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Abstract

Background

The number of malaria cases worldwide has increased, with over 241 million cases and

69,000 more deaths in 2020 compared to 2019. Burkina Faso recorded over 11 million

malaria cases in 2020, resulting in nearly 4,000 deaths. The overall incidence of malaria in

Burkina Faso has been steadily increasing since 2016. This study investigates the spatio-

temporal pattern and environmental and meteorological determinants of malaria incidence

in Burkina Faso.

Methods

We described the temporal dynamics of malaria cases by detecting the transmission periods

and the evolution trend from 2013 to 2018. We detected hotspots using spatial scan statis-

tics. We assessed different environmental zones through a hierarchical clustering and ana-

lyzed the environmental and climatic data to identify their association with malaria incidence

at the national and at the district’s levels through generalized additive models. We also

assessed the time lag between malaria peaks onset and the rainfall at the district level. The

environmental and climatic data were synthetized into indicators.

Results

The study found that malaria incidence had a seasonal pattern, with high transmission

occurring during the rainy seasons. We also found an increasing trend in the incidence. The

highest-risk districts for malaria incidence were identified, with a significant expansion of

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0290233 September 13, 2023 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bationo C, Cissoko M, Katilé A, Sylla B,
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high-risk areas from less than half of the districts in 2013–2014 to nearly 90% of the districts

in 2017–2018. We identified three classes of health districts based on environmental and cli-

matic data, with the northern, south-western, and western districts forming separate clus-

ters. Additionally, we found that the time lag between malaria peaks onset and the rainfall at

the district level varied from 7 weeks to 17 weeks with a median at 10 weeks. Environmental

and climatic factors have been found to be associated with the number of cases both at

global and districts levels.

Conclusion

The study provides important insights into the environmental and spatiotemporal patterns of

malaria in Burkina Faso by assessing the spatio temporal dynamics of Malaria cases but

also linking those dynamics to the environmental and climatic factors. The findings highlight

the importance of targeted control strategies to reduce the burden of malaria in high-risk

areas as we found that Malaria epidemiology is complex and linked to many factors that

make some regions more at risk than others.

Introduction

According to a report from the World Health Organization (WHO), the number of malaria

cases was estimated at 241 million in 2020 compared to 227 million in 2019, an increase of

nearly 14 million cases. 69,000 more people died of malaria in 2020 than in 2019 (627,000 vs.

558,000) [1].

Approximately 95% of malaria cases were recorded in the WHO African Region. Burkina

Faso, Cameroon, Democratic Republic of Congo, Ghana, Mali, Mozambique, Niger, Nigeria,

Uganda, and United Republic of Tanzania alone contributed to almost 70% of cases and 71%

of deaths globally in 2020 and in sub-Saharan Africa, the estimated number of malaria deaths

increased by 12% in 2020 compared to 2019 [1]. In 2020 in Burkina Faso, more than 11 million

cases of malaria were recorded in the country’s health facilities, representing about 5% of

global cases, resulting in nearly 4,000 deaths, according to the WHO and the National Malaria

Control Program in Burkina Faso [1, 2]. The overall incidence in Burkina Faso has been

steadily increasing since 2016 [3].

WHO has updated its global malaria strategy to reflect the lessons learned over the past five

years [4]. To achieve the goals of this strategy (a 90% reduction in malaria incidence and mor-

tality by 2030), new approaches and strengthened efforts are needed, supported by new tools

and improved implementation of existing tools [1, 4]. The tools recommended for prevention

and intervention include geo-epidemiological studies: identification of high-risk areas and

periods at fine spatial and temporal scales [5–7], consideration of environmental, meteorologi-

cal and socio-demographic factors in the implementation of control and prevention interven-

tions [8–10], detection of heterogeneity patterns in malaria endemic areas [3, 11]

Even if spatial analysis of Malaria has been used in different regions [6, 8, 12, 13], imple-

menting a spatio-temporal approach within a national malaria program is less common [14,

15].

In Burkina Faso, few studies of this kind have been carried out at the national level, defining

different zones in terms of incidence, meteorological, environmental and socioeconomic fac-

tors, which would help in the decision to implement control and prevention policies in the

areas most at risk [16–20].
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In this geo-epidemiological study, we assessed malaria spatio-temporal heterogeneity in all

70 health districts of Burkina Faso and over five consecutive epidemic years, updating the spa-

tial stratification of malaria, studying the differences in incidence between these years. We also

assessed the different meteorological and environmental factors associated with the malaria

spatio-temporal heterogeneity.

