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Abstract

Spring mounds are specific geomorphological landforms in arid or semi-arid environ-

ments associated with playas and artesian springs. Spring mounds are found world-

wide, especially in the great Artesian Basin of Australia and in North American and

Egyptian deserts. They result from an exceptional succession of climatic, geomorpho-

logical and hydrogeological conditions, with processes that follow each other in a

specific order. In Tunisia, in the arid zone, ca. 126 spring mounds have been identi-

fied in Nefzaoua province alone, especially in the oasis east of Chott el Jerid. They

have a conical shape that ranges from 200 to more than 2000 m in diameter and 3–

30 m tall, and their centre is hollowed out by an artesian spring of fresh water. Palm

groves (Phoenix dactylifera) spread out at the foot of each mound. The springs have

dried up because of the proliferation of borehole wells. Because of the low electric

conductivity (EC) of the sediments (<1 mS cm�1) at their base, spring mounds have

been excavated and used as a soil amendment to expand new palm plantations. This

excavation allows for analysis of their internal structure, which has never been

observed well. In the present study, fine analysis of sediment layers in four sections

of two representative mounds showed that vegetation had trapped sediment at their

base. Fine strata of variable texture alternating with variable calcium carbonate, gyp-

sum or organic carbon contents suggest a clear limnic origin. Many redoximorphic

features, sometimes associated with the presence of old roots, suggest variation in

the water level in the centre of the mound. The mounds are capped by a thick layer

of indurated gypsum, which helps them resist hydric and aeolian erosion. The origin

of the sediment components is discussed.
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1 | INTRODUCTION

Spring mounds are geomorphological landforms associated with

artesian springs that emerge from the soil surface and have been

described in a large variety of environments and with different litho-

logical composition. In semi-humid climate in South Africa, mounds

are made with peat (McCarthy et al., 2010). Mounds occur in hydro-

thermal volcanic environments, such as in Bolivia (Bougeault

et al., 2019) or in Ethiopia and Djibouti (Fontes & Pouchan, 1975)

where they are made with pure limestone. In hyper-arid oases in

Egypt (Brookes, 1993; Idris, 1996; Powell & Fensham, 2015;

Torab, 2014, 2021), many mounds are recovered by iron oxide

deposits protecting them from erosion (Adelsberger & Smith, 2010).

In Mediterranean environment in Spain, Pellicer et al. (2014) described

the mounds as tufa mound complex. In the semi-arid south-western

United States (USA), mounds are associated with playas (Blinn

et al., 1994; Neal & Motts, 1967), made with algal tufa and cyano-

bacteria (Scholl, 1960; Scholl & Taft, 1964). Some are recovered with
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a gypsum cap in Tunisia (Roberts & Mitchell, 1987) and in Syria

(Besançon et al., 2000). The larger distribution of spring-mounds

occurs in Australia, specifically its Great Artesian Basin (Clarke

et al., 2007; Harris, 1981; Ponder, 1986; Powell et al., 2015;

Watts, 1973). The mounds lithological compositions are complex

(Ponder, 1986) constructed of autochthonous materials precipitated

by the spring waters quartz sand and clay and minor carbonate

deflated from the hinterland and trapped in the vicinity of the spring

by vegetation (Clarke et al., 2007), After Keppel et al. (2011), carbon-

ate deposits were interpreted to be largely plant or microbial tufa,

while Franchi & Frisia (2020) interpreted the formation of carbonates

precipitated in extreme, continental environments by biotic and abi-

otic complex mechanisms of crystallization. Recent studies compared

them with features of the Martian landscape (Clarke et al., 2007;

Essefi et al., 2014; Ori, 2010; Pellicer et al., 2014).

In Tunisia, Jones and Millington (1986) first mapped an alignment

of small spring mounds using remote sensing in northern Nefzaoua

province, in south-western Tunisia, in the playa of the Chott Fjedj

(Figure 1a and b). Later, Roberts & Mitchell (1987) documented many

more spring mounds east of the Chott El Jerid, the largest playa in

northern Africa. Australia has more than 600 springs in an area of the

Great Artesian Basin (1.7 million km2) (Ponder, 1986) and more than

60 active springs in the Dalhousie Mound Spring Complex (Clarke

et al., 2007), but there is no clear indication of the internal organiza-

tion of these mounds or how they developed. In Tunisia, in Nefzaoua

province alone, south of Djebel Tabagha in an area of 3000 km2, more

than 126 spring mounds have been clearly identified (Raddadi, 2021;

Raddadi et al., 2021). The size of only 88 mounds could be determined

with a larger diameter ranging between 250 and 2430 m (average

877 ± 465 m) and an altitude ranging between 2 and 28 m

(average 12 ± 5 m) (Raddadi & Podwojewski, 2022a). The mounds are

associated with oases east of the Chott El Jerid (Figure 1C). Spring

mounds have lain at the centre of all permanent oasis settlements in

Nefzaoua province for more than 2000 years, and all current oasis

plantations there radiate around them (Figure 2).

