spatial	scales)	were	estimated	using	
Google	Earth	Pro	7.3.3	software.	Minimum	distances	to	the	200-	m	
isobath	were	measured	using	a	bathymetric	shapefile	of	the	exclu-
sive	economic	zone	of	Cuba	 (using	 information	both	 from	GEBCO	
and	Cuban	research	agencies	databases).

Sea	surface	 temperature	 (SST)	and	surface	chlorophyll	a con-
centration	(Chl	a)	around	the	sites	were	obtained	at	a	spatial	resolu-
tion	of	1 km	from	level-	2	MODIS-	Aqua	satellite	data	(https://ocean 
color.gsfc.nasa.gov/data/aqua/)	 after	 sampling	 and	 spatial	 repro-
jection	 of	 the	 data.	 For	 both	 variables	we	 averaged	 the	monthly	
values	between	May	and	August	of	the	year	corresponding	to	the	
last	 register	 of	 each	 breeding	 colony	 and	 for	 2020	 for	 available	
sites.	Nevertheless,	due	to	the	absence	of	 logistical	support	for	a	
systematic	monitoring	of	 these	 variables	before	2002,	 and	given	
the	small	interannual	variability	of	both	variables	in	Cuba,	data	for	
breeding	 colonies	 observed	 in	 that	 period	 were	 estimated	 from	
the	mean	of	2002–	2021	period	 for	 the	 same	months	 (Figure S1).	
A	summary	of	 the	satellite	 images	used	for	 the	study	 is	provided	
in Table S2.

The	eldest	colony	record,	at	Rincón	del	Guanal	 (Table S1),	was	
excluded	from	the	study	as	we	could	not	obtain	the	same	variables	
from	Landsat	4	satellite	(fewer	bands	than	Landsat	5	and	7).	Breed-
ing	 macrohabitat	 was	 characterized	 considering	 both	 mixed	 and	
monospecific	colonies.

2.3  |  Prediction and selection assessment of the 
breeding macrohabitats

2.3.1  |  CNN	implementation

A	CNN	architecture	is	typically	composed	by	multiple	layers	of	pro-
cessing	 units	 where	 two	 main	 processes	 occur:	 convolution	 and	
pooling.	During	 convolutions	 several	 filters	 are	 applied	 to	 extract	
relevant	features	of	data	that	will	be	used	for	calculating	the	matches	
in	 the	 testing	phase.	 Pooling	operations	 capture	 large	 images	 and	
reduces	the	parameters	to	preserve	important	information.	Katten-
born	et	al.	(2021)	and	Krishna	and	Kalluri	(2019)	offer	more	details	

https://oceancolor.gsfc.nasa.gov/data/aqua/
https://oceancolor.gsfc.nasa.gov/data/aqua/
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about	architectures,	parameters	and	 functions	of	CNNs.	Here,	we	
use	a	CNN	with	three	consecutive	 layers	of	convolutions	and	max	
pooling,	followed	by	a	dense	network.	Finally,	the	last	layer	consists	
in	a	sigmoid	activation	so	that	the	output	of	the	network	is	a	value	
between	0	and	1.	This	CNN	aims	 therefore	 to	 ingest	 the	selected	
bands	of	Landsat	 satellite	 images	of	299 × 299	pixels	 (Table S3)	as	
input	data	and	to	output	the	probability	of	the	described	habitat	to	
be	suitable	for	breeding	seabirds.

Parameters	were	finally	estimated	using	an	Adam	optimizer	and	
minimizing	a	“Sparse	categorical	crossentropy”	loss.	In	order	to	pre-
vent	 overfitting,	we	 also	 added	 a	 L2	 regularizer,	 a	Deep	 Learning	
technique	 to	 get	 better	 generalization	 and	 predictive	 properties	
(Kussul	et	al.,	2017).	Finally,	models	were	 trained	using	 the	 “train-
ing	dataset,”	and	selected	when	minimizing	accuracy	score	over	the	
“validation	dataset.”	This	analysis	was	implemented	with	the	keras	R	
package	(v.	2.6.1)	(Kalinowski	et	al.,	2021).

