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Abstract

Analysis of eukaryotic genomes requires the detection and classification of transposable

elements (TEs), a crucial but complex and time-consuming task. To improve the perfor-

mance of tools that accomplish these tasks, Machine Learning approaches (ML) that lever-

age computer resources, such as GPUs (Graphical Processing Unit) and multiple CPU

(Central Processing Unit) cores, have been adopted. However, until now, the use of ML

techniques has mostly been limited to classification of TEs. Herein, a detection-classification

strategy (named YORO) based on convolutional neural networks is adapted from computer

vision (YOLO) to genomics. This approach enables the detection of genomic objects

through the prediction of the position, length, and classification in large DNA sequences

such as fully sequenced genomes. As a proof of concept, the internal protein-coding

domains of LTR-retrotransposons are used to train the proposed neural network. Precision,

recall, accuracy, F1-score, execution times and time ratios, as well as several graphical rep-

resentations were used as metrics to measure performance. These promising results open

the door for a new generation of Deep Learning tools for genomics. YORO architecture is

available at https://github.com/simonorozcoarias/YORO.

Introduction

Transposable elements (TEs) are DNA sequences that have the ability to move to different

locations within the genome and sometimes to multiply their copy number [1]. They have

been found in virtually all eukaryotic genomes, comprising up to 80% of genetic material in

plants [2, 3]. As a result, they are associated with functional sequence alterations [4], chromo-

somal rearrangement events, genetic variability, species mutation [5], genome size variation

and adaptation to the environment [6, 7].
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According to the transposition mechanisms, TEs can be classified into two classes: Class I,

also known as retrotransposons, uses a “copy-and-paste” mechanism by utilizing an RNA mol-

ecule. Class II or transposons, on the other hand, employs a “cut and paste” mechanism using

a DNA molecule as an intermediary [1] and in the specific case of helitrons a “peel and paste”

mechanism. These classes can be further divided into subclasses, orders, superfamilies, line-

ages/families, and subfamilies [8, 9]. Long terminal repeat retrotransposons (LTR-RT) are the

predominant repetitive sequences in plant genomes, accounting for up to 75% of nuclear

DNA, as in the case of some cereals (wheat, barley, and corn) [10]. Various studies suggest that

these elements are closely related to genome size evolution, driving rapid genomic changes

and being responsible for the extensive variety of flowering plants [11, 12].

Despite the great diversity of LTR-RT that can be observed in nucleotide sequences, they

possess a conserved structure that include two long terminal repeats (LTRs) flanking the inter-

nal part containing the gag and pol genes required for the mobility process (Fig 1). The gag
gene encodes the structural proteins, such as the capsid (CA) and nucleocapsid (NC), while

the pol gene encodes the proteins comprising the enzymatic group responsible for the tran-

scription process and integration into the new genome location: aspartic proteinase (AP),

reverse transcriptase (RT), RNase H (RH), and integrase (INT) [13]. Some elements also pres-

ent an incomplete/non-functional env gene, which is thought to be a reminder of ancient

viruses.

Based on the arrangement of the RT and INT domains in the pol gene, LTR-retrotranspo-

sons can be classified into the Ty1/copia, Ty3/gypsy, Bel-Pao, retroviruses, and endogenous ret-

roviruses superfamilies. Only the Ty1/copia and Ty3/gypsy superfamilies are found in plants

[8]. These are further classified into lineages/families. Lineages for Ty1/copia include Ale, Ale-
sia, Angela, Bianca, Bryco, Lyco, Gymco-I, II, III, IV, Ikeros, Ivana, Osser, SIRE, TAR and Tork.

And the lineages for Ty3/gypsy include CRM, Chlamyvir, Galadriel, Tcn1, Reina, Tekay, Athila,
Tat-I,II,III, Ogre, Retand, Phygy and Selgy [11, 12, 14, 15].

The annotation of TEs can be performed by different software, however their execution

times are usually a major bottleneck in genomics studies, specially for large genomes. The

increasing amount of data required for analysis turns bioinformatics tasks into “Big Data”

Fig 1. Internal structure and organization of LTR-retrotransposons in plants for: (A) Ty1/copia superfamily and (B)

Ty3/gypsy superfamily. Depending on the position of the integrase (INT) domain, the element can be classify to Ty1/

copia or Ty3/gypsy superfamily.

https://doi.org/10.1371/journal.pone.0291925.g001
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tasks [16, 17]. Most commonly used tools do not employ massive data processing strategies,

and even some processes such as curation are still performed manually by experts in the field

[18]. Tools that apply parallelization strategies are not fully scalable (i. e. they do not use CPU

+GPU when available, and cannot be executed over distributed memory architectures), mak-

ing it difficult to analyze large genomes. Also, those tools have a high false positive rate, create

redundant and fragmented libraries, which limits confidence in TE studies [19–21].

Deep learning (DL) strategies have been shown to be effective for LTR-RT annotation [22,

23], improving execution time, without affecting their efficiency and sensitivity. The use of

deep learning-based strategies allows exploiting of the potential of parallel architectures and

GPUs (Graphical Processing Unit), solving the bottlenecks generated by sequential programs

or inefficient parallel architectures [24], and taking advantage of the large amount of available

data.

There is a growing number of studies related to the analysis of transposable elements with

Machine Learning (ML) and DL. In 2021, a Python framework specialized for applying DL in

genomics was published [25, 26]. In addition, DL architectures such as TERL [27], DeepTE

[23], and Nakano [28] have been proposed for classification tasks, while Inpactor2 [22] inte-

grated several neural networks for the LTR-RT detection and classification. Several ML-based

tools have also been released, such as ClassifyTE [29], Transposon Ultimate [30], and Frontier

[31] (for a more complete list see Table 1). Nevertheless, most of the ML and DL approaches

used for TE analysis focus their core ML/DL algorithms on a single specific task (detection or

classification). Thus, the other steps required to generate a complete annotation are performed

by traditional (bioinformatics) approaches. Therefore, an architecture that can do both task at

once can be useful for the run-times reduction.

