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Abstract

The precipitation variability and trends were investigated in the Usumacinta

River Basin (URB) for the period 1959–2018, based on imputed and homogenized

data records from 60 meteorological stations in Mexico and Guatemala. The

homogenization process played a crucial role in enhancing the quality of the

original precipitation series, reducing regional inconsistencies and improving

temporal and spatial coherence. The dataset reliably captured large-scale climate

variations, revealing three regions with similar precipitation variability and

trends in the URB. Notably, maximum precipitation occurred at 636 m a.s.l.,

while minimum precipitation was at 1531 m a.s.l., indicating an orographic effect

in the region. Extreme precipitation events were linked to El Niño–Southern
Oscillation. Although the Mann–Kendall test showed statistically significant neg-

ative trends in only 18% of the stations, integration of Sen's slope analysis and

30-year normals and dry year occurrences highlighted a progressive shift towards

dryer conditions throughout the study period in the URB. These drier conditions

could notably affect regions with higher precipitation, requiring special attention

due to possible socioeconomic impacts associated with drought events. By identi-

fying these vulnerable regions, policymakers and stakeholders can proactively

plan and execute adaptive measures to mitigate the potential impacts of droughts

on communities, ecosystems, and economic activities within the basin.
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1 | INTRODUCTION

Precipitation is one of the most studied hydroclimatic
variables because of its important social, economic and
ecological implications. Variations in global or local rain-
fall (i.e., amount, intensity, frequency) can lead to
extreme hydrological events (i.e., drought and floods) and
affect water availability and management, and agricul-
tural activities, particularly in developing countries (Kotz
et al., 2022). Information related to these events is vital in
the current scenario of climate change, especially since
recent global climate models predict changes in local pre-
cipitation patterns, in particular, reduced precipitation
and altered rainfall seasons in the Central America
region, and a higher number per year of extreme precipi-
tation events (IPCC, 2022). As a result, Central America
is considered a region expected to suffer significant agri-
cultural, ecological and hydrological impacts of climate
change (Hannah et al., 2017; Hidalgo et al., 2013).

The Usumacinta River Basin (URB) in the southeast
of Mexico and northern Guatemala is in the eastern
part of the Grijalva-Usumacinta fluvial system, the sec-
ond largest to flow into the Gulf of Mexico (after the
Mississippi River) and the largest river basin in Mexico,
accounting for 30% of the surface runoff of the country
(CONAGUA, 2018). The URB belongs to one of the
world's regions with the greatest biodiversity, as it is
home to the Lacandon Jungle, which has the highest bio-
diversity in the Tropics (Soasores & Garcia-Garcia, 2017).
The basin hosts �2 million inhabitants, belonging to one
of the most marginalized populations of Mexico and
Guatemala, with the prevalence of indigenous people,
who live mainly from crop cultivation and livestock, with
low production and high impact on the environment
(March-Mifsut & Castro, 2010).

The average annual precipitation in the URB ranges from
1500 mm�year−1 in the Mexican lowlands (García, 1998)
to 3500 mm�year−1 in the Guatemalan highlands
(INSIVUMEH, 2016). In this region, precipitation is influ-
enced by easterly waves (Serra et al., 2010), cyclonic activity
(NOAA, 2022), polar fronts (Z�arate-Hern�andez, 2013) and
the complex topography of the region, resulting in marked
contrast in the annual precipitation cycle between the
Caribbean and the Pacific slopes (Alfaro, 2002; Giannini

et al., 2000; Maldonado et al., 2017; Taylor & Alfaro, 2021).
Previous studies have analysed annual precipitation trends
based on climate indices from meteorological station series
over three decades in the Mexican part of the URB (Aguilar
et al., 2005; De la Barreda et al., 2020; Montero-Martínez
et al., 2018), and from reanalysis data in the URB region
(Andrade-Vel�azquez & Medrano-Pérez, 2020), and in Mexico
(Murray-Tortarolo, 2021); however, most results differed
between stations, and precipitation did not show general
trends. Furthermore, no studies have examined the variabil-
ity of rainfall in the URB, including meteorological stations
in the Guatemalan portion of the basin, which, however,
constitutes the largest area of the URB and experiences a
high precipitation variability. This can be explained by the
restricted spatial and temporal availability of data in northern
Guatemala, which is constrained by the poor infrastructure
of the network of meteorological stations due to the difficulty
of access (e.g., absence of highways, low population, presence
of a jungle; Fuentes, 2021). However, precipitation data from
the upper basin is essential for understanding the hydrologi-
cal processes, water availability and impacts of climate
change in the entire river basin.

