
ARTICLE OPEN

Pantropical Indo-Atlantic temperature gradient modulates
multi-decadal AMOC variability in models and observations
Brady S. Ferster 1,2,7✉, Leonard F. Borchert 3,4,7✉, Juliette Mignot2, Matthew B. Menary4,6, Christophe Cassou5 and
Alexey V. Fedorov1,2

Interconnections between ocean basins are recognized as an important driver of climate variability. Recent modeling evidence
suggests that the North Atlantic climate can respond to persistent warming of the tropical Indian Ocean sea surface temperature
(SST) relative to the rest of the tropics (rTIO). Here, we use observational data to demonstrate that multi-decadal changes in
pantropical ocean temperature gradients lead to variations of an SST-based proxy of the Atlantic Meridional Overturning Circulation
(AMOC). The largest contribution to this temperature gradient-AMOC connection comes from gradients between the Indian and
Atlantic Oceans. The rTIO index yields the strongest connection of this tropical temperature gradient to the AMOC. Focusing on the
internally generated signal in three observational products reveals that an SST-based AMOC proxy index has closely followed low-
frequency changes of rTIO temperature with about 26-year lag since 1870. Analyzing the pre-industrial control simulations of 44
CMIP6 climate models shows that the AMOC proxy index lags simulated mid-latitude AMOC variations by 4 ± 4 years. These model
simulations reveal the mechanism connecting AMOC variations to pantropical ocean temperature gradients at a 27 ± 2 years lag,
matching the observed time lag in 28 out of the 44 analyzed models. rTIO temperature changes affect the North Atlantic climate
through atmospheric planetary waves, impacting temperature and salinity in the subpolar North Atlantic, which modifies deep
convection and ultimately the AMOC. Through this mechanism, observed internal rTIO variations can serve as a multi-decadal
precursor of AMOC changes with important implications for AMOC dynamics and predictability.
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INTRODUCTION
The expected future slowdown of the Atlantic Meridional Over-
turning Circulation (AMOC) in response to anthropogenic climate
change can have profound impacts on global and regional
climate1–3. These impacts include variations of North Atlantic
Ocean temperature and changes in its related predictability1,4,
modulation of global air temperature2,5, regional changes of
Northern/Southern hemisphere surface temperature6,7, changes of
storm tracks and associated mid-latitude precipitation7, alteration
of the monsoon systems including Sahelian rainfall8. Super-
imposed modes of North Atlantic sea surface temperature internal
variability9 that are interconnected with AMOC10–13 may mediate
some of these impacts4.
Recent modeling studies have shown that AMOC can react to

accelerated warming in the tropical Indian Ocean (TIO) compared
to the rest of the tropics on “fast” (monthly-to-decadal) or “slow”
(multidecadal-to-centennial) timescales14–16. So far, studies pri-
marily focus on the response of AMOC to persistent TIO warming,
thus targeting potential changes under different levels of global
warming and focusing on the Indian Ocean15. Variations of AMOC
in response to internal (i.e., unforced) TIO surface temperature
variations are unexplored as of yet. Here, we expand on existing
research by using observational data sets as well as model
simulation ensembles to further illustrate and document AMOC
response to internal changes of tropical ocean temperature
gradients generally and TIO more specifically.
Dynamic teleconnections originating from the Tropical Indian

Ocean have been shown to influence Arctic and North Atlantic

atmospheric patterns (i.e., the Northern Annular Mode & North
Atlantic Oscillation, NAO)8,17,18 and atmospheric heat fluxes19,20 on
monthly-to-decadal timescales. The NAO in turn affects both
Arctic sea ice21 and AMOC22 variability. This mechanism is
enhanced when relative warming of the TIO compared to the
remaining tropics (relative TIO; rTIO) is considered15.
More recently, such atmospheric pathways have been shown to

be complemented by oceanic pathways through the tropical
Atlantic14,15. rTIO warming may drive tropical ocean temperature
differences with the Atlantic and Pacific Ocean basins that locally
enhances TIO precipitation and latent heat release in the
atmosphere, inducing a global-scale Gill-type response that
involves stationary Rossby and Kelvin waves. This strengthens
the Walker circulation across the tropical Atlantic, resulting in
increasing wind-induced evaporation and a northward shift of
precipitation, ultimately increasing salinity throughout the tropical
Atlantic basin. As a result, the tropical ocean temperature
gradients related to rTIO warming induce positive density
anomalies in the tropical Atlantic that are transported through
ocean pathways to the North Atlantic and intensify AMOC some
decades later (further details of the mechanisms e.g., in14,15).
The processes by which AMOC reacts to changes in anomalous