Some mounds in Nefzaoua province have been mechanically

excavated (Raddadi et al., 2021; Raddadi & Podwojewski, 2022a),

which completely revealed their internal structure in vertical sections

F I GU R E 1 (a) Location of the Nefzaoua region (Governorate of Kebili in South West Tunisia) and the limit of the presaharian Tunisia.
(b) Location of the cities of Kebili and Douz at the centre of the four geomorphological units: Djebel Dahar and Djebel Thebaga mountain ranges,
Chott El Jerid playa and grand erg oriental sand dunes (c) Detail of Figure 2A, satellite image of the set of oases in a crescent shape east of the

playa of the Chott El Jerid. Limit of the Nezaoua region in orange. [Color figure can be viewed at wileyonlinelibrary.com]
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and thus provided a unique opportunity for the present study’s strati-

graphical and pedological analysis. These mounds are representative

of a semi-desert environment with no volcanic nor hydrothermal

influence, in the vicinity of very large saline endorheic playas. The aim

of this study is to describe the internal structure of these mounds, to

explain the lithological variation of sedimentary strata with a complex

F I GU R E 2 Satellite image of a spring mound without vegetation close to the city of Blidet (red square), west of Douz and east of Chott El
Jerid (C), with radiating palm tree plantations at the foot of the mounds. Inside the yellow circle: the study site of sections a, B and C (Figure 5).
Inside limit 1: individual spring mound; inside limit 2: coalescent spring mounds (Raddadi, 2021). [Color figure can be viewed at wileyonlinelibrary.
com]

F I GU R E 3 Hydrogeological cross section of Complexe terminal aquifers (Hadj Ammar et al., 2014). [Color figure can be viewed at
wileyonlinelibrary.com]
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mixture of aeolian quartz sand deposits associated with carbonates

and gypsum, and to suggest different hypothesis for the origin and

the evolution of these layers.

2 | INTRODUCTORY MATERIAL

2.1 | Geological and geomorphological contexts

Tunisia, the smallest country of the Maghreb, is split in its centre into

northern and southern parts by a vast synclinal oriented east–west

that is filled by a set of flat evaporitic playas called sebkha: Chott Fjej

and Chott El Jerid (Figure 1B). In the north, the Atlas massif was

formed during the Alpine orogenesis, while the southern part is

located in the Saharan platform (Coque, 1962). The Nefzaoua prov-

ince in south-western Tunisia corresponds to the governorate of

Kebili. It is located at the junction of two anticlinal domes – Fjej and

Dahar – in a synclinal subsident depression (Figure 3). These two

domes are fractured by a transforming fault that remains active

(Swezey, 1996). Thus, the province lies at the crossroad of four land-

forms (Figure 1B):

• In the north, the Cretaceaous monoclinal structure of the Djebel

Tebagha mountain chain culminates at 470 m asl, is oriented east–

west, and has a dip oriented to the south. It consists of layers of

different sedimentary rocks, mainly limestone, dolomite, gypsum

and mudstone:

• In the east, the piedmont of the monoclinal Jurassic structure of

Djebel Dahar culminates at 713 m asl, is oriented north–south, and

has a dip with a gentle slope oriented to the west. It also consists

of layers of different sedimentary rocks, mainly limestone, dolo-

mite, gypsum and mudstone;

• Large sand dunes of the Grand Erg Oriental to the south-west;

• The vast depression of Chott El Jerid in the west. The playa covers

more than 5860 km2 and is ca. 15 m asl; it is the largest endorheic

playa in Africa.

2.2 | Hydrogeological context

Southern Tunisia has two captive fossil water tables. The deeper aqui-

fer dates mainly to the lower Cretaceous (from Neocomian to Albian

stages) (the Continental intercalaire [CI] formation), while the shallower

water table dates to the Senonian stage, with sub-horizontal layers

from the Miocene to the present (the Complexe terminal

[CT] formation) (Figure 3). These two aquifers are separated by an

impermeable layer of clays, mudstones and siltstones that date to the

Albian-Cenomanian stages (OSS, 2003). These water tables cover a

vast area of 1 million km2 from the southern Algerian Atlas chain to

western Libya (Gonçalvès et al., 2013). This area also contains shallow

aquifers recharged by the infrequent rainfall on the recharge zones.

The groundwater flow lines converge mostly towards the Chott

Jerid with a slope of the geological layers oriented to the north-west.

The piezometric gradient observed in the Dahar chain decreases con-

sistently towards Chott Jerid, indicating the importance of this chain in

the recharge of shallow aquifers (Kraiem et al., 2014). The Tebaga

chain is also a secondary recharge zone. The Chott Jerid and the

south-western Dahar piedmont at Douz are the natural discharge

areas of these shallow aquifers (Haj-Amor et al., 2017). Groundwater

from boreholes in this area has a low-to-moderate salt content (total

dissolved solids: 600–3700 mg l�1); the cationic water composition is

dominated by Ca++ (68–941.3 mg l�1) and Na+ (77.9–1357.2 mg l�1),

the anionic composition is dominated by Cl� (135.4–2775.3 mg l�1)

and SO4
2� (141.6–2307.7 mg l�1), (Hadj Ammar et al., 2014). Water

mineralization is regulated mainly by water-rock interactions through

mineral dissolution and likely by ion exchange with a long residence

time (Hadj Ammar et al., 2014; Kraiem et al., 2014). Evaporite deposits

in the sebkhas have no direct influence on the chemical composition

of the main water tables (Hadj Ammar et al., 2014; Kraiem

et al., 2014).

