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WITHIN-HOST EVOLUTIONARY DYNAMICS OF ANTIMICROBIAL

QUANTITATIVE RESISTANCE

Ramsès Djidjou-Demasse1,4,* , Mircea T. Sofonea1,4,
Marc Choisy2,3 and Samuel Alizon1

Abstract. Antimicrobial efficacy is traditionally described by a single value, the minimal inhibitory
concentration (MIC), which is the lowest concentration that prevents visible growth of the bacterial
population. As a consequence, bacteria are classically qualitatively categorized as resistant if therapeu-
tic concentrations are below MIC and susceptible otherwise. However, there is a continuity in the space
of the bacterial resistance levels. Here, we introduce a model of within-host evolution of resistance under
treatment that considers resistance as a continuous quantitative trait, describing the level of resistance
of the bacterial population. The use of integro-differential equations allows to simultaneously track the
dynamics of the bacterial population density and the evolution of its level of resistance. We analyze
this model to characterize the conditions; in terms of (a) the efficiency of the drug measured by the
antimicrobial activity relatively to the host immune response, and (b) the cost-benefit of resistance;
that (i) prevents bacterial growth to make the patient healthy, and (ii) ensures the emergence of a
bacterial population with a minimal level of resistance in case of treatment failure. We investigate how
chemotherapy (i.e., drug treatment) impacts bacterial population structure at equilibrium, focusing
on the level of evolved resistance by the bacterial population in presence of antimicrobial pressure.
We show that this level is explained by the reproduction number R0. We also explore the impact of
the initial bacterial population size and their average resistance level on the minimal duration of drug
administration in preventing bacterial growth and the emergence of resistant bacterial population.
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1. Introduction

In addition to its impact on ecological dynamics, human activities are major drivers of the evolution of species
interacting with us [48]. An example of such impact, the evolution of antimicrobial resistance (AMR) among
parasites of medical importance, is a growing concern across the world [2, 23]. An antimicrobial substance is
a chemical agent that has the potential to interfere with the physiology of a bacterial cell. Because of their
relative size and mechanisms of action (at least for the antimicrobial families currently used to treat infections),
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Figure 1. Classification of the resistance level x. Here x0 and x1 are reference ‘sensitive’
and ‘resistant’ strains.

a single antimicrobial molecule does not cause any damage to a bacterium, while no bacterial population can
survive in a medium fully saturated with antimicrobials. In other words, the negative effect of an antimicrobial
substance on a given bacterium’s survival, referred to here as the antimicrobial activity and denoted A, is an
increasing function of its concentration in the medium (denoted C), with boundaries A (C) = 0 when C = 0 and
A (C) → Asat when C → Csat, where Asat and Csat are saturating threshold levels. Here, A is measured as the
antimicrobial-related mortality rate. From this intuitive approach, it follows that there exists C? in (0, Csat) such
that A (C?) is equal to the intrinsic rate of increase and reverses the growth of a bacterial population, all else
being equal. This threshold concentration at which a bacterial population does not grow in vitro is called the
Minimum Inhibitory Concentration (MIC).

Resistance is then a continuous trait by nature referred to as antimicrobial quantitative resistance (qAMR).
Indeed, because of their short generation times and large population sizes, bacterial populations show a great
intraspecific genetic diversity generated through random mutations. These mutations define distinct strains
which therefore can differ by their relative susceptibility to a given antimicrobial [30, 31]. As a consequence,
the MIC can be seen as a distributed variable within the same bacterial species, underpinned by a mapping of
each strain genome to a unique MIC. These MIC distributions are experimentally assessed on a log2 -discretised
scale (see e.g. the EUCAST database [18], usually with a low skewness that spans over two or three order
of magnitudes of antimicrobial concentrations). For instance, a recent statistical model of MIC explained by
genomic data has shown, in the case of Neisseria gonorrhoeae, that independent exponential contributions of
distinct substitutions provide a good set of regressors for estimating MIC [11]. Therefore, we here use the log
difference in MIC as a phenotypic distance between bacterial strains, with respect to antimicrobial susceptibility.
This is particularly suitable because the log scale allows the additivity of independent mutation effects, which
will later support symmetric mutation kernels.

Quantitative resistance is key to better understand the within-host evolutionary dynamics of AMR because
intermediate resistance can allow bacterial populations to survive drug concentrations below those considered
therapeutic [50], and allows the coexistence of multiple strains within the host. Here, we introduce a continuous
phenotypic trait x ∈ R, describing the level of resistance between −∞ and +∞. We also treat this quantitative
descriptor x as the label of the bacterial strain with resistance level x. Note that any interval (a, b) with a < b
and x ∈ (a, b) is also valid within the context of the model and results developed here. However, it is important
to keep in mind that, intuitively there exist two threshold levels x0 and x1 (called reference ‘sensitive’ and
‘resistant’ strains) such that each strain with resistance level (labelled by x) can be classified as ‘sensitive’,
‘intermediate’, or ‘resistant’ depending on whether x < x0, x0 < x < x1, or x > x1 respectively (Fig. 1).

Many mathematical models have been developed to study antimicrobial resistance evolution within a treated
host [4, 10, 14, 22, 25–27, 33, 42, 54, 55, 58]. We also think that the literature is so vast that we would not
know where to begin since the model used then strongly depends on the question asked. However, most of the
modelling approaches devoted to AMR tackling the case of qualitative (or “binary”) resistance are generally
based on the dynamical interaction between two parasite strains leading to a binary MIC formulation [4]. This
analysis ignores the evolutionary short-term transient dynamics which lead to the emergence of resistance.

To our knowledge, no study has considered the continuous nature of AMR as for the approach developed
here. However, a similar formalism has been developed in the context of anticancer treatments [35]. There are
also parallels with work on linking drug-target binding kinetics with bacterial replication by modelling the
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number of target molecules per bacterial cell as a positive continuous variable [7]. We use a system of integro-
differential equations modeling the dynamics of bacterial population with density b(·, x) and resistance level
x ∈ R. Resistance has a cost and thus growth and death rates depend on the bacterial resistance level x. In
addition to those effects on the death and birth rates, bacterial population resistance level also mitigates the
antimicrobial efficiency with respect to that population. From a theoretical point of view, some of the properties
of this model build on previous analytical quantitative genetics results developed in [6, 15].

We first describe our model and its main parameters. Next, we investigate how chemotherapy (i.e., drug
treatment) impacts bacterial population structure at equilibrium. This includes the characterization of the
resistance level acquired by the bacterial population in the presence of antimicrobial pressure. We show that
such a characterization is simply based on the reproduction number R0 [12], which we prove to play the role of
the invasion fitness in evolution [21]. Next, we investigate in what conditions of the drug efficiency (measured
by the antimicrobial activity relatively to the host immune response) and the cost-benefit of resistance; we can
(i) prevent bacterial growth to make the patient healthy, and (ii) ensure the emergence of a bacterial population
with a minimal level of resistance in case of treatment failure. This is called thereafter the treatment objective.
Finally, we investigate the minimal duration of drug administration to achieve our treatment objective as a
function of the initial bacterial population size and their average resistance level.

2. Description

2.1. Scaling considerations and model overview

Of course, anyone can claim to model resistance as a quantitative trait x but this is purely a theoretical
thought exercise unless it can be clearly linked with existing nomenclature for sensitive and resistant strains, and
with existing quantitative metrics related to drug resistance, especially MIC and growth rate. A bacterial strain
is said to be resistant to a given antimicrobial if a treatment, the posology of which does not exceed tolerance
limits, is likely to fail [2, 18]. Therefore, each strain can be classified as “sensitive” or “resistant” (R) respectively,
depending on whether or not their MIC (i.e., the threshold concentration at which a bacterial population does
not grow) is below or above a therapeutic threshold C1 defined from clinical and pharmacokinetics investigations.
Following the EUCAST 2019 nomenclature [18], sensitive strains can be classified as “normal exposure” (S) or
“increased exposure” (previously “intermediate”, but still denoted by I) depending on whether their MIC is
respectively below or above the pharmacologic threshold C0 corresponding to the antimicrobial concentration
reached by a standard posology. They respectively, correspond to the concentration thresholds at usual (i.e.
normal) and maximum tolerable posologies and are known as the two clinical breakpoints.

Based on these definitions, for any strain of a given bacterial species exposed to a given antimicrobial, we
can define a scale-free quantitative descriptor of AMR varying in a symmetric manner at each mutation step
such that

x :=
log
(
Cx
C0

)
log
(
C1
C0

) ∈ R,

where Cx is the MIC of the strain with respect to this antimicrobial. With this definition, the EUCAST 2019
typology [18] implies that S < 0 < I < 1 < R. With the above equation, notice that having a negative value for
the resistance level x (i.e. x < 0) just means that the given bacterial strain is more sensitive than the reference
’sensitive’ strain (i.e. Cx < C0).

The model follows the dynamics of bacterial population and antimicrobial concentrations. The bacterial
population is assumed to be phenotypically (and genetically) diverse, with a structuration through the level
of antimicrobial resistance, here defined as a continuous trait x and referred to as quantitative antimicrobial
resistance. This quantitative antimicrobial resistance level x ranges from −∞ to +∞, and affects different
components of the bacterial population life cycle, such as growth and death rate. Bacterial populations with a
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Table 1. Model state variables and parameters.

