
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17834  | https://doi.org/10.1038/s41598-023-45112-4

www.nature.com/scientificreports

How technical change has boosted 
fish aggregation device 
productivity in the Indian Ocean 
tuna fishery
Alex N. Tidd *, Laurent Floc’h , Taha Imzilen , Mariana Tolotti , Laurent Dagorn , 
Manuela Capello  & Patrice Guillotreau 

Excess harvesting power can threaten the long-term sustainability of fisheries. Indicators of excess 
harvesting capacity must include input–output-based estimates of economic production efficiency. 
The increasing use of drifting Fish-Aggregating-Devices (DFADs) has boosted fishing productivity 
in high-seas tuna fisheries, perhaps beyond the biological capacity of the stocks, and is an object of 
global debate. We carried out a Data Envelopment Analysis (DEA) of relative changes in production 
efficiencies of the French purse-seine fleet targeting tropical tuna in the western Indian Ocean using 
two fishing strategies: (1) on floating objects (FOB) and (2) free swimming schools (FSC) using tuna 
catch and effort data spanning 1992–2019. We show that FOB fishing evolved dramatically through 
time with an estimated change of 3.6%yr−1 (8.0%yr−1 2007–2019), in contrast to 2.1%yr−1 for FSC. 
While the efficiency level in combining and using inputs has barely changed for FOB fishing, it means 
that all the growth in productivity comes from technical change for this strategy. The dynamics is 
different for the FSC with a mixture of innovation and higher efficiency. Immediate plans to improve 
input-based management in this region are needed to prevent further risks of overfishing to yellowfin 
(Thunnus albacares) and skipjack (Katsuwonus pelamis) tunas.

World tuna fisheries and tuna-like species are an essential commodity, constituting on average ~ 8% (7.8 mil-
lion tonnes) of globally traded seafood and ~ 20% of the total value of all marine capture  fisheries1, with an 
estimated consumption rate of 0.45 kg per capita per year (canned tuna) (2.2% of the global fish consumption)2. 
The growing demand for tuna species and their high value make them subject to increasing fishing  pressures3. 
With the human population growing at a rate of 1.6% per  year4 and the demand for high-protein food continu-
ously  rising5, fishing fleets respond by increasing in size and  efficiency6. The resulting overfishing  problem7,8, 
combined with the adverse impacts of climate  change9, poses severe risks to the social and economic well-being 
of many  countries10,11.

The increasing role of FADs in the expansion of IO tuna fisheries
The Indian Ocean (IO) hosts one of the most essential tuna fisheries in the world. It differs from other oceans 
worldwide by a large proportion (~ 50%—IOTC-2022-WPTT24-03a_Rev1) of tuna caught by small-scale fish-
ers and the prevailing share of catches coming from areas beyond national jurisdiction. Tuna catches are split 
between non-industrial and industrial fleets, supporting many cultures and economies. Non-industrial fleets 
are characterised by coastal artisanal vessels operating in their Economic Exclusive Zones and using gillnets, 
pole and line, hand lines, etc. On the other hand, industrial fleets are usually represented by distant water fishing 
nations, consisting mainly of purse seine (PS) and longline  vessels12. The most predominant catches in the IO are 
two tuna species, yellowfin (Thunnus albacares) and skipjack (Katsuwonus pelamis) tunas (see Fig. 1). Yellowfin 
and skipjack tunas are two of the most valuable fisheries in the world, with an end value worth $US15.8Bn and 
$US16.1Bn,  respectively3. Both species are caught in significant quantities by purse-seiners utilising free school 
and associated fishing strategies. Free school fishing involves fishing on a free-swimming school of tuna, local-
ised by fishers when the fish are feeding at the surface. At the same time, fishing on associated schools exploits 
floating objects (FOBs) to locate tuna aggregations beneath them. For both fishing modes, the tuna schools/
aggregations are caught by encircling them using a PS net on the surface and subsurface of the ocean. Each of 
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these operations is an un-associated or associated ‘set’. FOBs can be natural (e.g. logs) or artificial Fish Aggregat-
ing Devices (FADs). To track their drifting movements and check remotely the associated biomass underneath, 
purse seiners equip the FADs (and occasionally, the natural logs that they encounter) with instrumented buoys, 
which represents a significant innovation in high-seas  fishing13–15.

DFAD use and fishing efficiency
DFADs are essentially artificial floating structures consisting of metal frames or bamboo rafts deployed by 
fishers in the open ocean to target associated schools of  tuna16. Depending on the DFAD design, they can pre-
sent a vertical substructure stretching an average of 50 m below the surface or be fully submerged. Since their 
development in the 1990s, there has been a “massive” expansion in the usage of DFADs by the industrial PS fleet 
 globally14,17. All types of FOBs are known to attract large quantities of tuna, and the reasons and mechanisms of 
this associative behaviour remain unknown to  scientists12,18. Since the 2000s, the DFADs have evolved to be far 
more sophisticated due to the development and advancements of GPS buoys equipped with echo-sounders13,19–21. 
These new technologies substantially increase the fishing efficiency of PS  vessels22,23. Simultaneously, the mas-
sive use of DFADs raised several concerns about their ecological  impacts24. Compared to FSC, DFAD fishing 

Figure 1.  Summary plots of French PS fishing in the Indian Ocean 1992–2019 (a) free- school skipjack catch 
(tonnes), (b) free-school yellowfin catch (tonnes), (c) floating object skipjack catch (tonnes), (d) floating object 
yellowfin catch (tonnes), (e) number of days at sea, (f) number of PS vessels, (g) number of floating object sets, 
(h) number of free school sets, (i) skipjack biomass (tonnes) IOTC and (j) yellowfin biomass estimates (tonnes) 
IOTC.
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implies higher catches of juvenile yellowfin and bigeye  tunas25 and increased bycatch of vulnerable species such 
as oceanic  sharks26.