Materials and methods

Study area and datasets

Burkina Faso is a West African country surrounded by Mali (north and west), Niger (east),

Benin, Togo, Ghana, and Côte d’Ivoire (south). In 2020 its population was estimated to be

20,903,278 [21]. The climate is Sahelian in the northern part and Sudanese in the rest of the

country. The dry and cool season occurs from November to February, during which the Har-

mattan, a strong wind originating from the Sahara, blows, characterized by a great thermal

amplitude between day and night. From March to May, heat and dry conditions prevail. The

highest rainfall period occurs in July and August. The level of rainfall goes from more than

1,300 mm in the southwest, the most productive region of the country, to less than 254 mm in

the north.

The health system in Burkina Faso has three administrative levels: central, intermediate,

and peripheral. The central level is composed of the central structures organized around the

Minister’s office and the General Secretariat. The intermediate level includes 13 regional health

directorates, and the peripheral level is made up of 70 health districts. The health district is the

spatial unit of the national health system. In 2018, the median number of inhabitants of health

districts was 255,000 (interquartile range: 177,331) [22].

In Burkina Faso, a case of malaria is defined as a person with fever and a positive Rapid

Diagnostic Test (RDT) or thick blood microscopy diagnostic, following the WHO definition

[23]. The national epidemiological surveillance includes an epidemiologic information system

for priority diseases, based on the DHIS2 system, including malaria case collection on a weekly

basis. The malaria case data from 2013 to 2018 was collected from the national epidemiological

surveillance system, which undergoes quality checks at multiple levels and includes cross-

checking with patient registers, ensuring data completeness and timeliness, with no significant

issues found in our own data quality assessment.

The authors did not have access to any information that could identify individual partici-

pants during or after the data collection process.

Meteorological data were collected for each health district from remote sensing using satel-

lites through Google earth engine [24] from January 2013 to December 2018.We collected

daily precipitation data (Climate Hazards Group InfraRed Precipitation with Station Data,

spatial resolution: approximately 5.56 km), average daily temperature, maximum daily temper-

ature, and minimum daily temperature data (Latest climate reanalysis produced by ECMWF /

Copernicus Climate Change Service, spatial resolution: approximately 27.78 km), 8-day nor-

malized difference vegetation index (MODIS Terra Surface Reflectance 8-Day Global, spatial

resolution: approximately 0.5 km), daily surface atmospheric pressure data (Latest climate

reanalysis produced by ECMWF / Copernicus Climate Change Service, spatial resolution:

approximately 27.78 km), and 8-day fire detection data (Fire Information for Resource Man-

agement System, spatial resolution: approximately 1 km). We provide a table of all the vari-

ables and their sources in S1 Table. Shapefiles of Burkina Faso Health districts were extracted

from the GADM (version 3.6, Davis, CA, USA) Center for Spatial Sciences at the University of

California, Davis and Open Street Map websites [25].
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Statistical methods

We used the number of weekly malaria cases and assumed a constant population within each

year to estimate the overall incidence time series (2013–2018), estimating trend and seasonal-

ity. We used an additive decomposition to highlight the seasonality, using the LOESS (locally

estimated scatterplot smoothing) method. LOESS regression is a non-parametric approach

that uses a locally weighted regression to fit a smooth curve across the points of a scatterplot

[26].

We also determined the different transmission periods through a change point analysis [27]

of the mean using the Pruned Exact Linear Time (PELT) algorithm and the Modified Bayes

Information Criterion (MBIC) [28–30]. The change point analysis is a method applied on a

series of time-ordered data to detect whether changes have occurred, determining the number

of changes and estimating dates of changes [31, 32].

We also observed the density in the incidence through the epidemic years using ridgelines

[33]. Ridgelines are a type of data visualization that displays multiple overlapping probability

density functions or distributions. They are used to visualize the distribution of a continuous

variable across different categories or groups.

An epidemic malaria year can be defined as the 12-month period commencing with the ini-

tial rise in the incidence of cases, corresponding to the onset of the primary peak, and extend-

ing through the subsequent year. The evolution of incidence across the country through

epidemic years was assessed through choropleths incidence maps at the health district level.

This could possibly allow observations of trends in spatial variations over epidemics years.