State variables Description
b(t, x) Density of bacterial population with resistance level x at time t.
B(t) Total density of bacterial population at time t.
Functional parameters Description (unit)
J(x− y) Mutation probability from resistance level x to y

per cell division (dimensionless).
p(x) Intrinsic growth rate of bacterial population with resistance level x

(cell/µg).
k(x) Killing rate of bacterial population with resistance level x due to drug (1/day).
Fixed parameters Description (unit) Value/range
pm Upper bound of the intrinsic growth rate p 10
p0 Intrinsic growth rate of the reference sensitive strain 0.95× pm
R0

0(0) The reproduction number of the reference sensitive strain without drug 10
α Limitation on bacterial growth factor 1
Variable parameters Description (unit) Range
m0 Size of the initial bacterial population (0,∞)
σ2
0 Resistance variance of the initial bacterial population (0,∞)
k0 Antimicrobial activity on the sensitive reference strain x = 0 (0,∞)
p1/p0 Reference resistant and sensitive growth rate ratio (0,1)
k1/k0 Reference resistant and sensitive drug efficiency ratio (0,1)

For the general analysis µ = µ(x) is a function of x. But, for all our illustrations, and with fixed and variable parameters defined

in the table above, we have µ = p0
R0

0(0)
. Moreover, the ratio p1/p0 and k1/k0 are assumed to be given parameters, such that p1

and k1 are determined through the formulas p1 = p0 × (p1/p0) and k1 = k0 × (k1/k0). Finally, we assume a Gaussian distribution

J(x) = Jε(x) = (2πε2)−
1
2 e−

1
2 ( xε )2 (ε > 0) for illustrations.

resistance level x have a density b(t, x) at time t. The main variables and parameters of the model are listed in
Table 1.

2.2. Model parameters and general hypothesis

For our model formulation and analysis, the killing rate function of the antimicrobial k(·) will be –quite
naturally– a decreasing function with respect to the resistance level x. Our primary goal here is to define the
function k(·) with two parameters, namely, k0 and k1 representing the antimicrobial activity undergone by
strains the MIC of which are exactly C0 and C1 and hereafter called reference strains 0 and 1. Therefore, we
assume that the killing k(x) of the antimicrobial on the bacterial population with resistance level x takes the
form

k (x) = k0

(
k1

k0

)x
.

The qualitative shape of the curve k(x) is shown in Figure 2.
Likewise, one can define a bacterial intrinsic growth rate that incorporates the cost of resistance (for empirical

evidence of such costs (e.g., [19]). This intrinsic growth rate, denoted p, should be upper bounded due to
physiological constraints, otherwise, a strain not investing at all in AMR would have an infinite growth rate
p (−∞) =∞, which is biologically unrealistic. Therefore, we set p (−∞) =: pm <∞. On the other side, a strain
that takes an infinite concentration of antimicrobial to inhibit would pay an infinite cost then compromising its
growth itself, hence p (∞) = 0. Knowing p0 and p1, the intrinsic growth rate of reference strains 0 and 1 (which
can be expressed as function of k0, k1), a suitable expression for p is

p (x) =
pm

1 +
(
pm−p0
p0

)(
p0
p1
· pm−p1pm−p0

)x ,
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Figure 2. (Left) Intrinsic growth rate p(x) of bacterial population with a level of resistance
x ∈ R. (Right) Drug activity k(x) on bacterial population with resistance level x ∈ R.

with 0 < p1 < p0 < pm. The qualitative shape of the curve p(x) is shown in Figure 2. Importantly, the above
functional form for p is not strictly important for our model formulation and analysis. The main important
property is that p should be a decreasing function with respect to the resistance level x.

2.3. Bacterial population model with quantitative resistance level

We use an integro-differential equation to model the demographic and evolutionary dynamics of the bacterial
population. At any time t, the total bacterial population density is B(t) =

∫
R b(t, y)dy. Next, bacterial population

with resistance level y ∈ R give birth to the bacterial population with resistance level x ∈ R at a per-capita rate

J(x− y)
p(y)

(1 +B(t))
α b(t, y), where J(x− y) is the probability for a bacterial population with resistance level y to

mutate towards a level x during the reproduction process, p(y) is the bacterial intrinsic growth rate, p(y)
(1+B(t))α

is the effective growth rate, and α > 0 is a scaling constant. Thus, the number of bacteria produced at time
t with resistance level x is 1

(1+B(t))α
∫
R J(x − y)p(y)b(t, y)dy. The clearance of the bacterial population with

resistance level x due to the immune system occurs at a rate µ(x). Here, we assume that the immune response µ
is constant in time. The presence of antimicrobials generates an additional mortality rate k(x), which depends

on the level of bacterial resistance. Therefore, the fraction p(y)
(1+B(t))α accounts for the density dependence of the

reproduction rate. Such a formalism is a suitable alternative in regulating the growth of a structured population
without reference to the concept of carrying capacity, which we think is not necessarily a measurable factor for
this type of population. Thus, the parameter α > 0 is introduced only to impose the population homeostasis
and does not impact our downstream results. Taking α = 0 leads to a population with infinite growth if no
effect of the immune response nor of the antimicrobial is taken into account. Overall, the bacterial evolutionary
dynamics is described by the following differential equation∂tb(t, x) =

1

(1 +B(t))
α

∫
R
J(x− y)p(y)b(t, y)dy − (µ(x) + k(x))b(t, x); t > 0,

b(t = 0, ·) = b0(·).
(2.1)

The mutation kernel J is such that J(x− y) is the probability of mutation from resistance level y to x. System
(2.1) is considered under the general assumption in Appendix A. Preliminary results on the model (2.1), including
the existence of a unique maximal bounded dissipative semiflow, are shown in Appendix E.

The formulation of model (2.1) allows to follow evolutionary parameters such as the average level of resistance
η(t) expressed by the whole bacterial population and the related variance σ2(t) at any time t, as so:

η(t) =

∫
R
x
b(t, x)

B(t)
dx, and σ2(t) =

∫
R

(x− η(t))2 b(t, x)

B(t)
dx.
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Furthermore, the model (2.1) can be used to recover the classical model formulation for the qualitative (or
“binary”) resistance. Indeed, if we denoted by BS and BR the total densities of highly sensitive (i.e. x = 0) and
resistant (i.e. x = 1) bacterial populations, model (2.1) can be rewritten as

ḂS =
1

(1 +BS +BR)α
[(1− ε0)p(0)BS + ε0p(1)BR]− (µ(0) + k(0))BS ,

ḂR =
1

(1 +BS +BR)α
[ε0p(0)BS + (1− ε0)p(1)BR]− (µ(1) + k(1))BR,

(2.2)

where ε0 is the mutation probability. We briefly sketch the interpretation of System (2.2), which will also
help in better understanding of Model (2.1). Sensitive bacteria BS growth at effective rate p(0)/(1 + BS +
BR)α. Furthermore, while a proportion ε0 corresponds to a mutant growth (i.e. mutations away from the sub-
population BS), the remainder (1− ε0) corresponds to a faithful growth. Next, the sensitive population BS is
cleared at rate (µ(0) + k(0)) accounting for actions of the immune response µ(0) and antimicrobial k(0). The
same interpretation holds for the resistant population BR. Finally, we refer to Appendix B for more details on
the derivation of System (2.2).

2.4. Initial conditions

The initial bacterial population b0(x) (at t = 0) is assumed to be composed by a sensitive bacterial population,
with average resistance level x = 0. This population is characterized by two parameters: its size (m0) and the
variance (σ2

0) of its level of resistance. The higher σ2
0 , the more frequent resistant bacteria are in the initial

population. Formally, we set

b0(x) = m0 ×N (0, σ0, x),

where N (0, σ0, x) stands for the normalized density function of the Gaussian distribution at x with mean 0 and
variance σ2

0 .

3. Results

We illustrate how to use the model to simultaneously capture the bacterial population dynamics and the
evolution of antimicrobial resistance. The spread of a bacterial population in a bacteria-free environment is
classically determined by calculating the basic reproduction number of this bacterial population. However,
the outcome of the evolutionary dynamics of a rare bacterial population with resistance level y in a resident
population with resistance level x is determined by the invasion fitness based on standard adaptive dynamics
methodology. Furthermore, we show that the level of the bacterial population at the evolutionary equilibrium of
Model (2.1) will coincide with the local maximum of the basic reproduction number. We will also show how the
outcome of the treatment (success or unsuccess) and the evolutionary bacterial resistance level strongly relies
on two parameters: (i) the resistance’s cost-benefit ratio, and (ii) the drug efficiency of the reference sensitive
strain, quantified relatively to the host immune response. Finally, notice that for all simulations, we randomly
set the parameters (Tab. 1), with the only purpose to illustrate our theoretical results.

