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Abstract
1. Species distribution models (SDM) have become one of the most popular pre-

dictive tools in ecology. With the advent of new computation and remote sens-
ing technology, high- resolution environmental data sets are becoming more and 
more common predictors in these modelling efforts. Understanding how scaling 
affects their outputs is therefore fundamental to understand their applicability.

2. Here, we develop a theoretical basis to understand the consequences of aggre-
gating occurrence and environmental data at different resolutions. We provide 
a theoretical framework, along with numerical simulations and a real- world case 
study, to show how these scaling rules influence predictive outputs.

3. We show that the properties of the environment– occurrence relationships change 
when the data are aggregated: the mean probability of occurrence and species 
prevalence increases, the optimal environmental values shift and classification rates 
increase at coarser resolutions up to a certain level. Furthermore, and contrary to 
the widespread expectation that high- resolution data would produce better predic-
tions, we show here that model performance may increase using coarser resolution 
data sets rather than the inverse. Finally, we also show that model performance de-
pends not only on the environment– occurrence relationship but also on the interac-
tion between this and the geography and distribution of the available environment.

4. This theoretical framework helps understanding previously incoherent results re-
garding SDM upscaling and model performance, and illustrates how theoretical 
and empirical results can provide important feedbacks to advance in understand-
ing scaling issues in macroecology. The interaction between the shape of the 
environment– occurrence relationship and the rates of change of the environment 
is fundamental to understand the effects of upscaling in model performance, and 
may explain why some models are more difficult to transfer to different regions. 
Most importantly, we argue that there are conceptual choices related to scaling 
and SDM fitting that require expert knowledge and further explorations between 
theory and practice in macroecology.
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1  |  INTRODUC TION

Preparing for global change will require integrating phenomena that 
occur at different temporal and spatial scales (Levin, 1992). Scaling 
issues are therefore central to face such challenges. In the last de-
cades, technological advances in a variety of disciplines have permit-
ted integration of ecological and evolutionary processes at small and 
large scales (Chave, 2013). Alongside these advances, species dis-
tribution models (SDM) have become a widespread ecological tool 
with multiple applications (Araujo et al., 2019; Guisan et al., 2017; 
Guisan & Thuiller, 2005), arguably the most important predictive 
tool to anticipate climate change effects on biodiversity (Araújo & 
Guisan, 2006; Bellard et al., 2012; Dawson et al., 2011).

SDMs have been used to make predictions across different time 
periods. For example, to identify potential habitat for conservation 
purposes, current environmental conditions where the species is 
known to occur are used to identify potential habitat where sampling 
has been limited or non- existent (Guisan et al., 2013). In such situa-
tions, the resolution of the environmental predictors in the calibra-
tion and the prediction data sets is likely similar. In other situations 
however, one might be interested in using the current occurrence– 
environment relationships to predict the species past (hindcasting) 
or future (forecasting) distributions (Araujo et al., 2019; Varela 
et al., 2011). In such situations, palaeoclimate, climate change and 
land use scenarios are sometimes difficult to find for the desired time 
periods at the same high resolutions. On top of that, the resolution 
of environmental and physical predictors has improved considerably 
over time (Pradervand et al., 2014). At the onset of macroecology as 
a discipline (Brown, 1995), the most common continental or global 
data sets could go from 1° (~110 km at the equator) to 10° (~1100 km) 
resolution (e.g. see Rahbek, 2005). In contrast, global climate data 
sets such as Worldclim (Fick & Hijmans, 2017) or CHELSA (Karger 
et al., 2017) are now available at ~1 km resolution. Moreover, sen-
sors flown on drones or planes can generate environmental data 
that amount to a few metre resolution over large regional extents 
(e.g. de Vries et al., 2021; Randin et al., 2020). Therefore, knowing 
how SDMs will behave when changing the resolution of the data sets 
and the scale of prediction is key to understanding how reliable they 
might be for different applications.

In general, the intuitive expectation dominating the SDM lit-
erature in this respect has been that using higher resolution data 
(i.e. fine grain) would result in better predictive ability (de Vries 
et al., 2021; Deblauwe et al., 2016; Pradervand et al., 2014; Wun-
derlich et al., 2022). However, many empirical studies have found the 
opposite result (Moudrý & Šímová, 2012; Trivedi et al., 2008; Wun-
derlich et al., 2022). Resolution also interacts with other factors, and 
may produce increases, decreases or no significant changes in terms 
of predictive ability (Franklin et al., 2013; Guisan et al., 2007; Mou-
drý et al., 2023; Suarez- Seoane et al., 2014). High- resolution envi-
ronmental data sets are often available for smaller regional extents 
than the national or global coarser data sets. Since the extent of the 
study area can also influence model performance (Betts et al., 2006; 
Suarez- Seoane et al., 2014), varying extent and resolution at the 