Furthermore, DFADs contribute to marine debris and can threaten sensitive habitats through  stranding27,28. 
Finally, depending on the ocean, specific resolutions imposed the use of non-entangling FADs since the use 
of underwater nets beneath DFADs has been shown to cause the ghost fishing of turtles and sharks (e.g., silky 
shark: Carcharhinus falciformis29). The combined effect of increased DFAD use can improve fishing efficiency, 
reduce fishing effort, and maintain or raise catch rates on the target tunas even when stocks  decline30. However, 
a recent study has shown that the increase in DFAD deployments over time led to increased densities in specific 
areas that have resulted in a decrease in catch per unit effort (cpue) due to tuna’s biomass being fragmented 
between  DFADs31. In contrast, the success rate of FSC sets is lower even though this fishing activity has adopted 
modern equipment to detect tuna concentrations using high-powered binoculars and bird  radars13. The FSC 
fishing operation requires a high degree of skill by the skipper and crew to catch the fast-swimming schools of 
tunas but tends to yield a higher valued yellowfin tuna due to the larger fish size compared to the smaller size 
of fish associated with  DFADs32.

Within fisheries production, differences between catch yields for the same level of effort can be attributed 
either to technical innovations (e.g., technological advancements in DFADs, global positioning systems and 
sonar), species abundance or better use of available inputs (e.g. through higher skipper and crew skill). Fishers 
constantly strive to improve their productivity, resulting in distinct physical and economic efficiencies among 
fishers. Fishing inefficiency can contribute to an excess of fishing capacity (or underutilised fishing effort), which 
can jeopardise economic profitability and the sustainability of the fishery.

Management measures to rebuild yellowfin stocks in the IO
Tuna stocks are monitored and managed via a set of conservation and management measures under the author-
ity of the Indian Ocean Tuna Commission (IOTC). The IOTC fisheries governance is mainly based on single 
targeted species stock assessments and the resulting IOTC conservation and management measures (CMM) 
to reduce impacts on the stock of concern, and also the retention of bycatch, entangling FAD bans, and more 
general effects on the ecosystem (e.g., use of biodegradable FADs). For example, IOTC adopted the Resolution 
16/01 which implemented a stock rebuilding plan for yellowfin via a Total Allowable Catch (TAC) level to cap 
the catch within biologically safe limits. This resolution was followed by other CMMs (Res 17/01, Res 18/01, Res 
19/01, Res 21/01) that further redefined the levels of the TAC. Nevertheless, in 2021, the yellowfin tuna stock 
assessment estimated that the stock status of yellowfin tuna was still overfished and subject to overfishing (see 
IOTC–2021–SC24–R[E]_Rev1, 2021). Overfished means that the spawning stock biomass in the water is less 
than the biomass needed to produce at maximum sustainable yield (MSY), and the term ‘subject to overfishing’ 
implies that the fishing mortality (i.e. the adequate level of fishing effort) is greater than that to produce MSY. 
A similar diagnosis was made for bigeye tuna (Thunnus obesus) at the  27th IOTC annual meeting, resulting in 
the first TAC set for bigeye tuna in 2024 (https:// iotc. org). In the same ocean, the most recent stock assess-
ments conducted for skipjack tuna determined that its stock status is not overfished or subject to overfishing 
(IOTC–2021–SC24–R[E]_Rev1, 2021). With the yellowfin tuna stock still in a rebuilding phase, many environ-
mental stakeholders argue that the TAC has primarily failed and needs to be significantly reduced along with 
improved management of DFADs (resolutions reducing the use of DFADs Res. 12/08, 15/08, 17/08, 19/02, and 
proposal IOTC-2021-SS4-PropD).

When efficiency gains jeopardise the future of IO tuna fisheries
This paper aims to improve our understanding of the French PS fleet IO efficiency dynamics via a new set of 
indicators to provide helpful insight into fishery input and output relationships. Furthermore, this study targets 
a better quantification of the contribution of DFADs to fishing productivity by separating efficiency gains, i.e. a 
better use of available inputs or the need to reduce them for an identical output level, from technical change. We 
demonstrate that technological change has been the key driver of IO PS productivity to the extent of jeopardising 
the fishery’s future. It enhanced the fishing capacity beyond the biological limits of some tuna stocks in the IO, 
particularly yellowfin and bigeye tunas.

Primarily, we apply a Data Envelopment Analysis (DEA—a non-parametric method) for a time series span-
ning 1992–2019 for the French PS fleet fishing both on FOBs and FSC to estimate technical efficiency (TE). 
TE is an economic term which means the observed level of what is caught (output) relative to what could be 
potentially caught from a given set of fixed (e.g. vessel engine power, gross tonnage, length) and variable inputs 
(days at sea, the number of FAD and FSC sets) that would be used at their maximum  efficiency6. TE refers to the 
relative effectiveness of a fisher (vessel) to use and combine its inputs when producing an output, with regard to 
the production frontier corresponding to the most efficient vessels of the fleet. Using a DEA linear-programming 
methodology, TE scores between 0 and 1 are calculated for each vessel on the basis of the distance to the pro-
duction frontier. A vessel on the frontier is thus said to be efficient (TE score = 1), and vessels lying below the 
frontier are less efficient (TE score < 1). In a separate model (described above), we also estimate a set of capacity 
utilisation scores (CU) using a similar method. CU is defined as the ratio of actual to capacity output (i.e. the 
production frontier) corresponding to the maximum catch level with the existing amount of fixed inputs. Ves-
sels fishing with the same fixed inputs should have the same value of CU. A CU index smaller than 1, showing 
a capacity under-utilisation, often reveals an excess capacity in a fishery and indicates the magnitude of this 
excess. If the CU scores between two identical vessels (e.g., same length and power) are different, it could be 
due to exogenous (random) events affecting differently their catch, such as piracy events, changes in market and 
cost  conditions33,34. However, other factors that may affect CU include stock abundance, density, and the TE, 
e.g., the skipper’s and crew’s  skill30.