3.1. Basic reproduction number R0 and invasion fitness

Following classical studies, we define the basic reproduction number R0 as the expected number of bacteria
arising from one bacterium in a bacteria-free environment [3, 12]. As shown in Appendix C, for a bacterial
population with resistance level x, this basic reproduction number is

R0(x) =
p(x)

µ(x) + k(x)
. (3.1)
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We useR0(x) to measure the fitness (or effective growing capacity) of a bacterial population with resistance level
x. ThisR0 can be seen as a product between (i) the intrinsic growth rate of new bacterial population during their
natural life time, p(x), and (ii) the lifespan of a bacterial population with resistance level x, 1/(µ(x) + k(x)). In
the following, we denote by R0

0, the basic reproduction number as in model (2.1) in absence of antimicrobials
(i.e. when k ≡ 0).

As state in the introduction, let us first recall that the quantitative descriptor x for the bacterial resistance
level is also treated as the label of the bacterial strain with resistance level x. Then, the spread of a rare bacterial
population with resistance level y in a resident population with resistance level x is studied using adaptive
dynamics. Quite naturally, we assume R0(x) > 1, otherwise, the resident population x is not persistent, which
a bit contradicts the concept of ’resident population’. Next, to find the evolutionary attractors, we calculate the
invasion fitness fx(y), and the rare population with resistance level y will invade the population x if and only
if fx(y) > 0. The sign of this two-dimensional function fx(y) is classically visualized using Pairwise Invasibility
Plot (PIP) [13, 21, 39, 44]. As shown in Appendix C, the invasion fitness fx(y) is written as

fx(y) =
1

(1 + bx)
α︸ ︷︷ ︸

feedback of
resident x

×R0(y)− 1, (3.2)

with bx = (R0(x))
1/α − 1. The environmental feedback of the resident with resistance level x conditions the

ability of a rare population with resistance level y to invade the resident population. It depends on the conditions
set out by the resident, and by (3.1), the equality (3.2) is rewritten (see Appendix C for details)

fx(y) =
1

(1 + bx)α
(R0(y)−R0(x)) . (3.3)

It follows that the model (2.1) admits an optimisation principle based on R0 [13, 21, 39, 44]. Indeed, the sign
of the invasion fitness fx(y) is given by the sign of the difference between R0(y) and R0(x) and thus, the
evolutionary attractors of the model (2.1) coincide with the local maxima of the R0

3.2. Typical dynamics simulated with the model

One of the parameters highlighted through our model’s analysis is the ratio

cb =
log ∆

log(1 + θ)
, (3.4)

where ∆ = (pm−p1)/p1
(pm−p0)/p0

> 1, and θ = k0−k1
k1

> 0. The ratio cb can be interpreted as the average fitness cost-benefit

ratio of the resistance for a given bacterial population. Indeed, the parameter ∆ quantifies the relative cost of
resistance of a given bacterial population, whereas θ quantifies the fitness advantage of the reference resistant
strain (x = 1) of that bacterial population. Note that ∆ ≈ 1 corresponds to cases where the cost of resistance
of the given bacterial population is negligible, and θ ≈ 0 to cases where the fitness advantage of resistance of
that bacterial population is negligible.

Before antimicrobial treatment onset, the fitness of a bacterial population (measured by its basic reproduction
number in the absence of antimicrobial, R0

0(x)) decreases with the level of resistance x, such that wild type
sensitive bacteria (x = 0) overgrow resistant ones. This is due to the cost ∆ (which assumes ∆ > 0) of being
resistant (Fig. 3A).

The initiation of chemotherapy induces an average benefit (measured by θ) in the resistant bacterial popula-
tion. Indeed, the drug efficiency (k) decreases as the level of bacterial resistance x increases (Fig. 3D). Therefore,
the treatment can modify the fitness landscape (which obviously will have a very rapid effect on the distribution
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Figure 3. Typical dynamics simulated with the model. (A) The basic reproduction
numbers R0(x) and R0

0(x) with and without drug respectively. (D) Drug efficiency k(x) and
the initial bacterial population with average level of resistance x = 0. (B) Time evolution of the
total bacterial population

∫
R b(t, x)dx. (C) Distribution of the bacterial population b(t, x) with

respect to time t and resistance level x. A logarithmic time scale is used to better highlight
transient dynamics of the bacterial population density (B,E), and the increase of the bacterial
population resistance level (C). Here, we have set σ0 = 0.05, m0 = 0.05, k0 = 3, p1/p0 = 0.5,
k1/k0 = 0.01 and other parameters are given by Table 1.

of x values in the population) by shifting the maximum point of the basic reproduction number R0 from x = 0
to x = x∗ > 0 (Fig. 3A).

The model captures the evolutionary dynamics of the system following treatment onset by tracking, at the
same time, the bacterial population dynamics and the evolution of antimicrobial resistance (Figs. 3B, C, E).
In the first phase, the treatment causes a decrease in the total bacterial population density. At the end of this
phase, the infection is seemingly under control (Fig. 3B). The second phase begins with an increase in both the
population density and the level of resistance. This phase occurs when the average drug resistance reaches an
optimum evolutionary threshold x∗ that depends on the amount of drug and on the fitness cost. Finally, the
bacterial population is not controlled (Fig. 3B), and even worse, it completely escapes treatment having evolved
a high level of resistance (Fig. 3C). Figure 3E illustrates the joint dynamics of bacterial population density and
resistance.

3.3. Evolutionary equilibrium and global dynamic

As shown above, the evolutionary attractor (x∗) of the model (2.1), in the set of resistance level R, coincides
with the local maximum of the basic reproduction number R0 (Appendix D). Furthermore, the evolution-
ary attractor (x∗) characterizes the bacterial evolutionary resistance level, which is the level of the bacterial
population at the equilibrium.

An explicit expression of x∗ is difficult to obtain with our parameter setting. However, using the EUCAST
2019 nomenclature [18] and defining the cost-benefit ratio cb by (3.4), we find that low values of cost-benefit ratio
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(i.e. cb ≤ (1− p1/pm)
−1

) can lead to either high resistance levels (i.e. x∗ ≥ 1), intermediate (i.e. 0 ≤ x∗ ≤ 1),

or low (i.e. x∗ ≤ 0) at the evolutionary attractor. Next, intermediate cost-benefit ratios (i.e. (1− p1/pm)
−1

<

cb < (1− p0/pm)
−1

) are associated with a low (i.e. x∗ ≤ 0) or intermediate (i.e. 0 ≤ x∗ ≤ 1) levels of resistance

at the evolutionary attractor. Finally, high cost-benefit ratios (i.e. cb ≥ (1− p0/pm)
−1

) correspond to a low
resistance levels at the evolutionary attractor (i.e. x∗ ≤ 0). See Figure 4 and we refer to Appendix D for more
details.

Next, we simultaneously study the epidemio-evolutionary dynamics of model (2.1) by relaxing the time-scale
separation assumption. Indeed, our analysis allows us to jointly perform (i) the asymptotic behavior of the
model’s state variable b(t, ·), and (ii) the long-term behavior of the system in relation to the space of resistance
level x ∈ R. We find that the existence of a positive stationary state b∗(·) is strongly related to the spectral
property of the linear integral operator H : L1(R)→ L1(R) such that

H[v](x) =
√
R0(x)

∫
R
J(x− y)

√
R0(y)v(y)dy.

The global dynamics of Model (2.1) are fully described by the spectral radius r (H) of H as follows:

(i) If r (H) < 1, all strains asymptotically die out and the bacterial population cannot persist, i.e.,
limt→∞

∫
R b(t, x)dx = 0 (Appendixs G–H).

(ii) If r (H) > 1, Model (2.1) exhibits a unique positive stationary state b∗(·) and the bacterial population is
persistent, meaning that there exists ν > 0 such that, lim inft→∞

∫
R b(t, x)dx > ν (Appendixs F and I).

The above result describes the asymptotic behaviour of Model (2.1) for any given probability kernel J satis-
fying Assumption A. However, we can go further steps in our analysis when the kernel J is highly concentrated
with the scaling form

Jε(x) =
1

ε
√

2π
e−

1
2 ( xε )

2

,

where ε > 0 represents the mutation variance in the phenotypic space.
Denoting by Hε, the operator H where the kernel J is replace by Jε, by results in [15] (Thm. 2.2), the spectral

radius r(Hε) have an asymptotic expansion of the form

r (Hε)

R0(x∗)
= 1−

√
− R

′′
0(x∗)

2R0(x∗)
ε+ ζ(x∗)ε2 +O(ε3),

where ζ(x∗) depends on the successive derivatives R(l)
0 (x∗), l ≥ 2.

Therefore, when the mutation variance ε in the phenotypic space is sufficiently small, we have:

(iii) By the above estimate, sign [r (Hε)− 1] = sign [R0(x∗)− 1] . Furthermore, if R0(x∗) > 1, the unique pos-
itive stationary state b∗(·) = b∗ε(·) is concentrated around the evolutionary attractor x∗ in the space of
resistance level x ∈ R. In other words, the average bacterial resistance level at equilibrium is x∗ and we
have b∗ε(·)→ δx∗(·) when ε→ 0. This convergence holds for the narrow topology, that is, for any continu-
ous function u ∈ C (R) one has limε→0

∫
R u(x)b∗ε(x)dx = u (x∗) . We refer to Theorem 2.3 in [15] for such

a concentration phenomenon.