TIO temperature have been highlighted in idealized coupled-
model sensitivity experiments14,15 but not yet through observa-
tions or free model runs. Further, through their idealized setup,
the previous studies targeted forced warming in the TIO and its
implications for North Atlantic climate14–16. This is motivated by
the evidence that the TIO has warmed by 0.15 °C dec−1 and also
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experienced enhanced warming of 0.05 °C dec−1 compared to the
rest of the tropics since 196014. However, there was no detailed
breakdown of the involved tropical ocean temperature gradients
to the diagnosed rTIO-AMOC connection. In addition, unforced
internal climate variations are important to understand global
teleconnections and to forecast near-term climate variations on
the decadal time scales and the associated impacts23,24 beyond
the previously studied forced rTIO-driven AMOC intensification.
Specifically, understanding and accounting for internal variability
in the North Atlantic has been shown to be a potent tool in the
attempt to predict climate over the adjacent continents on the
seasonal-to-decadal time scales2,25,26. Since some modes of
tropical Indian Ocean SST variability exhibit pronounced multi-
annual variations27 which carry some decadal predictability28, the
rTIO-AMOC link is a promising mechanism to better understand
AMOC variations and predictability.
In this work, we examine internal rTIO-AMOC teleconnections

diagnosed from observational data sets, following the methods of
previous literature, to show how the two ocean basins are
interconnected. We also take the opportunity to “zoom out”,
analyzing in detail which ocean regions and tropical ocean basins
contribute to the tropical temperature gradients that govern the
rTIO-AMOC mechanisms from the literature. We then analyze
model simulations to understand the robustness of the internal
rTIO-AMOC connection. Finally, we draw conclusions on the
importance of these internal mechanisms in the face of
anthropogenic global warming, offering alternative interpretations
of SST-based observed AMOC fingerprints in the context of
internal variability.

RESULTS
Observed tropical ocean SST teleconnections to AMOC
Direct observation of the influence of tropical ocean temperature
gradients on AMOC is inhibited by a lack of long-term direct AMOC

observations29,30. In this context, a North Atlantic SST index was
proposed as a proxy for AMOC fluctuations10,31. This index is
defined as the mean extended winter (November-May: NDJFMAM)
difference between North Atlantic subpolar gyre and global mean
SST31. It projects onto the annual mean AMOC31. Since SST has
been observed and reconstructed for much longer than AMOC, we
here invoke this observed SST-based AMOC index (henceforth SST
AMOC index; SSTAMOC) to reconstruct AMOC variations and
examine the tropical ocean—AMOC teleconnection mechanism
in observational data sets. Furthermore, the objective of this study
is to investigate the internal variability, separate from the
anthropogenic forced signal. We separate the forced component
from unforced internal climate variability using the residuals
method that subtracts the multi-model ensemble mean of
historical simulations from observations (see Methods)32 to focus
on unforced effects. To this end, we estimate the forced signals
from CMIP6 historical simulations (see Methods)32–34. Unless
explicitly stated otherwise, the results we describe henceforth
will be interpreted as unforced residuals, i.e., internal variability.
Continuing from previous literature14,15, we first define a rTIOcov

index. We define this index as the TIO temperature minus the
remaining tropical ocean temperature, weighted by its covariance
with TIO temperature (TIO-TOcov, see Methods). Compared to the
previous method, we thus now account for the co-variability
between the indian ocean and the other tropical basins to focus
on the signal related to the TIO and reduce contamination of our
results from other decadal-to-multi-decadal climatic modes.
The full observed TIO, rTIOcov and SSTAMOC all display

pronounced decadal-scale variability, as well as an accelerating
trend over the later decades due to external forcing of the climate
system (Fig. 1a–c). This includes both the unforced internal and
the forced signal. A trough and peak are observed in 1890 and
1910 in rTIOcov, and in 1910 and 1930 in SSTAMOC. We find a
temperature drop and subsequent recovery between 1920 and
1960 in rTIOcov and a substantial drop between 1940 and 1980 in