same time makes it difficult to isolate the effects of resolution in 
empirical studies. Similarly, regional biological surveys may some-
times be very detailed at small extents, but they are only available 
in the form of Atlases with coarse resolutions at national or larger 
extents (Moudrý et al., 2023). Adding to this, many empirical studies 
have left the occurrence data intact, while varying the resolution 
of the environmental layers, raising the question of the interaction 
between resolution of predictors and response variables; yet others 
do not explicitly specify what actions were taken, if any, to match 
the predictors' resolution to that of the occurrence data. To help 
remedy these issues, Zurell et al. (2020) proposed a reporting pro-
tocol that includes predictor and occurrence resolution, while Mou-
drý et al. (2023) suggested that SDM studies should also report the 
ratio between occurrence and predictor resolutions. Simulations to 
study the effects of resolution while avoiding the caveats of empir-
ical studies have concluded that SDM performance is better when 
modelling is carried out at the resolution at which the species oc-
currences were originally simulated (Connor et al., 2018; Mertes & 
Jetz, 2018). Lacking from these SDM scaling studies is a theoretical 
basis on which to support expectations of SDM behaviour with re-
spect to resolution and upscaling.

When we model large- scale species ranges using fine- resolution 
data sets such as the ones we see today (i.e. 20 km or finer grain), 
we may be crossing a line towards a spatial domain where processes 
differ in a fundamental way that demands additional considerations 
that are not necessarily immediately intuitive. For example, ingrained 
in the broader ecological literature is the idea that, while large- scale 
species distributions are more or less stable over climatically homo-
geneous periods (Brown & Lomolino, 1998; Gaston, 2003), patterns 
at finer temporal and spatial grains are highly dynamic and stochastic 
(Hanski, 1999). It is often assumed that large- scale pedoclimatic gra-
dients determine the broad species ranges setting physiological tol-
erance limits to species' long- term survival, whereas local occupancy 
is determined by dispersal, colonization and extinction dynamics 
that can have deterministic as well as stochastic components (Gas-
ton, 2003; MacKenzie et al., 2006; Mackey & Lindenmayer, 2001). 
This results in suitable habitat that may be empty at any given 
point in time locally. The rules that apply across scales from spe-
cies ranges to local occupancy may therefore be different, and the 
environment– occurrence relationships may vary, both mechanisti-
cally and conceptually, as a function of scale (Gaston, 2003; Mackey 
& Lindenmayer, 2001). A corollary of this is that presence– absence 
patterns would be more stable at larger spatial and temporal scales, 
potentially making them easier to predict. However, in contrast with 
this ecological hierarchical view of species distributions, the SDM 
literature has most often assumed that environment– occurrence re-
lationships are constant across scales, without much reference to 
any theoretical framework. In this context, models fitted using one 
resolution are sometimes projected into a different resolution (e.g. 
Araújo et al., 2005; Suarez- Seoane et al., 2014), and measures of 
model performance have heavily relied on presence– absence clas-
sification rates at all scales (Allouche et al., 2006; Lobo et al., 2008; 
Meynard & Kaplan, 2012).
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Here, we aim at tackling this lack of theoretical framework for 
scaling SDMs by building a first theoretical upscaling theory. We 
will first develop a theoretical framework that will allow us to have 
clear expectations with respect to the probability of occurrence, 
the environment– occurrence relationship and model performance 
in terms of presence– absence classification rates when applying an 
upscaling strategy. We will exemplify its empirical consequences 
through numerical simulations and through a real- world case study. 
We further demonstrate that how model performance changes 
across scales depends on the interaction between landscape prop-
erties, the shape of the environment– occurrence relationship and 
how it is positioned with respect to the available environmental 
gradients.

2  |  MATERIAL S AND METHODS

To understand the effects of upscaling in SDMs, particularly with 
respect to resolution, we need to distinguish at least three facets of 
the upscaling process, namely, how the upscaling process affects: 
(1) the aggregate probability of occurrence, (2) the environment– 
occurrence relationship and (3) model predictive performance, 
herein treated in terms of our ability to correctly classify presences 
and absences.

2.1  |  Theoretical and numerical development of the 
conceptual framework

For simplicity, we summarize the main points of the theoretical de-
velopment below. A detailed account is available in Appendix S1.