We	 performed	 this	 training	 procedure	 for	 distinct	 parameters	
and	the	best	CNN	(better	performance	and	lowest	loss	in	validation	
and	 test	 datasets)	was	 used	 to	predict	 the	breeding	macrohabitat	
suitability	using	the	satellite	images	of	2021	along	all	marine-	coastal	
ecosystems	 of	 the	 archipelago.	 The	 most	 frequently	 reported	

metrics,	Overall	Accuracy,	Precision,	Recall	and	F1-	score	(Table S5)	
were	 used	 to	 assess	 CNN	 performance.	 All	 analysis	 was	 imple-
mented	in	R	4.1.1	(R	Core	Team,	2021).

2.3.2  |  RF	implementation	and	
contribution	of	variables

Variables	were	compared	among	sites	using	Mann–	Whitney	U- tests 
considering	significance	at	p < .01.	Breeding	macrohabitat	selection	
was	 analyzed	 through	 random	 classification	 forests	 (RFs)	 models	
considering	the	measured	variables	at	three	spatial	scales.	Similar	to	
CNN,	we	mixed	and	split	the	data	to	create	the	training	and	valida-
tion	datasets	(70%	vs.	30%	proportions)	for	the	building	and	selec-
tion	of	the	best	RF.	The	same	training	and	validation	datasets	were	
used	in	all	RFs	to	compare	their	classification	performances.	We	im-
plemented	three	RFs,	one	that	processed	physical-	geographical	vari-
ables	registered	within	a	radius	of	100 km	from	the	breeding	colony	
(RF_100;	 300	 trees	 and	 four	 variables	 by	 split),	 a	 second	within	 a	
50 km	radius	(RF_50;	200	trees	and	four	variables	by	split)	and	a	third	
one	within	a	10 km	radius	(RF_10;	150	trees	and	three	variables	by	

TA B L E  1 Potentially	important	variables	for	Laridae	breeding	macrohabitat	selection	(breeding	site,	i.e.	cay,	islet	or	coastal	site)	in	Cuba.

Feature Variable Unit Ecological meaning

Site	extent Area km2 Available	space	for	nests	establishment

Site	perimeter Perimeter km Indicator	of	the	availability	of	potential	coastal	zones	for	breeding

Site	shape Shape	index	based	on	perimeter/
area ratio

–	 Related	to	geographical	features	(e.g.	peninsulas)	that	could	be	
important	for	breeding

Isolation degree Minimum	distance	from	the	colony	to	
the	nearest	cay/islet

km Indicator	of	accessibility	for	predators	and	other	disturbance	sources

Minimum	distance	from	the	colony	
to	the	nearest	main	island	(Cuba	
or	Isla	de	la	Juventud)	of	the	
archipelago

km Indicator	of	accessibility	for	predators	and	high	disturbance	sources	
(higher	risk)

Cays/islets	number	within	10,	50	and	
100 km	of	the	colony

–	 Indicator	of	the	number	of	potential	sources	(at	different	spatial	
scales)	of	predators,	alien	species	and	other	disturbances	that	
could	affect	the	colonies

Terrain Non-	flooding	zone	cover % Suitability	of	the	locality	for	colony	establishment	based	on	flooding	
risk

Vegetation Vegetal	covertotal % Surface	occupied	by	plants	(species-	specific	suitability	for	breeding,	
Burger	&	Gochfeld,	1981;	Raynor	et	al.,	2012)

Vegetal	covermoderate + dense % Surface	occupied	by	moderate	to	dense	vegetation	that	could	
affect	the	establishment	of	colonies	(some	Laridae	tend	to	avoid	
high	vegetation	cover	while	others	are	attracted,	Bukacinska	&	
Bukacinsky,	1993;	Burger	&	Gochfeld,	1986)

Oceanographic Sea	surface	temperature	within	
10,	50	and	100 km	radius	of	the	
colony

°C Reflects	thermal	conditions	that	influence	primary	productivity	and	
prey	availability	at	different	foraging	ranges

Bathymetric Minimum	distance	to	the	200-	m	
isobath

km Indicates	the	limit	of	the	insular	shelf	in	Cuba	and	therefore	is	a	
proxy	for	suitable	foraging	areas	for	most	Laridae	(Schreiber	&	
Burger,	2002).

