

Proceedings of the
VLDB Endowment

Volume 15, No. 6 – February 2022

Editors in Chief:

Fatma Özcan, Juliana Freire and Xuemin Lin

Associate Editors:

Arun Kumar, Azza Abouzied, Beng Chin Ooi, Boris Glavic, Dan Suciu,

Divyakant Agrawal, Eugene Wu, Georgia Koutrika, Ioana Manolescu,

Jeffrey Xu Yu, Julia Stoyanovich, Jun Yang, K. Selçuk Candan,

Khuzaima Daudjee, Laure Berti-Equille, Lei Chen, Mohamed Mokbel,

Neoklis Polyzotis, Paolo Papotti, Peter Boncz, Sebastian Schelter,

Sourav S Bhowmick, Surajit Chaudhuri, Themis Palpanas, Vanessa Braganholo,

Viktor Leis, Wang-Chiew Tan, Wenjie Zhang, Wook-Shin Han, Xiaofang Zhou

Publication Editors:

Lijun Chang and Xin Cao

PVLDB Vol. 15, No. 6 i

PVLDB – Proceedings of the VLDB Endowment

Volume 15, No. 6, February 2022.
All papers published in this issue will be presented at the 48th International Conference on Very Large
Data Bases, Sydney, Australia, 2022.

Copyright 2022 VLDB Endowment

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-
nd/4.0/. For any use beyond those covered by this license, obtain permission by emailing info@vldb.org.

Volume 15, Number 6, February 2022
Pages i – vii and 1132 - 1310

ISSN 2150-8097

Available at: http://www.pvldb.org and https://dl.acm.org/journal/pvldb

PVLDB Vol. 15, No. 6 ii

TABLE OF CONTENTS

Front Matter

Copyright Notice ... i
Table of Contents .. ii
PVLDB Organization and Review Board – Vol. 15 ... iv

Research Papers

PACk: An Efficient Partition-based Distributed Agglomerative Hierarchical Clustering Algorithm for
Deduplication ... 1132
Yue Wang, Vivek Narasayya, Yeye He, Surajit Chaudhuri

A Near-Optimal Approach to Edge Connectivity-Based Hierarchical Graph Decomposition 1146
Lijun Chang, Zhiyi Wang

Hu-Fu: Efficient and Secure Spatial Queries over Data Federation ... 1159
Yongxin Tong, Xuchen Pan, Yuxiang Zeng, Yexuan Shi, Chunbo Xue, Zimu Zhou, Xiaofei Zhang, Lei
Chen, Yi Xu, Ke Xu, Weifeng Lv

Sortledton: a Universal, Transactional Graph Data Structure ... 1173
Per Fuchs, Jana Giceva, Domagoj Margan

NBTree: a Lock-free PM-friendly Persistent B+-Tree for eADR-enabled PM Systems...................... 1187
Bowen Zhang, Shengan Zheng, Zhenlin Qi, Linpeng Huang

TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data 1201
Shreshth Tuli, Giuliano Casale, Nicholas R Jennings

SpaceSaving± An Optimal Algorithm for Frequency Estimation and Frequent items in the Bounded
Deletion Model ... 1215
Fuheng Zhao, Divy Agrawal, Amr El Abbadi, Ahmed Metwally

ByteGNN: Efficient Graph Neural Network Training at Large Scale ... 1228
Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu, Changji Li, James
Cheng, Hao Yang, Shuai Zhang

Query Driven-Graph Neural Networks for Community Search: From Non-Attributed, Attributed, to
Interactive Attributed .. 1243
Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, Junzhou Huang

Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale .. 1256
Yang Li, Yu Shen, Huaijun Jiang, Wentao Zhang, Jixiang Li, Ji Liu, Ce Zhang, Bin Cui

Multivariate Correlations Discovery in Static and Streaming Data ... 1266
Koen Minartz, Jens D'hondt, Odysseas Papapetrou

Moneyball: Proactive Auto-Scaling in Microsoft Azure SQL Database Serverless 1279
Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu, Ajay Kalhan

PGE: Robust Product Graph Embedding Learning for Error Detection ... 1288
Kewei Cheng, Xian Li, Yifan Xu, Xin Dong, Yizhou Sun

