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Abstract—With the recent progresses in lidar technology for
Earth remote sensing, the development of a reliable lidar simulator
is becoming central in order to define specifications for new sensors,
perform intercomparisons, train machine learning algorithms, and
help transferring information from one scale to another. The dis-
crete anisotropic radiative transfer (DART) model includes such a
lidar simulator. Although already tested on several virtual scenes,
the DART outputs still need to be rigorously evaluated against
actual sensor acquisitions, especially on real complex scenes of
various forest types, such as dense tropical forests. That is the
purpose of the present study. A real airborne laser scanner (ALS)
with full-waveform capacity was first radiometrically calibrated on
targets of measured reflectance. The properties of the ALS system
were then introduced in the DART model, along with a 3-D virtual
scene built from terrestrial laser scans and spectroscopic measure-
ments acquired on a forest plot near the calibration site. Finally, an
ALS acquisition was simulated and the shape and magnitude of the
waveforms were compared with real acquisitions. The comparison

Manuscript received 20 November 2022; revised 3 March 2023 and 17 May
2023; accepted 10 July 2023. Date of publication 6 September 2023; date of
current version 18 September 2023. This work was carried out in the frameworks
of the LEAF-EXPEVAL and the HyperTropik/HyperBIO projects, supported by
TOSCA Continental Surface Program of the Centre National d’Études Spatiales
(CNES). This work was also supported by the Agence Nationale de la Recherche
(BioCop project) under Grant ANR-17-CE32-0001. (Corresponding author:
Florian de Boissieu.)

Florian de Boissieu, Jean-Baptiste Féret, and Sylvie Durrieu are with
the INRAE, AgroParisTech, CIRAD, CNRS, University of Montpellier,
TETIS, 34000 Montpellier, France (e-mail: florian.deboissieu@inrae.fr; jean-
baptiste.feret@teledetection.fr; sylvie.durrieu@inrae.fr).

Florence Heuschmidt was with the CIRAD, CNRS, INRAE, IRD, AMAP,
University of Montpellier, 34000 Montpellier, France. She is now an indepen-
dent. (e-mail: florence.hj10@gmail.com).

Dav M. Ebengo was with the INRAE, AgroParisTech, CIRAD, CNRS, Uni-
versity of Montpellier, TETIS 34000, Montpellier, France. He is now with Uni-
versité Clermont Auvergne, CNRS, MSH, F-63000 Clermont-Ferrand, France
(e-mail: dav.ebengo_mwampongo@uca.fr).

Grégoire Vincent is with the CIRAD, CNRS, INRAE, IRD, AMAP, Uni-
versity of Montpellier, 34000 Montpellier, France (e-mail: gregoire.vincent@
ird.fr).

Tiangang Yin is with the Department of Land Surveying and Geo-Infomatics,
The Hong Kong Polytechnic University, Hong Kong (e-mail: tiangang.yin.85@
gmail.com).

Nicolas Lauret and Jean-Philippe Gastellu-Etchegorry are with the CNES,
CNRS, UPS, IRD, INRAE, CESBIO, University of Toulouse, 31000
Toulouse, France (e-mail: nicolas.lauret@univ-tlse3.fr; jean-philippe.gastellu@
iut-tlse3.fr).

Josiane Costeraste and Marie-José Lefèvre-Fonollosa are with the Earth Ob-
servation Satellite Systems, CNES Toulouse, 31000 Toulouse, France (e-mail:
josiane.costeraste@cnes.fr; marie.lefevre-fonollosa@outlook.com).

Digital Object Identifier 10.1109/JSTARS.2023.3302030

between measured and simulated data was performed at different
scales by aggregating waveform samples into a 3-D grid with a
vertical resolution of 1 m and a horizontal resolution ranging from
2 to 80 m. Results showed a high similarity between simulated and
measured waveforms at all scales with R2>0.9 and NRMSE<10%.
These promising results open up numerous perspectives for im-
proved spaceborne and airborne lidar data processing and for the
development of new systems.

Index Terms—3-D, discrete anisotropic radiative transfer
(DART), forest, lidar, point cloud, radiative transfer model,
simulation, waveform.

I. INTRODUCTION

L IDAR data has proved its suitability for the study of forest
ecosystems as it provides a unique insight into the 3-D

distribution of the vegetation structure from the top of the
canopy to the ground. This information on vegetation structure
is highly relevant to retrieve key forest structural and biophysical
information, e.g., basal area, wood volume, biomass, plant and
leaf area density profiles, plant and leaf area index, which are
essential for sustainable forest management and for the modeling
of ecosystem functioning [1], [2], [3], [4], [5]. However, process-
ing and analyzing lidar signals (waveforms or point clouds) is
complex owing to their 3-D characteristics. Moreover, ground
truth measurements in a 3-D context to calibrate and validate
models is a challenging task, since the instruments and protocols
used for this purpose are either destructive, time consuming or
both [6], [7]. If such a task is possible at small scale, it becomes
unrealistic at large scale.

In this context, radiative transfer modeling plays an important
role in improving lidar signal interpretation and forest parame-
ter assessment, especially in structurally complex forests. 3-D
radiative transfer models can take advantage of optically and
structurally realistic 3-D mockups, and ray-tracing algorithms
to simulate laser propagation (reflection, transmission, and ab-
sorption) through the elements of the mockup (leaves, branches,
trunks), and to produce lidar waveforms and point clouds [8],
[9], [10]. Resulting simulations have a large potential for multi-
ple applications, including the adjustment of specifications for
spaceborne lidar sensors [8], [11], [12], and the conception,
intercomparison and training of algorithms dedicated to lidar
data processing [13]. However, most of these applications imply
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the capacity to produce representations and signals that are
consistent with real acquisitions on complex forest scenes, which
requires accurate simulation of the radiative transfer within such
complex scenes.

The discrete anisotropic radiative transfer model (DART) is a
radiative transfer model originally developed to simulate satel-
lite images, with particular interest to support space agencies
in the definition of specifications for future satellite sensors.
DART simulates the travel of light from a source (e.g., sun) to a
sensor when passing through a virtual 3-D mockup of the scene
(meshes or turbid voxels) characterized with optical and thermal
properties. The initial DART model has been extended to single
pulse [14] and later to multipulse lidar waveform simulations
based on a quasi-Monte Carlo ray tracing approach [15]. More
recently, the DART lidar model has been further accelerated
using the Lux-core ray tracing library [9].