3.4. Achieving a successful treatment

Combining the asymptotic results described above (Fig. 3) with the classification of the evolutionary bacterial
resistance level x∗ allows us to identify a path to achieve successful treatment, that prevents bacterial growth.
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Figure 4. Evolutionary resistance level (x∗) with respect to the resistance’s cost-
benefit ratio (log(∆)/ log(1 + θ)) and drug efficiency (k0/µ) on the reference sensitive
strain, quantified relatively to the host immune response (µ). Areas R, I, and S
correspond to parameter combinations where the evolutionary level of resistance x∗ is such
that x∗ ≥ 1, 0 < x∗ < 1, and x∗ ≤ 0 respectively. The treatment success holds above the level
set {R0(x∗) = 1}, that is, for the zone in gray. The treatment is unsuccessful below the level
set {R0(x∗) = 1}, that is, for zones R, I and S (below the purple curve). The curves labelled
‘x∗ = 0’ (in yellow) and ‘x∗ = 1’ (in red) indicate ’sensitive’ and ’resistant’ thresholds.

In fact, for a given cost-benefit ratio to drug resistance (cb), our analysis allow us to determine the minimum
level of drug activity on the reference strain (k0/µ), quantified relatively to the host immune response (µ), that
is required to achieve a successful treatment. This can be done because we showed that in the plane (cb, k0/µ) it
is possible to characterize three level sets {(cb, k0/µ) : R0(x∗) = 1}, {(cb, k0/µ) : x∗ = 0}, {(cb, k0/µ) : x∗ = 1}
that determine the potential persistence of a bacterial population with an evolutionary resistance level x∗

(Fig. 4).
We find that the threshold value of k0/µ for which a successful treatment holds increases non-linearly when the

cost-benefit ratio cb becomes small (Fig. 4). Interestingly, the treatment is successful if and only if (cb, k0/µ) >
{R0(x∗) = 1}, which means this can happen if the evolutionary resistance level x∗ is ‘sensitive’ (cb, k0/µ) ≤
{x∗ = 0}, ‘intermediate’ {x∗ = 0} < (cb, k0/µ) < {x∗ = 1} or even ‘resistant’ (cb, k0/µ) ≥ {x∗ = 1} (Fig. 4,
gray area). The corresponding evolutionary dynamics are similar to that shown in Figure 5 where the total
bacterial population dies out. Note that the treatment results in the acquisition of an intermediate level of
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Figure 5. Evolutionary dynamics with lethal treatment. Parameter values are
(σ0,m0, k0, p1/p0, k1/k0) = (0.05, 0.05, 20, 0.5, 0.3) or default as shown in Table 1. The vertical
dashed line in panel (B) shows the time from which the total bacterial population is always
≤ 10−10.

resistance x∗ by the bacterial population (Fig. 5C). However, this population is unable to grow because the
treatment imposes, at the evolutionary resistance level x∗, a fitness smaller than unity R0(x∗) < 1 (Fig. 5D).

3.5. Failure in achieving a successful treatment leads to the emergence of a resistant
bacterial population whatever the cost-benefit ratio

The treatment is unsuccessful when the point (cb, k0/µ) is below the level set {R0(x∗) = 1} (Fig. 4). Overall,
for a given cost-benefit ratio (cb), therapeutic failure occurs when the drug activity (k0/µ), quantified relatively
to the host immune response (µ), is below a threshold characterized by the level set {R0(x∗) = 1}. Depending
on the order of magnitude of cb, such therapeutic failure leads to the emergence of a bacterial population with
high (Fig. 4, area R), moderate (Fig. 4, area I), or low (Fig. 4, area S) levels of resistance. Indeed, with high
cost-benefit ratio values, cb > (1 − p0/pm)−1, therapeutic failures is always associated with the persistence of
bacteria with low resistance levels (Fig. 6, zone S). A therapeutic failure with intermediate values of cost-benefit
ratios, (1 − p1/pm)−1 < cb < (1 − p0/pm)−1, leads to the emergence of bacterial populations with either low
resistance level (Fig. 6, area S) or intermediate (Fig. 6, zone I). Finally, when the cost-benefit ratio is relatively
low, cb < (1 − p1/pm)−1, a therapeutic failure regimen can lead to the evolution of bacterial population with
low (as in Fig. 6, area S), intermediate (as in Fig. 6, area I), or high (Fig. 6, zone R) resistance level.

4. Discussion

Optimizing antimicrobial treatment dosage is important in preventing bacterial growth and the emergence of
resistant bacteria (the Twofold Treatment Objective – TTO). Antimicrobial efficacy is traditionally described
by a single value, the minimal inhibitory concentration (MIC) for a given bacterial population. The distribution
of MICs across bacterial strains is often bimodal and this metric is therefore used to create a qualitative (or
‘binary’) classification in the two discrete categories sensitive ‘S’ and resistant ‘R’. Most modelling studies model
drug resistance as a binary trait but, as shown by the MIC, it is a continuous trait with varying degrees of
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Figure 6. Evolutionary dynamics under sub-inhibitory drug concentra-
tions. (Zone S) sub-lethal dose without emergence of resistance in the bacterial
population. (Zone I) sub-lethal dose with emergence of intermediate resistance in
the bacterial population. (Zone R) sub-lethal dose with emergence of high resis-
tance in the bacterial population. Parameter values are (σ0,m0, k0, p1/p0, k1/k0) =
(0.05, 0.05, 0.03, 0.5, 0.01), (0.05, 0.05, 3, 0.5, 0.01), (0.05, 0.05, 55, 0.5, 0.01) for zones S, I, and R
respectively. Other parameters are shown by Table 1.
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intermediate resistance. This antimicrobial quantitative resistance (qAMR) is associated with a reduction in
the bacterial killing rate of an antimicrobial and fitness cost.

The first achievement of this work is that we introduce a continuous trait x ∈ R that describes the normalized
level of resistance – using clinical breakpoints – between −∞ and +∞. By simultaneously addressing the
population and evolutionary dynamics, the model with qAMR does not ignore the evolutionary and epidemic
short-term transient dynamics which lead to the emergence of resistance. Furthermore, such a continuous level
of resistance is shown to be strongly linked to the MIC or growth rate, which means it can be informed from
actual data.

Using an integro-differential model, we precisely investigate how chemotherapy impacts bacterial popula-
tion structure at equilibrium. We first characterize the level of acquired evolutionary resistance by bacterial
populations in the presence of antimicrobial pressure. We show that this level is governed by a single metric,
the reproduction number R0, which we prove to play the role of invasion fitness in evolution. We then build
on our analysis to show which levels of both drug activity on the wild-type sensitive bacterial population and
the bacterial resistance cost-benefit ratio are required to achieve our TTO objective. Finally, we compare the
effect of lethal and sub-lethal treatments on achieving our TTO objective, and investigate the impact of the
initial bacterial population characteristics (i.e., size, initial resistance frequency) on the minimal duration of
drug administration to achieve our TTO.

Our analysis emphasizes that the potential success of the treatment does not depend on the antimicro-
bial activity (k0) alone but should we assessed with respect to the level of host immunity (µ) as well. These
results suggest that treatments with low antimicrobial activity should be limited to infections which elicit a
weak immune response (e.g. respiratory infections). They also echoed earlier studies on the synergy between
chemotherapy and immune response, e.g. [22, 26]. Our model formulation assumes that the immune response µ
is constant in time, which allows getting some precise analytical insights into the model’s evolutionary dynamics.
Furthermore, this assumption of constant immunity is quite plausible in the early moments after the initiation
of treatment. However, it is a potential limitation and constitutes one possible extension of the model presented
here.

The antimicrobial concentration in the host must not be too low, to clear the bacterial population efficiently,
but it cannot be too high without toxic effects in a patient [47]. A sub-lethal treatment is defined here as a
treatment where the drug activity k0/µ is not sufficient to avoid the persistence of bacterial population with the
evolutionary resistance level x∗. Mathematically, we have R0(x∗) > 1. Such a configuration can occurs whatever
the value of cost-benefit ratio cb for which the point (cb, k0/µ) is below the level set {R0(x∗) = 1} (Fig. 4). The
corresponding evolutionary dynamics are similar to that shown in Figure 6.

We define a lethal treatment when the drug activity k0 is enough to ensure that no bacterial population is
persistent, i.e. that R0(x∗) < 1. The threshold of this feasible range with respect to the initial drug activity
k0 and cost-benefit ratio of resistance cb is such that (cb, k0/µ) is above the level set {R0(x∗) = 1} (Fig. 4),
and our TTO objective always holds in such configurations. In other words, for any value of cost-benefit ratio
cb (low, intermediate, or high), there exists a minimum drug activity k0/µ that guarantees a lethal treatment
(Fig. 4, gray area). The corresponding evolutionary dynamics are similar to that shown in Figure 5 where the
total bacterial population dies out.

As pointed by some theoretical studies [10, 20, 28], a high drug dose (‘hitting hard’ or ‘aggressive chemother-
apy’) is not necessarily the best strategy to limit the spread of resistant strains. We find that a high antimicrobial
dose is necessarily to achieve our TTO objective if and only if antibiotic resistance comes with little cost cb,
quantified by the threshold (1 − p1/pm)−1 (Fig. 4, gray zone). However, if the treatment fails for aggressive
chemotherapy, it will favor the emergence and spread of a bacterial population with a high resistance level
(Fig. 4, zone R). This phenomenon is in accordance with the strong relationship between the resistance level of
the emerging bacterial population and the antimicrobial dose [27, 33].