We investigated high-risk districts for each epidemic year and each transmission period to

document the spatial pattern of the riskiest districts. We used a Poisson model purely spatial

Kulldorf scan statistic [34] implemented in rsatscan [35]. Kulldorf scan statistics were used to

identify hotspots and cold spots in a territory. This approach groups different spatial units

adjacent to the study area into potential clusters. It was based on an elliptical window of differ-

ent size, called a scan window, moving over the study area. They determine the randomness of

the distribution of a phenomenon in space [34]. This randomness is used as a statistic test

whose objective is to test the presence of a cluster within a region R with the following

hypotheses:

H0 = Random distribution of events in R

H1 = Existence of a cluster C of events, included in R, in which the probability of occur-

rence of an event is greater than that in the rest of R.

In our study a district was defined as a hotspot if it belongs to one of the significant clusters

detected by the Kulldorf scan statistics. We used an elliptical window, a maximum cluster size

set at 30% of the population at risk and the scan statistic was tested with 9999 replications of a

Monte Carlo algorithm.

As malaria distribution has been shown to depend on environmental and meteorological

factors that can favor vectors development and host-vector interactions [36, 37], we then pro-

duced choropleths maps for the main meteorological and environmental data retrieved for the

entire period to characterize the districts environment. For the need to have a more detailed

characterization of the districts environmental profile, we implemented a principal component

analysis (PCA) [38, 39] on all the environmental and meteorological data from the 70 districts

for the entire study period to create Synthetic Environmental National Indicators (SENIs).

The PCA step can be considered as a denoising step which can lead to a more stable clustering.

We then made a hierarchical ascendant cluster analysis to create environmental profiles for

the districts [40, 41]. We performed the hierarchical clustering using the Ward’s criterion [42,

43] (based on the multidimensional variance).

PLOS ONE Burkina Faso’s malaria landscape: Analysis and control implications

PLOS ONE | https://doi.org/10.1371/journal.pone.0290233 September 13, 2023 4 / 24

https://doi.org/10.1371/journal.pone.0290233


The association between malaria and meteorological factors is complex due to the non-lin-

ear pattern of meteorological factors with the incidence., We fitted a multivariate generalized

additive model (GAM) with a negative binomial distribution and a smoothing spline function

on the SMIs values to model the malaria cases as a function of the SENIs [44]. A generalized

additive model (GAM) is a generalized linear model with a linear predictor involving a sum of

smooth functions of covariates. The GAM can be used with nonparametric smoothing terms

instead of constant parameters [44–46], with the following the structure:

gðmiÞ ¼ Xi∗yþ f1ðX1iÞ þ f2ðX2iÞ þ � � � ð1Þ

where μi = E(Yi) and Yi ~ exponential family distribution.

Yi is a response variable, Xi is a row of the model matrix for any strictly parametric model

components, θ is the corresponding parameter vector, and the fj are smooth functions of the

covariates, Xk

For estimation, the fi, are decomposed on a spline basis. We note bjk the kth function of the

chosen spline basis. The smooth functions fj can be written as follows:

fjðxÞ ¼
Xl

k¼1
bjkðxÞbjk; ð2Þ

where βjk is unknown.

This allowed us to assess the non-linear relations between the SMIs and malaria cases. A

first-order autoregressive correlation [47, 48] was integrated into the variance-covariance

matrix to account for temporal autocorrelation of malaria cases. We used a spline smoothing

function on each SENI, ƒj(SENIj) to estimate the variation of each indicators effect on the

malaria cases.

Burkina Faso having different environmental profiles (refer to clustering on environmental

factors), we also estimated for each district the lag of time between malaria cases and rainfall

for the entire study period. We chose rainfall because it appears to be one of the major meteo-

rological factor affecting malaria incidence [19, 49, 50].

We used a univariate generalized additive model (GAM) with a negative binomial distribu-

tion and a smoothing spline function on the rainfall values to model the malaria cases as a

function of rainfall for time lags ranging from 1 to 20 weeks. The model minimizing the gener-

alized cross-validation (GCV) was the model highlighting the lag [46, 51, 52]. Generalized

Cross-Validation (GCV) is a statistical method used for model selection and parameter estima-

tion in various regression or smoothing techniques [51]. It is commonly used in generalized

additive models (GAMs) to determine the optimal amount of smoothing or regularization to

apply to the model. In GAMs, smoothing is used to capture non-linear relationships between

variables and the response variable. GCV is a technique that helps determine the appropriate

level of smoothing by balancing the model’s fit to the data and its complexity. The goal is to

find the smoothing parameter that provides the best compromise between overfitting (captur-

ing noise or irrelevant patterns in the data) and underfitting (oversimplifying the relationships

and missing important patterns)

At this health district level, after performing another PCA this time using all the environ-

mental, meteorological, and geographic data, building, for each of the 70 districts, Synthetic