In the computer vision scientific discipline, combined detection-classification strategies are

commonly used, such as detecting regions of interest in images (called object detection) [41,

42]. In these approaches, it is possible to detect where the object is located in the images and

assign it a classification. One of the most used neural network type in object detection is con-

volutional neural networks (CNN), in particular the architecture called YOLO (“You Only

Look Once”) [43]. The principle of this network is to detect all possible objects present inside

the image giving a classification to each of them, in a single execution [44]. Following YOLO’s

approach, the CNN could be used to detect genomic objects in a whole genome sequence,

Table 1. Tools and approaches that used ML or DL approaches to analyze TEs. TIR-Learner uses neural network, k-nearest neighbors, random forest, and Adaboost for

the ensemble method, while ClassifyTE uses k-nearest neighbors, extra trees, random forest, support vector machine, AdaBoost, logistic regression, Gradient Boosting

Classifiers and XGBoost Classifier for the stacking method. Abbreviations: RFSB: Random forest selective binary classifier, C: Classification, D: detection, A: annotation,

CL: curation of TE libraries, NI: novel insertions, TU: TransposonUltimate.

Model name Input Output type of model Year Task TE type Reference

TEclass TE sequences Plane text SVM 2009 C All classes [32]

Nakano TE sequences Class predictions (and probabilities) FNN 2018 C All classes [28]

TE-Learner TE sequences Plane text RF 2018 C LTR-RTs [33]

TIR-Learner Genomic assembly Library in fasta; Annotation in GFF Ensemble model. 2019 D, A TIR [34]

TERL Any sequence Class predictions (and probabilities) 2D CNN 2020 C All classes [35]

DeepTE TE sequences Class predictions (and probabilities) 1D CNN 2020 C All classes [36]

Frontier Short reads Plane text 2D CNN 2021 NI All classes [37]

ClassifyTE TE sequences Plane text Stacking methods 2021 C All classes [38]

SENMAP TE sequences Class predictions (and probabilities) 2D CNN 2021 CU LTR-RTs [39]

Inpactor2 Genomic assembly Library in fasta; Predictions in tab; Annotation in GFF 2 CNN, 2 FNN 2022 D, CL, C, A LTR-RTs [22]

TU “RFSB” TE sequences Class predictions (and probabilities) RFSB 2022 C All classes [40]

https://doi.org/10.1371/journal.pone.0291925.t001
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integrating the detection task (i.e. finding the coordinates of a genomic feature such as a TE)

with the classification (assigning a class to the feature such as lineages/families or superfami-

lies), reducing the number of individual steps, run times and complexity of TE analysis in

large genomes [24]. This approach can be useful for all genomic objects (genomic regions of

interest) such as coding and non-coding genes, or smaller sequences such as protein domains.

Here, we present a novel DL strategy, called YORO (“You Only Read Once”), for the detec-

tion and classification (lineage/family and type) of LTR-RT internal domains, which is inte-

grated into a pipeline. This strategy provides the basis for future research where complete

LTR-retrotransposons could be annotated and classified using a purely DL approach. The

methodology adopted and proposed here includes a description of the input data, label crea-

tion, training data set generation, architecture design, training configuration, post-processing,

and visualization of the model results. Finally, the metrics used to evaluate the performance of

YORO are described.

Results and discussion

0.1 The genomic object detection approach

In order to integrate both detection and classification into a single task, an approach based on

genomic object detection was designed. This approach is based on the existing concept in

computer vision, according to which a neural network is able to detect subregions of interest

within an image and subsequently classify them according to its training database. The DL

model that applies this approach (called YORO) is based on convolutional neural networks

and residual networks that facilitate learning and continuous decrementing of the loss func-

tion. YORO receives genomic sequences of 50,000 bp length and divides them into 100 bp sec-

tions and predicts for each section the presence/absence of domains, start position, domain

length, to which lineage/family it belongs and what type of domain it is (GAG, AP, INT, RT,

RH, or ENV). The YORO output is processed with the non-max suppression method (NMS)

to eliminate redundancy and at the end delivers a tabular text file with the information on pre-

dicted domains.

0.2 Training data set and model training

To train the CNN, a synthetic data set was created from real information of LTR-RT. Basically,

a bunch of LTR-RT taken from InpactorDB [15] was randomly placed inside an entire DNA

sequence with a fixed length of 50, 000 bp. The nucleotides filling the space between one

LTR-RT and another corresponded to sequences that are known to not contain LTR-RT (neg-

ative data set taken from [45] DOI: 10.5281/zenodo.4543904, See Methodology section). After

the synthetic creation of DNA sequences, they were transformed into a one-hot 2D representa-

tion and they were used as features for training the CNN. Each 50, 000 bp sequence was

divided into 100 bp sections and for each section we created a set of 22 labels representing

presence or absence of a domain in the 100 bp section, starting position, length, lineage/family,

and type of domain. We also added some genomic sequences having only negative sequences

(i.e. not containing any LTR-RT sequence) to simulate regions devoid of LTR-RTs.