2.3 | Weather conditions

The region has a hot desert climate (BWh in the Köppen classifica-

tion), with mean rainfall less than 100 mm yr�1 (less than 80 mm yr�1

in the past 20 years). The little rain that falls from September–April

has large inter-annual and inter-monthly variability. Some rainfall

events heavier than 20 mm can occur, which generate runoff.

The mean annual temperature is 20.9�C, with extreme daily,

monthly and seasonal amplitudes. Maximum temperatures during the

dry summer can exceed 48�C, while minimum temperatures during

the winter can become negative (�5�C) at night. The calculated

annual evapotranspiration exceeds 1600 mm, with a strong water

deficit.

In these arid environments, wind is the main cause of erosion and

geomorphological agent. Most strong winds come from the north-east

and east-north-east. From April–July, 40% of the winds measured in

Kebili exceed 3 m s�1 (Figure 4; data from the Tunisian National

Meteorological Office; Khatelli & Gabriels, 2000).

F I G U R E 4 Wind rose and wind speed (V) at the Kebili weather

station.
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2.4 | Human settlement

Evidence of human settlement since the Neolithic period has been

found in the Nefzaoua province. Some Roman-era traces

(i.e., irrigation canals called seguia, which translates as “tunnels” or

“collectors”) testify to the presence of a developed agricultural system

based on irrigation around the springs (called aïoun) (Trousset, 1986).

The irrigated agricultural system, from a partially nomadic to a

completely sedentary population, was sustained by maintaining the

infrastructure and regularly cleaning the province’s ca. 300 natural

artesian springs (Lasram, 1990; Sghaier, 1999). In the past 40 years,

because of the development of solar-powered water pumps, the area

of irrigated intensive palm tree plantations (Phoenix dactilifera)

increased from 5000 to 20 000 ha (Raddadi, 2021) and all artesian

springs disappeared; in addition, the spring mounds have no longer

been sustained by regular flooding since 1995 (Marlet et al., 2009;

Zammouri et al., 2007). Following the decrease in the water table

level, the spring mounds naturally silted up and eroded or were artifi-

cially levelled (Raddadi & Podwojewski, 2022a). Because the sedi-

ments of spring mounds have low electrical conductivity (EC) values

at their base, which means low salt contents, many of them have

recently been excavated to extend palm-tree plantations beyond the

salty edges of the chott (Raddadi, 2021; Raddadi et al., 2021;

Raddadi & Podwojewski, 2022a). Their mechanical destruction has

exposed their internal structure as vertical sections.

2.5 | Spring mounds studied

Of the 126 spring mounds in the area, two were selected because

they showed a complete and continuous vertical section, which many

levelled or excavated mounds do not show. The excavations of spring

mounds clearly revealed fine stratification and the lateral and vertical

organization at their heart. The layers showed high vertical variability

in colour and texture for fine sampling for further analysis. A total of

86 sediment samples were collected: 62 in four sections (A, B, C and

D) and 24 samples from three soil cores augered to a depth of 1.6 m,

with one sample every 20 cm (i.e., eight samples per core).

3 | METHODS

3.1 | Section sampling

The larger spring mound is located in the Aïn Chardiouss oasis near

Blidet (TRT 36, Raddadi & Podwojewski, 2022b), south of the city of

Kebili (Figures 2 and 5). It was nearly 750 m in diameter, 16 m tall

(Raddadi, 2021) and almost completely excavated and dismantled by

heavy machinery. Three sections were sampled: one complete

section north of the spring (section A, 34 samples more than 13 m tall,

33� 340 2100 N, 8� 500 2500 E), and two partial sections south of the

spring (section B, nine samples 33�3401600 N, 8�5002600 E) and on

the external part of the mound (section C, 33�3401600N, 8�5001900 E).

Two soil cores were augured: one (T1) in the centre, near the probable

spring and one (T2) near section C. Because section A was 13 m tall, it

was sampled using a crane with a basket, from the top down, as for a

standard soil profile.

The second spring mound Ouled Aïssa (TRT 9, 33� 420 2700 N, 8�

530 5100 E, Raddadi & Podwojewski, 2022a) west of Kebili, is one of

the few in a good state of preservation. It is 500 m in diameter and

8 m tall (Raddadi & Podwojewski, 2022b). Only the external part of

the spring mound is excavated (Figure 6) and described as section D,

with 11 samples. One soil core was augured in the centre of the struc-

ture. The spring mound, described by Roberts & Mitchell (1987), has

an oval shape oriented north-east to south-west 150 m long, 50–

80 m wide and 5–10 m tall, divided by a small valley 5–10 m wide. At

F I GU R E 5 Locations of
sections A, B and C and core samples
T1 and T2 of spring mound TRT 36.
See also Figure 2). [Color figure can
be viewed at wileyonlinelibrary.com]
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the centre of the valley, traces of the former spring and some palm

trees indicate the origin of irrigation channels from the spring through

the valley.