The minimal duration of antimicrobial treatment to achieve our TTO objective is a debated question in
the literature [9, 20, 22, 45]. Longer treatment duration is associated with a higher frequency of resistance
at the end of the experiment [17, 37, 43, 46], leading to the suggestion that short antimicrobial courses may
limit the evolution of resistance at the population level, and studies to determine whether such short course
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duration would lead to good infection outcomes [17, 37, 43, 46]. We quantify the minimal duration (Top) of
drug administration to achieve our TTO objective when cost-benefit ratio cb and drug activity k0/µ (relatively
to the host immune response µ) on the initial bacterial population lie in the plane (cb, k0/µ) > {R0(x∗) = 1}
(Fig. 4). We define Top as the time t from which the total bacterial population

∫
R b(t, x)dx is always ≤ 10−10

(for example, the vertical dashed line in Fig. 5B). This threshold can be view as the point at which the immune
response µ prevents further expansion of the bacterial population. Overall, for a fixed initial bacterial population
density, our analysis shows that the minimal duration of drug administration to achieve our TTO objective is
relatively short as soon as (cb, k0/µ) lies in regions that guarantee the TT0 (Fig. 4, gray area). This combined
effect of the cost-benefit ratio (cb) and drug activity (k0/µ) on the time Top is shown Figure 7. We see that,
Top is relatively large around threshold values of k0/µ that guarantee our TTO objective. Next, Top decreases
exponentially with a slight increase in k0/µ compared to the threshold values for our TTO objective. Finally,
except around the threshold values of k0/µ that guarantee our TTO objective, the time Top very short and
barely varies with cb.

The characteristics of the initial bacterial population (size m0 and the frequency of resistance σ0) are impor-
tant for treatment success [9, 22, 33]. We assess the combined effect of m0 and σ0 on the minimal duration
(Top) of drug administration to achieve our TTO objective (Fig. 7). Overall, the size m0 of the initial bacterial
population has a marginal effect on Top as soon as the cost-benefit ratio cb and the initial drug activity k0/µ
(relatively to the host immune response µ) is such that the pair (cb, k0/µ) lies above the level set {R0(x∗) = 1}
of Figure 4. Whatever the initial population size, our analysis suggests that our TTO objective always holds in
a relatively short time period, once the pair (cb, k0/µ) lies above the level set {R0(x∗) = 1}. By contrast, the
frequency of resistant strains initially present σ0 has a strong impact on the minimal duration (Top) of drug
administration to achieve our TTO objective (Fig. 7). Even if our TTO objective is still achieved as soon as
(cb, k0/µ) lies above the level set {R0(x∗) = 1}, the time Top increases nearly exponentially with the frequency
of resistance (Fig. 7).

The within-host dynamics is often ignored by classifying hosts according to whether they are infected with
a given strain or not [58]. A such simplification fails to take into account the genetic diversity of the bacterial
resistant population [30, 31] and the short-term evolutionary transient dynamics which lead to the emergence of
resistance at the within-host level. Adopting a nested models approach [29, 36, 41] is one option to simultaneously
track the level of qAMR within the host and the between-host evolutionary epidemiology. Our precise description
of the within-host bacterial dynamics, coupled with antimicrobial activity, immune response, and qAMR, can
significantly improve the understanding of how bacteria populations adapt to their host at the between-host
scale [1].

The concentration property of model (2.1) around the evolutionary attractor x∗ is subject to the assumption
of a small mutation variance ε in the phenotypic space. More generally, this result holds as soon as the mutation
kernel distribution J verifies item 3 of Assumption A. However, that assumption does not mean the mutation
kernel has a very fast decay at infinity. We emphasize that the decay of the mutation kernel distribution
considered here (namely, Asm. A, item 3) allows considering the tails of a wide variety of distributions. Indeed,
the shape of the distribution of mutational effects can belong to the domain of distributions with exponential
tails, truncated tails, or heavy tails that decay as a power law [51].

Finally, in the model proposed here, mutations are assumed to be sufficiently frequent during replication (i.e.,
new mutants occur during growth), and randomly displace strains into the phenotype space at each generation
according to a mutation kernel. However, this constitutes another potential limitation in the model formulation.
Indeed, in exponentially growing cells, mutations usually occur during replication [34], but some studies indicate
that mutations can be substantially higher in non-growing than growing cultures [53]. Thus, the occurrence of
new mutants depends either on the abundance of parental cells or both the abundance and growth rate of the
parental cells [52]. Therefore, another potential extension of the model would be to allow both processes for the
occurrence of new mutants.
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Figure 7. The minimal duration (Top) of drug administration to achieve our TTO
objective. (Left) Combined effect of the cost-benefit ratio (cb) and drug activity (k0/µ), quan-
tified relatively to the host immune response µ, on the time Top. (Right) Combined effect of the
initial bacterial population size (m0) and the initial frequency of resistance (σ0) on the time
Top.

Appendix A. Model general assumptions

Model (2.1) is defined on the set L1 (R,R) and its parameters satisfy the following general assumptions:

1. Functions µ, k, and p are always positive over R. Furthermore, p is a bounded function on R and α > 0.
Finally, the function R0 defined in (3.1) is continuous on R and satisfies R0 6≡ 0 and lim

|x|→∞
R0(x) = 0.

2. The mutation kernel J is bounded and integrable on R+, positive almost everywhere, and satisfies∫
R+ J(x)dx > 0, J(−x) = J(x).

3. The mutation kernel J decays rather rapidly towards infinity in the sense that J(x) = O
(

1
‖x‖∞

)
as

‖x‖ → ∞. In other words, lim
|x|→∞

|x|nJ(x) = 0, for all n ∈ N.

Appendix B. Model formulation for the qualitative resistance

Recalling that totally sensitive and resistance bacterial levels are respectively x = 0 and x = 1, we set
b(t, x) = BS(t)δ0(x) +BR(t)δ1(x), wherein BS and BR are the total densities of highly sensitive and resistance
bacterial population. From the b-equation, we have

ḂS(t)δ0(x) + ḂR(t)δ1(x) =− (µ(x) + k(x))(BS(t)δ0(x) +BR(t)δ1(x))

(1 +BS(t) +BR(t))
−α

[p(0)BS(t)J(x, 0) + p(1)BR(t)J(x, 1)] .
(B.1)

Evaluating the equation (B.1) successively at point x = 0 and x = 1, we find{
ḂS(t) = (1 +BS(t) +BR(t))

−α
[p(0)J(0)BS(t) + p(1)BR(t)J(1)]− (µ(0) + k(0))BS(t),

ḂR(t) = (1 +BS(t) +BR(t))
−α

[p(0)J(1)BS(t) + p(1)BR(t)J(0)]− (µ(1) + k(1))BR(t).
(B.2)

Since J(0) + J(1) = 1 and setting ε0 = J(1), (B.2) yields{
ḂS(t) = (1 +BS(t) +BR(t))

−α
[(1− ε0)p(0)BS(t) + ε0p(1)BR(t)]− (µ(0) + k(0))BS(t),

ḂR(t) = (1 +BS(t) +BR(t))
−α

[ε0p(0)BS(t) + (1− ε0)p(1)BR(t)]− (µ(1) + k(1))BR(t).
(B.3)
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Appendix C. The basic reproduction number R0 and
maximization principle

By formally taking J(x− y) = δx(y) into (2.1), this system becomes

∂tb(t, x) =
1

(1 +B(t))α
p(x)b(t, x)− (µ(x) + k(x))b(t, x). (C.1)

Assume that system (C.1) reaches a monomorphic epidemiological equilibrium Ez(·) = bzδz(·), for some level
of resistance z, before a new mutation with the level y occurs. Here, δz(·) is set for the Dirac mass at z. Note
that Ez is the environmental feedback of the resident z. Moreover, by (C.1), Ez is such that

1

(1 + bz)α
p(z)bz − (µ(z) + k(z))bz = 0.

Consequently, either bz = 0 or (1 + bz)
α = p(z)

µ(z)+k(z) .

Next, we introduce a small perturbation in (C.1) with level y, such that b(t, x) = bzδz(x) + u(t)δy(x) and
such that the perturbation u is governed by the linearized system of (C.1) around Ez. This reads as, for all
x ∈ R,

u̇(t)δy(x) =
1

(1 + bz + u(t))α
p(x) (bzδz(x) + u(t)δy(x))− (µ(x) + k(x)) (bzδz(x) + u(t)δy(x)) .

Evaluating the above equality at x = y, it comes

u̇(t) =
1

(1 + bz + u(t))α
p(y)u(t)− (µ(y) + k(y))u(t),

and which gives for the linear part

u̇(t) =

[
p(y)

(1 + bz)α
− (µ(y) + k(y))

]
u(t). (C.2)

It follows from the classical adaptive dynamics results [13, 21, 38] that bacterial reproduction number,
R(y,Ez), of a rare mutant strategy, y, in the resident z-population are given by

R(y,Ez) =
1

(1 + bz)α
p(y)

µ(y) + k(y)
.