Phytoplanktonic	
biomass

Chlorophyll	a concentration at sea 
surface	within	10,	50	and	100 km	
radius	of	the	colony

mg m−3 Proxy	for	phytoplanktonic	biomass,	primary	productivity	and	prey	
availability	at	different	foraging	ranges
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split).	For	each	RF	type	we	used	the	10	best	runs	in	order	to	get	an	
average	and	variance	of	model	performance.

Same	performance	metrics	 than	CNN	 (Table S5)	were	used	 to	
assess	 the	 training,	 validation	 and	 test	 of	RFs.	Variables	 contribu-
tions	were	calculated	from	the	mean	decreasing	Gini	 index	(values	
are	directly	proportional	 to	variable	 importance)	derived	 from	 the	
RF	with	better	performance.	The	randomForest	R	package	(v.	4.6-	14)	
(Breiman	et	al.,	2018)	was	used	to	this	analysis.

3  |  RESULTS

3.1  |  Prediction of macrohabitats breeding 
suitability

The	 performance	 of	 CNN	 was	 high,	 exhibiting	 indicators	 values	
≥80.0%	for	the	validation	datasets	(Table 2).	Image	quality	(accord-
ing	to	cloud	cover)	had	no	significant	consequence	on	the	classifi-
cation	power	of	CNNs	 (F1-	score	 validation = 85.7%	and	84.6%	 for	
CNNs	 that	 used	 all	 and	 best	 images,	 respectively;	 Table S3).	We	
thus	worked	with	 the	 architecture	 that	 used	 all	 images.	Based	on	
the	test	dataset,	the	CNN	exhibited	good	performance	test	indica-
tors	 with	 accuracy = 79.7%,	 precision = 91.5%,	 recall = 82.7%	 and	
F1-	score = 86.9%.

When	used	for	predicting	over	the	entire	Cuba	archipelago,	the	
CNN	 estimated	 32,184,	 12,069,	 6598	 and	 12,954 km2	 of	 suitable	
habitat	for	breeding	within	0–	.25,	.26–	.50,	.51–	.75	and	.76–	1	prob-
ability	 ranges,	 respectively	 (Figure 3).	Thus,	 the	probability	 ranges	
>.50 and >.75	covered	30.6%	and	20.3%	of	the	predicted	area,	re-
spectively.	The	best	areas	(high	suitability	scores)	tended	to	be	con-
centrated	 in	 three	 general	 types	 of	 ecosystems:	 (1)	 remote	 cays/
reef	islets	of	all	subarchipelagos	(Figure 2,	with	Jardines	de	la	Reina	
archipelago	under-	represented),	 (2)	 coastal	 zones	with	 sand,	 rocks	
or	 interior	 lagoons	and	 (3)	 interior	of	bays,	gulfs	and	swamps	 that	
contained	small	islets	and	sand	banks	(Figure 3).	The	southern	region	
of	Cuba	had	less	suitable	breeding	macrohabitats	than	the	northern	
region	(Figure 3).

3.2  |  Breeding macrohabitat selection and 
importance of covariates

The	 general	 statistics	 (median,	 quartiles)	 of	most	 covariates	 were	
quite	 similar	 between	 breeding	 and	 non-	breeding	 sites	 (Figure 4, 
Table S6).	Only	SST	at	the	three	spatial	scales	and	Chl	a at 50 and 
100 km	 radii	 exhibited	 significant	 differences:	 SST	was	 lower	 and	
Chl a	higher	at	breeding	sites	(Figure 4).	Additionally,	breeding	sites	
tended	to	have	a	smaller	number	of	cays/islets	within	10 km	com-
pared	to	non-	breeding	sites	(p = .01,	Figure 4).	Performance	metrics	
for	RF_50	and	RF_100	were	very	 similar	and	outperformed	RF_10	
(Table 2).	For	RF_100,	SST	had	the	highest	contribution	to	discrimi-
nate	breeding	 from	non-	breeding	 sites	 (Figure 5).	A	 second	group	
of	covariates	with	lower	contribution	included	isolation-	related	vari-
ables	 (number	 cays/islets	within	 10	 and	50 km	 from	 colonies)	 and	
Chl a	within	100	and	50 km	 radius	 (Figure 5).	Remaining	variables	
exhibited	 relatively	 low	contributions	and	non-	flooding	area	cover	
had	the	lowest	importance	(Figure 5).