To calculate climate normals and trends, it is highly
recommended to perform quality control and homogeniza-
tion of the dataset and to ensure that the dataset is com-
plete with no missing or erroneous values (WMO, 2017).
Among the datasets that can be considered to study the
URB, global satellite and reanalysis data have become
increasingly available; however, many of these datasets are
not always calibrated with rain gauge information for
Mexico and Guatemala (Morales-Velazquez et al., 2021).
Satellite datasets typically cover a relatively short-term
record, mainly since the 1980s, while reanalysis datasets,
generated through data assimilation techniques (Parker,
2016), provide broader temporal coverage, but may exhibit
a greater bias in estimating precipitation in complex moun-
tainous regions and tend to overestimate lighter precipita-
tion events while underestimating heavier ones (e.g., Izadi
et al., 2021; Jiang et al., 2021). Rain gauge time-series have
longer periods of availability, and certain Mexican records
have been available since the beginning of the twentieth
century (SMN-CONAGUA, 2022). However, these data
series are usually limited by gaps in the data and by dubi-
ous values, behaviours or trends owing to nonclimatic
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external factors, generated during the measurement pro-
cess or data digitization or by changes in instrument, cali-
bration or station location (Peterson et al., 1998;
WMO, 2017). These alterations (inhomogeneities) could
lead to erroneous interpretations (Guijarro, 2018). Among
the various methods that aim to guarantee that the
observed values correspond only to climatic processes, the
neighbour-based homogenization algorithm “climatol”
(Guijarro, 2019) has outstanding accessibility, flexibility to
adapt to any climatic variable, its high tolerance of missing
data and capability to deal with any temporal resolution
(e.g., day, month or year). In the last few years, climatol
has been widely applied to homogenize a variety of daily
and monthly climate databases. In particular, it has shown
its efficiency in studying air temperature, precipitation, and
wind speed series worldwide (e.g., Chile, Meseguer-Ruiz
et al., 2018; Australia, Azorin-Molina et al., 2019; Israel,
Yosef et al., 2019; Ireland, Coll et al., 2020; Domonkos
et al., 2020; Iran, Javanshiri et al., 2021; Canada, James
et al., 2022) and is recommended as one of the top homoge-
nization methods (Coll et al., 2020; Guijarro et al., 2023).

This study used a meteorological station dataset over
the period 1959–2018 to construct a homogenized and
complete precipitation dataset for the URB region, iden-
tify the main precipitation regions and the possible fac-
tors that explained the spatiotemporal precipitation
variability, and conduct a trend analysis at station and
precipitation region scale over the study period. It aims
to improve upon previous research conducted in the
region by introducing several novel aspects: (1) incorpo-
rated data from meteorological stations situated in both
the Mexican and Guatemalan territories to capture a
broader representation of the precipitation patterns and
climatic conditions within the URB; (2) the use of one of
the most widely used and recent software (climatol) for
quality control, homogenization and imputation of miss-
ing data to obtain valuable insights into long-term pre-
cipitation trends (1959–2018) in the URB; (3) the
identification of precipitation regions within the URB to
find the main precipitation characteristics and examine
long-term temporal trends at yearly scales, which have
significant practical implications for sustainable plan-
ning and adaptation strategies, particularly for stake-
holders and policymakers in the URB region.

2 | MATERIALS AND METHODS

2.1 | Study site

The URB extends from 14.90�N to 18.70�N and from
92.71�W to 89.13�W, and its 77,183 km2 is shared by
Mexico (�46%), Guatemala (�54%) and Belize (<1%). The
water source is in the upper basin, in the northwestern

highlands of Guatemala (Huehuetenango and El Quiche
departments, with a maximum altitude of 3800 m a.s.l).
The Usumacinta River runs off through the Mexican states
of Chiapas, Tabasco and Campeche before reaching the
Gulf of Mexico, with a river flow estimated at 1700 m3�s−1
(Cotler-Ávalos, 2010). The Köppen climate classification
was modified by García (1973) for Mexico, based on tem-
perature and precipitation, and divides the basin into three
altitude levels (lower, middle, and upper), for which the
climatic types are warm-humid in the lower basin (Am2
(x'); Am(f)) and middle basin (Am), and semi-warm
humid in the upper basin ((A)C(m)(f); (A)C(m)). Consid-
ering the latitude and altitude ranges of the URB, snow is
not considered in the region.

2.2 | Database management

The boundaries of the URB used in this study were geo-
graphically defined by Solorza-G�omez (2017) (bold black
line in Figure 1). The daily precipitation database for
URB was compiled with data from the Mexican states of
Campeche, Tabasco, and Chiapas (period 1942–2019)
from the database of SMN-CONAGUA (2022), and Gua-
temala (period 1969–2018) from the National Weather
Service (INSIVUMEH, 2021). Precipitation time series
from 77 meteorological stations were found in the URB:
70 in Mexico and 7 in Guatemala. Daily data missing
from the stations within Mexico were calculated over the
respective networks' operating period from this study's
database. Daily data missing over its operating period
from Guatemalan stations were calculated by Fuentes
(2021). As a first step, only time series with ≤20% of daily
missing data and ≥10 years of continuous data were
selected, that is, 54 in Mexico and 6 in Guatemala
(Figure 1 and Table S1, Supporting Information).

For further analyses, monthly accumulated precipita-
tion was computed from daily data. To compute valid
monthly accumulates, the daily data had to fulfil two
requirements set by the World Meteorological Organization
(WMO, 2017): (1) there cannot be 10 days with missing data
in a month and (2) there cannot be ≥4 consecutive days
with missing data in a month. The neighbour-based homog-
enization algorithm R-package climatol version 3.1.2
(Guijarro, 2019) was used for quality control of the data,
time-series homogenization and imputation of missing data
by comparing each time series with a reference series esti-
mated from an average of nearby stations.

2.2.1 | Data availability and homogenization

Climatol requires a minimum of three (ideally five or
more) data at every time step (here monthly). Data
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availability was lowest (3–14 data per month) between
1940 and 1959 and highest (36–51 data per month)
between 1970 and 1990 and ranged from 14 to 51 during
the period 1959–2018 (Figure 2). To minimize errors
stemming from data gaps in the initial decades and
enhance the accuracy of infilled data, the monthly accu-
mulated precipitation data were limited to the period
1959–2018 and prepared using the approach outlined by
Guijarro (2019). This period allowed the study of two

30-year periods (1959–1988 and 1989–2018) to calculate
climate normals and compute consistent trends
(WMO, 2017).