Fig. 1 Temperature time series for the Tropical Indian Ocean and the SSTAMOC index, as well as their cross-correlations in reanalysis data
sets. Time series of the observed ERSST (black) and decomposed into the forced (red) and unforced internal (blue) components for the (a)
tropical Indian Ocean (TIO) sea surface temperature (SST), (b) relative tropical Indian Ocean SST weighted by covariances (rTIOcov), and (c)
AMOC SST-fingerprint index SSTAMOC. Thin lines represent the annual mean and the thick line the 21-year moving mean. d, e The lag-lead
correlations of TIO and rTIOcov with the SSTAMOC for the observed (black), forced (red), and unforced (blue) filtered ERSST time series,
respectively. The vertical blue line represents the time-lag of the peak correlation of the unforced signal (e). f The lag-lead correlation between
the rTIOcov and SSTAMOC unforced indices for ERSST v5 (blue), HadiSST v1 (purple), and COBE v2 (orange). The vertical magenta line represents
the mean of the maximum correlations between the three observational indices, the shading represents the 95% confidence interval of upper
and lower bound uncertainty, and black dots highlight correlation significantly different from 0 at the 95% confidence level based on a
Student’s t test and according for smoothing (see Methods). The years used for each observational data product is from 1871 to 2013.
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SSTAMOC. The observed TIO and rTIOcov indices show a significant
negative correlation with SSTAMOC when the latter leads by
approximately 20 years (Fig. 1d, e; r=−0.92 and −0.60
respectively, solid black).
To improve our understanding of the underlying connections,

we deconstruct the observed signal into a forced (red) and an
unforced (blue) component. The forced TIO and rTIOcov signal are
steadily warming, while forced SSTAMOC cools. The latter suggests
AMOC weakening over time (red lines in Fig. 1a–c) related to
anthropogenic climate change (as also argued in31). It is worth
noting that, as estimated from the SSTAMOC proxy with forcing
estimation from climate models, this study cannot make any
statements about the emergence of AMOC weakening in
observations. The unforced signal of TIO and SSTAMOC have a
negative correlation maximum when the TIO lags by 17 years (Fig.
1d, solid blue, r=−0.80) and the modulations of rTIOcov and
SSTAMOC have a positive correlation maximum when rTIOcov leads
by 25 years (Fig. 1e, solid blue, r= 0.89). We do not find a
significant correlation between the rTIOcov-SSTAMOC at short time
lags, indicating that the mechanism that dominates the unforced
signal in observations acts on multidecadal time scales.
The multidecadal relationship with rTIOcov leading AMOC is

robust when considering sub-periods of the time series (Supple-
mentary Fig. 1), indicating that it is a robust relationship that is not
just dominated by the large drop in the SST time series around the
1960s. The time scale of some 25 years aligns with published
estimates of a dynamic rTIOcov-AMOC pathway in climate
models14,18,35. It therefore seems that the rTIOcov-AMOC connec-
tion is not only a forced response, as suggested by previous
studies, but also a feature of unforced variability.
The decomposition of the relationship between rTIOcov and

SSTAMOC shown here with ERSST v536 is robust in HadiSST v137

(r= 0.93, 27 years) and COBE v238 (r= 0.66, 27 years) (Fig. 1f and
S1), with an average positive correlation maximum when the
unforced rTIOcov leads by 26 ± 7 years (mean ± 99% confidence
interval). Since the relationship of rTIOcov and SSTAMOC in response
to global warming is opposite in sign, but the unforced correlation
shows the described positive maximum (Fig. 1c) with some lags,
processes involved in internal variability are likely different from
those related to anthropogenic forcing, which warrants further
exploration.
To better understand the tropical temperature gradients that

precondition the influence of rTIOcov on AMOC, we set aside the
proposed rTIOcov index and propose to further understand spatial
patterns of the tropical temperature gradients using a lagged
correlation analysis (Fig. 2). Observations show significant positive
tropical SST correlation to SSTAMOC in the TIO and tropical eastern
Pacific Ocean when tropical SST leads by more than 20 years. The
tropical Atlantic Ocean (TAO) is significantly negatively correlated
to SSTAMOC at the same time lag. This suggests that a tropical SST