PVLDB Vol. 15, No. 6 iii

CHEX: Multiversion Replay with Ordered Checkpoints ... 1297
Naga Nithin Manne, Shilvi Satpati, Tanu Malik, Amitabha Bagchi, Ashish Gehani, Amitabh Chaudhary

PVLDB Vol. 15, No. 6 iv

PVLDB ORGANIZATION AND REVIEW BOARD - Vol. 15

Editors in Chief of PVLDB
Fatma Ozcan (Google)
Juliana Freire (New York University)
Xuemin Lin (University of New South Wales)

Associate Editors of PVLDB
Arun Kumar (University of California, San Diego)
Azza Abouzied (NYU Abu Dhabi)
Beng Chin Ooi (NUS)
Boris Glavic (Illinois Institute of Technology)
Dan Suciu (University of Washington)
Divyakant Agrawal (University of California, Santa
Barbara)
Eugene Wu (Columbia University)
Georgia Koutrika (ATHENA)
Ioana Manolescu (INRIA and Institut Polytechnique de
Paris)
Jeffrey Xu Yu (Chinese University of Hong Kong)
Julia Stoyanovich (New York University)
Jun Yang (Duke University)
K. Seçuk Candan (Arizona State University)
Khuzaima Daudjee (University of Waterloo)
Laks Lakshmanan (The University of British Columbia)
Laure Berti-Equille (IRD)
Lei Chen (Hong Kong University of Science and
Technology)
Mohamed Mokbel (University of Minnesota, Twin Cities)
Neoklis Polyzotis (Google)
Paolo Papotti
Peter Boncz (CWI)
Sebastian Schelter (University of Amsterdam)
Sharad Mehrotra (U.C. Irvine)
Sourav S Bhowmick (Nanyang Technological University)

Surajit Chaudhuri (Microsoft Research)
Themis Palpanas (University of Paris)
Vanessa Braganholo (Fluminense Federal University)
Viktor Leis (Friedrich Schiller University Jena)
Wang-Chiew Tan (Megagon Labs)
Wenjie Zhang (University of New South Wales)
Wook-Shin Han (POSTECH)
Xiaofang Zhou (Hong Kong University of Science and
Technology)

Publication Editors
Lijun Chang (University of Sydney)
Xin Cao (University of New South Wales)

PVLDB Managing Editor
Wolfgang Lehner (Dresden University of Technology)

PVLDB Advisory Committee
Felix Naumann (HPI)
Juliana Freire (New York University)
Xuemin Lin (U of New South Wales)
Georgia Koutrika (Athena Research Center)
Jun Yang (Duke University)
Vanessa Braganholo (Universidade Federal Fluminense)
Sourav S Bhowmick (Nanyang Technological University)
Chris Jermaine (Rice University)
Peter Triantafillou (University of Warwick)
Xin Luna Dong (Facebook)
Fatma Ozcan (Google)
Lei Chen (Hong Kong University of S&T)
Graham Cormode (University of Warwick)
Divesh Srivastava (AT&T Labs-Research)
Wolfgang Lehner (TU Dresden)