Among the evaluations of the DART model [16], [17], [18]
and its intercomparison with other radiative transfer models
[19], two studies drew our attention for this work. In [8], the
DART lidar model was evaluated against the waveforms of
a real acquisition with the laser vegetation imaging sensor at
a height above ground level (AGL) of 10 km over a mixed
forest (i.e., a footprint diameter of ∼20 m). The deciduous and
coniferous crowns of the scene were simplified to ellipsoidal and
conical turbid volumes with dimensions derived from allometric
models, and uniform leaf area density and optical properties
across individuals of the same kind. The DART lidar model
was also evaluated against an ALS acquisition on a Maritime
pine stand with different representations of the virtual scene
(lollipop trees, turbid voxels, full mesh virtual trees) [20]. How-
ever, for that study the ALS waveforms were aggregated at
the scale of the plot (diameter of 30 m) and the intensity was
normalized before the comparison was made. Both studies [8],
[20] were geared toward large footprint lidar waveforms, i.e.,
satellite lidar, and they compared simulated to real waveforms
after normalizing the magnitude of the waveforms, limiting
the evaluation to a structural comparison, i.e., the shape of
the waveforms.

This article focuses on the capacities of the DART lidar
model to reproduce both structural and radiometric information
embedded in full-waveform ALS acquisitions over structurally
complex forests.

In order to achieve this goal, a two-step experiment was set
up. The first step aimed at evaluating the calibration factor of
a full-waveform ALS sensor, which links the power received
at the sensor aperture to the digital values recorded by the
sensor. The calibration factor was estimated using ALS data and
imaging spectroscopy acquired simultaneously over flat targets
with contrasted spectral signatures. The second step aimed at
comparing ALS waveforms acquired with the same sensor over a
tropical forest plot to simulated waveforms obtained from DART
simulations on the 3-D mockup of the forest plot. Section II
describes the experimental sites and setup as well as the ALS
sensor and data acquired for the study. Section III details the
methods implemented for the calibration of the ALS sensor, its
integration into DART, and the evaluation of the resulting sim-
ulations. The results are presented in Section IV and discussed

TABLE I
SPECIFICATIONS OF LIDAR SENSOR RIEGL LMS-Q780

in Section V drawing perspectives for future work. Finally,
Section VI concludes this article.

II. MATERIAL

The experiment was conducted at the Paracou experimen-
tal station, French Guiana, a well-studied site in which sev-
eral permanent rainforest plots have been regularly monitored
since 1984 [21]. In September 2016, an experimental campaign
was set up to simultaneously acquire airborne data, including
full-waveform ALS data, imaging spectroscopy and very high
resolution RGB orthophotos (ground sampling distance of 10
cm), as well as various field measurements with a terrestrial laser
scanner (TLS) and a spectrometer. Two areas were specifically
targeted for the current study. The first one, hereinafter referred
to as “calibration plot,” corresponds to a drop zone, i.e., a flat
clearing, in which reference targets were laid on the ground
and used for the radiometric calibration of the ALS sensor. The
second study area, hereinafter referred to as “forest plot” is
included in one of the monitored forest plots of Paracou and
was used for the comparison between measured and simulated
ALS waveforms. TLS acquired over the forest plot was used
to build a 3-D mockup for radiative transfer simulations. The
following sections detail the specifications of the ALS sensor
under investigation, as well as the data acquired and used for the
sensor calibration and for the simulations with DART on both
study areas.

A. ALS Sensor Specifications

Full-waveform ALS data were acquired with a RIEGL LMS-
Q780: the high sampling frequency of the backscattered signal
provides the complete temporal distribution of the returned
light energy. Sensor specifications are listed in Table I. These
specifications were extracted from the datasheet supplied by
the manufacturer [22], except for the emitted pulse duration at
half maximum (FWHM) and the frequency of the digitization
which were retrieved from the lidar data, i.e., RIEGL SDF
files. The FWHM was estimated assuming a Gaussian shaped
pulse after verification of this assumption on the pulse records.
The assessment of a Gaussian shaped pulse can be found in
Appendix C. As the diameter of aperture of the sensor (or its field
of view) was not available in the specifications, it was assumed
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to be equal to the size the beam aperture window given in the
datasheet.

Additional properties can be derived from these specifica-
tions. The transmitted energy at full power ET can be derived
from the average power using (1), which gives a theoretical value
of 1 μJ per pulse for that sensor

ET =
Paverage

PRR
. (1)

A 1 GHz sampling frequency of the lidar signal corresponds
to a sampling period of 1 ns, which represents a distance of
30 cm along the beam direction at light speed. Considering the
path forward and backward of the signal, the expected ranging
resolution for the LMS-Q780 is 15 cm.

Considering the upper bound of the laser beam divergence of
this sensor, the laser footprint diameter at the ground level would
be 22.5 cm for a flying altitude of 900 m AGL.

B. ALS Data

The ALS data was available in RIEGL SDF files, containing
raw full waveforms, and in LAS files containing the point
clouds extracted from the SDF files with RIEGL’s software suite.
The LAS files were delivered with point data record format 1
including Extra Bytes [23], which gives for each echo, among
other variables, the ALS shot time-stamp as well as the x, y, and z
coordinates, the intensity and the width of the echo [24].

The ALS shot pattern (sensor position and direction of each
emitted pulse) was obtained from the sensor trajectory combined
with the ALS point cloud. The sensor location was linearly in-
terpolated from the trajectory data at the ALS shot time-stamps.
The shot direction was computed from the line connecting the
sensor location to the echoes of the shot. The point clouds were
classified and a 0.5 m resolution digital terrain model (DTM)
was computed from the points classified as ground.

For our experiments, the waveform samples needed to be
georeferenced. The usual pipeline to convert the raw waveforms
to a georeferenced point cloud is first to extract the echoes, sec-
ond to compute the echoes coordinates in the sensor coordinate
system, which are then successively converted to the geocentric
coordinate system and projected in the local coordinate system
taking into account the geoid. The same could be done directly
with the waveform samples (instead of the echoes). However,
the registration of the returned waveform blocks to the correct
emitted pulse can be complex for multiple pulses in the air [25],
which was the case for our dataset. Moreover, these steps are
very sensitive to an imprecision on the location and orientation
of the different instruments involved (GPS, IMU, and sensor).
And as we cannot know in advance which waveform is crossing
the scene, the whole SDF file would have to be processed
before extracting the waveforms belonging to the area of in-
terest. Therefore, we chose another strategy considering that the
point cloud had been produced with the same pipeline already
implemented in RIEGL’s software suite.

The chosen alternative, hereinafter referred to as “SDF Based
WaveForms” (SB-WF), consisted in extracting from the RIEGL
SDF files the waveform sample blocks based on the time stamps
of the echoes belonging to the area of interest. As the echo

Fig. 1. Spatial configuration of the targets on the calibration plot (obtained
from orthophotography).

time stamp was corresponding to the time of emission, we were
able to discriminate the waveform blocks belonging to multiple
pulses in the air according to the light travel time between
the pulse emission and the echo. The waveform samples were
positioned in space using the line between the sensor location at
the time of shot and the echoes location. A background noise was
noticed on the raw waveforms, probably resulting from solar and
atmosphere radiations and the detector noise [26], [27], [28]. As
the relevant information to model the background noise was not
available, the raw waveforms were thresholded in order to reduce
its impact on the analysis. Details on SDF-based waveform
(SB-WF) reconstruction as well as waveform examples are given
in Appendix D.