The invasion fitness fz(y) of a mutant strategy y in the resident z-population is then given by

fz(y) = R(y,Ez)− 1. (C.3)

When the environmental feedback Ez is reduced to the bacteria-free environment, we have bz = 0. Then, the
epidemiological basic reproduction number of the bacterial population with resistance level y is calculated as

R0(y) =
p(y)

µ(y) + k(y)
.
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Once a bacterial strain has spread and reached a monomorphic equilibrium, the endemic (feedback)
environment Ez becomes

bz = (R0(z))
1/α − 1, (C.4)

which is defined when R0(z) > 1 and satisfies

fz(z) = 0. (C.5)

Let us give some details on the derivation of (C.4). At the monomorphic equilibrium Ez, from (C.1) we have,

1

(1 +
∫
R b(y)dy)α

p(x)b(x)− (µ(x) + k(x))b(x) = 0, ∀x ∈ R, (C.6)

where b(x) = bzδz(x). Taking x = z, (C.6) gives

1

(1 + bz)α
p(z)bz − (µ(z) + k(z))bz = 0.

Since bz > 0, it comes

(1 + bz)
α =

p(z)

µ(z) + k(z)
= R0(z),

and (C.4) follows.
Next, we show that the model (2.1) admits a maximization principle [39, 44] based on the R0, such that

model’s evolutionary attractors (or levels of resistance at equilibrium) are characterized by local maximums
points of R0. This point is important since, usually, the identification of evolutionary attractors tends more to
follow a mini-max procedure on an adaptive fitness landscape (see [32] for further discussion). Indeed, by (C.3)
and (C.5) we have

fz(z) =R(y,Ez)− 1

=R(y,Ez)−R(z, Ez)

=
1

(1 + bz)α
p(y)

µ(y) + k(y)
− 1

(1 + bz)α
p(z)

µ(z) + k(z)

=
1

(1 + bz)α
(R0(y)−R0(z)) .

The R0 maximization principle then holds because sign(fz(y)) = sign (R0(y)−R0(z)) .

Appendix D. Maximum point of R0

Recall that R0 = p/(µ + k). From the definition of p and k, it follows that sgn(R′0(y)) = sgn [f(y)− g(y)] ,
where f and g are positive function defined on R by

f(x) =
k(x) ln d

µ+ k(x)
, and g(x) =

bax ln a

1 + bax
,

with d = k0/k1, b = pm/p0 − 1 and a = p0(pm − p1)/(p1(pm − p0)). Functions f , resp. g, are decreasing, resp.
nondecreasing, monotonously on R. Therefore, there exists a unique global maximum of R0 at x∗ ∈ R: R0(x∗) =
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max
x∈R
R0(x). Further, we know that x∗ ≥ 1 if and only if f(1) ≥ g(1), i.e.

x∗ ≥ 1 iff

(
1− p1

pm

)(
1 +

µ

k1

)
≤

log
(
k0
k1

)
log
(
p0
p1

pm−p1
pm−p0

) .
Similarly, we also have

x∗ ≥ 0 iff

(
1− p0

pm

)(
1 +

µ

k0

)
≤

log
(
k0
k1

)
log
(
p0
p1

pm−p1
pm−p0

) .
We now search for conditions such that R0(x∗) < 1. Note that

R0(x∗) =
p(x∗)

µ+ k(x∗)
=

pm
(µ+ k(x∗))(1 + bax∗)

.

Since f(x∗) = g(x∗) it comes

1 + bax
∗

=
(µ+ k(x∗)) log(a)

(µ+ k(x∗)) log(a)− k(x∗) log(d)
.

We then rewrite

R0(x∗) = pm
(µ+ k(x∗)) log(a)− log(d)k(x∗)

(µ+ k(x∗))2 log(a)
.

Therefore,

R0(x∗) < 1⇐⇒(µ+ k(x∗))2 log(a) > pm(µ+ k(x∗)) log(a)− pm log(d)k(x∗)

⇐⇒µ+ k(x∗)

pm
>

1

2

(
1− log(d)

log(a)

)
+

√
1

4

(
1− log(d)

log(a)

)2

+
µ

pm

log(d)

log(a)
.

(D.1)

Next, setting R0
0 = R0|k≡0, the basic reproduction number of the model without any treatment, we have

R0
0(0) = p0/µ, that is, µ = p0

R0
0(0)

and so, (D.1) becomes

R0(x∗) < 1⇐⇒k(x∗) >
pm
2

(
1− log(d)

log(a)

)
+

√
p2
m

4

(
1− log(d)

log(a)

)2

+
p0pm
R0

0(0)

log(d)

log(a)
− p0

R0
0(0)

.

Setting

γ =
pm
2

(
1− log(d)

log(a)

)
− p0

R0
0(0)

,

the above condition becomes

R0(x∗) < 1⇐⇒k(x∗) > γ +

√
γ2 +

p0

R0
0(0)

(
pm −

p0

R0
0(0)

)
. (D.2)
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Appendix E. Dissipativity and positivity

Let b(t, x) be the solution of (2.1) for the initial condition b(t = 0, ·) = b0(·). Setting ζ(x) = µ + k and
introducing the locally Lipschitzian function

f(b(t, ·))(x) =
1

(1 +B(t))
α

∫
R
J(x− y)p(y)b(t, y)dy,

equation (2.1) becomes

∂tb(t, x) = −ζ(x)b(t, x) + f(b(t, ·))(x). (E.1)

Theorem E.1. Let Assumption A be satisfied. Let b0 ∈ L1
+. Then

1. There exists a unique global solution v(·, b0) : [0,∞) → L1
+(R) of (2.1) with v(0, b0) = b0 and v(t, b0) =

b(t, ·) for all t > 0.
2. The semi-flow defined by {v(t, b0)}t is bounded dissipative and asymptotically smooth, and hence, it admits

a global attractor in L1
+(R).

3. The semi-flow {v(t, b0)}t is such that for any b0 ∈ L1
+(R) \ {0}

b(t, x) > 0, for all t > 0, x ∈ R.

Proof. 1. Since f : L1 → L1 is locally Lipschitz, for any b0 ∈ L1, there exists TM = TM (b0) > 0 such that (2.1)
has a unique solution b ∈ C

(
[0, TM )× R, L1

)
∩ C1

(
[0, TM )× R, L1

)
, eg., see [49] for classical results. Further,

if b0 ∈ L1
+, by (E.1), we easily find that b(t, ·) ∈ L1

+ for all t ∈ (0, TM ). This gives the local well-posedness and
positivity of (2.1). Next, we have

Ḃ(t) ≤ ‖J‖∞‖p‖∞
B(t)

(1 +B(t))
α − inf

R
ζ B(t),

which gives

B(t) ≤ max

(
‖b0‖L1 ,

[
‖J‖∞‖p‖∞

infR ζ

]1/α

− 1

)
, for all t ∈ [0, TM ). (E.2)

From where we establish the global well-posedness and bounded dissipativity in L1
+.

2. We now show that the semi-flow is asymptotically smooth, i.e., for any closed, bounded and positively
invariant set K ⊂ L1

+, there exists a compact set Ω ⊂ L1
+ such that dh(v(t,K),Ω)→ 0 as t→∞, where dh is

the Hausdorff semi-distance [24]. By (E.1) we have

b(t, ·) = e−ζ(x)tb0(·) +

∫ t

0

e−ζ(x)(t−s)f(b(s, ·))ds, for t ≥ 0, b0 ∈ L1
+.

Then, the compacity of f gives that {v(t, ·)}t is asymptotically smooth [57]. Note that, the compacity of f is
handled similarly as the compacity of the operator H that we introduce later in Section F.
3. By item 1, we find a positive constant c0 such that (1 +B(t))−α ≥ c0, for all t. Let u be the unique solution
of ∂tu(t, x) = −ζ(x)u(t, x) + c0

∫
R
J(x− y)p(y)u(t, y)dy,

u(0, ·) = b0.
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By the comparison principle (eg., Section 3 in [8]), we have b(t, x) ≥ u(t, x) ≥ 0 for all t ≥ 0 and x ∈ R. Therefore,
item 3. will follow if we show that u(t, x) > 0, for all t > 0 and x ∈ R. Setting U [u](x) = c0

∫
R J(x−y)p(y)u(y)dy

on L1(R), we find that U is continuous and generates an uniformly continuous and positive semigroup {eUt}t
on L1(R). Then, for each t ≥ 0,

eUt[b0] =

∞∑
l=0

tlU l[b0]

l!
, (E.3)

where the series converges in the operator norm. Since b0 6= 0,
∫
R J(x)dx > 0 and

U l+1[b0](x) = c0

∫
R
J(x− y)p(y)U l[b0](y)dy,

an iteration argument ensures the existence of l0 such that U l[b0](x) > 0 for x ∈ R and for all l ≥ l0. From
where, (E.3) gives that eUt[b0](x) > 0 for all x ∈ R. Setting ζ̄ = supR ζ(x), we then have

u(t, ·) = e−ζ̄teUt[b0] +

∫ t

0

e−ζ̄(t−s)eU(t−s)[(ζ̄ − ζ)u(s, ·)]ds ≥ e−ζ̄teUt[b0] > 0.