Environmental District Indicators (SEDIs) and discriminated for each epidemic year for the

entire study period, we fitted a multivariate generalized additive mixed model to assess the

relation between association between malaria and SEDI by district. To account for time pro-

cess, a first-order autoregressive process was integrated into the variance-covariance matrix of

the GAMM model. The logarithm transformation of the population for each district and for

PLOS ONE Burkina Faso’s malaria landscape: Analysis and control implications

PLOS ONE | https://doi.org/10.1371/journal.pone.0290233 September 13, 2023 5 / 24

https://doi.org/10.1371/journal.pone.0290233


each epidemic year was used as the offset in order to compute the standardized incidence

ratio.

Our analysis incorporated spatially resolved environmental variables, such as rainfall, tem-

perature, and vegetation index, which indirectly accounted for spatial autocorrelation in our

study. By including these variables in the multivariate generalized additive models (GAMs),

we captured the spatial patterns and variations in factors influencing malaria transmission.

These variables provided valuable information on the spatial variability of environmental con-

ditions, which are known to influence mosquito populations and malaria transmission dynam-

ics. Consequently, the models effectively captured the spatially dependent relationships

between environmental variables and malaria incidence. While explicit modeling of spatial

autocorrelation through the inclusion of health district as a random effect could have provided

additional insights, our approach accounted for spatial effects by including these environmen-

tal variables. This indirect consideration of spatial autocorrelation aligns with the available

data and the objectives of our study, providing valuable insights into the spatial dynamics of

malaria transmission in Burkina Faso.

In the final model, we used a spline smoothing function on each SMI, ƒj(SMIj) to estimate

the nonlinear relationship between each indicator and malaria cases.

While we utilized a robust dataset for our study, it is important to acknowledge potential

limitations related to the data. The primary sources of these data are passive surveillance sys-

tems, which are inherently subject to certain biases. Cases of malaria may be underreported

due to asymptomatic infections or less severe cases that do not seek medical attention. More-

over, misdiagnosis and uneven access to healthcare facilities across the country could also con-

tribute to inaccuracies. While efforts are ongoing to enhance malaria surveillance in Burkina

Faso, these challenges remain. Nonetheless, given the consistency in data collection and pro-

cessing with quality checks in place, we believe the dataset provides a reasonably accurate pic-

ture of the spatiotemporal distribution of malaria across the country, despite these potential

biases.

Results

The national malaria control program recorded 55,417,532 malaria cases from January 2013 to

December 2018 for a population that increased from 17,322,796 in 2013 to 20,244,079 in 2018

[53]. The median malaria incidence was 739.06 cases per 100,000 population/week over the

entire period (range 294.46;2427.85). The highest incidences for the years 2013 to 2015 were

observed between late July and early November. During the years 2016 to 2018, high inci-

dences were observed between mid-June and early November. In addition to that from epi-

demic year 2013–2014 to 2016–2017, we observed two peaks in the incidence rate distribution:

the first and high one around 500 cases per 100,000 inhabitants/week and the second around

1500 cases per 100,000 inhabitants/week (Fig 1).

The decomposition in trend and season exhibited two clear phases in the time series: a sta-

ble phase with a constant incidence (around 800 cases / 100,000 person-years) from 2013 to

2015, followed by an increase phase following a nearly linear trend from 2016 to 2018 (Fig 2).

A more detailed analysis of the time series using the Change point method allowed us to

characterize distinct seasonal dynamics in these two phases. The stable phase 1 (2013–2016)

exhibited only two alternating transmission periods: low from January to July (included) and

high from August to December (included).

During increasing phase 2, in 2017 to 2018, an intermediate transmission period from mid-

November to early January intercalated between the low transmission period from mid-Febru-

ary to early June and the high transmission period from July to late December (Fig 3).
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Differences tests between transmission periods are presented in S1 Fig.