0.3 Performance metrics

While training the developed residual CNN, the loss function displayed no overfitting prob-

lems since the difference between the validation and training curve was less than the difference

between training and ground truth (Fig 2A). Therefore, bias should be the first problem that

should be addressed in future research. The raw predictions generated by YORO were filtered
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Fig 2. Performance of YORO in detecting internal domains of LTR retrotransposons using the Genomic Object Detection approach. (A) Loss

function during model training. Parameters used: Adam algorithm, learning rate of 0.001, batch size of 128, number of epochs 100, no droputs, data split:

training (80%), validation (10%), testing (10%). (B) Precision-Recall curve with TP (True Positive), TN (True Negative), FP (False Positive) and FN (False

Negative) defined on a nucleotide basis. Only domain detection is considered, regardless of its classification. (C) Parity plot for the positions of the

beginning of the domains. (D) Visualization of the domains in the 50,000 bp window (X-axis). The upper part corresponds to the predictions done by
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in two ways: (i) presence probability > 0.1 and (ii) duplicate reduction by NMS (non-max sup-

pression, See Methodology section), a procedure used in object detection for images to remove

any duplicates. The presence probability threshold was selected as the threshold that outputs

the largest product between precision and recall. To do so, a precision-recall curve was con-

structed (Fig 2B). The largest product was found at a threshold of 0.8, where precision and

recall were 0.8435 and 0.8837. The threshold-processed predictions were compared with the

ground truth using a parity plot (Fig 2C) and the visualization procedure (Fig 2D).

The parity plot compared the initial position of each domain within the 50, 000 nucleotide

window for predicted and actual labels. Dots on the vertical axis corresponded to false positives

(FP) domains, while those on the horizontal axis corresponded to false negatives (FN). In this

comparison, each domain was compared independently of its classification. The coefficient of

determination computed for this set of points yields a value of R2 = 0.7083. Although most of

the points are remarkably well distributed around the diagonal, the FP and FN prevented the

distribution from reaching a high coefficient of determination. This coefficient is indeed an

evaluation of the force between the two variables determined. In a perfect scenario the R2

would be 1, indicating that both variables are actually the same. The visualizations of the pre-

dicted domains against the real data provided further insight (Fig 2D and Fig S2 in S1 File).

The upper part in Fig 2D corresponds to domains predicted by YORO and the lower part

to the real labels. Some domains predicted by the model were not present in the real label, and

at the opposite some domains in the real label were not present in the predicted result. This sit-

uation was repeated in most of the samples in the data set. Nevertheless, some of the domains

classified as false positives were located in positions supported by real LTR-RT. For example,

in Fig 2D, the first group of domains (left to right) contained an extra domain classified as AP

(Aspartic Protease) by the model but was not present in the real label. The AP domains were

expected to be present between the GAG and the INT domains in Ty1/copia elements or

between the GAG and the RT domains in Ty3/gypsy elements [8]. This could be due to imper-

fect annotation of the domains when the data set was created.

The classification of each domain by YORO was evaluated by using a COCO evaluator and

the mean average precision (COCO mAP@0.5). Regarding the classification based on the pro-

tein type, the mAP calculations were summarized in Table 2. It was clear that the number of

ENV domains produced a class imbalance problem, thus ENV domains were probably not

well predicted by YORO. However, the RT, INT and RH domains obtained the highest mAP

as expected because their relative high conservation between LTR-RT elements in plant

YORO. The lower part corresponds to the actual label. AP: Asparic Protease (black); GAG: Capside protein (red), ENV: Enveloppe (green), INT: Integrase,

RT: Reverse Transcriptase (blue), RNAseH: Ribonuclease H (light blue).

https://doi.org/10.1371/journal.pone.0291925.g002

Table 2. COCO mAP@0.5 calculations for domain classification.

Domain class COCO mAP@0.5 (%) class contribution (%)

RT 91.6 20.7

GAG 70.7 19.1

ENV 40.6 0.4

INT 85.4 20.7

AP 85.3 18.7

RH 90.3 20.4

mean 77.35 -

https://doi.org/10.1371/journal.pone.0291925.t002
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genomes [11]. In contrast and despite the high number of samples in the data set, GAG exhib-

ited the lowest performance. This could be attributed to the high levels of sequence divergence,

absence of highly conserved sites, and the presence of stop codon and frame shift mutations in

the coding region of many elements [11, 46]. Regarding lineage classification, the mAP results

were displayed in Table 3. The IKEROS lineage had very few samples in the training data set,

so YORO did not correctly learn how to identify this lineage/family.

In general terms, the mAP values for the different categories indicated that the model per-

formed well in the classification task when compared to different versions of YOLO in [47]

where the mAP ranged from 63.4 to 78.6.

Since the model predicted domains (FP and TP) in the regions where an LTR-RT is

expected to be present, the precision-recall curve is computed again but this time clustering

groups with a minimum of three domains and separated by a maximum distance of 3, 000 bp

from each other. The resulting curve (Fig 3A) exhibited a great improvement in both metrics

precision and recall. The maximum product lied in a probability threshold presence of 0.8

where precision and recall were 0.9350 and 0.9527.

The internal regions considered as False Positive and False Negative were less numerous

since the dots located on the vertical and horizontal axis of the parity plot (Fig 3B) were less

numerous to the previous diagram. Additionally, the determination coefficient for the distri-

bution of the dots in the parity plot was R2 = 0.9379, which was higher than the previously

computed value.

Visualizing some random samples (Fig 3C and 3D) gave some insights about the improve-

ments obtained by taking clusters with a minimum of three domains and showed some details

that still need to be improved. For example, in Fig 3C, if the model only predicted only one or

two domains in which an LTR-RT is present, the cluster could not be identified and a false

negative was generated. Fig 3D illustrated an issue associated with the clustering approach:

domains in the actual labels were separated by a variable number of nucleotides, even greater

than 3, 000 bp. This fact leads to situations where the prediction was clustered appropriately

but the real label was not, as confirmed by the last cluster in Fig 3D.