gradient involving the Indian and eastern Pacific (IEP) on the one
hand, and the Atlantic on the other hand, may induce the slow
mechanism. These patterns are robust across all three observa-
tional products and several time lags (not shown). We exclude the
tropical western Pacific as it shows no robust pattern amongst the
three observed products. From the identified IEP-TAO-TIO pattern,
we can construct alternate indices of tropical SST gradients
defined as the IEP minus the TAO weighted by their covariance
(IEP-TAOcov). TIO-TAOcov and EP-TAOcov. These indices are examined
to identify a potential dominance of one the tropical basins linking
to SSTAMOC. Comparing the proposed tropical SST gradient metrics
with the rTIOcov (Supplementary Fig. 2), the strongest correlations
with SSTAMOC are still found with the rTIOcov approach (TIO-TOcov).
Within the TGSST metrics, the TIO-TAOcov produces the highest
correlations while the EP-TAOcov the lowest of the three within all
three sets of observational products (Supplementary Fig. 3).
Although the spatial pattern suggests an IEP-TAO relationship
(Supplementary Fig. 3), this analysis suggests the importance of
the TIO and TAO in determining the TGSST with potentially less
importance of the EP. Yet, due to the overall highest and most
consistent correlations of the rTIOcov with SSTAMOC among the
tropical ocean temperature gradient indices in all three observa-
tions, we henceforth define the rTIOcov index as TIO-TOcov for
comparison within coupled models (see Methods and Supple-
mentary Fig. 2). To further understand its robustness and
underlying processes, we now investigate the internal rTIOcov-
AMOC relationship in climate model simulations in the absence of
forcing.

Unforced rTIO-AMOC connections in models
We examine pre-industrial control (piControl) simulations from 44
different models from the Coupled Model Intercomparison Project
Phase 6 (CMIP6)39 archive. This kind of model simulation allows
assessing climate variability due to internal processes only, as
external forcings are kept constant to their 1850 estimated values.
As in the analysis of observations, we analyze low-pass filtered
model output. To account for smoothing-related end-point effects,
we do not analyze the first or last 100 years of the simulations. The
examined CMIP6 simulations produce a rTIOcov-SSTAMOC correla-
tion maximum at 26 ± 6 years (99% confidence interval, Fig. 3),
with a subset of 28 out of the 44 CMIP6 models within the
observed estimate of 26 ± 7 years. In fact, the time lag in the
CMIP6 model subset is on average 27 ± 2 years and shows a
significant multi-model correlation maximum (r= 0.50) within the
observed time lag (Fig. 3a; see Supplementary Table 1). The
majority of models thus confirms the observed internal correla-
tion. We now examine this subset of models more closely.
Climate model simulations have the benefit of providing

complete information about the (simulated) climate system, so
that the actual AMOC can be diagnosed. We find that the

Fig. 2 Correlations between the AMOC SST-fingerprint index SSTAMOC and SST fields, when SST leads SSTAMOC by 25 years, for the
unforced signal in ERSST v5, HadiSST v1, and COBE v2. For each correlation, the time period 1871–2013 was used with a 21-year moving
mean applied. A 25-year lag was selected based on the results in Fig. 1 and similar spatial patterns result when changing the lag time by ±5
years due to applying a 21-year moving mean to identify the low frequency signal. Hatching represents those spatial correlations that are not
significant at the 95% confidence interval, taking into account the smoothing and autocorrelation.
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aforementioned subset of models (28 of 44) also shows on
average positive correlation between rTIOcov and AMOC at 45°N
(AMOC45N) when rTIOcov leads by 17 ± 5 years (r= 0.43) (Fig. 3a–c).
The observed ERSST value of r= 0.89 lies in the highest decile of
the model correlation values (Fig. 3b). The AMOC45N and SSTAMOC

relationship is very robust in this subset of CMIP6 piControl
simulations: their average correlation is 0.60 when AMOC45N leads
by 4 ± 3 years (Fig. 3d). At lower latitudes the AMOC lead becomes
shorter (e.g., AMOC26N shows a maximum correlation to SSTAMOC at
2 ± 3 years, r= 0.80; not shown), illustrating the AMOC dynamics

of subsurface southward propagation of AMOC anomalies11 and
surface features represented by SSTAMOC. Overall, these findings
highlight the robustness of the SSTAMOC fingerprint for estimating
AMOC.
The low correlation values in models compared to observations

can be partly attributed to the length of time series. The 44
piControl simulations have a length of between 300 and 2000
years, and therefore represent a multitude of possible climatic
states or regimes, not all of which are necessarily representative of
the relatively short observed period. In each model, we thus