4  |  DISCUSSION

4.1  |  Prediction of breeding macrohabitat 
suitability

According	 to	 our	 results,	 prediction	 of	 habitat	 suitability	 can	 be	
successfully	obtained	by	processing	satellite	 images	with	CNN	ex-
clusively.	This	constitutes	a	significant	advance	for	habitat	ecology	
studies	 and	 expands	 the	 applications	 and	 perspectives	 of	 image	
analysis	via	deep	 learning	approaches.	Deep	architecture	of	CNNs	
conveys	 a	 high	 computation	 cost	 (Kattenborn	 et	 al.,	2021)	 but,	 at	
the	same	time	its	versatility	provides	a	great	generalization	capacity	
with	 a	 broad	 applicability	 in	 the	 remote	 sensing	 field	 (Kattenborn	
et al., 2021;	Ma	et	al.,	2019;	Mahdianpari	et	al.,	2018).	Our	CNN	had	
relatively	good	performance	and	provided	a	map	of	macrohabitats	
suitability	for	Laridae	over	the	whole	Cuban	archipelago	for	the	year	
2021.	Predictions	were	based	on	physical-	geographical	suitability	of	

TA B L E  2 Training	and	validation	performance	(in	%)	of	a	convolutional	neural	network	(CNN)	and	three	random	forest	(RF)	models	used	
to	respectively	predict	breeding	site	suitability	and	assess	breeding	site	(macrohabitat)	selection	by	Laridae	in	Cuba.

Model 
type

Training 
accuracy

Training 
F1- score

By image By site

Validation 
accuracy

Validation 
precision

Validation 
recall

Validation 
F1- score

Validation 
accuracy

Validation 
precision

Validation 
recall

Validation 
F1- score

CNN 98.4 98.7 75.7 75.5 76.9 76.2 86.7 80.0 92.3 85.7

RF_10 72.0 ± 2.5 71.2 ± 2.3 –	 –	 –	 –	 70.0 ± 1.6 67.4 ± 2.0 69.3 ± 3.4 68.3 ± 1.9

RF_50 81.7 ± 2.4 80.7 ± 2.4 –	 –	 –	 –	 77.3 ± 2.1 77.8 ± 3.4 72.1 ± 2.3 74.8 ± 2.0

RF_100 85.1 ± 1.1 84.5 ± 1.4 –	 –	 –	 –	 76.7 ± 0a 76.9 ± 0a 71.4 ± 0a 74.1 ± 0a

Note:	RF_10,	RF_50	and	RF_100	indicate	models	that	used	physical-	geographical	variables	within	10,	50	and	100 km	radius	from	localities,	
respectively;	CNN = model	that	used	Landsat	images	with	9 × 9 km	square	areas.	Statistics	indicate	the	mean	(± standard	deviation)	of	the	best	10	
runs	for	each	RF.
aThere	was	no	variability	in	the	indicator.
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marine-	coastal	ecosystems	(from	the	images)	but	it	does	not	imply	
per	se	the	existence	of	breeding	colonies	at	areas	with	higher	habitat	
suitability.	Deep	 learning	algorithms,	such	as	CNNs,	do	not	neces-
sarily	“learn”	the	right	causal	dependencies	between	input	features	
and	 the	 response	 (Pichler	 &	 Hartig,	 2023).	 However,	 these	 areas	
represent	sites	with	favorable	conditions	for	breeding	in	2021	and	
thus	constitute	alternatives	or	additional	breeding	sites	for	Laridae	
around	Cuba.