C. Experimental Data on the Calibration Plot

In order to determine the calibration factor of the ALS sensor,
14 square tarps of various size (1 to 4 m width) with different
reflective properties at the laser wavelength were laid out on the
ground of the calibration plot. The targets were manually de-
lineated by photointerpretation of the RGB orthophoto in order
to georeference them. The reflectance at the laser wavelength
of each target was extracted from imaging spectroscopy data
acquired simultaneously to ALS data. Imaging spectroscopy was
operated at a flying altitude of 450 m AGL leading to a spatial
resolution of 0.8 m. Targets 6 and 8 (1 m width) were excluded
from the study as the spatial resolution of imaging spectroscopy
could not guarantee pure pixels. The central pixel was selected
from each remaining target in order to avoid mixed pixels at
the border of the targets. The hyperspectral band used for that
operation had a central wavelength and a bandwidth of 1063.74
and 6.25 nm, respectively. Fig. 1 shows the display of the targets
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TABLE II
DIFFERENT ALS CONFIGURATIONS USED FOR CALIBRATION

on the RGB orthophoto. The size, color and reflectance values
of the targets are available in Table III of Appendix B.

Automatic gain control (AGC) is implemented in some lidar
sensors [29] in order to magnify the signal and get returns even
from low-reflectance targets. However, these specifications were
not provided by the manufacturer for the LMS-Q780. If such
a feature was implemented in this lidar sensor, it would be
expected to observe variations of the calibration factor value
according to the sensor-to-target distance, i.e., the flying altitude
and to the laser power. In order to investigate AGC and to account
for it if needed, the airborne acquisitions were repeated over the
calibration plot with different flying altitudes (450, 600, and
900 m) and different laser powers (6% and 12% of full power
defined in Table I). Table II summarizes the properties of the
23 datasets acquired with different sensor settings and flight
conditions that were used for the calibration, more details can
be found in Appendix B.

D. Experimental Data on the Forest Plot

The forest plot corresponds to an 80 × 80 m square subset
of Plot P9 of the INRAE plot network monitored in Paracou.
This undisturbed control plot was used to compare ALS data
simulated with DART to real ALS data for a complex natural
forest. The acquisitions covering the forest plot were performed
with a flying altitude of 900 m and a laser power set to 12% of the
full power. We selected one ALS flightline with minimum scan
angle (lidar shots close to nadir) over the forest plot in order
to perform the comparison. Both the structure and the optical
properties of the forest elements on the site were measured to
build a 3-D mockup of the forest. TLS data of the forest plot
were acquired with a RIEGL VZ400 system to derive finely
resolved forest structure. Scan positions were set in a regular
10 m grid. Capturing a complete sample of the scene at each
location required two scans (upright and tilted by 90°), owing
to the 100° vertical field of view of the scanner. Therefore, 162
scans were collected from 81 locations. The angular resolution
between sequentially fired pulses was set to 0.04°, resulting in
approximately 22.4 million emitted pulses per scan (i.e., 3.6
billion for the entire plot). Up to five targets could be resolved
per pulse, with a nominal ranging accuracy of 5 mm. The laser
is characterized by a beam divergence of less than 0.3 mrad, and
the diameter of the beam at emission is 7 mm (corresponding to a
beam diameter of 22 mm at a range of 50 m). The pulse repetition
rate was set to 300 kHz. All scans were co-registered using
RiScanPro software. The position of the corners of the plots
was registered using a total station and these corners were used

to transform the scans of the plot to the UTM 22N coordinate
system used for the ALS data analysis.

Leaf optical properties (reflectance and transmittance), as well
as bark reflectance were measured with an ASD FieldSpec-3
spectroradiometer equipped with a LiCor 1800-12 integrating
sphere. Leaves were collected by climbers at several heights in
the crown and for several species.

III. METHOD

The waveform signal of a lidar system over a lambertian
surface larger than the laser footprint can be described by the
following [30], [31]:

EDN = K · ρ · cos (α)
4R2

· ET (2)

with ET the transmitted energy, EDN the received energy in
Digital Number unit (DN), R the sensor-to-target distance, ρ
the reflectance, α the angle of incidence of the laser, and K
the calibration factor. The calibration factor is dependent on the
atmospheric transmission factor ηatm, which is considered to
be constant during the ALS campaign (approx. 2 h), and on the
detection and sampling system factor ηsys [31].

The validation of the DART lidar simulations was performed
in two steps. The first step aimed at determining K on the
calibration plot to link the intensity of the ALS signal simulated
with DART to the intensity of the measured ALS signal, thus
providing a means to convert the simulated signal into digital
counts. The second step focused on the comparison between
ALS acquisition and ALS simulation on the forest plot to val-
idate the capacity to simulate realistic signals with DART in
complex forests.

A. Calibration

Equation (2) was converted into (3) in order to determine
K as the solution of a linear regression problem between the
normalized received energy EN and the reflectance ρ:

EN =
EDN · 4R2

ET · cos (α)
= K · ρ. (3)

For an opaque target of reflectance ρ and for a footprint fully
contained within the target limits, EDN is obtained from the
following:

σ =
FWHM

2
√

2ln (2)
(4)

EDN = IDN · σ ·
√
2π (5)

with IDN being the peak value of a Gaussian shaped return
characterized by a full width at half maximum FWHM. IDN and
FWHM, correspond to the intensity and the pulsewidth values
delivered by RIEGL software during point cloud extraction [24].

The EDN values used in the linear regression were computed
for each target and each flight line as the average values of all
single lidar returns for which the footprint was fully included
within the target limits. A linear regression was computed for
each flightline in order to study the impact of the flying altitude
and of the transmitted power on K, if any, as well as to evaluate
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the variability of K between flightlines. Indeed, if any AGC was
operating during the ALS acquisitions, it would be expected to
compensate for changes in the returned intensity. In that case, K
should be influenced by the laser power and the flying altitude
according to (2).

Once estimated, the average value of K was further used
to convert photons provided by the DART simulations into
digital counts to make the direct comparison possible between
simulated and measured signals.

B. Simulations

The accuracy of the DART simulations was evaluated for
simulations of ALS acquisitions over the flat targets (calibration
plot) and the complex 3-D systems (forest plot). The simulations
were computed with pytools4dart [32].

1) ALS Sensor: The sensor parametrization in the DART
simulations was performed according to the sensor character-
istics given in Section II. The magnitude of the lidar waveforms
simulated by DART is expressed as a number of photons, which
depends on the backscattered signal received by the sensor and
on the digitization rate. It was converted into LMS-Q780 inten-
sity in digital numbers (DN), applying the gain G as expressed in
(6) and flooring the result to its integer part in order to reproduce
quantization:

G =
Ep · fA/D ·K

D2
(6)

where Ep is the photon energy, fA/D the frequency of digitiza-
tion, and D the diameter of the receiver aperture (see Table I).
For easy visualization of the whole simulation, the point cloud
was extracted from the waveforms (in DN) with the Gaussian
decomposition algorithm implemented in [33], [34].