https://iotc.org
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To obtain a better (unbiased) estimation of the excess capacity, we must therefore correct the CU by the TE 
score. The differences in CU (underutilisation) can be adjusted if the TE (inefficiency) is known. The ratio of the 
two scores (CU/TE) is derived as an unbiased capacity utilisation score (UCU) and represents underutilisation 
(or excess capacity) rather than random noise. These above scores cannot be measured with absolute certainty 
due to changes in technology and economic  conditions35, and as such, have to be estimated as a comparative 
process of individual vessels within a season/year from a time series of fishing effort (input) and catches (output). 
This is why Malmquist indices are developed as a measure of total factor productivity change (PC) between two 
periods (e.g. 2018 and 2019) and throughout the whole sample period, disentangling the actual TE effect from 
the technical change  effect30. The indices can be actually decomposed into efficiency change (EC), or the change 
in productivity due to the difference in the use of inputs (e.g. skipper skill, faster sets to avoid fish escapement, 
better use of existing capacity, learning effect), and technical change (TC), which is the change in productivity 
due to novel technology (i.e. FADs equipped with echo sounders, the assistance of supply vessels for example), 
and then to derive an estimate of ‘effort creep’ or percentage year on year change in TC. In other words, greater 
efficiency means that a vessel is getting closer to a fixed production frontier, while technical change corresponds 
to higher yields explained by the shift of the production frontier itself for all vessels.

Finally, to understand what factors affect UCU, a linear regression with covariates likely to affect the TE of 
fishing vessels is fitted. The choice of covariates is based on the DEA literature applied to fisheries and includes 
fuel  prices36, vessel kW power, annual DFAD  deployments14,23, threats of piracy  events37, and the Indian Ocean 
Dipole index (DMI). The latter is considered because different positive/negative phases can significantly alter the 
abundance and availability of tropical tunas due to a regime shift of the thermocline, food availability, primary 
production and the sea surface  temperature38. We then assess the specific impact on UCU for each covariate and 
evaluate the effect of a 1% increase in vessel kW power, for instance (and other covariates), on the subsequent 
% change in UCU.

Results
Estimation of UCU 
The results from the DEA are presented in Fig. 2. The scores for (a) Capacity Utilisation (CU), (b) Technical 
Efficiency (TE), and (c) Unbiased Capacity Utilisation (UCU) averaged across vessels within a year by FSC and 
FOB show differing trends. For the FOB CU, the earlier years of the study period suggest a decline from ~ 0.8 in 
1992 to 0.60 in 2009. However, an increasing trend is evident from 2009 to the end of the time series, other than 
a dramatic fall in 2012. For example, CU in 2012 was 0.50 from a time series high of 0.80 in 2011. Observations 
from the time series for FOB TE display a high and stable technical efficiency estimate of ~ 0.8 throughout the 
time series. The UCU results imply, for example, that this fleet could have caught ~ 25% (UCU = 1/0.80) more fish 
with such a fleet capacity, or caught the same amount of fish with ~ 20% fewer vessels (UCU = 1–0.80). For the 
free school sets, TE (average score of 0.6) and CU (average score of 0.5) initially display a degree of inefficiency 
in 1992 but gradually show an increasing trend up to 2008, where they plateau at ~ 0.8 for CU and TE at 0.8 in 
2006. Apart from a high > 0.8 score in 2014, the fishing performance declined to a time-series average low score 
in 2018 of 0.4 (TE) and 0.3 (CU), respectively. The UCU trend also matches the CU, but UCU shows, on average, 
a higher score of ~ 0.75 throughout the study period compared to ~ 0.65 for CU.

Examining changes in efficiency—Malmquist indices
The individual vessel data of productivity change (PC) and corresponding decompositions of technical change 
TC and EC efficiency change as geometric means between 1992 and 2019 by the fishing strategy are presented in 
Fig. 3 as cumulative multiplicative inter-annual changes. For example, the PC value of ~ 3 for the FOB and FSC 
strategies indicates that the fleet is over three times more efficient in 2019 than in 1992. In terms of the EC and 
TC for both fishing strategies, these depict some exciting patterns. For example, PC for FOBs is entirely driven 

Figure 2.  (a) Average capacity utilisation (CU), (b) average technical efficiency (TE), (c) average unbiased 
capacity utilisation (UCU), all plots with standard error bars.
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by TC. The TC is most pronounced between 2007 and 2019, with an overall change throughout 1992 and 2019 
of + 3.6% annually.