The basic theoretical problem that we wish to explore is how 
an SDM developed based on environmental and presence– absence 
data at a given resolution relates to an equivalent model wherein 
both predictors and occurrence have been aggregated in space 
across multiple individual grid cells (Figure 1). Following Moudrý 
et al. (2023)'s terminology, our response- to- predictor resolution 
ratio will always remain 1:1.

We will start by exploring three simple approaches to aggregat-
ing presence– absence data (Figure 1), which will provide a baseline 
for understanding what happens in situations that are more com-
plex. In each of these, we will initially assume that environmental 
conditions within the aggregate are homogeneous (the effects of 
heterogeneity within the aggregates are treated in Appendix S1 and 
are discussed later).

Theoretical expectations will then be illustrated through nu-
merical simulations using virtual species over different virtual tem-
perature gradients. Simulations focused on the second aggregation 
scenario (Figure 1b), since this is the more realistic and most com-
mon aggregation strategy found in real SDM studies; temperature of 
the aggregated resolutions was calculated as the average of the cor-
responding finer resolution data sets. The environment– occurrence 
relationships, as well as the structure of the virtual landscapes, were 

tailored to tackle predictions made during the theoretical demon-
stration. The simulation framework followed virtual species guide-
lines provided in Meynard et al. (2019) and were implemented using 
the virtual species package (Leroy et al., 2016) in R v4.2.2 (R Core 
Team, 2022). The simulated presence– absence patterns were then 
upscaled following the second aggregation scenario, that is, a fine 
grain occurrence is translated into a coarse grain occurrence, regard-
less of whether there is one or multiple occurrences within the focal 
grid cell. Notice that presence– absence patterns here are perfect, 
that is, there is no detection, positional or misclassification errors 
associated with the data set. We used the area under the ROC curve 
(AUC; Fielding & Bell, 1997) to illustrate the changes of model per-
formance across different scales.

2.2  |  A real- world SDM case study: The desert 
locust in north- western Africa

Desert Locust surveys were extracted from the UN- FAO Locust 
Information data set (FAO, 2022). We used data over a period of 
20 years (2000– 2020), where the observers recorded presences and 
absences of desert locusts (Schistocerca gregaria) on several point 
intervals along recurrent survey routes. Other relevant biological 
information recorded, such as stage of development (i.e. hoppers 
vs. adults) and phase (i.e. gregarious vs. solitary phase), allowed us 
to focus on recession periods (i.e. when no adult swarms and hop-
per bands are found damaging crops). We limited the extent of the 
study area to Mauritania, Senegal and Morocco, since this area in-
cludes a marked environmental gradient and is currently one of the 
best surveyed over the desert locust range (Piou et al., 2017). We 
also limited model calibration and validation data sets to the 95% 
central values of environmental gradients surveyed, to avoid outli-
ers in the calibration range. We eliminated surveys during periods of 
outbreaks, when individuals have a gregarious behaviour that form 
hopper bands or adult swarms that can disperse long distances and 
during which they can be found in areas outside of their long- term 
persistence range (similar to Meynard et al., 2017). We aggregated 
temporal data at the finest spatial resolution of the original climatic 
data set (30 arc- seconds), that is, each grid cell was recorded as pre-
sent if any of the surveys in the 20- year period found hoppers or 
adults during remission periods, and absent if all surveys recorded 
absences; non- surveyed areas were therefore left out of the calibra-
tion set. This results in 43,694 surveyed grid cells (roughly 0.1% of 
the study area) at the finest resolution, of which 20,002 represent 
presence records (46%). This data set was divided into an 80% used 
for model calibration and the remaining 20% used for model evalua-
tion, a procedure that was repeated 10 times.

The finest resolution in our analyses corresponds to the ~1 km 
resolution (30 arc- seconds) of the CHELSA v2.1 climatic data set 
(Karger et al., 2017). As with the numerical simulations, environ-
mental and occurrence data were subsequently upscaled (i.e. ag-
gregated) using the second method described above (Figure 1b). 
We aggregated cells at 10 different resolutions, from the 1 × 1 finer 
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resolution to the largest 19 × 19 resolution, in intervals of two grid 
cells (1 × 1, 3 × 3, 5 × 5 etc.). CHELSA contains 40+ variables (Karger 
et al., 2017), many of which are irrelevant for this area. We there-
fore reduced to 19 bioclim variables (mean, minimum, maximum and 
variance of annual and seasonal rainfall and temperature), plus net 
primary productivity, degree- days above 10°C and growing season 
length. We carried out a principal component analysis with stan-
dardized environmental variables at the original data resolution, 
and extracted the first two principal components, which explained 
72% of the variance. We used these two principal component axes 
(named PC1 and PC2, respectively) as the main predictors in our 
SDM exercises. When aggregating data, we used mean PC1 and PC2 
values at coarser resolutions.