2) Calibration Plot: The 3-D mockup of the calibration plot
was built by draping the georeferenced target polygons over the
DTM and transforming them into a 3-D format compatible with
DART (i.e., Wavefront obj format [35]). The optical properties
of the mockup elements were defined using the target reflectance
values previously extracted from imaging spectroscopy.

The simulation of the ALS point cloud on the targets was com-
puted for each of the 23 flightlines shot patterns. The measured
point clouds could be directly compared to the corresponding
simulated point clouds as the targets were opaque. Thus, the lin-
ear relationship between observation and simulation intensities
was tested for each flightline.

3) Forest Plot:
a) Mockup construction: The conversion of TLS point

clouds into a 3-D vegetation mockup of the forest plot was
performed as follows [36].

1) Filter mixed points in original point cloud based on devi-
ation value [24].

2) Classify leaf and wood points from the filtered TLS point
cloud using a random forest model based on local ge-
ometric and reflectance indices (the balanced accuracy,
evaluated for a manually segmented small scene of ∼10
million points, was found to be 0.94).

Fig. 2. Slice of 80 × 10 m of the 3-D mockup structure, with the meshes of
wood in brown, the voxels of foliage (LAD>0.5 m2·m−3) in green and the DTM
in dark grey.

3) Reintegrate mixed points and assign leaf or wood class
label to mixed points based on the label of the nearest
neighbor in the filtered point cloud.

4) Reconstruct the 3-D meshes of the wood elements
(trunks and large branches) from the wood points with
the Simpletree method implemented in the Computree
software [37].

5) Voxelize the leaf point cloud with AMAPVox 1.0 [4], [38]
to estimate the leaf area density at a resolution of 0.5 ×
0.5 × 0.5 m.

The ground was represented by a regular triangle mesh ob-
tained from the 0.5 m resolution digital terrain model raster.

DART can either consider each voxel as a turbid element or
convert this turbid medium into a set of triangles of uniform size
and randomly distributed in space and orientation within the
voxel. In this study, the both representations were tested, and
the triangle size was set to 0.01 m2 when the turbid-to-triangles
conversion was done. The two representations will be further
referred to as the “turbid” and “triangle” scenarios. Fig. 2 shows
a slice of the mockup structure.

The optical properties of the different elements of the mockup
were specified as follows.

1) For leaves, dominant tree crowns were first delineated
based on the canopy height model (computed from the
ALS point cloud) and relying also on RGB orthophotos
and hyperspectral images [39]. Leaf optical properties
measured in the field were assigned to leaf voxels for a sub-
set of 22 crowns belonging to 19 species which were un-
ambiguously identified in the RGB imagery. Default leaf
optical properties were used for other leaf voxels. These
default properties were simulated using PROSPECT-D
[40] parametrized with the average of the values measured
in the field when available (leaf chlorophyll content =
40.8 μg/cm2; leaf carotenoid content = 7.5 μg·cm−2; leaf
anthocyanin content = 0.4 μg·cm−2; leaf mass per area
= 12.3 mg·cm−2; leaf water content = 0.012 cm; leaf
structure parameter = 1.8).

2) Trunk meshes were defined with a deciduous bark re-
flectance measured in the field which was 0.42 at 1064 nm.

3) The ground optical property was chosen after evaluating
the reflectance of single ALS ground returns on the forest
plot, which showed an average reflectance of 0.42 (and
0.07 of standard deviation) at a wavelength of 1064 nm.
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b) Simulation/reality comparison: For complex environ-
ments, comparing real and simulated waveforms instead of
echoes appears to be most relevant. First, discrepancies between
real and simulated echoes could arise as the exact approach
used by the data provider for echo extraction is undocumented.
Second, the 3-D representation (1) and the optical properties
(2) of the canopy of the forest plot cannot be considered to be
exactly the same as those of the real forest

1) The nonwoody vegetation is represented by voxels of
0.5 × 0.5 × 0.5 m, either turbid or filled with flat tri-
angles of a fixed size and following a spherical leaf an-
gle distribution, while in reality leaves are not triangular
nor completely flat objects, they have variable sizes and
orientations, and they show some degree of clumping.
In addition, small branches and twigs were pooled with
leaves in the wood–leaf segmentation step. The resulting
differences in the 3-D distribution of targets between the
real forest plot and its mockup representation are likely
to induce a difference in the temporal distribution of
the backscattered energy and thus in the shapes of the
waveforms.

2) Another major difference between real and simulated for-
est stems from the optical properties of the elements of
the scene, which have consequences on the magnitude
of the waveforms: leaf optical properties show natural
variability within individual tree crowns, while they are
uniform within a crown in the mockup.

Thus, it is expected to have local discrepancies between
measured and simulated waveforms with changes in the
number, the location, the width and the amplitude of the
echoes.

Comparing the simulated point clouds to the measured point
clouds after applying a waveform decomposition algorithm
would make the comparison highly dependent on the choice
of the algorithm, especially in the forest environment where
multiecho returns are prone to happen. Therefore, the compar-
ison between simulations and measurements was made at the
waveform level, aggregating the waveforms at various spatial
resolutions to decrease the effect of the much undersampled
variability of the 3-D mock-up properties as compared to the
real forest plot.

To that end, the waveforms were spatialized, converting each
waveform bin to a 3-D point. The resulting dense 3-D point cloud
was further normalized to the DTM by removing the ground
altitude from the z coordinate. This way, mixing of vegetation
and ground signals was avoided during aggregation, enhancing
the comparability across the different aggregation scales. The
dense point cloud was then aggregated by summing the point
intensities at various 3-D grid resolutions [rx, ry, rz] with rx = ry
� {2, 5, 10, 20, 40, 80} m and rz = 1 m. It resulted in {1600, 256,
64, 16, 4, 1} vertical intensity profiles according to the horizontal
resolution used for aggregation. The simulated intensity profiles
were compared to the measured intensity profiles using the
following set of metrics.

1) The correlation between each measured and simulated
vertical intensity profile.

Fig. 3. Linear fit between the normalized energy measured from ALS and
the reflectance measured from airborne imaging spectroscopy on the flightline
acquired at 18:37 UTC (power = 6%, altitude = 467 m). The vertical bars
correspond to the standard deviation of the normalized energy within target
footprints.

2) The root mean square error normalized to the range of the
measured intensity profile (Profile NRMSE).

3) The relative difference of the peak intensity between mea-
sured and simulated profiles, using measured as reference.

4) The root mean square error of the heights AGL of the
intensity quantiles every 5% between the 5th and the 95th
percentiles (Height RMSE).