Choropleth maps were used to visualize the distribution and evolution of malaria incidence

across the country. The analysis revealed that the health districts most affected by malaria var-

ied from year to year. From 2013–2014 to 2015–2016, the incidence distribution was relatively

homogeneous, with some districts in the center, central-eastern, and southwest regions show-

ing higher incidence rates of at least 70,000 cases per 100,000 persons/year (see Burkina Faso

region level map in S5 Fig). However, starting from the epidemic year 2016–2017, all districts,

except those in the central-western region and some districts in the Sahel and central-eastern

regions, experienced an incidence of at least 45,000 cases per 100,000 persons/year. The south-

west, south, central-east, and east regions exhibited a particularly pronounced incidence, with

rates of at least 65,000 cases per 100,000 persons/year. Notably, some districts in the southwest

and east even surpassed 100,000 cases per 100,000 persons/year. Conversely, the Sahel and cen-

tral-western regions consistently had lower incidence rates compared to other regions. The

choropleth maps, along with the overall incidence time series analysis (Figs 4 and 5), clearly

Fig 1. Malaria incidence rate distribution from epidemic year from 2013–2014 to 2017–2018. The X axis represents the incidence rate per 100,000-person

week. The Y axis with the different shade of grey color represents the epidemics years from 2013–2014 to 2017–2018. The figure displays ridgelines to visualize

the distribution of malaria incidence rates for each epidemic year. Each ridge (the shaded area) represents the distribution of incidence rates for a specific

epidemic year.

https://doi.org/10.1371/journal.pone.0290233.g001
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depict the increasing trend from 2016–2017 onwards. These findings provide valuable insights

into the geographical distribution and temporal dynamics of malaria incidence in Burkina

Faso over the study period from 2013–2014 to 2017–2018.

By examining high-risk districts for each epidemic year and transmission period (by using

the Kulldorf approach), we were able to identify areas with the highest risk. Fig 6 depicts the

progression of districts at high risk for Malaria, demonstrating an expansion of the affected

areas from less than half of the districts being at high risk in 2013–2014 to nearly 90% of the

districts being at high risk in 2017–2018.

Maps of the most important environmental variables affecting malaria (mean rainfall, tem-

perature, and normalized difference vegetation index) data over the entire study period (from

the national level PCA) along with the overall time series from 2013 to 2018 are shown in Figs

7–12. Maps for the other environmental variables can be found in S2–S4 Figs For the rainfall

and the NDVI data, we observed a north-south gradient with the highest rainfall and NDVI in

south-west, south, central-eastern and southeastern regions. Maximum temperatures showed

an opposite pattern with the lowest observed in the south-west.

Fig 2. Time series of malaria incidence in Burkina Faso and its seasonal and trend components. Additive decomposition was used, and the decomposed

curves were smoothed using the locally estimated scatterplot smoothing method. Raw time series (Data panel). Time series noise (Remainder panel). Time

series seasons (Seasonal panel). Time series trend (Trend panel).

https://doi.org/10.1371/journal.pone.0290233.g002
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Fig 3. Transmission periods from 2013 to 2018, defined by the change point analysis. Low transmission period (Light grey area); High transmission period

(Dark grey area); Intermediate transmission period (Tan area).

https://doi.org/10.1371/journal.pone.0290233.g003

Fig 4. Incidence of malaria by health district, from 2013–2014 to 2017–2018; epidemic year incidence per 100,000

person/year in Burkina Faso.

https://doi.org/10.1371/journal.pone.0290233.g004
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Using the hierarchical ascendant clustering on the PCA, we detected three profiles of health

districts characterized by the environmental and climatic data (Figs 13 and 14).

High maximum temperatures, high mean temperatures, average minimum temperatures,

and low rainfalls were most significantly associated with the profile 1. The profile 2 was charac-

terized by high minimum temperatures, high NDVIs, high atmospheric pressures, and high

medium rainfalls. The profile 3 was characterized by high rainfalls, high NDVIs, and medium

mean temperatures.

The mapping of the districts according to those profiles (Fig 14) showed a clear pattern

with the districts located in north part of the country forming a cluster, those located in the

south-west and the west forming another one and those located in the center to the east form-

ing the last one.

Overall, we assessed two SENIs. The SENI1 was composed of the weekly sum of daily rain-

falls, minimum temperature and NDVI. The SENI2 was composed of the maximum tempera-

ture, mean temperature, and pressure.

In the multivariate GAM model (that reached 80% of deviance explained of), non-linear,

significant relationships were observed at the national scale between both SENI1 and SENI2

and the number of cases (p<0.001 and p<0.001, respectively). For SENI1 (rainfall, minimum

temperature, NDVI), a low asymptote was observed for almost all the lowest values and then

an increasing trend for almost all the highest values reaching an asymptote at the very end (Fig

15 panel A). For the SENI2 (temperature) a nonlinear relationship was also assessed with a

Fig 5. Overall trends in malaria incidence by epidemic year, from 2013–2014 to 2017–2018; weekly epidemic year

incidence per 100,000 person/year with generalized additive model smoothing: Weekly incidence time series