Fig. 3 The relationship between rTIOcov and SSTAMOC in the CMIP6 model archive. Correlations of (a) rTIOcov-SSTAMOC across different time
lags for observations from Fig. 2 (thick blue, purple and yellow lines) and the different CMIP6 model pre-industrial control simulations. Those
models that show a correlation maximum greater than the 0.30 threshold from bootstrapping and within 99% confidence interval of the
observed rTIOcov-SSTAMOC lag of 26 years are shown in thin blue lines (CMIP6 subset), while those in thin gray are those outside the observed
range. The thick red line represents the IPSL-CM6A-LR model shown in more detail in Fig. 4 and the thick black line is the CMIP6 subset model
mean, both estimated using Fisher’s Z-transformation. b A scatter plot of the maximum rTIOcov-SSTAMOC correlation and time lag for the mean
relationship in each CMIP6 model. Those of the CMIP6 subset are plotted in circles and those not in the subset are denoted with an “x”. The
colorbar depicts mean AMOC strength at 45 °N within the model, which is only available for a few of the subset models and the 3 standard
deviation thresholds are denoted with dashed magenta lines. The observed ERSST v5, HadiSST v1, and COBE v2 correlations are denoted with
yellow stars within (b). A complete list of the corresponding models can be found in Supplementary Table 1. c, d as (a), but for rTIOcov-AMOC45N
and AMOC45N-SSTAMOC, respectively. The thick black line indicates the mean correlation value across all models. Potential temporal offsets
between correlation maxima are reflected in the black error bars, which represent the mean correlation value, mean maximum correlation
time lag, and the respective 1–99% confidence intervals of the correlation peaks identified in each of the CMIP6 models using Fisher’s
Z-transformation.
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consider the 150-year long slices of the piControl simulations that
show the maximum rTIOcov-SSTAMOC correlation within the
observed time lag to mimic the length of the observational
period (Fig. S3). 31 of 44 (~70%) models show time slices that lie
within the observed time lag estimate of the rTIOcov-SSTAMOC

relationship. In this analysis, the CMIP6 average maximum
correlation values (black error bars in Fig. S3) of rTIOcov-SSTAMOC,
rTIOcov-AMOC45N, and AMOC45N-SSTAMOC are 0.65 at 26 ± 2 years
lag, 0.67 at 19 ± 6 years lag, and 0.81 at 7 ± 4 years lag,
respectively. We find that most of the examined CMIP6 models
are capable of reproducing the observed unforced rTIO-SSTAMOC

relationship in at least one 150-year time slice. Yet, while the
SSTAMOC-AMOC45N relationship is found to be robust as well, the
rTIOcov-AMOC45N relationship is not coherent across all models,
probably due to non-linearities and competing effects in the
relationships.
We detail the specificities of the proposed rTIO-AMOC link in the

most recent version of the IPSL climate model, the IPSL-CM6A-LR
model (Fig. 4)40. In agreement with observations and the majority
of examined CMIP6 models, the IPSL-CM6A piControl simulation
shows a rTIOcov-SSTAMOC correlation peak when rTIOcov leads by
26 ± 4 years (Fig. 4a). This average peak is much lower than
observed (0.36 vs. 0.89 in ERSST), yet significant. In 150-year long
slices of the piControl simulation, the intermittent rTIO-SSTAMOC

correlations reach values of up to 0.56 and a standard deviation of
0.12 between the slices when rTIOcov leads by 26 ± 4 years (Figs. 4,
S4, S5). Moreover, values can approach correlations of 0.71 within
IPSL-CM6A-LR, although occurring when lags are >33-years and
exceeding the threshold based on the observed products,
suggesting a potential relationship to modeled mean AMOC
strength in determining the lag.
The 1200-yr long IPSL-CM6A-LR simulation shows a significant

correlation (r= 0.59) between SSTAMOC and AMOC45N when
AMOC45N leads by 6 years (Fig. 4b). Correlation between rTIOcov

and AMOC45N is significant (r= 0.46) when rTIOcov leads by 19
years. These time lags align with those in observations and CMIP6
models. In 150 year time slices, the maximum correlation between
rTIOcov and AMOC45N is 0.70 (standard deviation between time
slices= 0.20) when rTIOcov leads by 19 ± 2 years. We find a similar
spread between time slices in AMOC45N - SSTAMOC correlations
(r= 0.70, standard deviation= 0.12) when AMOC45N leads by 6 ± 2

years (Fig. 4c). As a result, the internal relationship between rTIOcov

temperature and AMOC45N in IPSL-CM6A-LR is weak and
intermittent, but robust when rTIOcov leads by roughly 20 years.