The first two metrics measure similarity of the whole intensity
profile and thus simultaneously provide information on the qual-
ity of the radiometric and geometric information of the simulated
data. The third metric focuses on the maximum intensity, which
is a key information for sensor calibration, while the last metric
provides information on the shape of the profiles and thus mea-
sure the quality of the spatial distribution of the signal, i.e., the
quality of the geometric information of simulated signals. Max-
imum intensity values from observation and simulation profiles
were compared using their relative difference (with observation
as the reference) so that they are comparable across aggregation
resolutions. The overall assessment of simulation quality was
based on the analysis of the distributions of these metrics for the
set of profiles, the size of which depended on the aggregation
resolution.

IV. RESULTS

A. Calibration

The relationship between the target reflectance measured
from airborne imaging spectroscopy and the average value of
EN measured from ALS was analyzed independently for each
flightline, in order to evaluate the variation between the different
acquisitions. Fig. 3 illustrates the relationship for one flightline.
It highlights the linear relationship between the measurements
acquired simultaneously with the two airborne sensors, as well as
the variability among ALS measurements belonging to the same
target. This variability is explained by the directional effects
induced by the surface roughness of the non-lambertian tarps,
despite efforts to lay them out flat. However, averaging EN over
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Fig. 4. Calibration factor of each acquisition in function of the laser power
and the flying altitude.

each target resulted in a linear relationship between EN and
reflectance, characterized by a strong correlation (see Fig. 3).

The calibration factor K of the sensor was computed based on
the linear relationship between airborne imaging spectroscopy
data and ALS data acquired for each of the 23 flightlines over the
calibration site. The values of K range from 2.87·107 to 4.76·107,
with an average value of 3.65·107, and its standard deviation was
4.5·106, which corresponds to a coefficient of variation of 12.5%
across acquisitions. The results for each flightline are available
in Appendix A.

The values of K were compared between different acqui-
sition configurations, including changes in sensor power and
altitude of acquisition, in order to identify a possible AGC
in response to the average magnitude of the returned wave-
forms. Our results presented in Fig. 4 showed no evidence
of a relationship between the value of K and the laser power
or the flying altitude, suggesting that the RIEGL LMS-Q780
does not utilize an AGC, or, at least, not for the range of
measured intensities (the maximum intensity measured over the
targets was 2895 DN) at these flying altitude and laser power
combinations.

The average value of K was further used as the calibration
factor to transform the DART outputs before the comparison
between the simulation and the real data.

B. Simulations

1) Calibration Plot: The returned energy at the receiver
aperture was compared between measured and simulated lidar
acquisitions. The median of the returned energy per calibration
target and per flightline was used as input for the model in
order to minimize both the influence of the target size on the
regression model (larger targets are sampled more than smaller
targets), and the influence of surface roughness, which was
not accurately reproduced in the simulation. Fig. 5 shows the
slope of the regression model of each flightline as a function of
the calibration factor of each acquisition. The average and the
coefficient of variation of the slopes of the models were 0.992%
and 11.6%, respectively. It confirms the capacity of DART to
accurately reproduce the magnitude of the ALS intensities on
flat and opaque targets larger than the lidar footprint such as the
tarps used in this experiment.

Fig. 5. Influence of K value (assessed by flightline) on the slope of the models
between observations and simulations returned energy. Each point represents a
flightline. The blue line is the linear regression between K and the model slopes.

2) Forest Plot: A selection of the intensity profiles of both the
turbid and triangle scenarios at different aggregation resolutions
is presented in Fig. 6. Although it cannot be considered as
fully representative of the waveform results, it illustrates the
consistency between real and simulated intensity profiles for
both scenarios. Fig. 6 also highlights that the peak at ground
level is overestimated in simulations. The fact that the ground
peak does not appear in Fig. 6 on the profiles at small grid
size is a coincidence. An analysis of the distribution of this
peak through the different profiles at 2 m grid size showed that
the overestimation is not distributed evenly across the scene.
Several factors can explain the ground peak overestimation and
are discussed in Section V.

The comparison between the aggregated profiles of obser-
vations and simulations is summarized in Fig. 7 by intensity
and height metrics. Overall, aggregating waveforms over larger
areas improved the consistency between measured and simu-
lated values. Such a regularizing effect was expected since the
aggregation smooths out much of the local variability (both
in terms of geometric and optical properties of the scatterers)
that is not perfectly reproduced in the mockup derived from
the TLS point cloud. At the coarsest spatial resolution (80 m),
the intensity profiles showed a high correlation (R > 0.99) and
low error (NRMSE = 5% for the turbid scenario), attesting to
a general fit of the structure and optical properties used in the
simulated forest, as well as of the good performance of the DART
model. The median correlation between the observed and the
simulated intensities increased with the decrease in horizontal
resolution and ranged from 0.92 at 2 m resolution up to 0.98 at 20
m resolution [see Fig. 7(a)], confirming the strong agreement be-
tween the shapes of the aggregated profiles at 20 m and beyond.
The median RMSE computed over heights of intensity quantiles
[see Fig. 7(d)] ranged from 1.5 at 2 m resolution to 0.6 m at 80 m
resolution.

For the turbid scenario, the median of the profile NRMSE
ranged from 12% at 2 m resolution to 6% at 20 m resolution
and 5% at 80 m resolution [see Fig. 7(b)]. Fig. 7(c) shows the
relative difference of the peak magnitudes of intensity profiles.
It confirms that the maximum of intensity, independently of its
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Fig. 6. Example of intensity profiles for the different cell sizes of analysis ranging from 2 to 80 m. SB-WF are derived from real data (with different waveform
reconstruction methods). Triangle and turbid are derived from simulations with the different leaf voxel representations.

Fig. 7. Comparison between SB-WF and simulated intensity profiles for different aggregation resolutions. (a) Correlation. (b) NRMSE. (c) Relative difference
of peak intensity. (d) RMSE of the heights AGL of intensity quantiles.

vertical location on the profile, was generally underestimated.
The median error is 14% to 20% at 2 m resolution depending
on the mockup type, and 10% to 16% at 20 m resolution. At
the lowest resolution (80 m), the peak intensity of the profiles
was underestimated by 6.5% for the turbid scenario and 12% for
the triangle scenario. The scene employing the turbid vegetation
model outperformed the one with triangles in terms of intensity,
especially at the peak of intensity. But despite such discrepan-
cies, the results highlight the global consistency between turbid
and triangle scenarios.

V. DISCUSSION

The radiometric validation of ALS waveforms simulated with
the DART model first required to calibrate an ALS sensor on
simple targets introducing the sensor specifications in the simu-
lator. Once the radiometric calibration was achieved, simulated
and real ALS data were compared for a complex forest plot.
In this section, the results are discussed before considering the
prospects for applications of this study.

A. Calibration

The calibration factor K required in (2) was estimated us-
ing a set of flat targets laid on the ground in a clearing, the
reflectance of which was measured by imaging spectroscopy.
Fitting K in this way allowed relating the reflectance of the
targets to the average intensity of the ALS returns of each
flightline used in this study. Our experiment also showed that
K could be assumed to be constant as K was found to be
independent of laser power, flying altitude and reflectance,
thus suggesting that the sensor did not include AGC. How-
ever, a variability in K values of 12.5% was observed between
flightlines.