(black line) and smoothed time series (orange lines).

https://doi.org/10.1371/journal.pone.0290233.g005
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Fig 6. High risk health districts hotspots for each epidemic year and transmission period. A district is defined as a hotspot if it belongs to one of the

significant clusters detected by the Kulldorf scan statistics.

https://doi.org/10.1371/journal.pone.0290233.g006

Fig 7. Mean rainfall (mm) maps by health district, from epidemic year 2013–2014 to 2017–2018.

https://doi.org/10.1371/journal.pone.0290233.g007
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Fig 8. Temporal trends (time series) of mean rainfall (mm) from 2013 to 2018 (Blue bars) and malaria incidence time series from 2013 to 2018 (red line).

https://doi.org/10.1371/journal.pone.0290233.g008

Fig 9. Maximum temperatures (˚C) maps by health district, from epidemic year 2013–2014 to 2017–2018.

https://doi.org/10.1371/journal.pone.0290233.g009
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Fig 10. Temporal trends (time series) in maximum temperatures (˚C) from 2013to 2018 (red line) and malaria incidence time series from 2013 to 2018

(black line).

https://doi.org/10.1371/journal.pone.0290233.g010

Fig 11. Mean NDVI maps by health district, from epidemic year 2013–2014 to 2017–2018.

https://doi.org/10.1371/journal.pone.0290233.g011
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high asymptote for the lowest values and then a decreasing trend for almost all the values of

the SENI2 (Fig 15 panel B). The graphical quality assessment of this multivariate model diag-

nostic showed a good confidence (Fig 15 Panel C).

The time lags between rainfalls and malaria cases, as analyzed by a univariate generalized

additive model at the district level were between seven and 17 with a median of 10. Fig 16

showed a south-north gradient with the highest lag located in the north and the lowest lag in

the south. However, we observed two districts located in the center and the south-west with

respectively 17 weeks and 16 weeks as time lags.

From the district level PCA, we assessed the effect of three district-level Synthetic Environ-

mental District Indicators (SEDIs): SEDI1 (Maximum temperature, mean temperature),

SEDI2 (minimum temperature, NDVI and latitude), SEDI3 (Rainfall and longitude).

In the district level multivariate model, SEDI1, SEDI2 and SEDI3 were all significantly asso-

ciated with the number of cases at the district level (p<0.001, p<0.01 and p<0.01 respectively).

A nonlinear relationship between the cases and the SEDI1 (maximum temperature) was

observed. For SEDI1, cases were low at higher values (Fig 17, panel A). For the SEDI2 (min

temperature, vegetation, and latitude) a nonlinear relationship was also assessed with an

increasing trend for almost all the lowest values of the SEDI2, then reaching an asymptote for

the highest values (Fig 17 panel B). For the SEDI3 (rainfall and longitude) a nonlinear relation-

ship was assessed, beginning with an asymptote for the lowest values of the SEDI3 and then a

Fig 12. Temporal trends (time series) in NDVI from 2013to 2018 (black line) and malaria incidence time series from 2013 to 2018 (red line).

https://doi.org/10.1371/journal.pone.0290233.g012
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rough increasing trend for the highest values of the SEDI3 (Fig 17, panel C). The graphical

quality assessment of this multivariate model diagnostic showed good confidence (Fig 17

Panel D,E,F and G).

Fig 13. Dendrogram showing districts classification into environmental profiles. Profile 1 (Purple): High

maximum temperatures, high mean temperatures, average minimum temperatures, and low rainfalls, profile 2

(Orange): High minimum temperatures, high NDVIs, high atmospheric pressures, and high medium rainfalls. and

profile 3 (Green): high rainfalls, high NDVIs, and medium mean temperatures.

https://doi.org/10.1371/journal.pone.0290233.g013

Fig 14. Mapping of health districts into environmental classes. Profile 1 (Purple): High maximum temperatures,

high mean temperatures, average minimum temperatures, and low rainfalls, profile 2 (Orange): High minimum

temperatures, high NDVIs, high atmospheric pressures, and high medium rainfalls. and profile 3 (Green): high

rainfalls, high NDVIs, and medium mean temperatures.

https://doi.org/10.1371/journal.pone.0290233.g014
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Fig 15. Relation between malaria cases and SENIs. Panel A: Relation between malaria global cases and SENI1 (mostly rainfall and mean

temperature);. Panel B: Relation between malaria global cases and SENI2 (mostly temperature); Panel C, D,E and F: Diagnostic plot of

multivariate generalized additive model.