In contrast to this upward frontier shift, EC has remained relatively stagnant, around the relative value of 1. 
This value for EC would reflect an inability to produce as much as possible given the fleet’s current technology 
and possible homogeneous performance. In stark contrast, for the FSC PS, the EC showed gradual progression 
until 2013/2014, when a decline was observed. Furthermore, TC also showed continual improvements until 
~ 2007/2008 and then a sudden decrease for seven years and picked up around 2015/2016 before falling again 
and stabilising for the last few periods with an estimated TC of 2.1% year on year. The sudden fall in FSC EC in 
2018 is due to a fall in fishing effort (See Fig. 1). The PC, on the other hand, for FSC has been significantly high on 
average with a cumulative value of over two (+ 2% annually) for most of the time series, barring the initial period, 
1992–1998, and 2018, where the value falls below the relative value of one (see number of sets/catch in Fig. 1).

Factors affecting UCU 
A ‘candidate’ model was chosen to examine factors that could explain vessel-specific differences in UCU among 
five of the ’best’ models obtained by the selection algorithm (see R Package glmulti, Calcagno and Mazancourt 
2010). The AICs were sorted from lowest to highest by fishing strategy, with the lowest AIC score selected as 
the candidate model (Table 1). Diagnostics from models were checked via graphs for distribution of the residu-
als and checked for autocorrelation and heteroskedasticity. Auto-correlation was not found to be present, but 
a degree of heteroskedasticity was observed in all candidate models. The candidate models were bootstrapped 
1000 times to minimise the heteroskedasticity symptom, the parameter estimate was bias-corrected, and the 
significance was re-calculated.

UCU_FOB model 1992–2019
For the UCU_FOB candidate model over the period 1992–2019 presented in Table 2, we found the number of 
FOB sets, piracy events, yellowfin tuna real price per tonne (constant USD of 2015), and fuel real price (con-
stant USD of 2015) to be highly significant (p < 0.001). In contrast, the power of vessels in a particular year and 
the introduction of TAC was significant at the 5% level. In terms of interpretation of the coefficient signs of the 
variables, negative signs were observable for TAC, piracy events, yellowfin real price and vessel power, which 
implies a negative influence of these variables on UCU in contrast to the number of FOB sets and fuel prices, 
which depict a positive influence on UCU. The calculated elasticities in Table 2 (the expected change in UCU 
with a 1% change in the individual explanatory variable) indicated that for a 1% change in the number of FOB 
sets, the corresponding UCU would increase by 0.52%. For example, an increase of 1% in the yellowfin price 
would result in a 0.2% decrease in UCU.

FSC model 1992–2019
Examining key variables resulting from the FSC model 1992–2019 (Table 2), significant positive coefficients 
included the number of free school sets, the number of piracy events, the positive dipole mode index and yel-
lowfin tuna price contrasted with vessel power being the only slightly significant negative coefficient. The vari-
able for the number of free school sets has the highest value in terms of elasticity resulting from a 1% change, 
resulting in a 0.34% change in UCU.

Figure 3.  (a) Cumulative change (1992 = 1) floating object Malmquist indices (geometric means), (b) 
cumulative change (1992 = 1) free school Malmquist indices (geometric means). EC = Efficiency Change, 
TC = Technical Change, and PC = Productivity Change.
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Table 1.  Candidate model diagnostics. df degrees of freedom; AIC Akaike Criterion Score.

df AIC Delta AIC

UCU_FOB 1992–2019

UCU ~ 1 + TAC + fadsets + fuel + events + yftpr + kW 8 − 336.92 0.00

UCU ~ 1 + TAC + fadsets + fuel + events + yftpr + kW + dmi 9 − 335.98 0.94

UCU ~ 1 + fadsets + fuel + events + yftpr + kW + dmi 8 − 334.61 2.31

UCU ~ 1 + fadsets + fuel + events + yftpr + kW 7 − 334.03 2.89

UCU ~ 1 + TAC + fadsets + fuel + events + yftpr + dmi 8 − 331.73 5.19

Null 2 − 62.64 274.29

UCU_FSC 1992–2019

UCU ~ 1 + fscsets + events + yftpr + kW + dmi 7 − 173.44 0.00

UCU ~ 1 + TAC + fscsets + events + yftpr + kW + dmi 8 − 172.17 1.27

UCU ~ 1 + fscsets + fuel + events + yftpr + kW + dmi 8 − 171.79 1.64

UCU ~ 1 + fscsets + events + yftpr + dmi 6 − 171.27 2.16

UCU ~ 1 + fscsets + yftpr + kW + dmi 6 − 170.61 2.83

UCU ~ 1 + TAC + fadsets + fuel + events + yftpr + kW + dmi 9 − 170.48 2.95

Null 2 − 20.73 152.71

UCU_FOB 2013–2019

UCU ~ 1 + fadsets + kW + buoys 5 − 117.66 0.00

UCU ~ 1 + fadsets + yftpr + kW + buoys 6 − 116.30 1.35

UCU ~ 1 + fadsets + events + kW + buoys 6 − 115.84 1.82

UCU ~ 1 + fadsets + fuel + kW + buoys 6 − 115.78 1.88

UCU ~ 1 + fadsets + kW + dmi + buoys 6 − 115.77 1.89

UCU ~ 1 + fadsets + fuel + events + yftpr + kW + dmi + buoys 9 − 111.67 5.99

null 2 − 85.16 32.49

Table 2.  UCU by fishing strategy. Coefficient estimates for (OLS) and bootstrapped OLS (bias). Statistical 
significance at ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 and bias-corrected elasticities.