Investigating the variability of K, we found that the peak
intensity of the ALS echoes was influenced by the signed value
of the scan angle, i.e., the rotational angle at which the laser pulse
was emitted taking into account the roll angle of the aircraft (0°
being nadir, –90° the left side of the aircraft in the direction
of flight). Indeed, Fig. 8 shows a linear regression between
K and scan angle. Although the relationship between echoes
peak intensity and scan angle was evidenced for the whole ALS
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Fig. 8. Influence of the scan angle on the calibration factor K, each point
corresponds to a flightline. Both the values for slope and intercept are significant
at p ≤ 0.001 (∗∗∗).

dataset (not shown here), such a relationship was unexpected and
we did not manage to formulate any solid physical justification
for this influence except a possible issue with the sensor or the
sensor set-up on the airplane (which could not be checked). In
order to reduce the possible impact of the scan angle on the rest
of the experiments, the scan used for the simulations over the
forest plot was selected based on a criterion of minimum scan
angle in that area.

When accounting for the effect of scan angle, the coefficient of
variation of K between flightlines was reduced to 7.5%, i.e., 40%
of the original variation, although 20% deviation still remained
for the farthest values from the regression line as shown in Fig. 8.
The remaining variability of K may be due to other factors such
as the variability of target optical properties and the surface
configuration. The targets were standard tarps with contrasted re-
flectance at the laser wavelength. However, these targets cannot
be considered as lambertian surfaces and may have presented
a specular component, as evidenced on the orthophotography
(white reflections on colored tarps in Fig. 1). In addition, the
flatness of the tarps could not be guaranteed during the field
experiment. This may have resulted in specular reflection in
various directions. A precise characterization of the bidirectional
reflectance distribution function of the tarps complemented by
a fine-scale surface model would have been needed to test the
influence of this specular component on the variability of the
intensity observed among the returns of the same tarp for a given
flightline (see vertical bars in Fig. 3). It would also have helped
to understand to what extent this variability contributed to the
variation of K. The absorption of the signal in the atmosphere
may be another factor explaining the variability of K across
flightlines. Although the probability of changes in atmospheric
conditions was minimized by performing the acquisition in clear
sky conditions and within a short time period (2.5 hours between
13:10 and 15:40 local time), the tropical environment is prone to
the presence of water vapor in the troposphere in concentrations
that can vary significantly during the day [41]. This may lead to
changes in absorption of the returned energy.

The simulation on the calibration plot showed accurate repro-
duction of the returned intensity over flat targets, confirming the

capacity of the DART model to reproduce the lidar signal on
flat targets. These results over the calibration plot demonstrated
the feasibility to calibrate an ALS sensor implementing a quite
simple field experiment in order to obtain realistic simulations.
This is an important point, as information on radiometric cali-
bration of ALS sensors are rarely available and as independent
calibrations in laboratory can be laborious and expensive. In
the current study, the calibration experiment benefited from the
simultaneous acquisition of ALS and imaging spectroscopy.
The calibration protocol presented could be alleviated by the
spectroscopic characterization of the targets in laboratory, an
option that still has to be tested.

B. Simulation in Dense Forest

The analysis of the simulations on the forest plot was less
straightforward, as the environment is highly complex from
both the structural and the radiometric point of view. Despite
this complexity, consistency between simulated and real signals
was found to be high. However, a detailed examination of the
simulations revealed discrepancies with the observed signal.
The most noticeable are the underestimation of the waveform
intensity, the overestimation of the ground peak and the influence
of the aggregation scale. In this section we discuss the possible
origin of these discrepancies and draw the limits and areas of
improvements of the current study.

1) Origin of Discrepancies: The ground peak overestimation
in the simulations is an interesting case as it may involve both
the quality of the 3-D scene and the sensor sensitivity.

Three elements might have caused the overestimation of the
ground peak in the simulations. First, the energy returned from
the ground depends on the energy intercepted by the vegetation
above. Thus, ground peak intensity overestimation could be the
consequence of an underestimation of the vegetation density
in the canopy or in the understory. Second, the ground was
represented by a regular triangle mesh with uniform optical prop-
erties. However, the ground is usually covered by low vegetation,
and both optical properties and 3-D structure (roughness and
slope orientation) vary over space at different scales. Third, the
detection limit of the real ALS sensor, triggering the recording of
the waveform sample blocks (not simulated), may have censored
small ground returns, leaving them unrecorded if they occurred
far from the detected returns of the same pulse, i.e., outside the
recorded waveform sample blocks.

Several considerations point towards an underestimation of
the LAD to be the main cause of the ground peak overestimation.
Indeed, Figs. 6 and 7 show a global underestimation of the energy
of the profiles at all aggregation scale. This underestimation is
even more prominent at the peak energy [see Figs. 6 and 7(c)]. In
Vincent and Heuschmidt [36], the simulation with AMAPVox
of diffuse light through the 3-D scene derived from TLS data
was compared to the measurements obtained two years before
(2014) from LAI2200 canopy analyser. The average predicted
transmittance was 2.8% whereas the measured transmittance
was 2.1% [36], a difference that could not be explained by a
possible change in the canopy cover over a two year period.
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An explanation of the underestimation of the LAD could come
from the assumptions made when computing it from the TLS
data. When scanning from below the canopy any pulse not
generating a return is considered as traversing the canopy. In
dense forest a small rate of “false no-return” pulses, i.e., pulses
intercepted but with not enough energy returning to the sensor
to trigger the corresponding echoes, might significantly bias the
final transmittance estimate and lead to an underestimation of
the LAD in the forest mockup.

According to Fig. 6 at 80 m resolution, the difference of the
intercepted energy would be distributed all along the profile
(with an inversion at the bottom). However, the top of the
canopy constitutes the farthest target from the TLS view, thus
the location where the LAD estimation error is expected to
be the largest, while it is also the first target from the ALS
view, thus the location where the ALS sampling is the densest.
In order to have a clearer picture at the top of the canopy, we
conducted the same analysis as in Section IV-B2, but aligning the
z-coordinate of the waveform dense point cloud to the canopy
height model (CHM) instead of the DTM. The details of this
analysis are presented in Appendix E. Fig. 12 in Appendix E
confirms that most of the energy loss occurred in the top meters
of the canopy and that the underestimation of the intercepted
energy at that point was ranging between 20% and 30%. These
values match with the transmittance overestimation assessed in
[36]. It suggests that LAD was underestimated for the top of
canopy voxels of the forest mockup. The vertical distribution
of the error observed in Fig. 6 (80 m resolution) could be the
consequence of the aggregation of waveforms from lidar shots
reaching the canopy at various heights.