We combined five modelling techniques that are among the 
best- performing SDMs currently used (Norberg et al., 2019; Valavi 
et al., 2022): GAM (mgcv), GLM- Lasso (glmnet), RandomForest- 
downsampled (randomForest), Maxent (dismo) and BRT (gbm); the 
ensemble was calculated as the average across models. All SDMs 

were carried out at the 1:1 predictor- to- response ratio for each scale. 
The 20% left out as testing set (see above) was used to calculate per-
formance metrics based on presence– absence classification rates at 
each of the 10 iterations. Notice that absences represent grid cells 
that were visited, but where the species was never recorded as pres-
ent throughout the 20- year period. Scripts and data can be found in 
our GitHub— Zenodo repository (Meynard et al., 2023) and are pre-
sented in Appendix S2.

3  |  RESULTS

3.1  |  Theoretical and numerical results

In the first aggregation scenario (Figure 1a), only one grid cell is sam-
pled to register the presence or absence of the species in the larger 
aggregate. The aggregate receives the value of that one random 
sample, whether it is a presence or an absence. If this is done over 

F I G U R E  1  A schematic figure 
representing the three upscaling 
strategies studied in the theoretical 
section.
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a large landscape and with many well- spread samples that include 
presences and absences, the probability of occurrence of the species 
in the aggregate will reflect the average probability of occurrence 
of the smaller grid cells within the aggregate. To answer our three 
initial questions then: (1) the correct theoretical probability of occur-
rence of the larger aggregate corresponds to the mean probability 
of occurrence of the smaller units; (2) the environment– occurrence 
relationship remains unchanged during the upscaling process; and 
(3) the predictive ability of the models remains unchanged regard-
less of the resolution of the environmental and occurrence data set. 
Notice, however, that if one were to apply this aggregation strategy 
in a real setting, it would require randomly sampling presence and 
absence data within larger aggregates, meaning that some presence 
records (e.g. well- known habitat) would be ignored. This is an un-
likely scenario, both because random sampling is rare, and because if 
some well- known habitat falls within an area of survey, it is unlikely 
to be dismissed.

In the second aggregation scenario (Figure 1b), the aggregate will 
be recorded as a presence if any of the smaller grid cells is occupied, 
regardless of whether it is only one or many grid cells that are occu-
pied. This is what would happen with relatively dense (and homo-
geneously distributed) sampling data aggregated at a given coarser 
scale either to match the resolution of the predictors or to meet 
some other modelling objective (e.g. to meet spatial scales of man-
agement). Notice that this is the most common procedure in SDM 
practice, where it is often recommended to trim the occurrences 
(but not the absences) to a single presence at the resolution of the 
environmental data sets (e.g. Aiello- Lammens et al., 2015).

In this case, the correct theoretical probability of occurrence of 
the aggregate is the complement of the probability that none of the 
grid cells is occupied, ultimately leading to higher perceived probabil-
ity of presence in the aggregate than in the unaggregated system, as 
within each aggregate one has multiple chances to observe a species. 
In this scenario, the relationship between the environmental gradi-
ents and the probability of occurrence will not be the same at the 
aggregate level than at the smaller grid level, meaning that the shape 
of the occurrence– environment relationship is resolution dependent.

A first example is given assuming a single environmental gra-
dient with a logistic relationship to the probability of occurrence 
(Figure 2a). In this simple case, even if the relationship is still ap-
proximately logistic at the aggregate level, the inflexion point is 
displaced towards the right with respect to the environmental gra-
dient, and the slope of the logistic becomes steeper the larger the 
aggregate. However, the slope of the logistic curve at higher ag-
gregation levels never reaches a threshold- like relationship, con-
verging instead towards a finite maximum inflexion- point slope 
(Figure 2a). A second example comes from assuming a normal dis-
tribution of the probability of occurrence with respect to a unique 
environmental gradient. In this case, the results are similar to a 
double- sided logistic distribution (Figure 2b): As we increase the 
level of aggregation, the core area of species presence becomes 
fatter towards the sides and taller, but never reaches a two- sided 
threshold relationship. This demonstrates that the shape and 

parameter values associated with the environment– occurrence 
relationship change when the same data set is scaled up. A side ef-
fect of this is that the overall prevalence of the species is higher at 
coarser resolutions, the probability of occurrence being displaced 
globally upwards (Figure 2).