From the preliminary run of climatol, the follo-
wing parameters were determined for quality control,
homogenization, and imputation: (i) the minimum and
maximum limits for the standardized anomalies that
allowed the exclusion of outliers and (ii) the thresholds
of the Standard Normal Homogeneity Test (SNHT;

FIGURE 1 Meteorological

stations (Δ) used for the analysis of

precipitation patterns and trends in

the Usumacinta River Basin (bold

black line), in southern Mexico and

northern Guatemala [Colour figure

can be viewed at

wileyonlinelibrary.com]

FIGURE 2 Monthly data

availability per station in the

meteorological stations of the

Usumacinta River Basin (1959–2018)
[Colour figure can be viewed at

wileyonlinelibrary.com]
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Alexandersson, 1986) that verified the homogeneity of the
series, dividing the series at a break-point (i.e., sudden shifts
in the means) when the SNHT statistics were more signifi-
cant than the prescribed threshold, and filling missing data
before and after a break-point. To prevent negative values,
average ratio normalization was applied to the raw data to
indicate that precipitation has a natural zero lower limit.
Afterward, climatol was run in full mode with the previ-
ously defined thresholds, and complete monthly precipita-
tion series were obtained for each climatological station. The
station density was checked to validate the statistical homo-
geneity of the results (Gubler et al., 2017), and higher
weights were assigned to the closest station series during the
imputation process. Spearman correlation coefficients
between each pair of precipitation series assessed both the
strength and direction of the relationship between time-
series data before and after the homogenization process and
allowed the identification of reference stations for homoge-
nization (Aguilar et al., 2003).

The performance evaluation metrics used for evaluat-
ing the impact of the homogenization process on the data
quality included: (1) the break-points detection by the
homogenization process that indicates when occurred
sudden shifts in the means of the station precipitation
series (i.e., data irregularities in the series), leading to a
break and correction of the series by climatol; (2) the
comparison of monthly median accumulated precipita-
tion for raw, imputed and homogenized data, calculating
for all the available data in the homogenization process
and indicating the monthly distribution of the original
data compared to the reconstructed data; (3) the mean
absolute difference (in mm) and the bias percentage
(in %) for each station, indicating the deviation magni-
tude and orientation (i.e., under- or over-estimation) of

the reconstructed data compared to the original data; and
(4) the bias time-series percentage between the means of
original and the reconstructed data throughout the study
period.

2.2.2 | Precipitation regions and extreme
precipitation events

The subsequent analyses were conducted using annual
precipitation data calculated specifically for the period
from May to October, which corresponds to the
6 months of the highest annual precipitation in the
region (i.e., the rainy season; Figure 3), in order to focus
on long-term series independently from the impact of
seasonal variability. The Gap statistic (Tibshirani
et al., 2001) was used to estimate the optimal number of
meteorological station clusters, and a hierarchical clus-
ter analysis identified major station groups that shared
a similar temporal pattern of annual precipitation
(Kolde, 2019).

In order to define dry and wet periods, the Standard-
ized Precipitation Index (SPI; McKee et al., 1993) at a
6-month scale (May–October) was used to quantify the
anomalies (Beguería & Vicente-Serrano, 2017) from nor-
mal precipitation conditions for each station and cluster.
Annual values of 6-month SPI ≤ −1 were considered dry,
and annual values of 6-month SPI ≥ 1 were considered
wet, between values of 0.99 to −0.99, defined as close to
normal (WMO, 2012) (Table S2). The Niño3.4 index
(CPC, 2021) was calculated for the period from May to
October of each year (using the period of the rainy season
defined by SPI; Figure 3) to describe annual ENSO sea
surface temperature anomalies in the central Equatorial

FIGURE 3 Annual cycle of the

monthly mean accumulated

precipitation for each station in the

Usumacinta River Basin (1959–2018).
Bold line is the median. Within the

dotted lines is found the period of

highest annual precipitation in the

region (May–October) [Colour figure can
be viewed at wileyonlinelibrary.com]
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Pacific Ocean (5�N–5�S, 170�E–120�W) and was com-
pared to the occurrence of extremes precipitation events
in the 6-month SPI series of each cluster.

2.2.3 | Trends analysis

As precipitation does not follow a normal distribution,
the Mann–Kendall nonparametric test (Kendall, 1975;
Mann, 1945) and Sen's slope estimator (Sen, 1968) were
applied, at a 95% confidence level, to the stations and the
cluster series, aiming to detect potential trends within the
series and precipitation region. These methods are widely
used in analysing hydrological data trends as they are less
sensitive to extreme values or outliers (e.g., Aditya
et al., 2021; Aswad et al., 2020; Gan & Kwong, 1992;
Gocic & Trajkovic, 2013; Hirsch et al., 1982). In particular,
Sen's slope analysis offers an estimation of the trend's mag-
nitude (expressed in this study in mm�year−1), enabling
the interpretation of both the direction and extent of the
trend, even in cases where the Mann–Kendall test does
not yield statistically significant results (e.g., Aditya
et al., 2021; Aswad et al., 2020; Gocic & Trajkovic, 2013;
Stefanidis & Stathis, 2018).