Estimate Bias Std. error Elasticity

UCU_FOB 1992–2019

(Intercept) 0.625115 0.0030004 0.0616486 ***

TAC − 0.061742 0.0013473 0.0291310 *

fadsets 0.003603 − 0.0000015 0.0002477 *** 0.52

fuel 0.000162 0.0000013 0.0000448 *** 0.12

events − 0.000347 − 0.0000013 0.0001008 *** − 0.04

yftpr − 0.000094 0.0000007 0.0000240 *** − 0.2

kW − 0.000026 − 0.0000010 0.0000106 * − 0.14

Model R2 0.54 0.006 0.035

UCU_FSC 1992–2019

(Intercept) 0.463671 − 0.0034650 0.0849104 ***

fscsets 0.002668 0.0000120 0.0002234 *** 0.34

events 0.000229 − 0.0000002 0.0001034 * 0.02

yftpr 0.000083 − 0.0000004 0.0000223 *** 0.18

kW − 0.000024 0.0000005 0.0000136 − 0.13

dmi 0.170094 0.0024508 0.0576198 ** 0.02

Model R2 0.36 0.007 0.07

UCU_FOB 2013–2019

(Intercept) 1.166138 0.0024519 0.0878038 ***

fadsets 0.001892 − 0.0000235 0.0004470 *** 0.29

kW − 0.000099 0.0000004 0.0000247 *** − 0.53

buoys − 0.000065 − 0.0000005 0.0000272 * − 0.05

Model R2 0.32 0.01 0.07
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FOB model 2013–2019
The FOB model 2013–2019 omitted the TAC variable due to having a highly significant positive correlation with 
the number of DFADs deployed. This part of the study aimed to see the effect of the number of DFADs deployed. 
Here, we find that the coefficient for the number of buoys deployed negatively affected UCU and vessel power. 
In contrast, the number of FOB sets is the only positive factor influencing UCU (Table 2), i.e. with an elasticity 
of 0.29% increase (decrease) in UCU for every 1% increase (decrease) in the number of FOB sets.

Discussion
The scarcity of fish resources resulting from climate change, over-harvesting and human population growth poses 
severe risks to economic and social well-being5,39. To achieve sustainable fisheries management strives to balance 
fishing opportunities, i.e. the set quantity of catches from each stock for all sectors of a wider fishing community 
(ensuring the social and economic viability of coastal communities, maintaining fisher knowledge and providing 
fish products for broader society) with the need to maintain fish stocks in a healthy  state40;

Our study aimed to understand how technical change and efficiency within the French PS fleet fishing in the 
IO has evolved, given that management mainly targets limited effective fishing effort on the ‘game changer’ use of 
DFADs since the early 1990s. Neglecting technical change can lead to misleading policy advice for the reduction 
of fishing capacity and efforts to reduce fishing mortality. For instance, fishing fleets may have modernised their 
vessels over time via government subsidies or private investment in technology progress. These improvements 
can result in excess harvesting power within the fleet and thus undermine any fishing capacity or effort reduc-
tion  programs41,42. With the stock biomass levels in the IO for yellowfin and skipjack declining since the 1950s 
(Fig. 1), it is noticeable that PS effort for the French fleet has increased through the number of FOB sets (Fig. 1). 
The effect may lead to an excess in fishing capacity, resulting in a race for fish and increasing returns to scale, 
with investment in larger-sized and power-enhanced vessels to achieve this.

Consequently, the study results show some interesting findings, for instance, regarding the technical change 
over time via the cumulative chained analysis in Fig. 3a—FOB fishing. Observations from this figure show a 
dramatic technical change around 2008/2009, when there was a peak in the use of satellite  buoys15. Since 2010, 
DFADs were first equipped with echosounder  buoys43 and were further improved by technology companies 
throughout the studied time  series23. The rate of technical change for this fishing strategy was estimated at 8.0% 
per annum since 2007 and at 3.6% per annum over the entire period. When considering the EC for FOBs in 
Fig. 3, or how much the fishers can produce given the current technology available, it is apparent that there has 
been very little change over time, and EC is consistently high and homogenous (Fig. 2b supports this). In other 
words, productivity growth has been purely driven by advances in technical change.

Considering the rapid advancement of DFAD technology, there are ongoing discussions among the global 
tuna Regional Fishery Management Organisations (RFMOs) on how to control the use of DFADs and set the 
quantitative limits each PS vessel can monitor at any given time (IOTC resolution 19/02). Since fleet capacity 
(number of vessels/or vessel power) is not capped, DFAD management becomes more complex. Therefore, a 
limit to the capacity/efficiency of the fleet may have to be set. Current measures within IOTC (Res. 19/02) set 
limits on 300 active instrumented buoys at any one time and no more than 500 acquired annually for each PS 
vessel. However, with the increased FOB monitoring and technology, less capital stock is needed in production. 
To assess the factors that influence UCU, it is unsurprisingly evident that the increase in the number of sets on 
DFADs/FOBs increases output, i.e. for a 1% increase of FOB sets (2013–2019 model), a 0.29% increase in catch 
is estimated (Table 2). However, a 1% increase in DFAD deployments by each vessel within a year has a small 
negative effect on UCU. In other words, if FOB deployments were to increase consistently, it could lead to excess 
fishing capacity and a reduction in UCU. The excess fishing capacity represents underutilised fishing capacity, 
which can pressure the stocks and economic  waste6. When examining capacity metrics, here vessel power, the 
analysis in Table 2 implies that the fishery could become over-capitalised with increased fishing power. These 
results are as expected; for example, the low disproportionate change in UCU for vessel power (capital input) 
reflects low intensity in the production process, and a lot of the power is essentially unproductive, in contrast 
to the number of FOB sets that have a higher impact in the production process. Nevertheless, the average UCU 
appears to be consistently high ~ 0.75 throughout the period due to the high TE (efficient use of the inputs) 
(Fig. 2c), which implies these PS are operating fairly efficiently despite the lower capacity utilisation scores.