The	 most	 suitable	 breeding	 sites	 (probability	 range	 >.50)	 for	
Laridae	exhibited	a	scattered	general	distribution	along	the	coasts	
of	Cuba.	Although	a	slightly	higher	concentration	of	sites	occurred	
in	 the	 northern	 marine-	coastal	 ecosystems.	 Nevertheless,	 areas	
of	 Los	 Colorados,	 Canarreos	 and	 Sabana-	Camagüey	 archipelagos	
showed	 higher	 number	 of	 favorable	 breeding	 sites	 acting	 as	 po-
tential	hotspots	 for	 Laridae	 reproduction	 (Figures 2 and 3).	 These	
predictions	are	relatively	consistent	with	current	field	knowledge	in	
these	areas,	and	with	the	location	of	historical	persistent	breeding	
colonies.

In	 particular,	 breeding	 habitats	 for	 Laridae	 such	 as	 beaches,	
rocky	 platforms	 and	 sand	banks	 in	 distant	 or	 difficult-	access	 cays	
and	islets	were	often	true	positive	predictions.	Two	of	the	most	sci-
entifically	studied	regions,	the	Sabana-	Camagüey	and	Jardines	de	la	
Reina	archipelagos,	had	respectively	high	and	low	predicted	breed-
ing	habitat	suitability	depicted	by	CNN,	a	point	confirmed	by	field	
observations	(Figures 2 and 3).	Nevertheless,	some	predicted	areas	
seemed	irrelevant	for	breeding	because	of	the	presence	of	extensive	
anthropogenic	infrastructures	(cities,	towns,	industries,	agricultural	
fields)	that	might	cause	disturbance.	Although	this	study	focused	on	
the	physical-	geographical	suitability	of	Laridae	breeding	macrohabi-
tats,	the	satellite	images	processed	through	our	CNN	also	contained	
spectral	information	on	some	anthropogenic	features.	This	provides	
a	more	comprehensive	aspect	to	our	predictions.

On	the	other	hand,	main	false	negatives	of	the	predictions	were	
located	 at	Mono	Grande,	Cinco	 Leguas,	 Felipe	 de	Barlovento	 and	
Las	 Salinas	 breeding	 sites	 (Table S1).	 Prediction	 scenes	 (grid	 cells)	

containing	these	breeding	sites	were	not	highly	different	(from	a	vi-
sual	 interpretation)	from	the	training	sites.	Then,	this	suggests	the	
importance	of	incorporating	oceanographic	(e.g.	SST,	Chl	a)	or	eco-
logical	variables	 (e.g.	prey	availability-	related)	 into	the	CNN	to	 im-
prove	its	prediction	quality.	Scene	classification	with	an	emphasis	on	
land	cover,	vegetation	and	crop	types	is	one	of	the	most	common	ap-
plications	of	CNNs	(e.g.	Kattenborn	et	al.,	2021;	Kussul	et	al.,	2017; 
Mahdianpari	et	al.,	2018).	However,	these	classifications	are	based	
on	relatively	easily	distinguishable	element	classes	(e.g.	water,	bare	
soil,	marsh,	fen,	forest,	grassland,	paddy	rice)	whereas	animal	habitat	
suitability	is	a	more	complex	phenomenon.

It	 is	 important	to	point	out	that	the	habitat	suitability	diversity	
predicted	 by	 the	 model	 (that	 addressed	 all	 Cuban	 Laridae)	 could	
result	from	the	different	species-	specific	breeding	habitats	require-
ments;	especially	LETE	 that	has	a	high	dynamic	and	opportunistic	
behavior	to	select	its	breeding	sites	(this	species	may	change	it	nest-
ing	sites	between	consecutive	breeding	seasons	depending	on	the	
availability	 of	 isolated	 sand	 bodies).	 For	 this	 reason,	 even	 if	 CNN	
obtained	 relevant	 predictive	 performance	 metrics,	 the	 prediction	
map	(Figure 3)	should	be	 interpreted	carefully,	and	further	studies	
would	be	required	to	improve	its	accuracy.	However,	the	good	global	
quality	of	the	model	highlights	its	potential	for	application	to	other	
species	and	regions	of	the	world.	Normally,	CNNs	are	excellent	tools	
for	capturing	complex	hierarchical	patterns	from	images	(Borowiec	
et al., 2022).