To complete the previous trend analyses, 30-year pre-
cipitation normals were calculated and compared for the
periods 1959–1988 and 1989–2018. The 30-year normals
were derived by averaging the monthly normals for each
year of the precipitation series and then computing the
mean of the annual normals over the respective 30-year
intervals, following the guidelines outlined by the World
Meteorological Organization (WMO, 2017). Climate nor-
mals have proven to be valuable tools for identifying and
quantifying precipitation trends (e.g., Grigorieva & de
Freitas, 2014; Kuya et al., 2022). Additionally, the occur-
rence of dry years based on 6-month SPI values below −1
(WMO, 2012) was compared between the two 30-year
periods for each station and precipitation region, aiming
to investigate potential changes in extreme drought
events over time. The SPI has been previously used for
drought monitoring and trend analysis (e.g., Guimarães
Santos et al., 2019; Montero-Martínez et al., 2018; Naresh
Kumar et al., 2009; Saada & Abu-Romman, 2017).

3 | RESULTS

3.1 | Homogenization and reliability of
the imputation

Most of the meteorological stations (50) showed no
break-points (splits) through the homogenization pro-
cess. A total of 13 splits were observed in the time series

of 10 stations, with each station experiencing either one
or two splits due to anomalous changes in their mean
(Figure 4). From the 1980s to 2000s, there was a notable
surge in the number of data splits per year, indicating a
substantial increase in data inconsistencies. This rise in
splits coincided with the progressive decline of data avail-
ability in the region (Figure 3).

Considering the entire study period, the mean dis-
tance to the closest stations with available data used in
the imputation process was 63 km (46–122 km) and
93.33% of stations exhibited a mean value below 100 km
(Figure S1), indicating sufficient data within a 100-km
radius to perform the imputation and homogenization
process. The median Spearman correlation coefficient
obtained for time-series from stations within 100 km was
0.81 (0.64–0.92 at a 95% confidence interval) before
homogenization and 0.87 (0.75–0.95 at a 95% confidence
interval) for the homogenized data (Figure 5). The
monthly medians of the raw, imputed and homogenized
were compared to gain insights into the potential biases
introduced by the homogenization and imputation proce-
dures (Figure 6). In general, the imputed data demon-
strated higher median monthly precipitation values
(+10.2 mm; +4.5%) compared to the raw data. The differ-
ence was more pronounced during the rainy season from
May to October (+13.5 mm; +4.8%) compared to the dry
season from November to April (+7.0 mm; +4.2%). The
homogenized data consistently exhibited higher values
(+5.2 mm; +3.4%) than the raw data, both during the
rainy season (+4.0 mm; +2.4%) and the dry season
(+6.5 mm; +4.4%). However, the homogenized data still
remained lower than the imputed data, suggesting that
the homogenization process effectively adjusted the data-
set and preserved the statistical distribution of the origi-
nal data, as evidenced by the relationship between the
raw and homogenized data, which displayed a high
degree of significance with a strong determination coeffi-
cient (R2 = 0.95; Figure 7). Among the Mexican stations,
stations 7089 and 7006 exhibited noteworthy deviations
from the regression line (Figure 7; see detailed discussion
in section 4.1).

The absolute differences between the means of monthly
precipitation data before and after homogenization were
within a narrow range for a majority of the stations, as
absolute difference values were below 5 mm for 68% of the
stations, below 10 mm for 80% of the stations and below
15 mm for 94% of the stations (Figure 8). The evaluation of
bias percentages demonstrated that the majority of stations
exhibited minimal bias, with values that were within the
range of −5% to +5% for 80% of the stations and between
−10% and +10% for 97% of the stations. The comparison
between the means of raw and homogenized data over the
study period indicated a bias per year that ranged from
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−5.1% to 6% for the period 1959–1988 and from 5% to 21%
during the second 30-year period (Figure 9).

3.2 | Data clustering and precipitation
anomalies

The median annual precipitation in the URB was
1384 mm�year−1 over 1959–2018 (IQR: 1025–1879 mm�year−1)

and the median altitude of the stations was 777 m a.s.l.
(IQR: 122–1258 m a.s.l.) (Table 1). The data clustering
was done on the homogenized data. The Gap statistic
identified three main clusters for the study period
that suggested the presence of three main precipitation
regions within the URB. A composite series of annual
precipitation with the average of all stations per cluster
was computed (Ci: Cluster i, i = [1, 3]; Figure 10 and
Table 1). The highest accumulated annual precipitation

FIGURE 4 Number of splits per station (left) and per year (right) in precipitation series accounted during the homogenization process

in meteorological stations from the Usumacinta River Basin (1959–2018)

FIGURE 5 Spearman correlation coefficient for time series between stations against their distance for the raw (left) and homogenized

data (right) in the Usumacinta River Basin (1959–2018) [Colour figure can be viewed at wileyonlinelibrary.com]
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was in C1 (IQR: 1957–2688 mm�year−1; n = 15), which
grouped stations in a restricted area of Chiapas (average
distance between stations of 62 km) with a mean
altitude range of 636 m a.s.l. Precipitation values were
intermediate in C2 (IQR: 1160–1604 mm�year−1; n = 32)
with a lower mean altitude (536 m a.s.l.). Precipitation
was lowest in C3 (IQR: 874–1035 mm�year−1; n = 13) in
the mountains of Chiapas and northwestern Guatemala,
including the highest mean altitude (1531 m a.s.l.).

The 6-month SPI analysis revealed similar values
among the three clusters, with shared common dry years
(6-month SPI ≤ −1; 1994, 2004, 2015, 2016 and 2018) and
common wet years (6-month SPI ≥ 1; 1960, 1969, 1981,

1984, 1999, 2010, 2013 and 2017) (Figure 10). Significant
(p < 0.05) positive Spearman's correlations were found
between the 6-month SPI time series of the clusters
(0.81 ≤ r ≤ 0.88) and significant (p < 0.05) negative cor-
relations were observed between the cluster and Niño3.4
index time series (−0.40 ≤ r ≤ −0.31) (Table 2).