How scale of aggregation will impact SDM presence– absence 
classification performance indices (e.g. AUC and true skill sta-
tistic [TSS] among others, see Allouche et al., 2006; Fielding & 
Bell, 1997) depends not only on the environment– occurrence 
relationship but also on the relationship between space and en-
vironmental conditions. Likely, the most important effect is the 
shape of the environment– occurrence relationship itself, and its 
position with respect to the available environmental gradients. 

F I G U R E  2  Effects of upscaling on the shape of the 
environment– occurrence relationships: (a) for a sigmoidal 
environment– occurrence relationship, aggregation will move the 
inflexion point following the black arrow, that is, to a higher mean 
probability of occurrence and along the environmental gradient (in 
this case towards higher temperatures); the slope of the curve at 
the inflexion point also increases; (b) for a Gaussian response curve, 
the result is similar (overall higher mean probability of occurrence, 
steeper slope at inflexion point and change in the position of the 
inflexion points along the environmental gradient).
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Model performance is essentially determined by areas for which 
environmental conditions lead to probabilities of occupancy that 
are far from zero or one. As aggregation initially increases the 
slope of the environment– occupancy relationship (Figure 2), this 
will have a tendency to reduce the area over which probabilities 
of occupancy are intermediate, thereby increasing model per-
formance as level of aggregation is increased. However, because 
the slope in the logistic curve (or the slopes of the Gaussian bell) 
reaches an asymptote at the highest aggregation levels, the posi-
tion of this inflexion point with respect to the environmental con-
ditions available in the landscape will be key to determine model 

performance at higher aggregation scales (Figure 3). Of particular 
relevance is how common or rare the environmental conditions 
that are favourable to a species' occurrence are in the landscape, 
especially for intermediate probabilities of occurrence. As ag-
gregation is increased, the mean environmental conditions over 
which the probability of occurrence is intermediate- to- high will 
be shifting in the environmental axis. Depending on the relative 
prevalence of environmental conditions producing intermediate 
probabilities of occupancy for the unaggregated and aggregated 
landscapes, aggregation could lead to increases or decreases in 
model performance.

F I G U R E  3  Interaction between 
environment– occurrence relationships, 
distribution of environmental drivers 
and AUC (area under the ROC curve), as 
illustrated by a virtual species simulation. 
In all simulations, the virtual species is the 
same and has a logistic response to the 
temperature gradient, and there were 80 
replicates for each particular aggregation 
scale. The response curve therefore 
behaves as in Figure 2a during the 
upscaling process. Here, (a) we generated 
three types of virtual temperature 
landscapes, depending on how 
temperatures are changing along the y- 
spatial axis: in the red curve, temperature 
increases linearly (i.e. at a fixed rate) along 
the y- axis, as shown in the landscape (b); 
in the green line, intermediate values 
of temperature are prevalent, since 
temperature is changing slowly exactly 
where the inflexion point is for the virtual 
species (and remember that the upscaling 
process is moving this inflexion point 
towards higher temperatures at coarser 
resolutions), as shown in landscape 
(d); finally, the blue line indicates a 
landscape for which intermediate values 
of temperature are changing quickly, 
therefore making them less prevalent than 
extreme values, as shown in landscape 
(f). Panels (c, e, g) show the behaviour 
of the ensemble model performance in 
terms of presence– absence classification 
rates, as measured by the AUC, during 
the aggregation process, for each of the 
landscape types they face (b, d and f 
respectively).
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To illustrate this, we projected the same environment– 
occurrence relationship into three different types of landscapes 
(Figure 3). In the first one, temperature is increasing at a regular 
pace (linearly increasing along the y- axis, red line in Figure 3a, ex-
ample landscape in Figure 3b); in the second case, temperature is 
following a sigmoidal increase, where intermediate temperature 
values are prevalent (green line, Figure 3a, example landscape in 
Figure 3d); and in the final landscape, temperature is also increas-
ing in the y- axis following a sigmoidal, but where intermediate val-
ues of temperature change quickly (blue line in Figure 3a, example 
landscape in Figure 3f). In the aggregation process, the virtual spe-
cies is shifting its mean probability of occurrence upwards and to-
wards higher temperatures (following Figure 2a), as the upscaling 
is taking effect. This means that the available favourable environ-
ment is becoming more common, albeit at different rates between 
landscapes (Figure 3b,d,f). This translates into classification rate 
performances that are increasing and then stabilizing around a 
maximum value past the 4 × 4 aggregation scale for the linear case, 
whereas the AUC decreases and becomes more erratic after the 
8 × 8 aggregation scale for the nonlinear cases, but especially so 
for the blue case, which corresponds to fast rates of change in the 
environmental gradient right where the intermediate probabilities 
of occurrence (i.e. inflexion point) occur.