PVLDB Vol. 15, No. 6 v

Review Board

Abolfazl Asudeh (University of Michifan)
Aécio Santos (New York University)
Ahmed Eldawy (University of California, Riverside)
Alexander Hall (RelationalAI)
Alexander J Ratner (University of Washington)
Aline Bessa (New York University)
Alkis Simitsis (Athena Research Center)
Altigran da Silva (Universidade Federal do Amazonas)
AnHai Doan (University of Wisconsin-Madison)
Anna Fariha (Microsoft)
Anton Dignös (Free University of Bozen-Bolzano)
Antonio Cavalcante Araujo Neto (University of Alberta)
Arijit Khan (Nanyang Technological University)
Arvind Arasu (Microsoft)
Babak Salimi (University of California, San Diego)
Bailu Ding (Microsoft Research)
Bertram Ludaescher (University of Illinois)
Bolong Zheng (Huazhong University of Science and
Technology)
Brandon Haynes (Gray Systems Lab, Microsoft)
Byron Choi (Hong Kong Baptist University)
Carlo Curino (Microsoft -- GSL)
Carlos Scheidegger (The University of Arizona)
Carsten Binnig (TU Darmstadt)
Ce Zhang (ETH)
Cheng Long (Nanyang Technological University)
Chengfei Liu (Swinburne University of Technology)
Chuan Lei (Instacart)
Chunbin Lin (Amazon AWS)
Curtis Dyreson (Utah State University)
Dan Kifer (Pennsylva State University)
Dana M Van Aken (Carnegie Mellon University)
Daniel Deutch (Tel Aviv University)
Daniel Oliveira (UFF, Brazil)
David Koop (Northern Illinois University)
Davide Mottin (Aarhus University)
Dong Xie (Penn State University)
Eduardo Ogasawara (CEFET-RJ)
Eleni Tzirita Zacharatou (TU Berlin)
Fabio Porto (LNCC)
Faisal Nawab (University of California at Irvine)
Fan Zhang (Guangzhou University)
Fatemeh Nargesian (University of Rochester)
Fei Chiang (McMaster University)
Florin Rusu (UC Merced)
Floris Geerts (University of Antwerp)
Fotis Psallidas (Microsoft)
George Fletcher (Eindhoven University of Technology)
George Papadakis (University of Athens)
Gerhard Weikum (Max-Planck-Institut fur Informatik)
Germain Forestier (University of Haute Alsace)
Guoliang Li (Tsinghua University)
Haipeng Dai (Nanjing University)
Harish Doraiswamy (Microsoft Research India)
Heiko Mueller (DeepReason.ai)
Herodotos Herodotou (Cyprus University of
Technology)

Holger Pirk (Imperial College)
Hongzhi Yin (The University of Queensland)
Huiping Cao (New Mexico State University)
Immanuel Trummer (Cornell)
Ioana Manolescu (INRIA and Institut Polytechnique
de Paris)
Ippokratis Pandis (Amazon)
Ishtiyaque Ahmad (University of California, Santa
Barbara)
Jae-Gil Lee (KAIST)
Jana Giceva (TU Munich)
Jeffrey Xu Yu (Chinese University of Hong Kong)
Jens Teubner (TU Dortmund University)
Jia Zou (Arizona State University)
Jian Pei (Simon Fraser University)
Jianguo Wang (Purdue University)
Jiannan Wang (Simon Fraser University)
Jianxin Li (Deakin University)
Jianye Yang (Central South University)
Jiwon Seo (Hanyang University)
Johannes Gehrke (Microsoft)
Jorge Arnulfo Quiane Ruiz (TU Berlin)
Joseph Near (University of Vermont)
Junhu Wang (Griffith University)
Kaiping Zheng (National University of Singapore)
Kangfei Zhao (The Chinese University of Hong Kong)
Karima Echihabi (Mohammed VI Polytechnic
University)
Katja Hose (Aalborg University)
Kenneth A Ross (Columbia University)
Kostas Zoumpatianos (Snowflake Computing)
Lei Zou (Peking University)
Leopoldo Bertossi (Universidad Adolfo Ibanez)
Li Xiong (Emory University)
Lianke Qin (University of California, Santa Barbara)
Lijun Chang (The University of Sydney)
Lin Ma (Carnegie Mellon University)
Long Yuan (Nanjing University of Science and
Technology)
Lu Qin (UTS)
Luciano Barbosa (Universidade Federal de
Pernambuco)
Marcelo Arenas (Universidad Catolica & IMFD)
Maria Luisa Sapino (U. Torino)
Matteo Lissandrini (Aalborg University)
Matthias Boehm (Graz University of Technology)
Matthias Renz (University of Kiel)
Max Heimel (Snowflake)
Maximilian Schleich (University of Washington)
Meihui Zhang (Beijing Institute of Technology)
Melanie Herschel (Universität Stuttgart)
Michael Abebe (University of Waterloo)
Min Xie (Instacart)
Mirella M Moro (Universidade Federal de Minas Gerais)
Mohamed Sarwat (Arizona State University)
Mohammad Dashti (MongoDB)
Mohammad Javad Amiri (University of Pennsylvania)
Mohammad Sadoghi (University of California, Davis)
Muhammad Aamir Cheema (Monash University)