3.3 | Trend analysis

The application of the Mann–Kendall test to the raw data
revealed significant (p ≤ 0.05) trends, both positive and
negative, in eight stations across the basin (Figure 11).

FIGURE 6 Monthly median

accumulated precipitation of raw,

imputed and homogenized data

calculated for all the available data in

the Usumacinta River Basin (1959–2018)

FIGURE 7 Monthly means of

accumulated precipitation for raw and

homogenized data in the Mexican and

Guatemalan meteorological stations

from the Usumacinta River Basin

(1959–2018)
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The median Sen's slope, indicating the magnitude of
the observed trends, was calculated as −0.12 mm�year−1
(−0.51 to 0.26 mm�year−1). When comparing the
30-year normals, the results revealed that 35 stations
exhibited values of difference ranging from −10% to

7% in 1989–2018 compared to 1959–1988, while the
remaining stations recorded values below −10%. More-
over, among all the stations, 32 stations displayed an
increase of 1–4 dry years (6-month SPI values ≥1) dur-
ing the second period. Fourteen stations showed no

FIGURE 8 Mean absolute difference (left) and bias percentages (right) between the raw and homogenized data at monthly scale in

meteorological stations from the Usumacinta River Basin (1959–2018) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 The yearly mean bias percentage between the raw and homogenized data from the Usumacinta River Basin (1959–2018)
[Colour figure can be viewed at wileyonlinelibrary.com]
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change, while another 14 experienced a reduction of
one or two dry years from 1989 to 2018 when compared
to the 1959–1988 period.

After homogenization of the station series, the
Mann–Kendall test revealed significant (p ≤ 0.05) nega-
tive trends in 11 stations from the central-western region
of the URB, which exhibited negative Sen's slopes values
(−4 to −6 mm�year−1), a notable difference between the
30-year normals (−22% to −10%) and a higher number of
dry years (+6 to +11 dry events) during the second period
compared to the first. At the scale of the basin, the Sen's
slope value was negative for 82% of the stations (median:
−2.33 mm�year−1) and the difference between the 30-year
normals was negative for 81% of the stations (−4.70%).
The analysis of the 6-month SPI revealed an increase in
the number of dry years during the second 30-year
period, observed in 92% of the meteorological stations.
More than half of them (52%) experienced an additional
4–11 dry years occurring during the second period.

At the scale of the precipitation regions, the Mann–
Kendall test on homogenized data assessed negative values
of a nonsignificantly (p ≥ 0.05) monotonic trend in the
cluster time series of the URB (−0.09 to −0.10) (Table 1).
Sen's slope estimated the magnitude of that trend,
accounting for −3.89 mm�year−1 in C1, −2.10 mm�year−1
in C2, and −1.95 mm�year−1 in C3. The discrepancy in cli-
mate normals exhibited a negative trend across all three
precipitation regions, with C1 displaying a higher disparity
compared to the other clusters. Over the second period
(1989–2018), a noticeable rise in dry years was observed,
showing an increase ranging from +4 to +7.

4 | DISCUSSION

4.1 | Reliability of the imputation and
homogenization process

Studying temporal and spatial precipitation patterns at a
regional scale requires long-term observations at suffi-
ciently high temporal resolution and enough spatial cov-
erage (Easterling, 2013). However, these conditions are
challenging in the URB region. Indeed, data were scarce
in Mexico before 1960 (3–14 data per month) and nonexis-
tent in Guatemala before 1970 (Figure 2); this was due to
the paucity of meteorological stations during earlier times,
as was the case in most of the countries of Central America
(e.g., Aguilar et al., 2005; INSIVUMEH, 2016). The declining
data availability in Mexico, starting in the 1980s and acceler-
ating after the 1990s, is likely due to budgetary constraints
(CONAGUA, 2012) because many climatological stations in
Mexico that were operative in the 1950s were progressively
suspended (SMN-CONAGUA, 2022): of 5880 stations that
were once operative in Mexico, only 3348 remain opera-
tional in the country (CONAGUA, 2018). Results suggested
that the restructuring of the station network in Mexico may
have compromised the quality of data from the 1980s to the
2000s, resulting in a noticeable rise in data inconsistencies
and irregularities during this timeframe (Figure 4). The sta-
tion INS-110104 (Flores) in Guatemala exhibited data incon-
sistencies in 2000 that can be ascribed to localized
alterations introduced during the measurement or data digi-
tization process, which may occur in the Guatemalan station
network, as reported in Fuentes (2021).

TABLE 1 Annual precipitation, station altitude, and trend analysis in clusters grouping meteorological stations from the Usumacinta

River Basin (1959–2018)

Stations clustering All stations Cluster 1 Cluster 2 Cluster 3

Number of stations 60 15 32 13

Median annual precipitation (mm�year−1) 1384 2311 1364 874

Precipitation interquartile range (mm�year−1) 1025–1879 1957–2688 1160–1604 874–1035