There could be opportunities via effort (input) controls to restrict capacity to balance capacity with allocated 
quotas. Management could be achieved via some form of composite measure like, for example, kW-days while 
also considering the annual technical change and the relationships found here between the total number of sets 
and catches. Regulating set number limits on FOBs/DFADs, for example, may also go some way to controlling 
FOB/DFAD fishing as this would be an incentive for fishers to become more selective on the objects they fish 
on, i.e. catching on larger  schools44. Regarding the current yellowfin quota measure, the negative relationship 
with UCU is further evidence of overcapacity in the fishery.

In contrast to the FOB fishing strategy, it is essential to note the changes within the FSC strategy, particularly 
the concurrent increase of efficiency and technical change over time (Fig. 3b). Figure 3b depicts a lag effect 
occurring via a series of peaks and troughs concerning an increase in TC followed by an increase in EC. The 
change in efficiency may represent a “learning by doing” effect, where the implementation of new technologies 
takes time to perfect for skippers, as stated by  authors45,46. The incremental dynamics of TE and TC can also be 
explained by the changing nature of the exogenous  factors41  (prices32,  costs36, environmental  conditions38,47,48 
and piracy  events37) far more than the technology itself (see Table 2). However, it is essential to note the fall in 
fishing effort for the FSC strategy in 2018 (Fig. 1), reflecting changes in the fleet strategy after implementing the 
yellowfin TAC in 2017 to avoid overshooting the yellowfin quota (Laurent Floc’h pers comm).
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The models developed here can show the impact of increasing/decreasing set numbers for the two fishing 
strategies (FOB and FSC) on potential catches and, hence, revenues for the fleets. One of the main findings 
was the significant increases in efficiency for both strategies throughout time. An assumption in fisheries stock 
assessment models is that cpue are related to stock abundance. However, due to the aggregating nature of tuna, 
efficiency and technical changes could increase or maintain cpue, even when the stock  declines30. This new 
information on efficiency change and technical change within the French PS fleet could usefully help stock 
assessment experts to better account for differences in fishing effort dynamics in their models and projections. 
The models developed in this study were solely based on the French data, representing one-third of the IO PS 
fleet. Therefore, future assumptions and interpretations of the results should always be made with caution. For 
instance, what assumptions about the PS fleet need to be made and what data is missing for a more accurate 
estimation of the fishing mortality affected by technical change and efficiency (e.g., the number of supply boats 
or investment in new FAD technology).

This study progresses our knowledge of PS productivity and its origin in the IO. It may provide helpful insight 
for using input/output-based management measures towards the challenging long-term objectives of sustainable 
tropical tuna fisheries, and further ensure the viability and profitability of both artisanal and industrial fishing 
fleets that exploit them.

Methods
French PS fleet data
Logbook landings data in the IO were obtained from the French Observatory of Exploited Tropical Pelagic 
Ecosystems (Ob7). The vessel level data for the French PS included catch (e.g. yellowfin and skipjack tuna) and 
effort data (days fished on FOB and FSC, number of sets by type of fishing strategy—free schools or associated 
schools) for the years spanning 1992–2019 (see Fig. 1). The vessel characteristic data for the same year period 
was obtained from a vessel register file also provided by Ob7, which included the number of DFAD deployed 
with echosounder buoys (2013–2019) for all French PS vessels fishing in the IO. The number of DFADs variable 
was not used in the more extended time series due to the absence of echosounder buoy data in earlier years 
because of less advanced technology and fewer data collected and stored. The fleet register contains information 
on vessel characteristics such as engine power (kW), gross tonnage (GT), and vessel length overall (m). Both 
data series were combined by year and vessel identification number, and a database was produced (see Table 3).

Data envelopment analysis (DEA)
Data Envelopment Analysis (DEA) is a non-parametric method (see 49 and 50) that can be used to assess the 
potential output (what is harvested relative to what theoretically could be harvested given the available means) 
of a Decision Making Unit (DMU) (a fishing vessel in the present study). The method assumes the production 
function (how outputs change with inputs) is unknown and compares each DMU against all other  DMUs51. 
The approach identifies the “frontier” (or envelope), which represents the most efficient combination of various 
input and output variables for the DMU in  question52. All else being equal, any DMU of similar characteristics 
should be able to achieve the same level of output. A DMU lying on the frontier is given a value of one because 
it is considered efficient. In contrast, a DMU with the same characteristics but a lower output is considered inef-
ficient and has less than one score, revealing inefficiency. The process is deterministic and produces an efficiency 
score for that DMU.

The inputs for the DEA are selected across fixed and variable effort features. Fixed inputs are vessel engine 
power/gross tonnage/length overall, representing vessel capital stock (only one is chosen as they are all posi-
tively correlated). Variable inputs may include the number of days fished on FOB/FSC and the number of sets 

Table 3.  Source and description of variables used in the model(s).