3.2 | Analytical methods

Nearly all of the 86 samples had the consistency of a soft to moder-

ately indurated sediment. The samples were air dried, sieved and then

analysed at the water and soil laboratory of the Institute of Arid

Regions (Medenine, Tunisia), using the methods of Pansu &

Gautheyrou (2006) for determining calcium carbonate and gypsum

contents. The soil organic carbon (SOC) content was measured using

the Walkley–Black method (Walkley, 1947). Carbonate content was

determined using a pressure calcimeter, and gypsum content

was determined by gravimetry (precipitation with BaCl2). Sediment

pH was measured in a 1:2.5 soil: water solution, and EC was measured

using a conductimeter in a 1:5 soil: water solution. Because the stan-

dard method of creating a saturated paste is time consuming, we esti-

mated the influence of salinity when it exceeded 2000 μS cm�1

(2 dS m�1), which corresponds to the concentration of a solution satu-

rated in gypsum. For this, we used the local correction of Aboukila &

Abdelaty (2017) specifically adapted for sandy soils:

ECsat ¼EC1:5�7:46–0:43 ð1Þ

A salic horizon (if soil pH ≤ 8.5) has an EC with saturated paste

>15 dS m�1 (IUSS, WRB, 2022), which corresponds, after the equa-

tion (1), to an EC1:5 of ca. 2 mS cm�1. Soil texture was determined by

dry sieving with a set of 16 sieves from 1600 to 50 μm with a loga-

rithmic progression. The dry sieving allowed the size of air-blown par-

ticles to be quantified for this region of strong aeolian erosion and

sedimentation because it emphasizes the amount of coarse

agglomerated particles. Determining clay and silt contents by wet

sieving after dispersal with hexametaphosphate and a pipette is not

suitable for gypsum layers and needs many adaptations

(Vieillefon, 1979). Therefore, the texture of sediments that clearly

contained gypsum was not determined by wet sieving.

3.2.1 | Micro-analysis

The morphology of some aggregates was analysed using an electron

microscope (Zeiss Evo®, Carl Zeiss Ltd., UK) with an acceleration volt-

age of 15 kV and magnification of up to 10,000�. It was coupled with

a DRX microprobe with dispersal energy (INCA Energy 350 EDX,

Oxford Instruments, UK). The clay mineralogy of specific samples was

determined for the fraction smaller than 2 μm in diameter. Samples

were analysed using an X-Ray Diffractometer (Siemens D500) with

Ni-filtered CuKα radiation at 40 kV and 30 mA. Oriented air-dried,

glycolated and heated (500�C for 3 h) samples were scanned from 2�–

15� (2θ), with measurement for 2 s every 0.02�. For some samples,

the fraction smaller than 2 μm was also prepared as a randomly ori-

ented powder mount and scanned from 2 to 70� (2θ).

4 | RESULTS

Descriptions of all sections (Figure S1) and analytical results were

summarized by Raddadi & Podwojewski (2022c) (Table S1).

4.1 | Section A

Section A was 13 m tall on the largest excavated profile (Figure 7). It

had regular horizontal stratification of 34 identified fine sedimentary

F I G UR E 6 Location of section D and core
sample T3 of spring mound TRT 9. [Color figure
can be viewed at wileyonlinelibrary.com]
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sub-horizontal layers from the top to its base (Figure 8). The profile

was divided into three major units.

The base unit (I) extended from 9.40 to 13.00 m deep (samples

A30 and A31). The base was built on fine aeolian deposits with a large

dominance of fine sands (80–100 μm) (Figure S1A and B), which are

characteristic of aeolian deposits (Chepil, 1951a). At the base of this

profile, the layers were homogenous, with no particular sign of strata,

with a pale yellow colour (5Y5/2) typical of a reduced environment.

The layers contained almost no SOC, some carbonates (< 4%) and

almost no gypsum (≥0.4%) and had a very low EC (>0.35 mS cm�1).

The intermediate unit (II) had two compartments: IIA, with five

layers (A25–A29) 7.40–9.40 m deep, and IIB, with 17 layers (A8–A24)

3.15–7.40 m deep. They represented two major sedimentary subdivi-

sions, with sharp changes in texture and high variability in EC. The

boundary between compartments A and B was sharp. The thin 5 cm

thick layer showed evidence of reticular dark reddish (2.5YR 5/6) and

black features (Figure S8 C). Manganese (Figure S6 C to E) and iron

oxides (Figure S6 F to J) were identified as cutanic deposits on quartz

grains.

The lower part of compartment IIB (A19–A23), has a low EC and

fine sands, while the upper compartment (A8–A18), composed of very

fine centimetric strata, many of them enriched in carbonates and

coarse sand. This level also showed evidence of hydromorphic

redoximorphic features of a pale grey colour (10YR 6/3 and 10YR

7/3), and strong brown mottles (10YR 5/6 and 10YR 6/6) generally

associated with fluctuation of high and lower carbonate and SOC con-

tents with no direct link. The top layers of compartment IIB (A8–A11)

were gypsiferous and had a high EC (2.4–7.7 mS cm�1).

The upper unit (III) (0–3.20 m deep) had no redoximorphic fea-

tures. It consisted of a fine aeolian sand layer with low EC (A6–

A7 < 2.4 mS cm�1) low gypsum and carbonate contents covered by a

gypsic hardpan (A1–A3). Some human artefacts were found in this

layer (e.g., animal bones, potsherds, flint arrowheads).