To answer our three initial questions for this aggregation sce-
nario then: (1) the correct theoretical probability of occurrence 
of the larger aggregate will be shifted to higher values; (2) the 
environment– occurrence relationship changes during the upscaling 
process, overall increasing the mean probability of occurrence of 
the species when using coarser resolutions, and shifting the posi-
tion of the inflexion point (i.e. where intermediate probabilities of 
occurrence can be found) over the environmental gradient; and (3) 
the predictive ability of the models will depend on the interactions 
between environment and occurrence relationships, as well as the 
relative prevalence and rate of change of environmental conditions 
available to the species of interest. There is usually an increase of 
classification performance up to a level, where model performance 
stabilizes around a maximum classification rate, or decreases, de-
pending on the frequency distribution of favourable environments 
in the landscape with respect to the environment– occurrence rela-
tionship (Figure 3).

The third and final theoretical aggregation scenario (Figure 1c) 
is the complement of the second one in that here we will require all 
the composing grid cells to be occupied before we declare the ag-
gregate to be occupied. In this rather unlikely case, the probability 
of occurrence of the aggregate will be equivalent to the probability 
that none of the grid cells are empty, and the implications for the 
probability of occurrence and its relationship to the environmental 
gradients mirror those of the second scenario and will not be dis-
cussed further.

The main point to draw from this theoretical framework is that 
spatial aggregation, at least in the most realistic aggregation sce-
nario, fundamentally changes the parameters in the environment– 
occurrence relationship in a predictable way. In other words, 

there is no reason to expect that upscaling will preserve the same 
environment– occurrence relationships as in the original fine grain 
data set. Moreover, contrary to the prevalent intuitive expectation, 
aggregation may increase our predictive ability up to a certain level.

3.2  |  A real case study: Upscaling a desert locust 
SDM in north- western Africa

This case study shows how the theoretical findings translate into 
a real- case SDM. First, as expected, the prevalence of the species 
seems to increase in the landscape as a side effect of the upscaling 
process (Figure 4). Notice that this change in prevalence is purely an 
effect of the upscaling strategy which is coarsening the occurrence 
grain.

Second, this translates into several changes across scales in the 
environment– occurrence relationship (Figure 5). If we look at the re-
sponse curves across both environmental gradients produced by the 
ensemble models, we can see that upscaling from 1 × 1 to 19 × 19 
globally increases the probability of occurrence, as the environment– 
occurrence relationships along PC1 and PC2 shift upwards when we 
use coarser grains of analysis (Figure 5). Although these curves do 
not match the more idealistic logistic or Gaussian cases shown in Fig-
ure 2, the theoretical predictions that the environment– occurrence 
relationship changes across resolutions and globally increases the 
species prevalence at coarser grains remain valid.

Finally, this reflects into the classification rate performance of 
the models in a predictable way. As expected, classification rates 
increase as we upscale from a 1 × 1 to a 11 × 11 resolution (Figure 6). 
Beyond that point, classification rates remain constant and/or de-
crease past the 15 × 15 aggregation scale.

4  |  DISCUSSION

4.1  |  Clarifying some previous results regarding 
resolution in the SDM literature

Our upscaling theoretical framework helps explaining some of the pre-
vious results regarding the effects of resolution on model performance. 
The fact that the environment– occurrence relationship is changing as 
a side effect of the aggregation process means that, as a general rule, 
calibrating SDM models using one resolution and projecting at a dif-
ferent resolution (e.g. Araújo et al., 2005) is likely to fail, unless the 
environment over which the probability of occurrence is intermedi-
ate is changing very slowly in the projection landscape (Figure 3d,e). It 
also means that an upscaling procedure that works in one region might 
not work in a different one, especially if environmental gradients are 
steeper in one of them. This may also help explain the fact that some 
models seem to be perfectly transferable from one region to another, 
while others are not (Rana & Tolvanen, 2021; Randin et al., 2006), and 
why the choice of predictors has such a large influence on model trans-
ferability (Petitpierre et al., 2017). Studying the rates of change of the 
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environmental gradients driving SDMs of the species of interest, espe-
cially at intermediate probability values, might be an interesting venue 
to predict model transferability between regions.