Appendix F. Equilibrium

The bacteria-free environment E0 = 0 is always an equilibrium of Model (2.1). In this section, we discuss the
existence of a nontrivial equilibrium b∗(·) > 0. From System (2.1) we find, for all x ∈ R

ω(x)

∫
R
J(x− y)ω(y)

√
pζb∗(y)dy = (1 +B∗)

α
√
pζb∗(x).

where ω(x) =
√
R0(x), and B∗ =

∫
b∗(x)dx. Setting v∗ =

√
pζb∗, it comes that v∗ is solution of the following

system

ω(x)

∫
R
J(x− y)ω(y)v∗(y)dy = (1 +B∗)

α
v∗(x). (F.1)

Therefore, the existence of b∗(·) > 0 is strongly related to the spectral property of the linear integral operator
H defined on Lp(R), for any p ≥ 1, by

H[v](x) = ω(x)

∫
R
J(x− y)ω(y)v(y)dy. (F.2)

We then have the following theorem:

Theorem F.1. Let Assumption A be satisfied. Let r (H) the spectral radius of operator H and φ > 0 the
associated eigenfunction normalized such that ‖φ‖L1 = 1. Define the quantity

K0 =
(r (H))

1/α − 1∫
R

φ√
pζ

dy
. (F.3)
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When r (H) ≤ 1, the bacteria-free equilibrium E0 = 0 is the unique equilibrium of Model (2.1).
When r (H) > 1, in addition to E0, Model (2.1) has a unique nutrient-bacteria equilibrium E∗ > 0 such that

E∗(x) = K0
φ(x)√
p(x)ζ(x)

. (F.4)

Furthermore, an explicit formula for the spectral radius r (H) of H reads r (H) = r0, where

r0 = sup
v∈L2,‖v‖L2=1

∫
R2

J(x− y)ω(x)ω(y)v(x)v(y)dxdy. (F.5)

Proof of Theorem F.1. Here, we deal with the existence of the principal eigenpair for the linear operator H,
and we proceed by several steps. First, we introduce the following lemma:

Lemma F.2. The following statements hold under Assumption A.

1. For each p ≥ 1, the operator H is compact and irreducible on Lp(R) with positive spectral radius, r(H) > 1.
Further, there exists a function up ∈ Lp(R) such that up > 0 a.e. and H[up] = r(H)up. Furthermore, if
u ∈ Lp+(R) \ {0} is such that H[u] = cu with c ∈ R, then u > 0 a.e., u ∈ span(up) and c = r(H).

2. The common spectral value of the operator H is characterized by r(H) = r0 for all p ≥ 1; where r0 is
defined by (F.5).

Before giving details on the proof of Lemma F.2, let us quickly end with the proof of Theorem F.1. Obviously,
E0 = 0 is always an equilibrium point of the model. We now check nontrivial solution b∗ > 0 of system (F.1).
Using above notations, (F.1) rewrites H[v∗](x) = (1 +B∗)αv∗(x). From Lemma F.2 we find r(H) = (1 +B∗)α >
1 and v∗ ∈ span(φ∗), wherein φ∗ ∈ L1(R) ∩ L∞(R) is the principal eigenfunction of H with φ∗ > 0 a.e. and

normalized by ‖φ∗‖L1 = 1. We then write v∗ = ηφ∗, for some constant η > 0; i.e. b∗ = ηφ∗√
pζ

and B∗ = η
∫

φ∗√
ζp

dy.

This completes the proof of Theorem F.1. It remains to proof Lemma F.2.

Proof of Lemma F.2. The proof is mostly based on the Krein-Rutman theorem for positive, irreducible, and
compact linear operators in Banach lattices.

H is a bounded operator. Since the kernel operator J ∈ L1(R) ∩ L∞(R), the operator H is a bounded
operator. Indeed, ∫

|H[u](x)|p dx ≤
∫ [

ω(x)

∫
J(x− y)ω(y)|u(y)|dy

]p
dx

≤ ‖ω‖2p∞
∫ [∫

J(x− y)|u(y)|dy
]p

dx

≤ ‖ω‖2p∞||u||
p
Lp .

Note that the last inequality comes from Young’s inequality and the fact that ‖J‖L1 = 1.

H is a compact operator in Lp (R) for any p ≥ 1. Denote by τhf , the translation of f : R→ R by h, and
defined by τhf(x) = f(x+ h) for all x ∈ R. Let p ∈ [1,∞) be given. Let u ∈ Lp(R) and h ∈ R be given. We have

‖τhH[u]−H[u]‖pLp(R) =

∫
R

∣∣∣∣∫
R
[τhω(x)J(x− y)− ω(x)J(x− y)]ω(y)u(y)dy

∣∣∣∣p dx.
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Then Young’s inequality (for integral operators) yields

‖τhH[u]−H[u]‖Lp(R) ≤ ‖τhωJ − ωJ‖L1(R)‖ω‖∞‖u‖Lp(R).

Since ‖τhωJ − ωJ‖L1(R) → 0 as h→ 0 one gets that

lim
h→0

τhH[u] = H[u] in Lp(R),

wherein the above convergence holds uniformly on bounded sets on Lp(R).
Next, let u ∈ Lp(R) and s > 0 be given. Then we have

∫
|x|>s

|H[u](x)|p dx ≤
∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|dy

]p
dx. (F.6)

Let R > 0 be given. Consider a smooth and nonnegative function χR such that 0 ≤ χR ≤ 1, χR(y) = 1 if |y| ≤ R
and χR(y) = 0 if |y| ≥ R+ 1. Let us remark that the gap between regions |y| ≤ R and |y| ≥ R+ 1 is necessary
for χR to be sufficiently ‘smooth’.

Setting a(x) = ω(x)
∫
R J(x − y)ω(y)|u(y)|χR(y)dy and b(x) = ω(x)

∫
R J(x − y)ω(y)|u(y)|(1 − χR(y))dy, we

have
[
ω(x)

∫
R J(x− y)ω(y)|u(y)|dy

]p
= [a(x) + b(x)]

p
. Thanks to the convexity of the function defined on [0,∞)

by z 7→ zp, it comes

[
1

2
a(x) +

1

2
b(x)

]p
≤ 1

2
ap(x) +

1

2
bp(x), ie., [a(x) + b(x)]

p ≤ 2p−1 [ap(x) + bp(x)] .

Thus, we can find some constant C = Cp > 0, such that the inequality (F.6) becomes

∫
|x|>s

|H[u](x)|p dx ≤Cp
∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|χR(y)dy

]p
dx

+Cp

∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|(1− χR(y))dy

]p
dx.

Now, note that there exists some constant C > 0 independent of u (and R) such that

∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|χR(y)dy

]p
dx

≤ C‖J‖p−1
∞ ||u||pLp(R)

∫
|x|>s

[
sup

|x−y|≤R+1

J(y)

]
dx.

Since the function x 7→ sup|x−y|≤R+1 J(y) belongs to L1(R), we then find a constant C > 0 such that the
previous inequality becomes

∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|χR(y)dy

]p
dx ≤ C‖J‖p−1

∞ ||u||pLp(R).
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On the other hand, since ‖J‖L1(R) = 1, Young inequality ensures that

∫
|x|>s

[
ω(x)

∫
R
J(x− y)ω(y)|u(y)|(1− χR(y))dy

]p
dx ≤ ‖ω‖p∞ sup

|y|≥R
|ω(y)|p||u||pLp(R).

Now, setting Bp(1) the unit ball in Lp(R), it comes that for all R > 0

lim sup
s→+∞

sup
u∈Bp(1)

∫
|x|>s

|H[u](x)|p dx ≤ Cp sup
|y|≥R

|ω(y)|p,

for some positive constant Cp.
Finally, by Assumption A, we have ω(x)→ 0 as |x| → ∞. From where

lim
s→+∞

sup
u∈Bp(1)

‖H[u]‖Lp({|x|≥s}) = 0.

Therefore, the Fréchet-Kolmogorov theorem applies and ensures that H is a compact operator on Lp(R).

The spectral radius of H is positive. By Assumption A, the function ω is positive on R, then the operator
H is irreducible on Lp(R), for all p ≥ 1. Then, Frobenius theorem (Thm. 4.2.13 and Cor. 4.2.15 in [40]) applies
and ensures that its spectral radius r (H) is positive and it is a simple eigenvalue associated to an eigenvector
ψ > 0 a.e. in R. Furthermore, if ζ ∈ R is an eigenvalue H associated to an eigenvector w ∈ Lp+(R) \ {0} then
ζ = r (H) and w > 0 a.e. in R. This ends with the proof of Lemma F.2, item 1.

We now prove that for all p ≥ 1, r(H) = r0, with r0 defined by (F.5). Denote by rp(H) the spectral
radius of H defined on Lp(R), for p ≥ 1. Then, with p = 1, by item 1. there exists a function u1 ∈ L1(R) with
u1 > 0 a.e. such that r1(H)u1 = Hu1. Let q ≥ 1 be given. Again by item 1., to show that rq(H) = r1(H),
it is sufficient to show that u1 ∈ Lq(R). Since u1 ∈ L1(R) and J ∈ L1(R) ∩ L∞(R), then the convolution
product J ∗ (ωu1) ∈ L1(R)∩L∞(R) and the result follows from Young inequality. Finally, due to the symmetry
hypothesis on the mutation kernel J , H is self-adjoint operator and then, the Rayleigh quotient formulation
for the principal eigenvalue of H ensures that r2 (H) = r0. This completes the proof of 2. and so the proof of
Lemma F.2.