4.2 | Section B

Section B consisted mainly of aeolian deposits (Figures S2 and S3) and

had no gypsum layer on the top. The base unit (I) consisted of fine

sand (layers B1–B5) (2.80–5.00 m deep) of a light brown colour (10YR

6/4) with low EC (<1 mS cm�1). Base layer B1 (4.00–5.00 m deep)

was interesting in that it consisted of thin centimetric to millimetric

F I GU R E 7 Photograph of section A, with
boundaries between major units. [Color figure can
be viewed at wileyonlinelibrary.com]
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layers of sand enriched in SOC (Figure 13A). Unit II (layers B6 and B7)

(2.40–2.80 m deep) had higher EC (>3.0 mS cm�1) and was enriched

in coarse sand and some gypsum. The top layers (unit III) were sandy,

with low EC (<1.0 mS cm�1) and a low gypsum content.

4.3 | Section C

Section C was short but had three units (Figures S4 and S5). Base unit

I (layers CI–C3) (1.30–2.00 m deep) had very low EC (>0.2 mS cm�1),

low SOC content and small redoximorphic features. In a clay extrac-

tion of layer C2, four types of clay were identified by XRD determina-

tion (i.e., kaolinite, illite, smectite and palygorskite, Figure S7 C2). The

intermediate unit (II) (layers C4–C6) (0.60–1.20 m) had a lower clay

content, higher EC (>1.0 mS cm�1) and was enriched in carbonates

(≥14%). The top unit (III), enriched in gypsum, was typical of all spring-

mounds of the Nefzaoua province.

Section D was 5.5 m tall (Figure 9) and had regular horizontal

stratification of 11 sedimentary sub-horizontal layers divided into

three major units (Figure 10). The fine strata of unit II were grouped

into thicker layers.

The base unit (I) (layers D1–D3) (4.80–5.30 m deep) consisted of

pale brown fine sand (10YR 7/3) enriched in carbonates (>20%) and

with a low EC (<1.2 mS cm�1). Layer D2 was enriched in SOC. The

intermediate unit (II) consisted of two sedimentary compartments –

D3–D4 (3.50–4.80 m deep) and D6–D9 (1.50–3.80 m deep)

F I GU R E 8 Section A. Variation in texture: cS: coarse sand (2000–200 μm), fS: fine sand (200–50 μm), C + Si: clay+silt (<50 μm), gypsum and
carbonate contents (%), electrical conductivity (EC) (mS cm�1), and soil organic carbon (SOC) (mg kg�1). [Color figure can be viewed at
wileyonlinelibrary.com]
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– beginning with a clayey base. In a clay extraction in layer D6, four

types of clay similar to those observed at the base of section C were

identified by XRD determination (i.e., kaolinite, illite, smectite,

palygorskite and traces of chlorite) (Figure S6 Q to X; Figure S7 D6).

The layers show evidence of redoximorphic features, with clear root

presence in a gleyic horizon (IUSS-WRB, 2022) (Figure 13 B and C)

and higher EC (>2 mS cm�1). The top unit (III) consisted of sandy aeo-

lian deposits enriched in gypsum. The top of the profile was a calcrete

and gypsic hardpan resistant to aeolian erosion. A gypsum crust

(<1 cm) as a skin in thin layers covered part of the vertical excavated

section surface (Figure S8 A and C).

4.4 | Auger soil cores

All three auger soil cores (Table S1) had a relatively homogenous com-

position at each sampling site. All had low EC at the base

(≤0.8 mS cm�1 for T1 and T2 and ≤1.8 mS cm�1 for T3) that increased

toward the soil surface (>2.1 mS cm�1), which corresponded to an

increase in carbonate and gypsum contents. The SOC content was

also much higher than that of mound sediments; many layers

exceeded 0.8% SOC. Profile T1 had the highest variability in SOC

content (0–9.1 g kg�1) and was sandy (mostly fine sand) and light

brown in colour. T2, away from the spring, had much more clay

(>20%) and coarse sand (>20%), and a typical reduced colour (5Y 7/3).

T3 was darker (10YR 3/3), with higher SOC (7.3–12.9 g kg�1) and a

texture similar to that of T1 but with more coarse sand.

5 | DISCUSSION

The history of the Nefzaoua spring-mounds can be divided into four

phases: i) development of a water table with artesian springs; ii) estab-

lishment of vegetation around a spring, which traps aeolian sand and

initiates formation of a mound, iii) sediment deposition and iv) pedo-

genesis in the sediments.

5.1 | Development of a water table with artesian
springs

The geomorphologic conditions for the first phase consist of three

steps (Figure 11, steps 1 to 3). As mentioned, natural recharge of the

water tables in this area converges at the lowest elevation of

F I GU R E 9 Photograph of section D, with
boundaries between major units. [Color figure can
be viewed at wileyonlinelibrary.com]
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the endoreic basin of Chott El Jerid (maximum of +15 m). The

recharge zone is mainly the Dahar chain, with a west-facing slope,

followed by the Tebaga chain, with a south-facing slope. As in many

other regions with desertic artesian springs, low playas (in southern

California (Scholl, 1960; Neal & Motts, 1967), endoreic basins or flat

depressions (Ponder, 1986) (in western Egypt (Powell &

Fensham, 2015)), the spring mounds of the Nefzaoua basin are

located in flat areas and associated with artesian systems

(Coque, 1962; Pouget, 1968). Some aligned micro springmounds were

described by Essefi et al. (2014), in the Sidi El Habi sebkha in the north

east Tunisia as direct consequence of groundwater upwelling trig-

gered by tectonics and hydraulics. Swezey (1996) suggested that

alignment of mounds near the Chott el Jerid resulted from

neotectonic activity and faults with emerging artesian springs.