Mean altitude (m a.s.l.) 777 636 536 1531

Altitude interquartile range (m a.s.l.) 122–1258 265–712 19–963 1180–1750

Trend analyses

Kendall's tau −0.08 −0.10 −0.09 −0.10

p-value 0.36 0.31 0.45 0.41

Sen's slope (mm�year−1) −2.33 −3.89 −2.10 −1.95

Difference in climate normals (%)a −4.70 −4.77 −4.65 −2.60

Increase in dry yearb +4 +6 +7 +4

Abbreviation: m a.s.l., meters above sea level.
aComparing the two 30-year periods of 1959–1988 and 1989–2018.
bBased on the number of dry years (defined as 6-month-SPI values >1) in 1989–2018 compared to 1959–1988.
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The imputation process, relying on a reference precip-
itation series derived from an average of neighbouring
stations, was made possible over the study period due to
low mean distances from the closest station with avail-
able data (46–122 km) (Figure S1) and the strong correla-
tion observed among their time-series (Figures 5 and S1).
The homogenization process improved the correlation
coefficients among precipitation time-series, as indicated
by an increase from a median value of 0.81–0.87
(Figure 5) and a diminution of the bias percentage of
monthly median accumulated precipitation between the

raw and imputed data (Figure 6), demonstrating the effi-
cacy of the homogenization process in enhancing the
quality of the data compared to its pre-homogenization
state. Overall, the monthly means of the two datasets
exhibited a strong relationship (R2 = 0.95; Figure 7), and
the absolute differences and the bias between the means
of nonhomogenized and homogenized series were low
for the majority of the stations (Figure 8), indicating a
high level of accuracy and agreement between the nonho-
mogenized and homogenized data. Throughout the study
period, the bias time-series percentage between the raw and
homogenized data remained consistently low (Figure 9),
indicating the successful preservation of the temporal distri-
bution of average precipitation despite the homogenization
process. In the second 30-year period for the Mexican sta-
tions, bias values increased slightly (ranging from 5% to
21%) due to a higher correction of artificial precipitation
values and trends through the homogenization process after
the break-point detection (Figure 4).

Despite the presence of a unique station in the north-
ern part of Guatemala (INS-110104), the closest stations
that served as references for its missing data imputation
were located within a 122 km radius (Figure S1) and the

FIGURE 10 Heatmap of annual precipitation for each station grouped by cluster (left); station localization (Δ) (centre); time series of

the Niño3.4 index and the 6-month Standardized Precipitation Index (SPI) for each cluster (right) in the Usumacinta River Basin (1959–
2018). On the right, hatched bars represent the occurrence of wet years (6-month SPI > 1) and La Niña events (Niño3.4 index ≤0.5�C),
whereas dotted bars represent dry years (6-month SPI < 1) and El Niño events (Niño3.4 index ≥0.5�C) [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 2 Spearman's correlation coefficients between the

time-series of 6-month SPI in clusters and the Niño3.4 index in the

Usumacinta River Basin (1959–2018)

Cluster 1 Cluster 2 Cluster 3 Niño3.4

Cluster 1 1 0.88 0.81 −0.31

Cluster 2 1 0.81 −0.40

Cluster 3 1 −0.47

Niño3.4 1

Note: Values shows significant correlations (95% of confidence level,
p < 0.05); n = 60.
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correlation coefficients between the station INS-110104
and other stations were relatively high (76–78, 95% confi-
dence interval), indicating sufficient data for the infilling
procedure and good correspondence with other station
series. Moreover, station INS-110104 presented a minimal
amount of missing data (2%) during its operational period
(Fuentes, 2021) and its reconstructed data was reliable, as
demonstrated by low absolute difference (7.6 mm) and
bias percentage (−5.2%) values compared to the original
data (Figures 7–9).

Among the Mexican stations that were analysed, the
two stations 7089 and 7006, stood out from the others for
showing noticeable deviations from the regression line
(Figure 7) and relatively high absolute difference values
(7089: 44 mm; 7006: 83 mm; Figure 8), although the cor-
relation coefficients were high before homogenization
(7089: 0.86; 7006: 0.82), indicating a similar temporal var-
iability with other stations. This was explained by the
presence of significant shifts in precipitation series
detected by the SNHT test, which were attributed to non-
climatic external errors, likely resulting from changes in
the instrument or calibration. These alterations affected
the recorded precipitation values after the breakpoints.
For instance, station 7089 showed a transition from mean
monthly values around 220–110 mm after the breakpoint.
Similarly, station 7006 displayed anomalous high precipi-
tation values during the period December 1986–August

1989 compared to nearby stations, leading to the detec-
tion of two breaks before and after this period.

The different used parameters have demonstrated the
reliability of climatol in imputing and homogenizing
the precipitation series of each station, successfully recti-
fying data inconsistencies as observed in stations 7006
and 7089. Following homogenization, the station series
presented improved temporal and spatial coherence com-
pared to the nonhomogenized series.

4.2 | Precipitation regions

The three clusters of meteorological stations, each corre-
sponding to different precipitation regions, exhibited
well-defined and distinct precipitation ranges. The C1
stations, situated at intermediate altitudes, exhibited the
highest median precipitation, while the C3 stations,
located at the highest altitudes, experienced the lowest
median precipitation. Thus, the spatial distribution of
clusters was primarily influenced by altitude, where the
highest precipitation was observed at a mean elevation of
636 m a.s.l., represented by C1, and the minimum precip-
itation occurred at a mean elevation of 1531 m a.s.l, as
shown by C3. The wide altitude range of the C2 stations
(19–963 m a.s.l) reflected the influence of other factors,
such as the source and direction of wind and humidity

FIGURE 11 Trend analysis over the station series (Mann–Kendall and Sen's slope) and the difference normals and the number of dry

years between the two 30-year periods (1959–1988 and 1989–2018) for nonhomogenized and homogenized data in the Usumacinta River

Basin [Colour figure can be viewed at wileyonlinelibrary.com]
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(windward/leeward mountainsides) and the distance to
the ocean (Houghton, 1979).