The spatial signal of rTIO-AMOC connections
We now examine the physical pathways that connect the tropical
ocean temperature gradient to SSTAMOC in the IPSL-CM6A-LR
climate model. rTIOcov warming enhances geostationary Rossby
wave generation in the TIO region through enhanced precipitation
and latent heat release18,41, simultaneously driving a negative
NAO-like pressure pattern in the North Atlantic alongside a
southward shift in zonal wind stress over the subpolar Atlantic and
an adjustment of meridional wind stress (Supplementary Fig.
5a–d). Ekman pumping in the subpolar North Atlantic responds to
the atmospheric anomalies by increasing in magnitude, resulting
in warmer, saltier, and denser waters (Supplementary Fig. 5e–h)
within the eastern subpolar North Atlantic and deep convective
regions. These climatic conditions persist for 10–15 years
(Supplementary Fig. 6), demonstrating the low-frequency patterns
in phase with the rTIO as also shown by35. Such prolonged NAO
conditions impact AMOC, leading to changes in the entire water
column (Supplementary Fig. 7) and southward propagation of an
AMOC anomaly after 20 years (Supplementary Fig. 8)35. This AMOC
anomaly feeds back onto SST, influencing the SSTAMOC index at a
time lag of around 5 years (Supplementary Fig. 6f), which explains
the overall observed and simulated time lag between rTIOcov and
SSTAMOC, and explains differences in lags of the rTIOcov and
AMOC45N ( ~ 19 years) and SSTAMOC ( ~ 26 years) in the IPSL model
(Fig. 4) which we also demonstrated with CMIP6 (Figs. 3, S3).
Although some of our findings show characteristics of an

alternative mechanism that describes a rTIO influence on the
TAO42 and a propagation of that signal into the subpolar North
Atlantic, we fail to clearly diagnose this mechanism in this work.
This suggests that the direct connection to the North Atlantic via
the NAO dominates the internal influence of rTIOcov on AMOC.

DISCUSSION
A key assumption of this work is the use of the SST-based SSTAMOC

index to estimate observed internal AMOC changes. This index has

Fig. 4 A detailed view of the rTIOcov-AMOC relationship in the IPSL-CM6A-LR model. Lag-lead correlations between the (a) rTIOcov-SSTAMOC
(red), (b) rTIOcov-AMOC45N (black), and (c) the AMOC-SSTAMOC (blue) indices in the IPSL-CM6A-LR piControl simulation. The thin lines represent
individual 150-year segments, and the thick lines are the mean correlations of all segments, estimated from a Fisher’s Z-transformation. The
crosses/error bars represent the standard deviation of the maximum correlation lag in all 150-year long segments of the 1200-year piControl
run for correlations between the three different indices. The black error bars represent the approximate mean correlation and the respective
99% confidence interval of the maximum correlation lag in all 150-year long segments of the 1200-year piControl run for correlations between
the three different indices.

B.S. Ferster et al.

5

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2023)   165 



been designed to describe the full AMOC modulations and trends,
but its suitability for addressing internal AMOC variations had to
our knowledge not been assessed. Debates continue on the
extent to which this index describes forced31 vs. internal atmo-
spheric variability43 in the observed record. Using CMIP6 model
simulations, we here show that there is overwhelming model
agreement on the unforced internal correlation of SSTAMOC and
AMOC45N when AMOC45N leads by around 6 years (Fig. 3d; as also
suggested by44). The 150-year long time chunks in CMIP6
piControl simulations encompass correlation values of
0.60 ± 0.27 (0.81 ± 0.37 for the 44 best 150-year chunks), indicating
that the use of the SSTAMOC index to assess internal fluctuations of
AMOC45N is justified.
As discussed further up, various tropical ocean temperature

gradients could have been chosen to be examined for their
influence on AMOC in this study (cf. surface temperature patterns
in Fig. 2). Comparing the observed influence of different options
(Supplementary Fig. 2) we found that all selected indices show
comparable results. Here, we chose to focus on rTIOcov due to its
highest correlation to SSTAMOC, and because of its presence in
published literature. The rTIOcov index is considered here to be
representative of all examined tropical ocean temperature
gradients, and our results are robust across these definitions of
tropical ocean temperature gradients (Figs. 1, 2, S2, S3, and S5).
Other indices potentially contribute to AMOC modulation through
teleconnections, and further work is necessary to derive the exact
mechanisms at work.
Our work assumes that the CMIP6 multi-model mean of

historical simulations appropriately estimates the forced response
of the observed climate system. Results presented here are robust
to using the IPSL model single model ensemble mean instead of
the multi-model mean for the forced response (Supplementary
Fig. 9a, b), thereby giving credit to the assumption that an
ensemble mean of historical simulations is a relevant estimation of
the effect of external forcing on climatic variables. While models
may not appropriately represent the response of the climate to
forcing, which is a clear limitation to any study examining climate
model ensemble averages, the CMIP6 historical simulations are
the best available estimate of the forced response of the climate
system at this time which, unlike statistical detrending, accounts
for abrupt climate events such as volcanic eruptions or aerosol
concentration changes. That being said, some evidence of
powerful statistical detrending methods exist45, which go beyond
what can be covered in this paper.
As we find the rTIOcov-AMOC relationship in about 60% of the