From the Fig 3D, a hypothesis was put forward be proposed: it was possible that YORO per-

formed even better than the metrics indicate. With this in mind, a new performance analysis

Table 3. COCO mAP@0.5 calculations for lineage classification of the domains.

LTR-RT Lineage class COCO mAP@0.5 (%) class contribution (%)

ALE-RETROFIT 84.6 18.9

ANGELA 85.8 5.6

ATHILA 79.5 4.5

BIANCA 57.4 2.0

CRM 84.6 3.6

DEL-TEKAY 85.4 14.9

GALADRIEL 74.7 1.5

IKEROS 0 0.1

ORYCO-IVANA 84.7 5.2

REINA 76.9 5.1

SIRE 82.0 5.5

TAT 86.6 22.8

TORK-TAR 81.9 10.3

mean 74.20 -

https://doi.org/10.1371/journal.pone.0291925.t003
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Fig 3. YORO’s performance in detecting LTR-retrotransposon’s internal part grouped by at least three domains with a maximum distance of 3, 000

bp, according the Genomic Object Detection approach. (A) Precision-Recall curve with TP (True Positive), TN (True Negative), FP (False Positive) and

FN (False Negative) defined on a nucleotide basis. Clusters with a minimum of three domains and a maximum separation of 3, 000 bp. (B) Parity plot for

the positions of the beginning of the clusters with a minimum of three domains and a maximum separation of 3, 000 bp. (C) Visualization of the clusters

with a minimum of three domains and a maximum separation of 3, 000 bp, in the 50, 000-bp window. The top section corresponds to the predictions by
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was sketched by evaluating YORO in the genome of Oryza Sativa ssp. indica and comparing

the predictions against the annotation available in [48]. The results of this comparison are

summarized in Table 4. In all the cases the metrics are computed on a nucleotide basis.

In cases A through E in the Table 4, domains separated by a maximum distance of 4, 000 bp

were clustered in a single region. Each case was differentiated by the minimum number of

domains required for clustering (column “Min. dom.”). In this sense, case A formed clusters

with a minimum of one domain, while case E formed clusters with a minimum of five

domains. The precision ranged from 0.6574 to 0.8806, indicating that the detection of multiple

domains in a nearby region was an indication of the presence of a LTR-RT. Nevertheless, recall

decreased as the number of domains needed to form a cluster increased, which implied a loss

of predictions as clustering become more stringent. Furthermore, recall was low for all the

cases, as the flank of the LTRs were not predicted and contributed to the false negatives term

when computing the metrics. In cases A-E, the predictions were compared against the annota-

tion with the tag “LTR”. The case F is similar to E but the predictions were compared to the

complete annotation, independent of the TE classification. In this situation, the precision

reached 0.9507, indicating that the model was predicting internal regions not only for LTR-RT

YORO. The bottom section corresponds to the real label. There is a false negative. (D) Visualization of the clusters with a minimum of three domains and

a maximum separation of 3, 000 bp, in the 50, 000-bp window. The upper section corresponds to the predictions by YORO. The lower section

corresponds to the real label.

https://doi.org/10.1371/journal.pone.0291925.g003

Table 4. Precision and recall for YORO predictions on the Oryza Sativa ssp. indica genome versus its publicly available annotation [48]. GT: Ground Truth. P: pro-

cess applied.

Case Min. dom. Precision Recall GT Description P description

A 1 0.6574 0.2518 Complete LTR-RT Clustering

B 2 0.7074 0.2440 Complete LTR-RT Clustering

C 3 0.7888 0.2327 Complete LTR-RT Clustering

D 4 0.8496 0.2179 Complete LTR-RT Clustering

E 5 0.8806 0.1892 Complete LTR-RT Clustering

F 5 0.9507 0.1000 Complete TE-RT Clustering

G 1 0.7442 0.4206 Complete LTR-RT Clustering + LTRharvest

H 2 0.7833 0.4129 Complete LTR-RT Clustering + LTRharvest

I 3 0.8484 0.3862 Complete LTR-RT Clustering + LTRharvest

J 4 0.8952 0.3594 Complete LTR-RT Clustering + LTRharvest

K 5 0.9177 0.3070 Complete LTR-RT Clustering + LTRharvest

L 1 0.8047 0.3675 Complete LTR-RT Clustering + LTRharvest + filter

M 2 0.9455 0.3030 Complete LTR-RT Clustering + LTRharvest + filter

N 3 0.9680 0.2829 Complete LTR-RT Clustering + LTRharvest + filter

O 4 0.9819 0.2655 Complete LTR-RT Clustering + LTRharvest + filter

P 5 0.9886 0.2266 Complete LTR-RT Clustering + LTRharvest + filter

Q 1 0.6004 0.4799 Internal region Clustering

R 2 0.6466 0.4652 Internal region Clustering

S 3 0.7217 0.4441 Internal region Clustering

T 4 0.7782 0.4163 Internal region Clustering

U 5 0.8032 0.3599 Internal region Clustering

V 5 0.9600 0.3900 Complete LTR-RT RepeatMasker (case P) + div 5

W 5 0.8000 0.8100 Complete LTR-RT RepeatMasker (case P) + div 20

https://doi.org/10.1371/journal.pone.0291925.t004
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but also for other TEs. This may due to the fact that similar protein domains can be found in

TE from other orders such as GAG, RH and RT domains in LINE elements, GAG, AP, RT,

and RH in DIRs elements and RT in PLE elements or to imprecise annotation in the public

version of the annotation [8].