https://doi.org/10.1371/journal.pone.0290233.g015

Fig 16. Time lags (in weeks) between cases and rainfalls at districts level. The lags had Minimum of 7 weeks, a maximum of 17 weeks and a median of 10

weeks.

https://doi.org/10.1371/journal.pone.0290233.g016
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Discussion

Despite the significant efforts made by the National Malaria Control Program in Burkina Faso,

the incidence rate of malaria remains high every year, with an intra-annual and an inter-

annual variability in the incidence. Indeed, in addition to the intra-annual seasonal dynamic

of malaria, an increasing inter-annual trend in incidence was showed throughout the years

from 2013 to 2018. Note that, similarly to other authors [54, 55], we observed that a complete

malaria epidemic overlaps two calendar years (Fig 4). This has important implications for pol-

icy makers and public health officials. Since the malaria epidemic spans across two years, it is

crucial to consider this when estimating the number of cases, and planning for prevention and

control strategies, as well as funding allocations. The inter-annual increasing trend highlighted

by our study reinforces the need of considering long time series and spatial distribution

through time in order to better tailor malaria control strategies. This requires careful planning

and coordination of resources, including funding, personnel, and supplies, to ensure that pre-

vention and control measures are implemented effectively and consistently over the entire epi-

demic period. Additionally, policies and funding should be designed to ensure that there is no

gap in interventions or resources as one-year ends and the next begins.

One particular feature of malaria transmission in Burkina Faso was the observed phenome-

non of rebound in the incidence each year (second peak). During these periods, children were

no longer protected by the Seasonal Malaria Chemoprevention (SMC), ending in October,

Fig 17. Relation between malaria cases and SEDIs at district level; Panel A: Relation between malaria global cases and SEDI1 (mostly maximum temperature);

Panel B: Relation between malaria global cases and SEDI2 (mostly min temperature vegetation and latitude). Panel C: Relation between malaria global cases

and SEDI3 (rainfall and longitude). Panel D,E,F and G:Diagnostic plot of multivariate generalized additive model.

https://doi.org/10.1371/journal.pone.0290233.g017
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which makes them more vulnerable to malaria infection. These results demonstrate the

urgency of implementing more effective interventions to combat malaria in Burkina Faso.

One potential option could be the introduction of supplementary rounds of SMC to provide

additional protection in November. Indeed, SMC is shown to be effective in reducing malaria

incidence in children is seasonal malaria chemoprevention (SMC) [56, 57], but the observed

rebound in the incidence around November each year may expose the children to severe

malaria.

In addition, malaria incidence in Burkina Faso has been found to be highly variable spa-

tially and across different years with some regions and districts experiencing higher incidences

of malaria than others. The choropleth maps provided a visualization of this variability, show-

ing the geographical distribution of malaria incidence over time. This finding is consistent

with other studies that have reported an heterogeneity in malaria incidence in Burkina Faso in

recent years [3, 20].

The results presented in Fig 14 highlighted a worrisome trend of expansion of the districts

at high risk for malaria in Burkina Faso over time and their sustainability during both high

and low transmission period. This expansion of high-risk areas may be attributed to various

factors, such as entomological factors, prevention, and control measures but also climate

change, population growth, and increased human behaviors and activities leading to changes

in land use and environmental conditions. The findings in Fig 14 are consistent with previous

studies that suggest a rise in malaria transmission in different parts of Africa [58, 59]. One

potential explanation for the observed expansion of high-risk areas is the population displace-

ment in Burkina Faso, settling in new areas, and leading to land use changes, and a subsequent

increase in the prevalence of malaria [13, 60]. Additionally, the population displacement may

result in overcrowding, which may lead to poor living conditions which contribute to

increased malaria transmission.

The identification of distinct profiles of health districts based on environmental and cli-

matic data was also a noteworthy finding. The clustering analysis identified three profiles of

health districts that differed in their environmental and climatic characteristics. These findings

are helpful to guide targeted interventions and resource allocation to areas with the highest

risk of malaria context and transmission.

The multivariate model at national level showed that both SMI1 (rainfall, minimum tem-

perature and NDVI) and SMI2 (maximum temperature) were significantly associated with the

number of malaria cases at the country level. These findings are consistent with previous stud-

ies that have shown the influence of temperature and rainfall on malaria transmission [61, 62].

The nonlinear relationship between the national cases and the SMIs suggested that the impact

of environmental variables on malaria transmission may be more complex than a linear rela-

tionship. The low and high asymptotes of SMI1 and SMI2 could be due to the fact that extreme

values may not be conducive for malaria transmission, while intermediate temperatures and

rainfall may be optimal for mosquito survival and reproduction [61].