4.2  |  Breeding macrohabitat selection pattern

Simplistic	 approaches	 to	 the	 study	 of	 breeding	 habitat	 selection	
have	been	criticized	decades	ago	(e.g.	Burger	&	Shisler,	1978)	as	the	
environment	of	many	animals,	such	as	seabirds,	consists	in	hetero-
geneous	composition	of	habitat	characteristics	along	several	spatial	
and	temporal	scales	(Danchin	et	al.,	1998).	The	abundance	of	food	
resources,	microclimate	and	physical-	geographical	attributes	of	the	

F I G U R E  3 Convolutional	neural	network	prediction	of	macrohabitat	suitability	for	the	breeding	of	Laridae	in	Cuba,	for	the	2021	breeding	
season,	using	Landsat	images.
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F I G U R E  4 Comparison	of	18	physical-	geographical	variables	corresponding	to	48	breeding	and	52	non-	breeding	sites	(available	
macrohabitats)	for	Laridae	in	Cuba.	Some	variables	were	log-	transformed	for	visualization	purpose	exclusively.	*Significant	differences.
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local	landscape	are	elements	usually	relied	upon	by	colonial	seabirds	
for	 the	 selection	 of	 good	 breeding	 habitats	 (García	 Borboroglu	 &	
Yorio,	2007).	Here,	we	found	that	breeding	macrohabitat	selection	
by	Laridae	in	Cuba	could	be	partly	explained	through	seascape	and	
landscape	features	of	the	breeding	sites.

Overall,	 breeding	 site	 (macrohabitat)	 selection	 by	 Laridae	was	
mainly	explained	by	lower	SST	values	within	100	and	50 km	from	col-
onies.	Thus,	we	show	that	SST	at	larger	scales	played	an	important	
role	in	Cuban	Laridae	habitat	selection,	despite	its	relative	seasonal	
stability	throughout	tropical	waters	(Hockey	&	Wilson,	2003;	Jaque-
met	 et	 al.,	 2008).	 The	 greater	 contribution	of	 larger	 spatial	 scales	
for	SST	probably	reflects	the	role	of	oceanographic	conditions	(e.g.	
thermal	fronts)	at	relatively	large	distances	from	breeding	habitats,	
coinciding	with	the	foraging	range	of	most	species	which	often	ex-
ceeds	30 km	from	colonies	(Table S4).	Chl	a	at	the	same	spatial	scales	
was	 also	 important,	 although	 to	 a	 lesser	 extent,	 for	 breeding	 site	
selection,	highlighting	the	role	of	marine	productivity	for	breeding.	
However,	it	should	be	noted	that	Chl	a	is	an	index	of	phytoplanktonic	
biomass	that	does	not	match	exactly	in	space	with	the	maximum	of	
forage	fish	abundance	(e.g.	Zavalaga	et	al.,	2010).

Sea	 surface	 temperature	 (indirectly)	 and	Chl	a	 could	 be	 con-
sidered	 as	 proxies	 of	 marine	 productivity	 and	 food	 availability,	
and	hence	key	 factors	 for	breeding	habitat	 selection	by	seabirds	
(Vilchis	 et	 al.,	 2006).	 However,	 mismatching	 patterns	 between	
both	 variables	 may	 occur	 (e.g.	 Zavalaga	 et	 al.,	 2010).	 In	 several	
regions	of	 the	world	 these	variables	have	been	 shown	as	having	
important	 effects	 on	 seabirds	 foraging,	 demography	 and	 popu-
lation	dynamics,	with	generally	cooler	SST	 favoring	higher	Chl	a, 
and	hence	the	foraging	and	breeding	success	of	seabirds	(Barbraud	
et al., 2012; Carroll et al., 2015).	The	selective	pattern	of	breeding	
macrohabitat	found	for	Laridae	in	Cuba	is	consistent	with	this	gen-
eral	pattern,	although	the	effect	of	Chl	a	appears	 lesser	than	for	
SST	(Figure S1).