PVLDB Vol. 15, No. 6 vi

Nikita Bhutani (Megagon Labs)
Oliver A Kennedy (University at Buffalo, SUNY)
Panos K. Chrysanthis (University of Pittsburgh)
Paolo Missier (Newcastle University)
Parth Nagarkar (NMSU)
Paul Groth (University of Amsterdam)
Peng CHENG (East China Normal University)
Peter Pietzuch (Imperial College London)
Pierangela Samarati (Universita delgi Studi di Milano)
Pinar Karagoz (METU, Turkey)
Pinar Tozun (IT University of Copenhagen)
Prithu Banerjee (UBC)
Raoni Lourenço (New York University)
Raul Castro Fernandez (UChicago)
Ravi Ramamurthy (Microsoft)
Raymond Chi-Wing Wong (Hong Kong University of
Science and Technology)
Renata Borovica-Gajic (University of Melbourne)
Reynold Cheng (The University of Hong Kong)
Rui Mao (Shenzhen University)
Ruoming Jin (Kent State University)
Sai Wu (Zhejiang University)
Sainyam Galhotra (University of Chicago)
Sanjay Krishnan (University of Chicago)
Sanjib Kumar Das (Google)
Sayan Ranu (IIT Delhi)
Sebastian Link (University of Auckland)
Semih Salihoglu (University of Waterloo)
Senjuti Basu Roy (New Jersey Institute of Technology)
Sergey Melnik (Google)
Shantanu Sharma (New Jersey Institute of
Technology)
Shaoxu Song (Tsinghua University)
Sheng Wang (New York University)
Shimin Chen (Chinese Academy of Sciences)
Shumo Chu (University of California, Santa Barbara)
Shweta Jain (University of Illinois, Urbana-Champaign)
Sibo Wang (The Chinese University of Hong Kong)
Srinivasan Keshav (University of Cambridge)
Steffen Zeuch (DFKI GmbH)
Steven E Whang (KAIST)
Subarna Chatterjee (Harvard University)
Sudip Roy (Google)
Supun C Nakandala (University of California, San
Diego)
Tamer Özsu (University of Waterloo)
Tarique A Siddiqui (Microsoft Research)
Thomas Heinis (Imperial College)
Thomas Neumann (TUM)
Tianzheng Wang (Simon Fraser University)
Tien Tuan Anh Dinh (Singapore University of
Technology and Design)

Tilmann Rabl (HPI, University of Potsdam)
Ting Yu (Qatar Computing Research Institute)
Torben Bach Pedersen (Aalborg University)
Torsten Grust (Universität Tübingen)
Umar Farooq Minhas (Microsoft Research)
Vasiliki Kalavri (Boston University)
Verena Kantere (National Technical University of
Athens)
Victor Zakhary (Oracle)
Vivek Narasayya (Microsoft Research)
Vraj Shah (University of California, San Diego)
Walid G Aref (Purdue)
Wasay Abdul (Harvard)
Wei Wang (Hong Kong University of Science and
Technology (Guangzhou))
Wei Lu (Renmin university of china)
Weiren Yu (University of Warwick)
Wen Hua (The University of Queensland)
Wolfgang Lehner (TU Dresden)
Xi He (University of Waterloo)
Xiang Lian (Kent State University)
Xiao Qin (IBM Research)
Xiaofei Zhang (University of Memphis)
Xiaokui Xiao (National University of Singapore)
Xiaolan Wang (Megagon Labs)
Xiaoyang Wang (Zhejiang Gongshang University)
Xin Huang (Hong Kong Baptist University)
Yael Amsterdamer (Bar-Ilan university)
Yanyan Shen (Shanghai Jiao Tong University)
Ye Yuan (Northeastern University)
Yeye He (Microsoft Research)
Yi Chen (NJIT)
Yi Lu (MIT)
Yikai Zhang (Chinese University of Hong Kong)
Yinan Li (Microsoft Research)
Ying Zhang (University of Technology Sydney)
Yongxin Tong (Beihang University)
Yuanyuan Zhu (Wuhan University)
Yue Wang (Shenzhen Institute of Computing Sciences,
Shenzhen University)
Yufei Tao (Chinese University of Hong Kong)
Yuliang Li (Megagon Labs)
Yuncheng Wu (National University of Singapore)
Yunjun Gao (Zhejiang University)
Yuval Moskovitch (University of Michigan)
Zhifeng Bao (RMIT University)
Zhongle Xie (Zhejiang University)
Zi Huang (University of Queensland)
Ziawasch Abedjan (Leibniz Universität Hannover)
Zohar Karnin (Amazon)
Zsolt István (IT University of Copenhagen)