CMIP6 historical members—a corresponding analysis using only
the IPSL model historical ensemble, subtracting the IPSL ensemble
mean to remove the forced response, shows comparative results
(19/33 members reproduce the mechanism) –, this illustrates both
that it is the dominant mechanism in these models and that it is
inherently intermittent. Such intermittency is consistent with46. An
analysis of the intermittency of the relationships of rTIOcov,
SSTAMOC and AMOC45N (Figs. 4, S4) across the IPSL piControl
simulation illustrates that the rTIOcov-AMOC45N relationship breaks
down when the AMOC45N-SSTAMOC relationship decreases, while
the teleconnection between rTIOcov and the SSTAMOC remains
relatively stable. This implies changes in the North Atlantic climate,
potentially related to NAO, that break down the AMOC45N-SSTAMOC

relationship as probable causes of the intermittency in the rTIOcov-
AMOC45N relationship46, while the interbasin atmospheric tele-
connection remains intact.
Only a subset of CMIP6 models appear to consistently

reproduce the observed internal rTIOcov-SSTAMOC relationship.
Here, the non-stationarity of the relationship could be one
possible reason, as the examined simulations cover different time
lengths, and differences in the surface and subsurface features
could differ in the different periods examined. Another potential
reason is that some models might not capture the teleconnection

mechanism due to coarse resolution, mean biases, the signal to
noise problem in global climate models47, issues with mixing in
the North Atlantic in some models48, or missing representation of
the stratosphere which is crucial to simulating atmospheric
waves49, along many other possible reasons. Alternative inter-
pretations of this caveat are that the observed rTIOcov-SSTAMOC

relationship is spurious in observations and erroneously repro-
duced by some climate models. Model differences that cause
these discrepancies in the rTIOcov-AMOC45N mechanism will be
important to study in future research.
This work could not clearly separate the influence of rTIOcov on

AMOC45N from other factors influencing the AMOC45N internal
variability. Given the relatively short observational record, the
rTIOcov connection of AMOC might well be related to known inter-
basin teleconnections50, part of a self-containing mechanism of
AMOC variability51 or another teleconnection via the NAO18,35,52.
However, this study implies a tropical SST gradient as a potentially
important driver or at least pacemaker of AMOC changes,
identifying additional TGSST indices that strongly rely on the
variability of the tropical Indian and Atlantic Oceans. Disentangling
the different drivers of AMOC variability is an exciting scientific
question for the future.To conclude, we have analyzed several
observational data sets as well as global climate model simulations
from the CMIP6 archive to establish a pathway by which low-
frequency internal, i.e., unforced, changes of tropical ocean
temperature gradients may influence AMOC several decades later,
leading to AMOC multi-decadal variability. This pathway includes
shifts in geostationary waves that impact the NAO, changing
surface winds with impacts on salinity and temperature distribu-
tions that change Ekman pumping, impacting AMOC. In models,
internal rTIOcov warming strengthens AMOC ~ 20 years later. We
also find that across model simulations a SST-based index that was
proposed to indicate forced AMOC changes10,31 is reflective of
internal AMOC changes ~6 years earlier, allowing a tracking of
AMOC changes using relatively easily observable surface water
characteristics. This study implies that rTIOcov temperature is an
important pacemaker of AMOC variability as well as a potential
early warning indicator of multi-decadal AMOC change.

METHODS
Observations
As one estimate of observational uncertainty, we analyze the
gridded observational data sets/reanalysis products ERSST v536,
HadiSST v1.137, and COBE v238 for the period 1870–2014. All
gridded products are regridded to a regular 1 × 1 degree grid
prior to analysis, and anomalies to their respective long-term
mean states are formed.

Models
We detail the mechanisms discussed in this paper in two different
model setups. To find the response of the climate system to
forcing, we analyze a 44-model ensemble-mean of historical
simulations from CMIP639. The models are detailed in Supplemen-
tary Table 1. Prior to forming the multi-model mean, individual
model ensemble means are calculated (i.e., we follow the one-
model-one-vote approach53), regridded to a regular 1 × 1 degree
grid, and then anomalies to their mean state formed to account for
model mean bias. These model simulations are all characterized by
the same forcing but utilizing different model setups and different
initial conditions. The multi-model mean can therefore be regarded
as a “best estimate” of the forced response of the system.
We also analyze the unforced physical pathways that connect

Indian Ocean SST to the North Atlantic and AMOC in pre-industrial
control simulations with the same GCMs (Supplementary Table 1).
These model simulations are not subject to forcing and therefore
represent the respective model’s interpretation of internal climate
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variability. Some CMIP6 GCMs show a pronounced centennial
fluctuation in global SST, which may project onto local SST
variability40. To account for this, we high-pass filter all model
output that we analyze at a 100-year cut-off frequency.