In reality, however, many factors are covarying with resolution, 
so it becomes difficult to determine which one is the main culprit 
in explaining model performance. For example, in Suarez- Seoane 

F I G U R E  5  Environment– occurrence 
relationship across scales in the Desert 
Locust along the environmental gradients 
used in an species distribution model 
ensemble modelling effort. Upper row (a, 
b): response with respect to PC1; lower 
row (c, d): response with respect to PC2. 
Left (a, c): GAM functional responses; 
Right (b, d): ensemble of five different 
modelling techniques (GAM, random 
forests, boosted regression, GLM- Lasso 
and Maxent). The line represents mean 
predicted probability of occurrence from 
10 replicates of the data splitting, and the 
corresponding coloured areas are the 95% 
confidence intervals. Notice that the mean 
probability of occurrence shifts upwards 
and changes through the aggregation 
process. Black = finest grain (1 grid cell); 
yellow = aggregation of 11 × 11 grid cells; 
green = coarsest grain (aggregation of 
19 × 19 grid cells).
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F I G U R E  4  Upscaling effects on 
the perceived species distribution and 
prevalence. Dark blue indicates presence 
records, light blue indicates absences; 
yellow areas are part of the study area 
but were not surveyed during the period 
of study. Notice that the data used to 
draw the maps are always the same; 
the perceived increased prevalence is 
therefore a side effect of aggregation 
using a coarser resolution. Different 
aggregation scales: (a) 1 × 1 cells (no 
aggregation); (b) 5 × 5 grid cells; (c) 11 × 11 
grid cells; (d) 19 × 19 grid cells.

(a) Scale = 1 x 1 (b) Scale = 5 x 5

(c) Scale = 11 x 11 (d) Scale = 19 x 19
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et al. (2014), some of the regional models (i.e. smaller extent) had 
poor predictive performances, which the authors explained through 
the more marginal positions of these regions with respect to the 
overall biogeographic gradient. In this context, it was difficult to in-
terpret the different directions of variation of the performance index 
used (AUC), sometimes increasing or decreasing, as the extent, res-
olution and position on the environmental gradients were all varying 
at the same time. Our theoretical framework clearly explains why 
classification success metrics could be improving at coarse resolu-
tions, and why, after a certain point, coarser resolutions could bring 
a decrease in AUC due to the interaction between environmental 
gradients and environment– occurrence relationships. So they also 
help explain the counterintuitive results in Wunderlich et al. (2022) 
and Trivedi et al. (2008), among others, where AUC values improved 
at coarser resolutions.

Our theoretical framework also supports the idea that overpre-
diction is an important side effect of the upscaling process (Con-
nor et al., 2018; Franklin et al., 2013). Indeed, we do not need much 
analysis to understand the effects that this upscaling process has 
on the perceived species prevalence (Figure 4). However, the cor-
responding changes in the environment– occurrence relationships 
(Figure 5) are perhaps less intuitive and equally important: The esti-
mate mean probability of occurrence will be higher just by virtue of 
using a coarser resolution in the modelling process. This is visible in 

the numerical simulations (Figure 2), but also in the case study (Fig-
ure 5) and in other real- case studies such as de Vries et al. (2021) and 
Franklin et al. (2013) where species responses are wider at coarser 
resolutions.

Finally, with respect to previous simulation studies, our frame-
work supports the idea that SDM performance is best when the re-
sponse grain and the predictor grain are the same (Connor et al., 2018; 
Mertes & Jetz, 2018), since we showed that upscaling itself will 
change the shape of the environment– occurrence relationship. 
Also, upscaling will produce larger areas of overprediction (Connor 
et al., 2018; Franklin et al., 2013) as an artefact of using larger spa-
tial units. However, our framework goes a step further in providing 
a clear mechanism, and an explanation to coarser resolution some-
times increasing predictive ability (Trivedi et al., 2008; Wunderlich 
et al., 2022). Both Connor et al. (2018) and Mertes and Jetz (2018), 
using simulations, concluded that fine predictor resolution produces 
higher model performance. However, in their studies, the occur-
rence data were not degraded in the same way the environmental 
data were, changing the response- to- predictor ratio (sensu Moudrý 
et al., 2023) across simulations. This highlights the importance of un-
derstanding how far the implicit assumptions of the simulation pro-
cess might influence general conclusions (Meynard et al., 2019), and 
the utility of explicitly reporting the resolution of both predictor and 
response variables (Moudrý et al., 2023; Zurell et al., 2020). Here, we 

F I G U R E  6  Effect of upscaling on presence– absence classification rates using different performance indices applied to a validation set. (a) 
AUC, area under the ROC curve; (b) TSS, true skill statistic; (c) PCC, proportion of correctly classified; (d) Kappa, Kappa statistic. The x- axis 
denotes the aggregation scale, with 1 = no aggregation with respect to the native resolution, 3 = aggregation of 3 × 3 grid cells, etc. Boxplots 
indicate median values from 10 data splits in the original Desert Locust data set (80% used for model calibration, 20% for validation).
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showed that fine- resolution environmental data are better for fine- 
resolution occurrence data. However, we also showed that increasing 
both the occurrence and the environmental grain can provide higher 
classification rates. In reality, there might be a strong trade- off be-
tween being more certain about our predictions (i.e. getting a high 
AUC or TSS) versus generating predictions at a sufficiently fine grain 
that they are useful for management purposes.