5.2 | Colonization by vegetation

After geomorphologic, climatic and tectonic conditions generate

artesian springs, the second phase of formation of a spring mound is

colonization by vegetation around the spring and entrapment of

drifting sand (Figure 12 steps 4 and 5; Adelsberger & Smith, 2010). All

mound bases in that area were built mainly on fine sand (80–100 μm),

which is characteristic of aeolian deposits (Chepil, 1951b; Table S1;

Figure S6A, B). The local vegetation consists of a steppe of shrubs and

grasses (Asteraceae and Poaceae) less than 0.5 m tall and with less

than 50% of soil cover (Le Houerou, 1959). In Tunisia, studies by

Bendali et al. (1990) showed the role of two plants in trapping sand:

Rhanterium suaveolens (Asteraceae), in the least disturbed areas, and

Stipagrostis pungens (Poaceae), in wind corridors. These species can

maintain the density of their structures after sand accumulates, in part

by constantly renewing adventitious roots, which provide them with

water from reserves in the accumulated sand. These plants are associ-

ated with nebkas, dunes in the process of forming, and are able to cre-

ate sand hillocks up to 2 m tall called rebdou (Coque, 1962). The

hillocks contain alternating layers of sand and organic matter under

the plants. Essefi et al. (2014) described this early stage process of

formation associating vegetal entrapment of aeolian particles in some

embryonic and child age of some young Tunisian spring mounds.

All Nefzaoua spring mounds were formed over sand trapped by

vegetation forming mounds. These features are visible at the base of

the external part of the spring mounds, such as in section B

F I GU R E 1 0 Section D. Variation in texture: cS: coarse sand (2000–200 μm), fS: fine sand (200–50 μm), C + Si: clay+silt (<50 μm), gypsum
and carbonate contents (%), electrical conductivity (EC) (mS cm�1) and SOC (mg kg�1). [Color figure can be viewed at wileyonlinelibrary.com]
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(I) (Figure 13A) or layer D2. These layers had higher SOC content than

the other layers (7.2 and 6.8 g kg�1, respectively), which was con-

firmed by the high SOC content in many of the soil core layers (up to

9.1, 8.3 or 12.9 g kg�1 in T1, T2 and T3, respectively) (Table S1).

These dunes constitute the elevated edge of the ponds that form

close to the artesian spring.

5.3 | Filling of the pond and lacustrine deposits

When water collects and the pond expands, many processes occur. The

pond expands to the boundary formed by the dunes that are set by veg-

etation, and then sediment accumulates (Figure 12 steps 6 and 7). The

frequent variation in layer thickness, the slight variation in texture and

colour because of the degree of oxidation–reduction and the different

accumulation forms of calcium carbonates (§ chapter below) suggest a

complex combination of processes linked to the fluctuation of the water

level in the pound. Sedimentation depends on the following factors:

i. Variation in spring discharge, which determines the amount of

water in the pond. This discharge is likely influenced by climatic

variations and the contribution of higher annual rainfall during

the Palaeocene and Holocene (Swezey, 2003). During the Holo-

cene, paleo lakes in the Sahara desert experienced periods of

higher rainfall (7500–9500 and 4500–5500 yrs ago), with drier

phases in between (Guo et al., 2000). In Egypt, spring mounds

were associated with human settlements during the early wet

Holocene, until the settlements disappeared in the post-Roman

period (Adelsberger & Smith, 2010; Bravard et al., 2016).

ii. Variation in sediment inputs, which are almost exclusively aeolian

because spring mounds are elevated and experience little con-

tamination from external sediment flows during high rainfall

events. The sediments consisted almost exclusively of aeolian

rounded quartz grains with homometric size of 80–100 μm in

diameter (Figure S6A and B), with features of impacts in V shape

(Figure S6 E) (Niftah et al., 2005). The coarse fraction contained

micro-grains of quartz cemented with carbonates and/or gypsum

F I GU R E 1 1 Steps of spring mound formation: the artesian process step 1: the filling of the water tables; step 2: water-table with pressure
and step 3: tectonic, compression. [Color figure can be viewed at wileyonlinelibrary.com]
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(Trichet, 1963), not individual coarse sand grains. The same fea-

tures are observed in the Jeffara plain to the east (Jouquet

et al., 2021). However, we observed no micro-evidence of bio-

genic formation of tufs or gypsum constructions (Stivaletta &

Barbieri, 2009. We also did not observe laminar-deposit struc-

tures such those observed in the sebkha. As suggested by Schulz

et al. (2002) and Barbieri et al. (2006), these milimetric layers of

bacteria and algae can trap and retain dust and fine-grained

matter.

iii. Variation in spring chemistry due to local variation in the chemical

composition of the water table. It is often associated to previous

rainfall events. All of the springs have dried up, sedimentation is

no longer visible, and the water chemistry is no longer measured.