The internal regions predicted in cases A-E were then extended 8, 000 bp to the left and

right. These segments were passed to LTRharvest to include long terminal repeat regions

detection. The metrics for the resulting predictions were comprised in cases G through K.

There was an overall improvement in the precision and recall ranging from 0.7442 to 0.9177

and from 0.4206 to 0.3070, respectively. This meant that the use of LTRharvest helped to

remove false positives.

In cases L through P, the LTRharvest tool was applied to the predictions of cases A-E to

detect the LTR flanking regions and discard those internal regions that did not have LTR-

flanks. There is an overall improvement in the precision and recall ranging from 0.8047 to

0.9886. This meant that the use of LTRharvest helped to remove false positives. However, the

recall metric remains low in all the cases.

The annotation includes an additional feature to distinguish the internal part of an LTR-RT

from the LTR flanking regions. Taking advantage of it, predictions of cases A-E were now

compared to the internal parts of the annotation, yielding the results in cases Q-U. The preci-

sion was overall lower than the corresponding previous cases. Such a decrease in precision

could be explained by the fact that the definition of the internal region was not specified. For

instance, the predictions defined the internal region between the start of the first coding

domain and the end of the last coding domain. However, the annotation could defined the

internal region from where the 5’ LTR-flank ends and where the 3’ LTR-flank ends.

Taking the predictions with the best precision value (case P) as a TE library, RepeatMasker

was applied over the genome with the following parameters “-s -pa 10 -nolow -cutoff 225 -gff

-no_is -norna”. The results were evaluated for two values of -div: 5 and 20. The final metrics

with this approach corresponded to cases V and W. An allowed divergence of 20 decreased the

false negatives but also increased the false positives, as can be deduced from precision (0.80)

and recall (0.81). A more stringent divergence value of 5 kept false positives low (yielding a

high precision, 0.96) but did not decrease significantly false negatives (yielding a low recall,

0.39).

0.4 Execution times in different genomes

One of the main bottlenecks in genomics today is the time required to analyze the enormous

amount of data produced by the new sequencing technologies [49, 50]. We therefore wanted

to test our Genomic Object Detection approach and the YORO architecture on a large-scale

study. To this end, 91 plant species genomes were randomly selected from the 300 genomes

data set proposed by [12]. The selected species had a size distribution between 300 Mbp and

3.2 Gbp and in total they summed 240 Gbp. Our approach took 10.18 hours to run with all the

genomes (Fig S3 in S1 File) on a server with 62 cores and an NVIDIA A100 GPU with 20 GB

of memory, a considerably short time compared with conventional de novo Transposable Ele-

ments detection tools.

0.5 Comparison against conventional tools

BLAST (Basic Local Alignment Search Tool) is still very popular and is used to identify protein

domains in nucleotide sequences (BLASTx algorithm). Fig S4 in S1 File shows a comparison

of the number of domains detected by YORO and BLAST in 17 plant genomes (Table S1 in S1

File). The difference between the two methods was consistently positive across the graph,
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indicating that YORO detected more domains than BLASTx. In addition, a positive correla-

tion between the difference and genome size was observed, with an R2 value of 0.94 (Fig S4 in

S1 File). These findings suggested that the BLASTx’s ability to detect domains was limited by

the availability of homologous sequences in the reference database. Consequently, domains

that are specific to some species may remain undetected. This problem is more pronounced in

larger genomes, as the proportion of undetected domains increased relative to the number of

detected domains.

On the contrary, observations demonstrated that YORO’s ability to detect domains was

directly correlated with genome size. This implied that the algorithm was not only limited to

recognizing the domains it has been was trained on, but also capable of identifying other

domains sharing similar structural characteristics with the training set.

Fig 4 shows the correlation between genome size and the speed-up of YORO compared to

BLASTx in terms of execution time. In all cases, YORO outperformed BLASTx, exhibiting up

to 109 times faster performance. Notably, the speed-up was non-linear and tended to decrease

with increasing genome size. To further investigate this relationship, we analyzed other vari-

ables such as assembly quality, as reflected by the normalized N50 value, and speed-up, as

shown in Fig 4B. In this case, no correlation was found between these variables. However, we

observed that the number of elements detected by YORO contributed to this behavior, espe-

cially in larger genomes, as shown in Fig 4A. In such cases, YORO took more time to perform

functions such as IOU computation, Non-max suppression, and writing the output file.

0.6 Comparison between domain distances

Having obtained positive results in precision, recall and also in execution times, we wanted to

check whether the distances between predicted genomic objects were also accurate or not. To

answer this question, we compared the nucleotide distances between the LTR-RT domains

Fig 4. Relationship between speed-up and assembly variables analyzed by YORO and BLAST: (A) speed-up vs genomes size (sample: 17 plant genomes), and

(B) speed-up and normalized N50 value.

https://doi.org/10.1371/journal.pone.0291925.g004
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identified using YORO and the distances previously proposed by Zhou and co-authors using

an HMM search [12]. First, the distances between domains were extracted for both data sets:

the one obtained from Genomic Object Detection approach and the published genome data

set [12]. To this end, the corresponding files were processed and the average distances between

the different LTR-RT domains present in the genomes were determined. These distances pro-

vide valuable information about the structure of the elements and make it possible to assess

the similarity between the results of the two methods. Once the distances between domains

had been obtained, a series of comparative analyses were carried out to evaluate the agreement

between the results of the YOLO approach and those of the reference program used in [12]

(LTRharvest/LTRdigest). Descriptive analyses were conducted, including the calculation of

means and standard deviations, as well as the generation of violin plots to visualize the distri-

bution of the distances between domains in the two data sets (Fig 5).