The relationship between elevation and precipitation
is the result of the orographic effect occurring in the Tro-
pics, a combination of the cooling of moist air ascending
along the mountains and the decreasing air moisture
with altitude (Daly et al., 1994; Fern�andez et al., 1996;
Houghton, 1979), that produces an increase in precipita-
tion until a particular elevation (belt of maximum precip-
itation) after which precipitation declines with higher
elevation. Finding a belt of maximum precipitation is a
frequent phenomenon in the mountains of the Tropics
and subtropics (Hastenrath, 1967) and has been found
around the world, such as India (Puvaneswaran &
Smithson, 1991), Costa Rica (Chac�on & Fernandez, 1985;
Fern�andez et al., 1996) and Morocco (Abahous et al., 2018).
The belt of maximum precipitation of this study defined as
265–712 m a.s.l. and based on C1 stations (Table 1) was
found at a lower altitude than other studies in Central
America, such as on the Pacific escarpment of the
Guatemala Highlands (900 m a.s.l.; Hastenrath, 1967) and
on the Pacific and the Caribbean coasts (�1000 m a.s.l.;
Fern�andez et al., 1996) and in the Reventaz�on River Basin
(1700 m a.s.l.; Chac�on & Fernandez, 1985) in Costa Rica.
This level varies in Central American mountains; it
depends on each region's topographic and meteorological
conditions but is generally reported to occur at intermedi-
ate elevations.

Certain events of El Niño (Niño3.4 index ≥0.5�C) and
La Niña (Niño3.4 index ≤0.5�C) were associated with
changes in URB precipitation in the last decades
(Figure 10; hatched bars for dry years and El Niño events;
dotted bars for dry years and La Niña events). All the
clusters showed mild to severe drought SPI categories
(−1 ≤ 6-month SPI < −1.5) in the URB linked to the El
Niño medium intensity event of 2002–2003 and linked to
the very intense El Niño event of 2015. The strong La
Niña events of 1999 and 2010 were associated with
severely wet conditions (6-month SPI ≥ 1.5), and the
moderate event of La Niña in 1984 was related to
the moderate wet conditions (6-month SPI ≥ 1) in the
URB. In particular, these events were also evident in the
temporal bias (Figure 9), where they resulted in a notable
increase in variability among the station series.
Specifically, we observed a higher bias during La Niña
events and a lower bias during El Niño events, compared
to the original series. The significant negative correlation
(−0.47 ≤ r ≤ −0.32; p < 0.05) found between the time-
series of the clusters and the Niño3.4 index (Table 2) is
consistent with results from previous studies in the URB
region (Andrade-Vel�azquez & Medrano-Pérez, 2020;
INSIVUMEH, 2016) and in Central America (Alfaro, 2002;
Maldonado et al., 2018), as a result of the impact of El
Niño events on the moisture transport for Central

American precipitation (Dur�an-Quesada et al., 2017). In
addition, evidence of a relationship between drought and
El Niño events has been found in southern Mexico
(Magaña et al., 2003; Salas-Flores et al., 2014; Salas-
Flores & Jones, 2014). The possible further increases in the
frequency and intensity of extreme El Niño events
related to climate change (Cai et al., 2022; Wang
et al., 2019) may lead to future drought conditions in
the URB and associated socioeconomic consequences,
although further research and consideration of various
factors are required to better understand and project the
future behaviour of ENSO under the influence of
anthropogenic climate change (Cai et al., 2022).

4.3 | Trend analysis at station and
precipitation region scale

Based on the Mann–Kendall test results, a small
number of meteorological stations presented statistically
significant trends over 1959–2018 in both non-homoge-
nized (8 stations) and homogenized (11 stations) data,
suggesting that the rest of the station data or the period
considered in this study may be limited in capturing sig-
nificant precipitation trends due to its inherent wide vari-
ability (WMO, 2017). This concurs with most previous
findings for Central America (Alfaro-C�ordoba et al., 2020;
Dur�an-Quesada et al., 2017; Hannah et al., 2017; Hidalgo
et al., 2013, 2017; Maldonado et al., 2021), which have sug-
gested that precipitation trends are not always homoge-
neous for Central America and depend on the database
used in the assessment. However, the investigation of
trends in this study was extended through the integration
of results based on the reconstructed homogenized data
and different trend methods, such as Sen's slope, climate
normals, and the occurrence of dry years.

Before homogenization, the trend analysis using the
raw data yielded a mixture of trends over the study
period, with 55% of the stations exhibiting positive trends
and 45% showing negative trends, and a low magnitude
of change, as indicated by the Sen's slope values (−0.51 to
0.26 mm�year−1). The difference between the 30-year nor-
mals (−6.1 to +4.8%) and the change in dry years (−2 to
+5) in 1959–1989 to 1989–2018 did not show a general
pattern (Figure 10). However, after homogenization of
the station series, the Mann–Kendall test showed a con-
centration of significant (p ≤ 0.05) negative trends in the
central-western region of the URB, which was identified
as the area with the most pronounced drought condition
within the URB. The remaining stations of the URB also
exhibited a general negative trend; however, these trends
did not reach the statistical significance threshold. The
negative value of the Sen's slope confirmed declining pre-
cipitation in most of the meteorological stations, with
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high magnitudes of change (−4 to −6 mm�year−1)
(Figure 10). The evidence indicating a trend towards drier
conditions was reinforced by strong negative values in
the difference of 30-year normals (−22 to −5%), indicat-
ing lower mean precipitation in 1989–2018 compared to
1959–1988, and an observable increase in the occurrence
of dry years during the second 30-year period (+6 to +11)
across the majority of stations.