Variables Type Description Source

TAC Factor 1 or 0 (1 = TAC introduced for period 2017–2019) NA

fadsets Integer Number of FOB sets per year Ob7, Sete, France

fuel Continuous Average inflation adjusted to 2015 price of oil per barrel per year in USD www. eia. gov

yft/skj Continuous Catch of yellowfin/skipjack in tonnes Ob7, Sete, France

events Integer Number of piracy events as a measure of intensity https:// msi. nga. mil/ Piracy

yftpr/skjpr Continuous Average inflation adjusted to 2015 price of yellowfin/skipjack per tonne per year 
in USD https:// www. custo ms. go. th/ index. php? lang= en&

kW Continuous Vessel specific power in kilowatts Ob7, Sete, France

dmi Continuous Indian Ocean Dipole index https:// seale vel. jpl. nasa. gov/ data/ vital- signs/ indian- ocean- dipole/

fscsets Integer Number of FSC sets per year Ob7, Sete, France

buoys Integer Maximum number of buoys deployed by vessel by year Ob7, Sete, France

length Continuous Vessel overall length in metres (m) Ob7, Sete, France

days fishing Integer Total number of days fishing by FOB/FSC Ob7, Sete, France

skj_biomass Continuous Total spawning stock biomass of skipjack tuna in tonnes https:// iotc. org/

yft_biomass Continuous Total spawning stock biomass of yellowfin tuna in tonnes https:// iotc. org/

http://www.eia.gov
https://msi.nga.mil/Piracy
https://www.customs.go.th/index.php?lang=en&
https://sealevel.jpl.nasa.gov/data/vital-signs/indian-ocean-dipole/
https://iotc.org/
https://iotc.org/


9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17834  | https://doi.org/10.1038/s41598-023-45112-4

www.nature.com/scientificreports/

on FOBs or free schools within a year. The two outputs were exploitation rates, calculated as annual catches of 
yellowfin and skipjack tuna by vessel measured in tonnes divided by their respective spawning stock biomass. 
DEA efficiency scores are calculated annually for each vessel relative to the other vessels in the French PS fleet 
at that time. We incorporated spawning stock biomass for each species as an exploitation rate over time as an 
output (e.g. catch/spawning stock biomass). Average scores for the whole fleet are then calculated for each fish-
ing strategy (FSC and FOB) by year. Although different fixed and variable input combinations could be used, we 
settled for a simple design to evaluate the number of positive sets and buoy deployments and the effect of vessel 
engine power on capacity utilisation in the second stage of DEA (see Section “Second Stage—Factors That Affect 
Unbiased Capacity Utilisation (UCU)”).

Technical efficiency (TE)
We considered the technical efficiency score scalar, θ1, which determines how much catch (production) of each 
vessel ( j) can increase for a given quantity of inputs ( xj,n) , for both fixed input (vessel overall length in meters) 
and variable inputs ( n ), (number of days fished on FOB or FSC), to denote the outputs of each species ( m ), yj,m , 
(yellowfin catch/yellowfin spawning stock biomass and skipjack catch/skipjack spawning stock biomass for 
each vessel j , i.e. the decision making unit—DMU) in an efficient combination (maximum output—catch). J is 
the total number of vessels. Each fishing activity, FSC and FOB are estimated as separate fishing activities and 
therefore estimated separately using the appropriate inputs of FOB or FSC sets throughout the study. The relative 
efficiency is calculated using the output-oriented distance  function33,53:

where zj corresponds to weighting factor z, for vessel j ( zj a weighted sum of all vessel outputs within the year, 
including the vessel itself) measuring the optimal linear combination of frontier observations that give the opti-
mal performance of the DMU in question (or more specifically the distance from the frontier). Each vessel is 
measured separately for the value of θ1 where θ1yj,m represent the outputs of each vessel that can increase using 
xj,n inputs (variable and fixed) in a technically efficient combination. Technically efficient output is equal to the 
production (observed catch of each tuna species) multiplied by θ1 , where θ1 ≥ 1 is a scalar representing how 
much each of the DMU’s output can be increased relative to the efficient frontier of a group of DMUs within a 
year by fishing activity, FOB or FSC.

When calculating technical efficiency within the DEA, assumptions about the ‘returns to scale’ (constant 
-CRS- or variable -VRS-) must be made as this affects the efficiency score. CRS can be explained as an increase 
in input that causes a proportional increase in output. The VRS assumes that vessels compete in a context of vari-
able returns and should apply when all DMUs do not operate at their optimal size. We assume variable returns 
to scale (VRS) 

∑J
j=1zj = 1 , the change in output can be greater, equal to, or less than the change in input, which 

is the general approach adopted in fisheries economics, i.e. non-constant returns to scale (see 51).
Technical efficiency (Eq. 1) of each PS vessel operating within a year is calculated as follows:

Vessels, which are the most technically efficient, operate along the frontier boundary ( TE = 1 ). Those that 
are less efficient operate within it and have a score value of TE < 1.

Estimating capacity utilisation (CU) and unbiased capacity utilisation (UCU)
When estimating TE in (Eq. 2), the assumption is that the variable inputs (days fished on FOB/FSC) remain at 
their observed level. For estimating CU (Eq. 3), the assumption is that a vessel can adjust its variable inputs (e.g. 
depending on the vessel’s activity under analysis, i.e. days fishing on FOB/FSC) to increase its output. This step 
enables variable inputs to be fully utilised while outputs are constrained by the fixed inputs ( n ∈ α ) (see Eq. 3), 
and remain constant, i.e. the vessel length. We can then calculate the CU by fitting a similar model as in Eq. 1, but 
by relaxing the bounds of the sub-vector of the variable inputs n ∈ α̂ (these inputs are left unconstrained—(Eq. 3), 
where �j,n is the input utilisation rate by vessel j of fixed input n. The assumption is that the capacity output (catch 
composition) θ2yj,m level remains constant. However, the capacity level can increase through different uses of 
the variable  inputs33 (see Eq. 3):

(1)