The results obtained show that the distances between domains of the LTR-RTs identified by

YORO exhibited a similar distribution to reported in the 300 genomes project [12]. Although

some differences in the average distances between domains were observed, these were not sta-

tistically significant, suggesting that the Genomic Object Detection approach was capable of

providing results comparable to those of the commonly used programs in terms of detecting

and characterizing LTR-RTs (Tables 5 and 6 to see the mean distance between all domains

from the used data sets).

Conclusion

The YORO approach can be used successfully to detect genomic objects. It detects individual

LTR-RT domains with a precision of 0.8435 and a corresponding recall of 0.8837. It classifies

Fig 5. Nucleotide distances between domains reported by [12] for: (A) Ty3/gypsy and (B) Ty1/copia, and predicted by the Genomic Object Detection approach (throught

YORO) for: (C) Ty3/gypsy and (D) Ty1/copia.

https://doi.org/10.1371/journal.pone.0291925.g005
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individual domains with an mAP of 77.35% for protein domain type and 74.2% for lineage/

family classification. It detects the inner regions of LTR-RTs with an accuracy of 0.9350 and a

corresponding recall of 0.9527. YORO predicts the position of LTR-RT internal regions with a

correlation coefficient of 0.9379 for a parity plot against real labels, and predicts LTR-RT inter-

nal regions for the Oryza Sativa ssp. indica genome with a precision of 0.9507. By filtering the

YORO output with LTRharvest, the accuracy increases to a value of 0.9877. This approach

demonstrated low run time, analyzing 91 genomes in less than 10 hours and detecting

genome-level LTR-RT domains up to 109 times faster than the BLAST algorithm. Finally, the

distances between domains predicted by YORO were in line with the observed data sets

(LTR-RT annotation of 300 plant genomes). In this sense, as a proof of concept YORO pro-

vides a framework for future improvements in the detection and annotation of individual

LTR-RT domains to increase the sensitivity and accuracy of the full annotation of LTR-RT ele-

ments. Further effort will be required to include a detection/prediction step for LTR-RT

extremities, without using external tools which could slow down YORO, and which could

reinforce the quality of its predictions. YORO could be integrated as a tool for annotation, clas-

sification or re-classification of LTR-RT elements in a similar way to tools based on HMM pro-

files, and also offers the possibility of including more genomic objects such as other classes of

Table 5. Average distance between domains for the Ty1/copia superfamily as observed in the analysis of 300 plant

genomes [12] and in the YORO prediction.

Distance between Observed Mean distance*** (bp) YORO Mean distance (bp)

5’-LTR-GAG 1084.14 1823.35

GAG-AP 633.76 715.14

AP-INT 268.81 241.36

INT-RT 544.63 605.65

RT-RH 244.31 312.85

RH-NEXT* 703.83 625.78

PRE-LTR-3’** 966.62 1235.69

* Distance between RH domain and the next domain of the element.

** Distance from any domain preceding the 3’ LTR domain.

*** Observed distances found by [12]

https://doi.org/10.1371/journal.pone.0291925.t005

Table 6. Average distance between domains for the Ty3/gypsy superfamily as observed in the analysis of 300 plant

genomes [12] and in the YORO prediction.

Distance between Observed Mean distance*** (bp) YORO Mean distance (bp)

5’-LTR-GAG 1379.26 1563.69

GAG-AP 760.8 680.61

AP-RT 552.2 620.31

RT-RH 242.27 318.15

RH-INT 277.92 198.26

INT-NEXT* 694.03 801.65

PRE-LTR-3’** 2088.2 1902.18

* Distance between the INT domain and the next domain of the element.

** Distance from any domain preceding the 3’ LTR domain.

*** Observed distances found by [12]

https://doi.org/10.1371/journal.pone.0291925.t006
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elements (transposons, helitrons), or coding regions. In the future, we aim to develop finalized

tools for the community capable of detecting and classifying TEs based on this architecture.

Methodology

0.7 Inputs and outputs

DNA sequences are composed of four nucleotide: adenine (A), cytosine (C), guanine (G), and

thymine (T). Depending on the genome assembly quality, other letters are used to represent a

nucleotide that is not fully characterized in one of the four categories (e.g. “N” represents any

nucleotide). Since a CNN relies on numerical inputs, a mathematical transformation is

required for the DNA sequences. In previous research [27], a one-hot encoding strategy is uti-

lized to transform DNA sequences into a mathematical representation ready to be fed into a

CNN. Here, a slight modification of such one-hot encoding is used. A matrix of dimensions

4xN is built from a DNA sequence, where N is the sequence length and 4 corresponds to the

four nucleotide types in the following order: A, C, G, T (Fig S1 in S1 File). Any other letter is

represented by a column of zero.

The purpose of the CNN model is to detect and classify internal protein coding regions of

LTR-RT, namely, group antigens (GAG), aspartic proteinase (AP), integrase (INT), reverse

transcriptase (RT), RNase H (RH), and envelope protein (ENV) (Fig 1). Hence, the informa-

tion related to the domain position, size, type (GAG, AP, etc), and classification (in lineages/

families) is encoded in labels for model training.

In YOLO’s original paper [43], the image to be analyzed is split into a 7x7 grid, each with its

own label containing information about the presence or absence of an object, its size, and its

Fig 6. Structure of the labels encoding the domain information of the LTR-RT domains. The initial nucleotide sequence (upper section) is

divided into 100 bp sections each one with 22 labels (lower section). Those labels represent the following: (1) Detection and structure

information: Presence of a domain, starting position of the domain in the 100 bp section and length; (2) Domain classification: to which

domain it is related (in one-hot coding, e.g. GAG = 1,0,0,0,0,0); (3) Lineage classification: to which lineage the domain is related (in one-hot

coding, e.g. Tork = 1,0,0,0,0,0,0,0,0,0,0,0,0). Both the domain start position and the length are normalized to be values between 0 and 1.