Notice also that the predictor used here (average of tempera-
ture in aggregated grid cells) is still representative of the same vari-
able at finer resolutions. This is unlike what might happen with land 
use or other types of predictors. For example, Šímová et al. (2019) 
showed that water presence is completely missed when using 
coarser data sets, which greatly affects the potential occurrence 
of water birds and therefore SDM performance. The same applies 
to some topographic variables. For example, altitudinal variance 
at a 10- km resolution calculated from a 100- m resolution versus a 
1- km resolution data set are not equivalent, the finer grain altitude 
providing much more topographic detail. Land use and topography 
variables such as these would be better handled by calculating a 
statistic at the modelling resolution directly from a fine- resolution 
data set (e.g. percent water cover at coarse resolution).

4.2  |  Important caveats: It is never impossible to 
find a crocodile in the arctic

At least two exceptions to the assumptions in our theoretical 
framework are worth considering. The first is the idea that the 
environment– occurrence relationship never gets to be threshold- 
like as we continue to aggregate small grid cells during the upscaling 
process. A corollary of this is that the probability of occurrence is 
never truly identical to 0. This might be unrealistic for most real- case 
scenarios, as one may argue that at some large scale, there will be le-
gitimately environments where it is impossible to find a species (e.g. 
a crocodile in the arctic). In more general terms, as we increase the 
scale of study to continental or global extents, we may more easily 
identify environments that are unsuitable for a species survival over 
the long term. The solution to this conundrum seems to be concep-
tual rather than statistical: If distributions are truly hierarchical, as 
proposed by Mackey and Lindenmayer (2001), we will have to ac-
cept that at some scale, the relevant predictors truly change and the 
probability of occurrence can be turned off to exactly 0. If we rely 
on the statistical upscaling process alone, there will always remain 
an area where the probability remains low but non- null. This theory 
therefore applies to a resolution range where such a threshold is still 
not attained.

4.3  |  The environment varies at a finer resolution 
than the aggregate

The second important exception to this theory of upscaling is a 
situation where the environment within the aggregates is not 

homogeneous, and especially when it is highly variable. We treat 
this case with a numerical simulation (Appendix S1): although the 
theoretical probability of occurrence is not exactly the same as 
the observed one when there is variability in environmental condi-
tions within the aggregates, the two are very similar. The differ-
ence between them is driven by the most extreme values within 
each aggregate. This means that the environment would need to 
be extremely heterogeneous within each aggregate for it to cause 
meaningful differences between the observed and estimated 
probability of occurrence. In real life, environmental predictors 
are usually spatially autocorrelated, which will decrease the im-
portance of these local variations and potentially increase model 
performance (Moudrý et al., 2023). This goes hand in hand with the 
idea that classification rate can increase with upscaling, but after a 
certain level, it might decrease. Indeed, the coarser the resolution 
of the data set, the more likely it is to include areas within each grid 
cell that are increasingly heterogeneous. New approaches, such as 
hierarchical modelling, may be an interesting venue to incorporate 
both the hierarchical nature of species ranges and the intrinsic het-
erogeneity of dynamics, especially when the range of distribution 
is large (Lawton et al., 2022). However, there might be an optimal 
aggregation scale that allows increasing our ability to predict pres-
ence and absences, while keeping a reasonably fine resolution that 
is still useful for management purposes, regardless of the model-
ling method.

5  |  CONCLUSIONS AND PERSPEC TIVES

We have demonstrated here that upscaling environmental and oc-
currence data have predictable consequences. Our results show 
that upscaling fundamentally changes the environment– occurrence 
relationships, globally increases species prevalence and the mean 
probability of occurrence and can increase classification success up 
to a certain level. However, if distributions are really hierarchical, as 
suggested by Mackey and Lindenmayer (2001), the upper and lower 
bound for which this scaling theory applies depends on the scale at 
which processes change. The decision of the biological expert re-
garding relevant predictors at different scales cannot be underesti-
mated in this regard. This study also demonstrates how a theoretical 
framework can greatly contribute to a better understanding of ap-
plied SDM results.
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