The	lower	contribution	of	Chl	a	could	be	consequence	of	ter-
restrial	 runoff	 leading	 to	 eutrophication	 processes,	 as	 occurs	 in	
some	 marine	 ecosystems	 of	 northwestern	 Cuba	 (Rey-	Villiers	
et al., 2021).	Thus,	such	excessive	and	polluted	upwelling	of	pri-
mary	productivity	may	not	be	attractive	for	Laridae	feeding.	This	
also	could	be	magnified	in	areas	of	low	marine	circulation	as	in	the	
interior	macro-	lagoons	 (water	 bodies	 between	 the	 cays	 and	 the	
island	of	Cuba)	of	the	Sabana-	Camagüey	archipelago.	In	addition,	
differences	in	marine	current	patterns	between	regions	(e.g.	Arri-
aza et al., 2008)	and	the	influence	of	extreme	climate	events	such	
as	 rainfall	 and	 hurricanes	 (Alvarez-	Socorro	 et	 al.,	 2021)	 should	
cause	differences	in	local	oceanography	(e.g.	SST,	Chl	a)	between	
coastal	areas	of	Cuba.

Similar	to	previous	studies	(e.g.	Burger	&	Gochfeld,	1981, 1986; 
Greer et al., 1988),	areas	with	moderate	to	dense	vegetation	cover	
were	avoided	by	Laridae	for	breeding	(Figure 4).	For	seabirds,	high	
cover	 and	 dense	 vegetation	 cover	 usually	 constitutes	 a	 barrier	 to	
breeding	as	it	limits	the	visibility	and	social	communication	between	
neighbors	at	colonies,	and	hence,	may	increase	predation	risk	(Buk-
acinska	&	Bukacinsky,	1993;	Raynor	et	al.,	2012).

4.3  |  Complementarity of CNN and RF approaches

After	visual	inspection	of	the	image	mosaic	of	2021,	the	more	suit-
able	predicted	areas	for	Laridae	in	Cuba	included	heterogeneous	ter-
restrial	covers	and	waters	with	contrasting	depths.	Yet,	our	ecological	
understanding	 here	 is	 limited	 as	we	 have	 no	 explicit	 indication	 on	
the	metrics	CNNs	finally	used	to	maximize	prediction	quality.	Some	
technics	exist	in	order	to	get	insights	into	the	metrics	automatically	
extracted	by	the	CNN,	such	as	layer-	wise	backpropagation,	saliency	
maps,	“network	dissection”	and	the	explainable	Artificial	Intelligence	
(xAI)	 methods	 (see	 Borowiec	 et	 al.,	 2022;	 Pichler	 &	 Hartig,	 2023; 

F I G U R E  5 Contribution	of	marine	
and	terrestrial	environmental	features	
to	the	breeding	macrohabitat	selection	
pattern	of	Laridae	in	Cuba	based	on	
random	forests	classification	models	
(corresponding	to	the	spatial	scale	of	
100 km	radius	from	breeding	colonies,	but	
includes	the	nested	scales	of	10	and	50 km	
radius).
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Samek	et	al.,	2021).	It	is	however	an	active	field	of	research,	and	using	
these	approaches	is	beyond	the	scope	of	this	paper.

Random	forests	are	a	classic	example	of	so-	called	ensemble	mod-
els	 (interacting	 sets	 of	 simple	 algorithms	 or	 statistical	 models	 that	
make	up	more	complex	algorithms),	which	typically	have	low	predic-
tion	errors	and	weight	the	contribution	of	the	variables	analyzed	by	
the	model	(Pichler	&	Hartig,	2023).	This	last	property	contributes	to	
the	explanation	of	the	process	or	phenomenon	being	studied.	Thus,	
based	on	our	RFs	results	and	statistical	analysis,	we	could	yet	hypoth-
esize	 that	 important	 features	 such	 as	 vegetation,	 number	 of	 cays/
islets	but	also	ocean	color	 (related	to	Chl	a)	were	captured	through	
Landsat	spectral	data.	Also,	the	CNN	performance	might	be	probably	
increased	including	SST	information	at	the	radius	of	100 km	(consid-
ering	the	main	results	of	RFs)	and	being	trained	over	larger	datasets.