Applying homogenized data for analysing precipita-
tion trends enhanced spatial and temporal coherence
compared to nonhomogenized data (Figures 5 and 11).
When executed correctly and with meticulous control of
parameters, the improved coherence within long-term
trend data series is a consistent and expected result of the
homogenization process (Aguilar et al., 2003), widely
observed in studies employing climatol methodology on
hydroclimatic datasets (e.g., Abahous et al., 2020; Javanshiri
et al., 2021; Kessabi et al., 2022; Kuya et al., 2022;
Meseguer-Ruiz et al., 2018; Yosef et al., 2019). The valida-
tion of the data density and reliability of the homogeniza-
tion process within the URB (in section 4.1) confirmed the
accuracy of trends derived from the homogenized dataset,
and it also ensured that the heightened coherence within
series directly resulted from effectively eliminating noncli-
matic noise while preserving natural climatic data variabil-
ity and information.

The comparison of results obtained before and after
the homogenization process (Figure 11) through the
Mann–Kendall test evidenced a transition from significant
positive trends to significant negative trends in precipita-
tion records from two of the meteorological stations, as
well as a shift from significant to nonsignificant trends in
the records of another five stations. Previous studies else-
where that used homogenization of precipitation data
have also reported such trend variations (e.g., Abahous
et al., 2020; Kessabi et al., 2022; Kuya et al., 2022) that
were attributed as a positive outcome of the homogeniza-
tion process itself. Indeed, this process is designed to iden-
tify and rectify trend inconsistencies introduced by
nonclimatic factors and to isolate the precipitation trend
driven by true climatic factors (Aguilar et al., 2003). In this
study, the absence of spatial coherence in precipitation
trends before homogenization could have resulted from
the sensor misalignment, station relocations, alterations in
observational practices, or the progressive land use change
around the station (Ribeiro et al., 2016). This lack of coher-
ence was likely a consequence of the reconfiguration of
the meteorological station network in Mexico during the
period from the 1980s to the 2020s and resulted in the
emergence of artificial trends superimposed upon the true
climate trends in URB stations.

Across the scale of precipitation regions represented
by the clusters, a noticeable transition towards drier pre-
cipitation conditions was evident throughout the study

period (Figure 10 and Table 1). Stations experiencing the
highest levels of precipitation (C1) were particularly
affected, suggesting that the consequences of this shift
may be more pronounced in this specific region and at
intermediate altitudes. The observed rise in drought con-
ditions over the past few decades aligns with previous
studies that have documented warming trends in the
Mexican part of the URB (Montero-Martínez et al., 2018)
and in Central America across interdecadal scales (Alfaro-
C�ordoba et al., 2020; Dur�an-Quesada et al., 2017; Hannah
et al., 2017; Hidalgo et al., 2013, 2017; Maldonado
et al., 2021). Such temperature trends can have substantial
implications for the regional hydrological cycle and water
resources, as the concurrent increase in evaporation
and evapotranspiration may lead to shifts in atmospheric
circulation patterns, altering the distribution and intensity
of rainfall, and a significant reduction in water avail-
ability and runoff. Additionally, warmer temperatures can
increase the capacity of the atmosphere to hold moisture,
potentially leading to more intense rainfall events but
also longer periods of drought. However, it is important to
note that the relationship between warming trends and
precipitation variability is complex, and further improve-
ments in the study could be achieved by considering lon-
ger time-series data, for example, using paleo-precipitation
records, or by incorporating reanalysis data calibrated with
local rain gauge data. These additional sources of informa-
tion, as demonstrated in previous studies (e.g., Hidalgo
et al., 2017), can provide valuable insights for a more com-
prehensive understanding of precipitation trends.

The escalating aridity in the URB region holds signifi-
cant importance for stakeholders, particularly because
the socio-economic development of the area relies mainly
on crop and livestock production. These crucial sectors
are exceedingly susceptible to fluctuations in water avail-
ability and extreme weather events like droughts. Hence,
it becomes imperative to take these changing drying con-
ditions into thoughtful consideration.

5 | CONCLUSIONS

This study made a significant contribution by creating a
complete and homogenized precipitation dataset for the
Usumacinta River Basin, spanning 1959–2018 and
including meteorological stations from Guatemala. The
climatol imputation and homogenization process demon-
strated high reliability through strong Spearman correla-
tions and low absolute differences and bias percentages
between raw and homogenized data. The homogeniza-
tion process corrected abrupt shifts and artificial trends
in 13 time series primarily observed between 1980 and
2000. The resulting temporal evolution showed improved
spatial consistency, enhancing temporal and spatial
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coherence while preserving the overall distribution of
raw data. The 60 meteorological stations were grouped
into three clusters based on distinct annual accumulated
precipitation ranges, mainly related to the orographic
effect of altitude. Interannual variability in cluster time
series was associated with El Niño Southern Oscillation.
Although the Mann–Kendall test did not show statistical
significance for most stations, combining it with Sen's slope
analysis and comparing 30-year precipitation normals and
dry year occurrences revealed a discernible decreasing trend
in homogenized precipitation data. This trend was particu-
larly evident in the cluster characterized by the highest pre-
cipitation levels in the Usumacinta River Basin (C1),
suggesting a higher risk of intensifying droughts in this
region, corresponding to the intermediate altitudes of Chia-
pas. Understanding how local and global factors
(e.g., topography and ocean–atmosphere interactions) influ-
ence precipitation in the region is crucial. The Usumacinta
River Basin is an exceptionally diverse region with high
economic potential, and extreme events in the context of
future climate change may affect key aspects of essential
sectors such as health, agriculture, environmental science,
and water and disaster risk management.
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