Following this approach, a neural network can learn how to do three different task at once (domain detection, domain classification, and

lineage classification).

https://doi.org/10.1371/journal.pone.0291925.g006
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classification. Similarly, the DNA sequence is divided into groups of 100 nucleotides and each

group has its own label with 22 coordinates (Fig 6). The first number corresponds to the pres-

ence of a domain (one for presence and zero for absence). The second number represents the

relative position of the beginning of the domain within the 100 bp section. It is a number

between zero and one. The third coordinate is the domain size relative to the maximum length

of each domain class. The next six coordinates correspond to the domain type into one of the

six groups. And the last 13 coordinates indicate the lineage classification of the domain. The

lineages that were considered in this research are (1) Ale/Retrofit (2) Angela (3) Athila (4)

Bianca (5) Crm (6) Del/Tekay (7) Galadriel (8) Ikeros (9) Oryco/IVANA (10) Reina (11) Sire
(12) Tat (13) Tork/Tar.

0.8 Data set generation

The inputs data sets were created using the following steps:

1. Create a synthetic DNA sequence of 50, 000 bp by concatenating sequences known to not

include any LTR-RT (i.e coding sequences, different types of RNA like mRNA, tRNA, non-

coding RNA, and other types of TEs such as TEs Class II) from [45] DOI: 10.5281/zenodo.

4543904. These sequences are called “negative background”.

2. Generate random numbers between 3, 000 and 4, 000 that designate the number of nucleo-

tides remaining between the TEs.

3. Randomly select TEs from InpactorDB [51].

4. Replacement of the corresponding section in the negative background with the selected

TEs, considering the number of nucleotides remaining between the TEs. Note: The number

of TEs inserted in the negative background depends on their lengths. The position, length,

class and lineage of the protein-coding domains within each TEs are stored for the labels

data set creation.

5. Repeat steps one to four until all TEs in InpactorDB are used.

6. Transform all DNA sequences generated by this procedure into one-hot encoding

representation.

After performing the mentioned steps, a tensor is created with dimensions Mx4x50, 000

where M is the number of samples. In addition, the label data sets are created simultaneously

with the input data sets:

1. Create a tensor of zeros with dimensions Mx1x500x22

2. Divide the domain position by 100 and take the quotient (an integer) and the remainder.

Note: The quotient represents the i-th 100-nucleotide box where the beginning of the

domain is found.

3. Divide the remainder by 100 and leave the quotient with at least two decimals. Note: This

number represents the relative position of the domain inside the 100-nucleotide box.

4. Divide the domain length by the maximum size of the same domain type reported in Inpac-

torDB with full decimals. Note: this number indicates the normalized domain size.

5. Iterate over the tensor from step one and record in the last dimension with 22 elements the

presence/absence (index 0), position (index 1), length (index 2), type (index 3 − 8), and

lineage/family classification (index 9 − 21).
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0.9 Architecture

The proposed architecture is based on a CNN with a residual learning strategy. In [52], image

recognition models are significantly improved by implementing a deep residual learning

framework in which direct access connections that perform identity mapping are added to the

architecture. These shortcuts skip one or more layers. Such stacked layers are the building

blocks of a residual network. Some of the benefits of such a strategy are:

• It addresses the training accuracy degradation problem generated by the high number of lay-

ers in deep networks.

• It eases the optimization of residual mapping

• The entire network can still be trained end to end with back-propagation and implemented

with common libraries.

• It is expected to be also applicable in other fields besides computer vision.

The architecture is basically composed of six blocks (Fig 7). The first one processes the

input with a filter of 4x50x16 where 4 corresponds to the four rows of the one-hot encoding,

and 50 and 16 were set after experimentation with the network. The following four stacks are

residual blocks that reduce the size by a factor of five, two, five, and two, respectively. Each

block has its own shortcut connection. The last block corresponds to a layer needed to adjust

the output of the model as required by the label formatting.

0.10 Model training

For model training, a loss function is adapted from [43] (Eq 1). It calculates the sum-squared

error for presence probability (p), position(x), size (w), and classification (c). Considering that

most of all grid cells do not contain protein-coding domains, it is necessary to weigh the loss

function, by giving more relevance to the cells where there is a domain. This is accomplished

by using λobj and λnonobj. According to previous experiments, these values yield good results

depending on the number of domains inside the window of 50, 000 nucleotides. In this

research such weights are set to λobj = 1 and λnonobj = 0.06. In Eq 1, 1obj
i denotes if a protein-cod-

ing domain appears in cell i.

λobj
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During model training, the following parameters were used:

• Weights initialization strategy: Xavier normal initializer (“glorot_normal” option in

TensorFlow2)

• Optimizer: Adam algorithm

• Learning rate: 0.001

• Batch size: 128
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• Epochs: 100

• No dropouts are used

• Data partition for training, validation, and testing: 80%, 10%, and 10%, respectively.