This	study	illustrates	the	benefits	obtained	from	a	complemen-
tary	analysis	of	CNN	and	RF.	Here,	RF	can	be	seen	as	an	explicative	
tool	relying	on	features	directly	related	to	our	a	priori	ecological	
hypotheses,	while	CNN	can	act	as	an	evaluative	 tool	 in	order	 to	
assess	the	relevance	of	habitat	spectral	features,	as	well	as	an	ef-
ficient	predictive	tool	producing	large	scale	prediction	of	habitat	
suitability	in	a	convenient	manner.	Particularly,	CNNs	are	becom-
ing	 increasingly	 important	 in	 remote	sensing	and	ecology	due	to	
the	 inclusion	 of	 the	 spatial	 dimension	within	 their	 convolutional	
layers,	 thus	 facilitating	 the	 identification/characterization	of	 rel-
evant	ecological	patterns	and	processes	(Hayes	et	al.,	2021).	Our	
prediction	of	breeding	habitat	suitability	with	CNN	should	also	be	
systematically	updated	considering	the	changing	dynamics	of	ma-
rine	ecosystems	and	seabird	colonies.	Finally,	we	recommend	the	
exploration	of	building	CNNs	that	use	both	spectral	and	relevant	
ecological	 data	 (identified	 by	 RF),	 to	 produce	 finer	 predictions	
supported	ecologically.

4.4  |  Management and conservation implications 
from the complementary approach

The	dispersed	distribution	pattern	of	suitable	breeding	sites	in	Cuba	
offers	to	Laridae	a	wide	variety	of	options	for	colony	establishment.	
This	could	buffer	the	effects	of	climate	change	and	anthropogenic	
pressures	on	breeding	macrohabitats	due	to	presumed	vulnerabil-
ity	differences	(e.g.	flood	risk,	ease	of	access	to	predators	and	hu-
mans,	 local	oceanographic	anomalies)	among	these	sites.	This	also	
provides	flexibility	for	management	agencies,	considering	the	exist-
ence	of	a	large	number	of	alternative	sites	for	Laridae	conservation	
in	Cuba.	Also,	the	potential	for	legal	protection	of	some	important	
breeding	colonies	(e.g.	predicted	hotspots)	 is	 increased	due	to	the	
low	risk	of	spatial	overlap	of	breeding	sites	with	places	of	socioeco-
nomic	interest,	under	an	appropriate	marine	spatial	planning.

From	a	practical	point	of	view,	we	recommend	a	field	valida-
tion	of	the	effective	presence	of	colonies	in	sites	that	are	expected	
to	be	highly	suitable.	This	could	be	done	through	field	surveys	at	
these	sites,	as	a	way	to	optimize	logistical	and	economic	resources	
for	conservation	purposes.	Then,	confirmed	breeding	sites	could	

be	 considered	 to	 update	 the	 boundaries	 of	 Marine	 Protected	
Areas	 in	Cuba,	 improve	the	governmental	strategy	of	adaptation	
to	climate	change,	detect	negative	effects	due	to	natural	and	an-
thropogenic	 causes	 (McGowan	et	 al.,	2013; Perrow et al., 2015)	
and	set	up	a	sustainable	use	of	marine-	coastal	ecosystems	(tour-
ism,	 fishing,	 industry).	 Effective	 conservation	measures	 for	 sea-
bird	populations	must	necessarily	include	both	the	establishment	
sites	of	colonies	and	their	surrounding	waters	(Oppel	et	al.,	2018).	
More	 precisely,	 according	 to	 our	 complementary	 CNN-	RF	 ap-
proach,	conservation	and	management	actions	for	Laridae	breed-
ing	macrohabitats	 in	Cuba	should	 include	 the	areas	of	predicted	
breeding	 hotspots.	 Also,	 oceanic	 characteristics	 (SST	 and	Chl	 a)	
at	mesoscale	(50–	100 km)	around	the	cays,	as	well	as	the	degree	
of	dense	and	moderate	vegetation	cover,	should	be	considered	in	
future	management	plans.
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