Because the chemical composition of the water determines

which minerals precipitate, (Williams & Holmes, 1978), it is diffi-

cult to estimate the inputs of precipitated salts (e.g., carbonates

or sulphates). It is also difficult to estimate the proportions of

inputs of precipitated salts and inputs of sedimentary particles

(e.g., feldspar sands and clays) released from the aquifer, which

were transported vertically though geological layers by the

ascending spring water,

5.4 | Evolution of the sediments, pedogenic
processes

5.4.1 | Clay mineralogy

The clay types and the XRD peaks were absolutely similar in two dif-

ferent sections (C and D) corresponding to two different layers of two

different mounds located 17 km apart (Figure S7). The mineralogical

composition was similar to those found in different soil surveys in the

chott region of eastern Algiers, in the same geomorphological and cli-

matological environment in the regions of Touggourt (Djoughi &

Semra, 2017) and Ouargla (Youcef, 2016). The origins of these clay

types (Dixon & Weed, 1989) suggest a strong variation of climatic

F I GU R E 1 2 Steps of spring mound formation. Steps 4 and 5: growth of natural vegetation; formation of a nebka; step 6: formation of a
spring mound; step 7: schematic section of a spring-mound. [Color figure can be viewed at wileyonlinelibrary.com]
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conditions with rainy periods (neoformation of kaolinite), drier environ-

ments (neoformation of smectite), inherited (Illite) and wind-blown

fibrous clays from playa environments (palygorskite). Because clays par-

ticles are coated on quartz grain, they can be easily transported by the

wind and formed in different environments (Figure S6 K, L, Q to X).

5.4.2 | Redoxymorphic features

The sediment layers are submitted to pedogenetic processes such as

oxydo-reduction often processes associated with the presence of root

traces (Figure 13, step 8B and C). Some mounds such as TRT 22 (not

studied, Figure S8A) or section A (Figure 13, 8B) show layers with evi-

dences of gleyic features at their base with pale yellow colour 5Y 8/2

to 2.5Y 7/4 (claric feature) associated with strong brown mottles (7.5

to 10YR 5/8) around the root traces indicating a fluctuation of a

water-table as an upward moving agent (IUSS-WRB, 2022). In the

same section of TRT 22 (Figure S8A and B) and in the level 4 of

section D, (Figure 13, 8C) stagnic features with filling of pale yellow

colour (5Y 7/2 to 7/3) around vertical root traces in strong brown

matrix (7.5YR 5/8). Stagnic properties are caused by stagnation of an

intruding agent (in that case emerging spring-water) that causes

reducing conditions. It leads to an overlying Fe-poor layer and an

underlying layer with oximorphic features (IUSS-WRB, 2022). Mobi-

lized Mn (Figure S6C, D and E) in black mottles and Fe oxides

(Figure S6H, I and J) in red mottles (10R4/8) may precipitate at the

base of these level such as the level 25 section A (Figure S8C). This is

suggesting phases of relative fast building of the mound with evi-

dences of submersion alternating with phases of pedogenesis after

air-drying and oxidation with internal fluctuation of a water-table and

precipitation of carbonates and sulphates.

5.4.3 | Accumulation of carbonates

Some springs in hydrothermal conditions in Ethiopia and Djibouti

(Fontes & Pouchan, 1975) or Bolivia (Bougeault et al., 2019) develop

calcareous travertines and tufs, which have also been described in the

USA (Scholl, 1960), Spain (Pellicer et al., 2014), Egypt (Adelsberger &

Smith, 2010) and Australia (Clarke et al., 2007; Ponder, 1986) using

biosignatures (Franchi & Frisia, 2020; Keppel et al., 2011).

In our stratigraphic layers, however, the main component was an

aeolian fine sand with homometric quartz grains, potentially cemented

by powdery carbonates in 2 μm crystals (Figure S6M and N). Carbon-

ates accumulate in various features (Figure 13, step 9) sometimes

form powdery massive layers (Figure 13D) considered as groundwater

calcretes or palustrine primary carbonate mud cemented (Alonso-

Zarza, 2003) as a chalky horizon (Alonso-Zarza & Wright, 2010). Verti-

cal decimetric concretions are looking like root moulds in palustrine

environment (Figure 13E). Hard nodules of various shapes, are aligned

(Figure S8A, some have platy shape of 5 cm high and 20–30 cm long,

looking like desiccation cracks in palustrine environment (Figure 13F).

No biological features, such as travertines of tufs, were noted in the

carbonate samples in the sections studied. As carbonates precipitates

often in relation of plant root and biological activity, the different

shapes of calcium carbonate accumulation suggest a precipitation in

shallow fluctuating water level associated with redoxymorphic

features with evidences of vegetal roots. Further investigations are

needed to associate the different origins of carbonate features with

biological activity and their depositional environment.

5.4.4 | Accumulation of gypsum

Gypsum clearly accumulated on top of the spring mounds (Figure 13

step 10). These accumulations were more than 50 cm thick in profiles

A and D. They were indurated as a gypsum crust (Figure S8D), as

described by Pouget (1968), Watson (1985, 1988) and Stivaletta &

Barbieri (2009) and may have resulted from two different accumula-

tion processes:

i. Leaching from aeolian sediments, as suggested by Coque (1962) to

explain the alignment of mounds considered as fossil sand dunes.