METHODS
In this paper, we analyze annual and boreal extended winter
(November-May, NDJFMAM) mean SST, SSS, precipitation, evapora-
tion minus precipitation and 500 hPa geopotential height and annual
meridional overturning streamfunction, which are then—unless
otherwise noted—low-pass filtered with a 21-year running mean.
Two specific indices are considered in our analysis. First, we average
annual mean SST in the tropical Indian Ocean (30° S–30° N, 40°
W–100° W), and then subtract SST in the remaining Tropics (TO; 30°
S–30° N) multiplied by the weighted covariances between the two to
calculate the rTIOcov index, similar to14,15 but now accounting for the
covariances of the tropical Indian SST modulations with the rest of
the tropical ocean. This is illustrated in Eq. (1):

rTIOcov ¼ TIO� TO ´
covðTIO; TOÞ
covðTO; TOÞ

� �
(1)

Other tropical basins similarly use 30° S–30° N as boundaries for
the tropics and the EP is defined from 150 °E to 80 °E. As shown in
Figs. 2 and S1, there are several tropical regions that could
demonstrate a tropical gradient that relates to the SSTAMOC. We
have chosen to define the rTIOcov as the gradient between the TIO
and TO because of its use in previous literature, and because in
observations we find the highest correlation to SSTAMOC when
comparing with other indices for tropical temperature gradients
(Supplementary Fig. 1). Several additional gradients that are based on
the tropical Indian and Atlantic Oceans suggest that the potential key
interactions rely on these two basins, with some influence from the
tropical East Pacific. Second, in the face of a shortage of AMOC
observations that go back in time further than 2005, we calculate the
AMOC SST-fingerprint following the methods proposed in10,31 as a
proxy. This SSTAMOC index is calculated by subtracting winter global
mean SST (60° S–70° N) from subpolar North Atlantic winter SST, as
defined in31, but the idea of a SST fingerprint of AMOC has been
similarly been described previously11,54,55.
There are numerous approaches in the literature to remove the

forced signal from models and observations32–34. We here analyze
observed unforced climate variability, calculated following the
“residuals”-approach32. This technique rescales the historical
multi-model ensemble mean variability to the observed value in
order to estimate the forced component using the ratio of
observed and multi-model mean standard deviations32, and then
subtracts on a grid-point basis the forced component from the full
signal. The residual signal is treated as observed unforced internal
variability in this study26. To compare correlations between the
various temperature and AMOC indices in the models, the
simulations are first high-pass filtered using a Butterworth filter
of a 100-year cut-off frequency to remove a known 100-year
centennial mode40, and then smoothed using a 21-year moving
mean to remain consistent between the methods of the SSTAMOC

and the other indices. Pearson correlation analysis is performed at
different temporal lags to find statistical relationships between
variables and tested for statistical significance using a boot-
strapping of 1000 iterations and an alpha of 0.05. Given 11 years of
diagnosed significant autocorrelation in the filtered time series
(not shown), we account for autocorrelation by bootstrapping the
data by blocks of 11 years. Given the sample size, significance
threshold, and accounting for autocorrelation, the threshold of a
significant correlation at a lag of 26 years (chosen from the
observed lag) is 0.30. To help compare the lag-lead correlations of
the indices, we transform them from a logarithmic to a linear scale
using a Fisher’s Z transform to average correlations. However, the

lag-lead correlation values vary in time and magnitude with index
comparisons. To find the mean correlation of a lag-lead relation-
ship, we identify the time of maximum peak or trough of the
signal and use the Fisher’s Z transformation on the peaks/troughs
to average the transformed correlation values centered around
the maximum/minimum correlation.
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The data that support the findings of this study are all available within the data
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AMOC_slowdown/. The HadiSST data set is available at Met Office, Hadley Centre
(https://www.metoffice.gov.uk/hadobs/hadisst/). The COBE SST and NOAA ERSST
data sets are available at NOAA Earth System Research Laboratory’s Physical
Sciences Division (https://www.esrl.noaa.gov/psd/data/gridded/data.cobe.html;
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html). Information for
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