Appendix G. Linearization at the bacteria-free equilibrium

At the bacterial-free equilibrium, the linear system of (2.1) writes

∂tb(t, x) = L[b(t, ·)](x),

with

L = U + T, (G.1)

and U [b] =
∫
R J(x− y)p(y)b(y)dy, T [b] = −ζb.

Let s(L) = sup{Reλ : λ ∈ σ(L)} the spectral bound of L, and H the operator introduced by (F.2). The
following result particularly establish a relation between s(L) and r(H).
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Proposition G.1.

� If s(L) > s(T ), then s(L) is an isolated and simple eigenvalue of L, whose eigen-space is spanned by
0 < φ ∈ L1(R), and if λ ∈ σ(L) and λ 6= s(L), then Reλ < s(L).

� If there exist λ ∈ R and 0 < φ ∈ L1(R) such that L[φ] = λφ, then s(L) = λ > s(T ).
� s(L) > 0 (resp. = 0, < 0) if and only if r(H) > 1 (resp. = 1, < 1).

Proof. By the same argument as in the proof of Lemma F.2, we find the compacity and irreducibility of U , and
the first item follows from [5](Thm. 2.2).
For the second item, let λ ∈ R and φ ∈ L1(R) such that L[φ] = λφ and ‖φ‖L1 = 1. Since T generates a uniformly
continuous, positive and uniformly exponentially stable semigroup, by Lemma F.2 and a general perturbation
result, note that the semigoup {eLt}t is positive. Furthermore, eLtφ = eλtφ and from where ‖eLt‖ ≤ eλt. Since
the growth bound of {eLt}t coincides with s(L) it comes s(L) ≤ λ and hence, s(L) = λ. We now show that
λ > s(T ). Indeed, λφ = L[φ] = U [φ]− ζφ > −ζφ and hence λ > − supR ζ = s(T ), from where the second item
follows.
It remains to prove the last item. Assume s(L) = 0. Then s(T ) = − supR ζ < 0 = s(L). From the first item,
we find φ > 0 such that L[φ] = 0, ie.,

∫
R J(x − y)p(y)φ(y)dy = ζ(x)φ(x), for all x ∈ R. Equivalently, this last

equality rewrites as

(
p(x)

ζ(x)

) 1
2
∫
R
J(x− y)

(
p(y)

ζ(y)

) 1
2

(p(y)ζ(y))
1
2 φ(y)dy = (p(x)ζ(x))

1
2 φ(x).

Hence, by the definition of the operator H in (F.2), it comes H[
√
ζpφ] =

√
ζp φ, that is, (1,

√
ζp φ) is an

eigen-pair of H. Hence, by Lemma F.2 it comes r(H) = 1. Next, assume that r(H) = 1. Let φ > 0 such that

H[φ] = φ. Then L[φ/
√
ζp] =

(
p
ζ

)− 1
2

(H[φ]− φ) = 0, and the second item gives s(L) = 0.

To conclude on the last item of the proposition, it is sufficient to prove that s(L) > 0 iff r(H) > 1. Assume
s(L) > 0, then we can find φ > 0 such that L[φ] = s(L)φ. Hence, H[

√
ζp φ] = (s(L)/ζ+1)

√
ζp φ ≥ (1+k)

√
ζp φ,

with k = s(L)× infR ζ
−1 > 0. By iterating, it comes Hn[

√
ζp φ] ≥ (1 + k)n

√
ζp φ for all n ≥ 1. This gives that

‖Hn‖1/n ≥ (1 + k) an hence r(H) ≥ 1 + k > 1. Conversely, let r(H) > 1 and φ > 0 the corresponding eigen-
function. Then L[φ/

√
ζp] = ζ(r(H) − 1) φ/

√
ζp ≤ cφ/

√
ζp, with c = (r(H) − 1) infR ζ > 0. By contradiction,

assume that s(L) < 0. Then, 0 /∈ σ(L) and (−L)−1 is positive as L generates a positive semigroup. Hence,

φ/
√
ζp = (−L)−1(−L)[φ/

√
ζp] ≤ −c(−L)−1[φ/

√
ζp].

As (−L)−1[φ/
√
ζp] ≥ 0, we find φ/

√
ζp ≤ 0, which leads to a contradiction. Hence, s(L) ≥ 0, and so s(L) >

0.

Appendix H. Stability results when r(H) < 1

Theorem H.1. 1. The bacteria-free equilibrium E0 is asymptotically stable if r(H) < 1 and unstable if
r(H) > 1.

2. When r(H) < 1, the bacteria-free equilibrium E0 is globally asymptotically stable in L1
+(R), that is, for

any solution b(t, ·) with initial b0 ∈ L1
+(R) \ {0}, we have

b(t, ·)→ 0 in L1
+(R) as t→∞.

Proof. 1. Proposition G.1 allows us to derive the following threshold result on the local stability of the bacteria-
free equilibrium.
2. By Theorem E.1 it suffices to prove item 2. for any b0 ∈ L1

+(R) \ {0} with ‖b(t, ·)‖L1 ≤ C for all t ≥ 0, where
C � 1. By (2.1), we have ∂tb(t, x) ≤ L[b(t, ·)](x), and by comparison principle, we find 0 ≤ b(t, ·) ≤ eLtb0, where
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{eLt}t is the positive semigroup generated by L. Next, by Proposition G.1, we have s(L) < 0 because r(H) < 1.
Furthermore, since the growth bound of {eLt}t is the same as s(L), we conclude that

‖b(t, ·)‖L1 ≤ c0e−c1t‖b0‖L1 , ∀t ≥ 0,

for the constants c0 > 1 and c1 > 0. This ends the proof of the theorem.

Appendix I. Persistence results when r(H) > 1

Theorem I.1. Suppose r(H) > 1, then the semi-flow {v(t, b0)}t is uniformly persistent, that is, there exists a
constant ν > 0 such that, for any b0 ∈ L1

+(R) \ {0}, the unique solution v(t, b0) = b(t, ·) of (2.1) with initial
data b0 satisfies

lim inf
t→∞

‖b(t, ·)‖L1 > ν.

Proof. We first establish the weak uniform persistence, that is, there exists ν1 > 0 such that

lim sup
t→∞

‖b(t, ·)‖L1 > ν1. (I.1)

By contradiction, suppose that for τ > 0, there exists bτ0 ∈ L1
+(R) \ {0} such that the unique solution bτ (t, x)

of (2.1) with initial data bτ0 satisfies

lim sup
t→∞

‖bτ (t, ·)‖L1 ≤ τ.

Replacing bτ0 by bτ (tτ ) for some tτ � 1 and applying item 3. of Theorem E.1, without loss of generality, we may
assume that 0 < ‖bτ (t, ·)‖L1 < τ for all t ≥ 0. Then,

∂tb
τ (t, ·) ≥ Lτ [bτ (t, ·)], (I.2)

where Lτ is the operator defined by Lτ [u(·)](x) = −ζ(x)u(x) + (1 + τ)−α
∫
R J(x− y)p(y)u(y)dy. We also intro-

duce the operator Hτ [u(·)](x) = (1 + τ)−αω(x)
∫
R J(x− y)ω(y)u(y)dy.

Note that Hτ → H in the operator norm as τ → 0 and where H is the operator introduced by (F.2). Since
r(H) > 1, we can choose τ0 sufficiently small such that r(Hτ0) > 1, as the spectral radius is a continuous
function of compact linear operators. By same arguments as Proposition G.1 (ie., a version of Proposition G.1
for Lτ0), s(Lτ0) > 0 and it is an isolated and simple eigenvalue with corresponding eigenfunction φτ0 > 0 and
normalized such that ‖φτ0‖ = 1. Let c > 0 be a constant such that cφτ0(x) ≤ bτ00 (x) for all x ∈ R. By Lemma F.2
and general perturbation results, the semigroup {eLτ0 t} generated by Lτ0 is uniformly continuous and positive.
It comes

eL
τ0 tbτ00 ≥ eL

τ0 tcφτ0 = es(L
τ0 )tcφτ0 .

From where ‖eLτ0 tbτ00 ‖L1 → ∞ as t → ∞, since s(Lτ0) > 0. By the comparison principle, (I.2) gives
‖bτ0(t, ·)‖L1 ≥ ‖eLτ0 tbτ00 ‖L1 →∞ as t→∞ and leading to a contradiction.

It remains to show that there exists a constant ν > 0

lim inf
t→∞

‖b(t, ·)‖L1 > ν.
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The function χ(u) = ‖u‖L1 is continuous and the compactness assumption to apply Theorem A.34 of [56] is
satisfied because the semiflow v(t, b0) induced by the nonnegative solutions of (2.1) has a compact attractor of
bounded sets by Theorem E.1. By Theorem E.1, χ(b0) > 0 implies χ (v(t, b0)) > 0 and the result follows from
[56].
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