0.11 Post-processing: Non-max suppression

After the training stage, the model is evaluated on the test partition of the data set. The predic-

tions generated by the network must be filtered in two steps. The first step filters by comparing

the probability of presence to a threshold. If the probability of presence is greater than the

threshold (> 0.1), we say that there is an object in the grid cell. Nevertheless, some of the

remaining predictions may point to the same protein-coding domain. To overcome this multi-

plicity of predictions for the same domain, the second step filters the predictions by leaving

only one. To this end, non-max suppression (NMS) is an usual procedure used in object

Fig 7. Neural network architecture of YORO.

https://doi.org/10.1371/journal.pone.0291925.g007
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detection for images. Herein, the non-max suppression strategy is utilized with an intersection

over union (IoU) threshold of 0.1. In images, it is normal to locate different objects in the

same region since the image is transforming a 3D space down to two dimensions. Therefore,

two objects in an image can be identified in the same grid cell, one behind the other. This fact

led modern object detection systems in images to use the concept of bounding boxes. however,

in DNA sequences, there is only one dimension, so there is not such an overlapping concept

for genomic objects. The IoU threshold should be set to zero, but it was decided to keep a

small margin of error for predictions.

0.12 Output visualization

During data set creation and model testing, it is imperative to implement a strategy to visualize

the actual labels against the predicted labels, which facilitates the identification of potential

deficiencies into which the model may fall. Consequently, each domain is represented as a hor-

izontal line of a specific color in a window of 50, 000 units in length representing the number

of nucleotides in each sample in the data set.

0.13 Performance metrics

The performance metrics used to evaluate YORO include precision, recall, accuracy, F1-score,

precision-recall curve, parity plot for predicted domain positions, and mean average precision

(mAP).

The computation of recall, accuracy, precision, and F1-score relies on the definition of true

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). According to

[22], these quantities are defined on a nucleotide basis for genomics-related deep learning

models. In this research, the same definitions have been used. However, it is important to clar-

ify that predictions are considered true positives as long as the domain prediction coincides

with any other domain in the ground truth label, regardless of the domain classification. In

this sense, if the network predicts a domain in the same position as the label but they are of dif-

ferent type, the prediction is still considered a true positive. At this stage of the analysis, only

the domains are being compared without considering their types in order to evaluate the

capacity of the network to predict the position and size of internal domains.

On the other hand, the classification of each predicted domain is evaluated through the

mAP. The mAP calculation is based on COCO mAP@0.5 and is performed for the domain cat-

egories (AP, INT, ENV, RT, GAG, and RH) as well as lineages/families.

Precision, recall, accuracy, and F1-score were analyzed from two perspectives: (A) individ-

ual domains and (B) clusters with a minimum of three contiguous domains separated by no

more than 3, 000 nucleotides. The second approach aims to analyze whether YORO can be

used to detect the entire internal region of LTR-RT in a genome, that is, excluding the flanks

of LTR.

A parity plot is also used to measure the performance of the model predictions by compar-

ing the position of the start of each domain for the predicted and real labels. Additionally,

another parity plot is constructed by comparing the start of each internal region.

Although the data set is somewhat synthetic, the trained model is also tested on the genome

of Oryza sativa ssp. indica, since its annotation is well curated and available in [48]. The preci-

sion and recall are computed on a nucleotide basis for the internal regions detected by YORO.

YORO is intended to be improved by the research community to be able to annotate all

type of transposable elements contained in a given genome. A proof of concept to illustrate

this point, is to apply LTRharvest [53] on the internal regions detected by YORO and obtain

the complete LTR-RT. This result is compared with the annotation from [48] in terms of
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precision and recall. The parameters used by LTRharvest are: -seqids yes -maxlenltr 3000 -sim-

ilar 80.

0.14 Execution times in several genomes

In order to evaluate the performance of the Genomic Object Detection approach proposed in

this study, a performance test was conducted by running the pipeline with 100 different

genomes from the 300 plant genomes previously annotated for LTR-RT [12], with genome

sizes ranging from 300Mbp to 1.4Gbp. This allowed us to evaluate the model performance in

terms of run-time with complete and large genomes, and to obtain information on the speed

of the LTR-RT’s internal domain detection-classification task.

0.15 Comparison against conventional tools

The performance of YORO was compared against BLAST (Basic Local Alignment Search

Tool) [54], a conventional approach used for the detection and classification of LTR-RT

domains. For this end, both approaches were run on 17 genomes (Table S1 in S1 File), ran-

domly selected from the genomes used in [12]. The variables of execution time, speed-up

(ratio of BLAST and YORO times) and number of domains detected by each of the genomes

were measured. Genome-specific variables such as size and N50 values were also measured. In

the case of the N50 values, it was normalized in relation to the genome size in base pairs (bp).

BLASTx was used by applying the parameters reported in [55], with a evalue of 1e-4 and as

this program uses a homology-based mechanism for detection, a well-curated reference data-

base is crucial for accurate analysis. For this end, the combined domains found in the REXdb

[11] and the GyDB [56] databases were used. YORO was executed using a threshold of 0.8

with the remaining parameters set to their default values. The computational resources used

for this analysis included 32 CPU cores, 250 GB of RAM, and one NVIDIA A100-PC GPU

with 20 GB of RAM.

0.16 Comparison of distances between domains

The performance of YORO on domain detection was evaluated, comparing it to an annotation

of the same domains performed by [12] in plant genomes using an approach based on HMM

profiles. In this experiment, we compared the output file of YORO (a tabular file of domain

position) with the annotation performed by [12] (a GFF file). We pre-processed all the files,

calculating the distance in base pairs between each detected domain of the same element, tak-

ing into account the order of the domains for each of the LTR-RT superfamilies (Ty3/gypsy

and Ty1/copia). Due to the nature of some LTR-RTs, additional domains are inserted at the

end of the element before the LTR, so to calculate distances, the ANT and NEXT labels were

added. NEXT refers to the distance between the specific domain and the next, whatever that

may be, and ANT is the distance between the previous domain and the final LTR of the same

element.

Next, we calculated the average distances for each of the tested combinations, and finally, in

a violin plot, we displayed the distribution of the distances and tabulated the average distances

for each of the superfamilies.
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