In addition to a possible LAD underestimation, other factors
could contribute to the underestimation of the intercepted energy
in the simulations at the canopy level. As it has been mentioned in
Section II, the real waveforms suffered from a background noise
and potential ringing effect. Tests conducted without removing
the background noise on the real waveforms (not presented here)
doubled the NRMSE between actual and simulated profiles, as
well as the relative difference of the peak of intensity of the
profiles. Although it was reduced by shifting the SB-WF wave-
forms, the background noise was observed not to be constant
and the residual noise could still contribute to an increase of
the profile magnitude. Similarly, the high intensity returns can
generate a so called ringing effect on the sensor signal, an effect
that could also be part of the discrepancy observed between the
real and the simulated waveforms.

2) Limits and Future Improvements: From a more global
point of view, Fig. 7 underlines an influence of the aggregating
scale, with better adequation of simulations with real signal at
large than at small aggregation scales. Setting aside the possible
LAD underestimation, it shows a performance variability (boxes
hinges and whiskers in Fig. 7) increasing exponentially as the
resolution increases. This suggests that at high resolutions, re-
alistic simulations would need more effort in the reconstruction
of a detailed mockup, by improving both the representation of
the structure and the characterization of optical properties of the
scene elements. Although much effort was devoted to building

a detailed 3-D scene, it remains a simplification of the reality. In
addition to the likely aforementioned LAD underestimation, this
is also true for the optical properties for which only a few leaf
measurements were available from the experimental campaign
leaving the majority of the leaf voxels of the mockup with a
single default optical property. High tree-to-tree variability has
been observed in apparent reflectance at the site [42]. Thus,
simulations would certainly benefit from a greater effort in the
leaf traits determination and in their distribution in the scene.
This could be obtained from intensive field data collection,
or from estimation of leaf traits from imaging spectroscopy
data [43]. The conversion of voxels from turbid to a random
distribution of triangles did not seem to enhance the structure
representation. Thus, more investigation is needed to pinpoint
the main factors driving the discrepancies between observations
and simulations at small scales.

To this end, several areas of improvements can be expected
from recent research. Progress in 3-D neural network segmen-
tation [13], [44], [45], [46], [47] may help in enhancing the
identification of the nature and the spatial distribution of the
elements of the mockup, in particular leaf–wood segmentation
that is a standard preliminary step to tree reconstruction from
TLS data. Promising improvements have been made recently
which could help increase the accuracy of the structure pa-
rameters. New estimators of LAD, likely to be less prone to
bias than the one used in the present study, have also been
proposed for single return scanners [17], [48], [49] and extended
to multiple return scanners [50]. However, these estimators still
need to be validated in a tropical forest context. Combining
TLS data with UAV laser scanner [51] might also improve
LAD estimates at the top of the canopy where first and main
interceptions occur for ALS or spaceborne lidar systems. Leaf
angle distribution [52] could be extracted from TLS data in
principle, at least at close range, if not available in literature,
and contribute to a better representation with triangles. Efforts
to estimate leaf traits distribution from imaging spectroscopy
[43] should also contribute to add realism in that part of the
3-D scene.

At the sensor level, Appendices D and E show that work
remains to be done in order to understand, disentangle, and
model the different sources of signal imperfections in order
increase simulation realism at small scale. We did not compare
measured and simulated point clouds in this study because it
raised additional questions on the processing chain of the ALS
data, such as the methods implemented in RIEGL software for
waveforms decomposition. Still, Fig. 9 highlights what can be
achieved after a standard Gaussian decomposition of the forest
plot simulation. It illustrates the level of consistency that could
be expected with such a simulation as well as some of the
differences noticed on the waveform comparison (e.g., the higher
density of echoes in the simulated point cloud, particularly
visible at the ground level). Accounting for sensor noise and
noise filtering in the Gaussian decomposition process should
lead to more realistic point cloud density. To that aim, increased
transparency in sensor specifications and processing algorithms
would be helpful.
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Fig. 9. Point clouds of the forest plot for (a) real data and (b) simulation, the color being function of the height.

C. Prospects of DART Lidar Modeling Applications

Aggregated at the scale of the 80 × 80 m plot, the simulated
full-waveform showed a very close agreement with real data
in terms of both structure (intensity profile correlation of 0.99,
RMSE of the heights of intensity quantiles less than 1 m) and
intensity (profile NRMSE is 5%). Aggregated at the scale of 20
m, the simulations still resulted in consistent intensity profiles
(correlation of 0.98, median RMSEIq around 1 m and median
NRMSE of 6%).

Such results could be of high interest for the development
of improved area-based models [53], that are used to predict
forest stand attributes with variables derived from the analysis
of ALS point clouds at the level of traditional field inventory,
i.e., for forest plots with diameters ranging from about 20 to
30 m. Indeed, simulations could be used to better analyze,
understand and model impacts of acquisition conditions, e.g.,
pulse density [54], [55], [56] or scan angles [57]. They could
also provide large datasets and facilitate the set-up of data
augmentation strategies to implement deep learning approaches
[13] in a field of application for which acquiring large data sets
with synchronous field measurements and ALS acquisitions is
challenging.

The accuracy of the DART lidar model at 20 m scale is
also interesting for spaceborne lidar as it corresponds to the
ground footprint diameter of actual (and under development)
sensors. Simulating large footprint waveforms for spatial mis-
sions (e.g., GEDI-NASA [58], MOLI-JAXA [59], LEAF-CNES
[60], [61]) can be envisioned in several ways with the DART
model. First, from TLS datasets: the quality of the waveforms
obtained by summing up simulations of ALS data allows to
be optimistic about the capacity to accurately simulate large
footprint waveforms with DART in forest environments. Second,
simultaneously simulating ALS data and large footprint wave-
forms could be used to validate and optimize simulators based on
the conversion of discrete-return ALS data to a large-footprint
full-waveform signal, such as the one developed for the calibra-
tion of algorithms and assessment of the GEDI mission accuracy
[62]. For example, it would be of high interest to better model
the contribution of multiple scattering when simulating large
footprint waveforms from small footprint signals, for which the
contribution of multiple scattering is negligible. In addition, it

could help to get a better handle on a possible change in wave-
length between both airborne and spaceborne systems. Third,
generating forest scenes from ALS data using voxelization could
also be considered to simulate large footprint waveforms with
DART. Independently of the way they are produced, the accurate
simulation of such waveforms can already serve numerous appli-
cations such as the refinement of specifications for new space-
borne sensors, as well as training and testing algorithms and
their adaptation between sensors with different specifications to
keep continuity in product quality. These applications could be
extended to smaller scale and resolution with the enhancement of
the 3-D scene accuracy and the improvement of the ALS sensor
model. Combined with the speed-up of the models [9], [10],
[32], a simulator such as DART could become a key element to
transfer information from one scale to another (local to global,
terrain to spatial), and to enhance the simulation and thus the
analysis of other sources (multi/hyperspectral, radar).