The district-level analysis also showed a south-north gradient in the time lag between

malaria cases and rainfall, with the highest lags located in the north and the lowest lags in the

south. This is consistent with previous studies that have shown a lag between rainfall and

malaria incidence due to the time required for the development and maturation of mosquito

eggs and larvae [63]. The longer time lags observed in the north may reflect the lower rainfall

and vegetation in this region. Looking at the district level multivariate model, the overall

decreasing trend of cases for dSMI1 (maximum temperature) may be explained by the fact

that high temperatures can have a direct impact on the mosquito’s survival and reproductive

rate, thus limiting the population size and transmission capacity of the vector[64, 65]. Extreme

temperatures disrupt the synchronization of the mosquito life cycle with the seasonal rainfall
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patterns, leading to a reduction in the mosquito population and a less periodic transmission of

malaria [64, 66, 67]. The overall increasing trend of cases for dSMI2 may be explained by the

fact that mean temperature, vegetation, and latitude have been identified as important envi-

ronmental factors that influence the transmission of malaria. Vegetation can impact the avail-

ability of breeding sites for mosquitoes, as well as the survival and reproductive success of the

mosquito vector. Latitude can also play a role in malaria transmission, as areas closer to the

equator tend to have higher transmission rates due to more humid conditions [68, 69]. For the

dSMI3, the overall increase in the cases may be explained by the fact that rainfall can create

suitable breeding sites. A higher amount of rainfall can lead to an increase in the number of

breeding sites and therefore an increase in the mosquito population, which can result in higher

transmission rates of malaria [19, 55, 70].

Overall, the findings of this study highlight the complex relationships between environmen-

tal factors and malaria transmission and suggest that targeted interventions aimed at reducing

malaria transmission may need to consider a range of environmental and climatic factors at a

local scale to be effective.

In our study, we employed the Generalized additive models (GAMS) for analysis; however,

looking ahead, machine learning has the potential to be employed in analyzing large-scale

environmental databases, providing novel insights and enhancing data analysis and decision-

making processes.

Our findings, based on the analysis of malaria case data in Burkina Faso, need to be consid-

ered in light of potential biases related to the data. As previously mentioned in the methods

section, issues such as underreporting, misdiagnosis, and uneven access to healthcare services

can impact the accuracy of the data. These limitations are inherent in passive surveillance data

and represent challenges for disease control programs globally. However, the consistent collec-

tion of data, coupled with the quality checks implemented by the National Malaria Control

Program in Burkina Faso, makes it possible to derive meaningful insights from this data. Look-

ing forward, efforts should focus on strengthening the surveillance system, improving data

quality, and addressing these potential biases to further refine our understanding of the spatio-

temporal dynamics of malaria. Such enhancements could lead to more accurate and effective

strategies for disease control and prevention. Furthermore, while our study considered several

important climate and environmental variables, there may be other factors that influence

malaria transmission but were not included in our analysis. These could include socioeco-

nomic factors, land use changes, vector control interventions, and human behavioral factors.

Incorporating additional environmental factors could provide a more comprehensive under-

standing of the drivers of malaria transmission.

Conclusion

This study showed the spatial and temporal distribution of malaria across the country and

underscores the importance of understanding the spatiotemporal dynamics but also the envi-

ronmental factors malaria transmission in Burkina Faso at a local scale to guide effective con-

trol and prevention targeted strategies. The study’s results provide important insights for

policymakers and public health officials to design and implement targeted interventions that

are tailored to the specific needs of different regions in the country, in line with the stratifica-

tion recommended by WHO.
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oux, Jean Gaudart.

References

1. OMS. Rapport sur le Paludisme dans le Monde (2021). https://cdn.who.int/media/docs/default-source/

malaria/world-malaria-reports/world-malaria-report-2021-global-briefing-kit-fre.pdf. Accessed on July 3,

2022.
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13. Cissoko M, Sagara I, Sankaré MH, Dieng S, Guindo A, Doumbia Z, et al. Geo-Epidemiology of Malaria

at the Health Area Level, Dire Health District, Mali, 2013–2017. Int J Environ Res Public Health. 2020;

17: 3982. https://doi.org/10.3390/ijerph17113982 PMID: 32512740

14. Cissoko M, Magassa M, Sanogo V, Ouologuem A, Sangaré L, Diarra M, et al. Stratification at the health
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