Maxθ1

Subject to,

θ1yj,m ≤

J∑

j=1

zjyj,m ∀m

J∑

j=1

zjxj,n ≤ xj,n ∀n

J∑

j=1

zj = 1

zj ≥ 0 ∀j

(2)TE =
1

θ1



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17834  | https://doi.org/10.1038/s41598-023-45112-4

www.nature.com/scientificreports/

where θ2 ≥ 1 is, a scalar representing how much each DMU’s output can be increased relative to the efficient 
frontier of a group of DMUs within a year. Capacity Utilisation (CU) (Eq. 4) of each PS vessel operating within 
a year is calculated as:

Like TE, CU also has an estimated value between 0 and 1. The Capacity Utilisation (CU) measure may be 
negatively biased because the observed output may not necessarily be produced in a technically efficient manner 
(see TE in Eq. 1). TE and fishing capacity may deviate from the frontier due to inefficiency or underutilisation. 
Therefore, separating the effects and estimating unbiased capacity utilisation (UCU) is necessary. The bias can 
be corrected by combining results from the technical efficiency models (Eqs. 1 and 2) and the capacity utilisation 
models (Eqs. 3 and 4). The levels of output that can technically be achieved are calculated as unbiased (UCU) 
by using:

The DEA linear programming model developed in R software  benchmarking54 was used to implement the 
above analysis. All individual vessel efficiency scores were averaged by year and fishing strategy (FSC and FOB) 
and plotted as a time series.

Malmquist indices
From the DEA scores (Eq. 1), the Shephard’s output orientated distance index dt0(xt, yt) is an alternative name 
for the previous models shown above in Eq. 1 55. The DMU (or vessel) referred to here as dt0 uses inputs xt and 
produces outputs yt within time t, and θ is the technical efficiency score scalar (Eq. 1). The DMU’s linear program 
can be written more generally as follows dt0(xt, yt) ≡ inf {θ > 0|

(
xt , θ−1γ t

)
∈ P} , where P is the production set 

or technically efficient output for a given input set. The productivity change (PC) between two adjacent periods 
can be calculated as the change between a particular DMU ‘d0’ in the two adjacent periods dt0(xt, yt) and dt+1

0 (xt+1, 
yt+1). It is important to note that the dataset must have a balanced design; therefore, vessels (DMU) must always 
be present in successive years. This was performed piecemeal-wise as not all vessels were present in the same 
periods due to vessels entering and exiting the fishery at different periods. The index can be further decomposed 
into efficiency change (EC) and technical change (TC)  following53.

If PC values are > 1, then there have been productivity improvements; on the other hand, if PC < 1, a decline 
in productivity is observed. TC is the frontier shift between the two periods, e.g.t and t + 1, which measures the 
technical improvements due to innovations, and EC is a ratio of the  d0 of the observation between  t and t + 1 , 
coming from a better use of available inputs.

Second stage—factors that affect unbiased capacity utilisation (UCU)
To explain differences in the DEA analysis’s output efficiency scores and to ascertain what factors may affect 
efficiency, an Ordinary Least Square (OLS) linear regression model was chosen to explore potential factors, which 
was concluded as an appropriate method to use, as suggested by  Hoff56. Understanding the factors that influence 
efficiency and capacity utilisation is essential in management, as changes in these factors may negatively affect 
any control implemented. Within the regression, the efficiency scores of DMUs were the dependent variables 
and a variety of variables taken from the literature (ones that weren’t used as inputs in the DEA approach) that 
could explain the deviations between vessels were examined as  predictors57,58. The information in a given year 

(3)

Max θ2

Subject to,

θ2yj,m ≤

J∑

j=1

zjyj,m ∀m

J∑

j=1

zjxj,n ≤ xj,n n ∈ α

J∑

j=1

zjxj,n ≤ �j,nxj,n n ∈ α̂

J∑

j=1

zj = 1

zj ≥ 0 �j,n ≥ 0 n ∈ α̂

(4)CU =
1

θ2

(5)UCU = CU/TE

(6)

EC TC

PC
(
xt+1, yt+1, xt, yt

)
=

dt+1
0

(
xt+1, yt+1

)

dt0
(
xt, yt

)

√
dt0
(
xt, yt

)

dt+1
0

(
xt, yt

) .
dt0
(
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dt+1
0

(
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included real fuel costs and real prices for both yellowfin and skipjack, large PS vessel-specific attributes such as 
vessel age or kW power, the maximum number of buoy deployments (2013–2019), and the total number of sets 
(FSC/FOB 1992–2019 and DFAD sets 2013–2019). Other exogenous events affecting the IO tuna fishery were 
also considered, such as climatic events (e.g. Indian Ocean Dipole data -DMI- averaged by year) and the number 
of piracy events on all vessels (obtained via https:// msi. nga. mil/ Piracy accessed 30 January 2023), which were 
aggregated by year and combined with vessel specific data before the linear models were fit.

For the sake of model selection by fishing strategy, all model predictors were entered into a comprehensive 
model, and all possible combinations of available predictor variables were systematically fitted, leading to a 
selection of five candidate models using the R package  glmulti59. These models were ranked by their Akaike 
Information Criterion (AIC), and the model with the lowest AIC score was selected. The best-selected model 
was then bootstrapped 1000 times to overcome the residuals’ heteroscedastic nature to fit with small samples. 
The resulting parameter estimates were bias-corrected, and the elasticities estimated considering the average 
change in x(e.g.for the reference period under analysis 1992–2019) over the average change in y (e.g. for the 
reference period under analysis 1992–2019) multiplied by the parameter estimate of the regressor in the model 
(b). (Eq. 7) gives the elasticity E (e.g. a 1% change in x provides a b/E % change in y):

Data availability
The data supporting this study’s findings are available from the corresponding authors upon reasonable request 
and with the permission of IRD.
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