VI. CONCLUSION

In this article, we investigated the capacities of the DART
model to simulate ALS full-waveform acquisitions. The simul-
taneous acquisition of ALS and imaging spectroscopy over a
calibration plot with ground targets allowed to evaluate the
calibration factor linking the energy at the entrance of sensor
aperture to the intensity values delivered by the sensor. The
calibration factor was determined with a limited variability (CV
12% to 7.5% when taking into account effects stemming from
the scan angle) and then used with the DART model to simulate
full-waveform ALS acquisitions. Compared with the real ALS
data, the simulations confirmed the accuracy of the DART model
over a simple scene as well as a highly complex 3-D scene
derived from TLS data acquired in a dense tropical forest. The
multiscale analysis (2 to 80 m) of the forest plot simulations
evidenced a strong correlation with the real data (92% to 99%)
and small error in intensity value (NRMSE 12% to 5%) and in
vertical distribution of the returned energy (RMSE 1.5 to 0.6 m).
With such a level of confidence in the model, the analysis of the
simulations allowed us to point out a possible underestimation
of the leaf area density assessed from TLS data at the top of the
canopy, and to identify several areas of improvement for both
the 3-D scene and the sensor model. Finally, this work opens
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TABLE III
CALIBRATION TARGETS WITH THEIR SIZE, COLOR, AND REFLECTANCE AT

LIDAR WAVELENGTH EXTRACTED FROM IMAGING SPECTROSCOPY

Fig. 10. Example waveform of an emitted pulse extracted from the RIEGL
SDF file of the forest plot scan. The dashed line shows the FWHM which is 4.79
ns in that case.

up multiple prospects of applications, at short and long term, to
improve the monitoring of forest environments from lidar based
observations.

APPENDIX

A. Overview

This Appendix provides additional information on the mate-
rial used for the experiments, and complementary analysis that
helped understanding the results.

Section B gives specifications on the calibration target and
on the flightlines used for the calibration experiment. Section C
and Section D provide more details on the emitted and returned
pulses extracted from RIEGL SDF files. Section E gives supple-
mentary elements for CHM instead of DTM aligned waveform
aggregation.

B. Specifications of Calibration Experiment

Table III details the specifications of the calibration targets in
size, color and apparent reflectance at 1064 nm extracted from
imaging spectroscopy.

TABLE IV
FLIGHTLINES USED IN THE CALIBRATION EXPERIMENT, WITH THE LOCAL

TIME AT WHICH THEY STARTED, THE FRACTION OF POWER USED BY THE

LASER, THE HEIGHT ABOVE GROUND LEVEL OF THE SENSOR, THE AVERAGE

SCAN ANGLE OVER THE CALIBRATION PLOT, AND THE REGRESSION RESULTS

FOR THE ESTIMATION OF THE CALIBRATION FACTOR (K, RMSE AND R2)

Fig. 11. Examples waveforms of two pulses returns. In black, the raw wave-
form was extracted from the RIEGL SDF file of the forest plot scan. In red, the
raw waveform was shifted by –2 DN. In blue, the reconstructed waveform was
reconstructed from the point cloud information.

Table IV lists the specifications of the flightlines used in the
calibration experiment, as well as the regression results obtained
for each of them.

C. Emitted Waveforms

The outputs of the lidar sensor LMS-Q780 includes SDF
file that contains records (i.e., waveform sample blocks) of the
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Fig. 12. Comparison of the intensity profiles derived from real and simulated data after alignment of waveforms to the CHM (only the simulation with turbid
voxel considered here). (a) Intensity profile aggregation at 80 m grid size. (b) Relative difference of peak intensity for the different aggregation resolutions.

emitted waveforms and the returned waveforms. During our
study, these files were used in order to check the assumption of a
Gaussian shaped emitted pulse, to evaluate the FWHM value of
the emitted pulse and to validate our waveform reconstruction
strategy.

The nonlinear least square regression of a Gaussian fit on the
emitted pulses over the forest plot shows an average NRMSE of
1.2% and a FWHM average value of 4.815 ns with a standard
deviation of 0.018 ns (i.e., 0.4%). These results validate our
hypothesis of a Gaussian shaped emitted pulse.

Fig. 10 shows an example of emitted pulse extracted from
the RIEGL SDF files of the campaign, and the corresponding
Gaussian fit. Although the fitting results are good, one can also
notice a small local maximum after the main pulse that may be
due to ringing.

D. Reconstructed Waveforms

Two alternative methods were used to prepare the ALS wave-
forms for the comparison to the simulations. The SB-WF recon-
struction was performed concatenating the waveform sample
blocks extracted from the ALS SDF files, and removing the
background noise as described hereinafter. The blocks of the
same shot are aligned using the fit of the emitted pulse in order to
determine the starting time of the shot, the interpolated trajectory
to determine the location of the sensor and the echo location
(from the point cloud) to determine the echo to sensor distance
(and thus light travel time).

The Gaussian-based waveform (GB-WF) reconstruction was
performed as a sum of Gaussians parameterized by the intensity
and the width of the echoes, and positioned at the time of flight
between the sensor and the echoes (deduced from the distance
between the sensor and the echo). In order to limit the size of
the dataset, the reconstruction was made only in the interval
±5σ around each echo. The GB-WF waveform reconstruction
method is fast to compute and benefits from RIEGL signal
filtering (background noise, ringing effect, misleading signal
due to sensor sensitivity, …). However, as small echoes can be
difficult to separate from the noise or the ringing effect, they are
usually censored by the sensor detection limit either during the

acquisition (i.e., not recorded) or during the data postprocessing
stage, as data providers usually prefer to avoid having noise in
the final dataset at the cost of a small loss of information.

In the current study, the difference between the SDF raw
waveforms and GB-WF was used to evaluated the magnitude
of the background noise, which showed a median value of
2 DN. Considering the background noise as additive to the
signal returned from the target, the raw waveform magnitude
was shifted down by 2 DN in order to reduce the impact of the
noise on the comparisons with the simulations. The shifted raw
waveforms are the ones used in the analysis and referred to as
SB-WF in the body of this manuscript.

A couple of examples of returned waveforms extracted from
SDF files (raw waveform) and the corresponding reconstructed
waveforms from Gaussian sums are shown in Fig. 11. In
Fig. 11(a), one can notice the noise level as well as the small
echoes discarded during post-processing (the detection limit was
evaluated at 7 DN). When the shift was larger than the noise, gen-
erating negative values, the samples were set to zero intensity.
In Fig. 11(b), it can be noticed that the background noise signal
is not constant. Thus, some residual noise signal is still included
even after shifting the raw waveforms. More investigation is
needed in order to better characterize the background noise and
eventually include it in the simulations.

E. CHM Normalized Waveform Analysis

The same comparison as in Section IV-B2 was conducted after
aligning the z-coordinate of the waveform dense point clouds
to the CHM instead of the DTM, the CHM being computed
at 0.5−m and with a pit-free algorithm [63]. The aggregated
profiles at 80 m grid size are presented in Fig. 12(a) and the
relative error at peak magnitude in Fig. 12(b). Both figures
evidenced a concentration of energy loss at top of canopy going,
from 20% to 30% depending on the grid size and the type
waveform considered as real data.
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