Since then, White & Drake (1993), Drake et al. (1994) and Drake

(1997) used geomorphological, archaeological and remote-

sensing data to support the aeolian erosion of gypsiferous sedi-

ments. The sediments came from the Fjej sebka, located leeward

to the north-east of the spring mound area, and were consoli-

dated by rainfall following deposition. This accumulation

suggested strong segregation of particles by the wind. Gypsum

(bulk density of 2.30 g cm�3) could be transported in coarser

grains more easily than sand (bulk density of 2.65 g cm�3). By

tracing gypsum origins using isotopic δ34S analysis, Drake et al.

(2004) suggested that gypsiferous bedrock influences the long-

term preservation of crusts by providing a replenishing source or

by promoting saturation of surface runoff and thus reducing the

runoff’s ability to dissolve other gypsiferous matter.

Aspects of this theory have been questioned by Watson (1985,

1988), who suggested that aeolian gypsum is mobilized by meteoric

waters and leached down-profile, where it is subsequently deposited.

These subsurface crusts may later be exhumed by deflation to form

surficial crusts.

However, the accumulation of aeolian gypsum by deflation occurs

only leeward at the footslope North of the Tebagha range

(Drake, 1997). In our case the gypsum dunes described by Coque

(1962) are not randomly distributed such as sand dunes where the

crests are exposed to the wind and moving with time, but are

restricted to the top of the discontinuous sets of spring mounds in

relation with tectonic faults. They never show a classical barkhane

sand dune shape visible in the Grand Erg Oriental South West of the

Chott el Jerid. Such aeolian concentration of gypsum sands is there-

fore unlikely to occupy only the top of the mounds.

ii. Evaporation, such as in a sebkha with a stable pond level

(Figure S6O and P). Bureau and Roederer (1960) suggested that

the bedrock provides the source, and that capillary rise of soil

water transports calcium and sulphate to the surface, where they

precipitate. Thus, the gypsum accumulates on the top edge of a

mound strata in equilibrium with the artesian pressure for a long

period. The horizontal strata of the sediments are a discontinuity

in pore connectivity, and the rise cannot exceed 2 m because of

the fine silt texture (Li et al., 2018; Lu & Likos, 2004), where the

rise is assumed to be constant. Pouget (1968) suggested
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precipitation because of capillary rise of saline water associated

with input of soft water, which decreases Cl� contents and less-

ening the product of solubility of the gypsum, which precipitates.

In the specific case of the gypsum occurrence in the Tunisian

spring mounds, we agree with the suggestion of Watson (1985) “the
geomorphological significance of this model of gypsum crust genesis

cannot be overstated with certainty”. However, we suggest the fol-

lowing process:

i. The EC concentration increases from the base to the top of the

mound indicating a probable origin per ascensum from a water

table. No sign of stratification was visible in the gypsum cap. It

suggests that when the pressure of the spring was at its maxi-

mum, the mound stops its growth and evapotranspiration could

redistribute the salts at the surface.

ii. During further scarce heavy rainfall events, gypsum particles are

partially dissolved at the top of the mound and leached and a per

descensum cementation occurs during dry period. Very recent

F I GU R E 1 3 Steps of spring mound formation; step 8: soil development and redoxymorphic processes: step 9: neoformation of calcium
carbonate accumulation of different shapes: Step10: accumulation of gypsum forming a crust at the top of the spring mound. [Color figure can be
viewed at wileyonlinelibrary.com]
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gypsum deposits leached from the top of the mound (Figure 13

F; Figure S8A and C) are deposited as a skin over many exca-

vated vertical sections. This occurrence is therefore very rapid.

The erosion of free gypsum particles with Aeolian erosion of the

topsoil is likely and the occurrence of the gypsic hardpan at

the top of mostly all spring mounds will protect the mounds from

further aeolian and hydric erosion. After Monaco et al. (2020),

the archaeological settlements studied in the Nefzaoua province

East of the city of Douz, �2000 BC for the oldest, are all located

on top of the gypsum crust.

6 | CONCLUSION

The excavation of Tunisian spring mounds allowed their internal struc-

ture to be described and analysed. It is organized in three general units:

i) at the base, fine organic layers alternating with fine sand, suggesting

entrapment by vegetation with inputs from aeolian erosion; ii) fine

limnic centimetric layers, with increasing EC from the base to the top,

with alternating colours depending on the carbonate content, and

redoximorphic features, with traces of former roots; and iii) a gypsic

hardpan 1.0 m thick on the top, with no evidence of sedimentation.

This structure confirms the succession of processes that form

spring mounds: i) natural recharge of the water table by a run-off–

runon system; ii) the water table under pressure below an imperme-

able layer; iii) tectonic activity and faults, with formation of artesian

springs; iv) establishment of vegetation that colonize the area around

a spring; v) entrapment of sand, with inputs from aeolian erosion; vi)

formation of the spring mound, with stratified deposits of sand and

secondary carbonates and sulphates (with no biogenic carbonate or

sulphate accumulations); vii) paedogenesis of the sediments, with

redoximorphic features and different carbonate accumulation; and viii)

formation of a gypsic hardpan on top of the mound, by precipitation

due to a saturated solution capillary rise with possible accumulation of

aeolian gypsic sediments followed by meteoric induration of the

gypsum.

Unfortunately, the time required for mounds to form remains

unknown. Spring activity depended on the variation in rainfall during

the Pleistocene and Holocene. In addition, the origins and proportions

of sediments (i.e., allochthonous wind deposits vs. in situ inputs from

spring discharge, as particles or precipitates) are difficult to define and

measure.
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