PVLDB Vol. 15, No. 6 vii

LETTER FROM THE EDITORS IN CHIEF

We are pleased to present the sixth issue of PVLDB, Volume 15. This issue contains 14 papers in total including 11
regular research papers and 3 scalable data science (SDS) papers. A broad range of topics are covered in this issue
including distributed database systems, machine learning & applied AI for data management, spatial data
management, graph data management, database engines, provenance and workflows, data quality, data mining, and
information retrieval.

For the first paper in this issue, Wang et al. propose an efficient distributed algorithm for agglomerative hierarchical
clustering. Next, Chang et al. present a near-optimal approach for solving the edge connectivity-based hierarchical
graph decomposition problem. Tong et al. study the problem of secure spatial queries over data federation and
present efficient solutions to solve the problem. Fuchs et al. introduce Sortledton, a universal graph data structure
that is optimized for the most relevant data access patterns used by graph computation kernels. Zhang et al. propose
NBTree, a lock-free persistent-memory-friendly B+-Tree for eADR-enabled persistent memory systems. Tuli et al.
propose TranAD, a deep transformer network-based model for anomaly detection in multivariate time series data.
Zhao et al. present the deterministic algorithms to solve the frequency estimation and frequent item problems in the
bounded-deletion model. Zhao et al. propose a distributed graph neural network system ByteGNN to support efficient
GNN training. Jiang et al. introduce graph neural network models for community search and attributed community
search problems. Li et al. present Hyper-Tune, an efficient and robust distributed hyper-parameter tuning framework.
Minartz et al. propose efficient algorithms for detecting multivariate correlations in static and streaming data. Poppe
et al study the problem of proactive auto-scaling in Microsoft Azure SQL Database Serverless. Cheng et al. propose
PGE that leverages both text information and graph structure in product graphs to learn embeddings for error
detection. Manne et al. present effective solutions for the multiversion replay problem.

All the papers in this issue will be presented at the 48th International Conference on Very Large Data Bases, 2022, in
Sydney. We sincerely thank all the authors for submitting their work and all the reviewers for their outstanding
service in reviewing the submissions. We hope that the reader will find this volume enjoyable.

Fatma Özcan, Juliana Freire and Xuemin Lin
Editors-in-Chief of PVLDB Volume 15
Program Chairs for VLDB 2022

PACk: An Efficient Partition-based Distributed Agglomerative
Hierarchical Clustering Algorithm for Deduplication

Yue Wang
Microsoft Research

wang.yue@microsoft.com

Vivek Narasayya
Microsoft Research

viveknar@microsoft.com

Yeye He
Microsoft Research

yeyehe@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

ABSTRACT

The Agglomerative Hierarchical Clustering (AHC) algorithm is
widely used in real-world applications. As data volumes continue
to grow, efficient scale-out techniques for AHC are becoming in-
creasingly important. In this paper, we propose a Partition-based
distributed Agglomerative Hierarchical Clustering (PACk) algorithm
using novel distance-based partitioning and distance-aware merg-
ing techniques. We have developed an efficient implementation of
PACk on Spark . Compared to the state-of-the-art distributed AHC
algorithm, PACk achieves 2× to 19× (median=9×) speedup across a
variety of synthetic and real-world datasets.

PVLDB Reference Format:

Yue Wang, Vivek Narasayya, Yeye He, and Surajit Chaudhuri. PACk: An
Efficient Partition-based Distributed Agglomerative Hierarchical
Clustering Algorithm for Deduplication. PVLDB, 15(6): 1132 - 1145, 2022.

doi:10.14778/3514061.3514062

1 INTRODUCTION

Agglomerative Hierarchical Clustering (AHC) is a widely-used clus-
tering algorithm. As noted in the survey article [40], AHC finds ap-
plications in different problems including deduplication and record
linkage [7, 37, 54, 57], recommender systems [47], bioinformatics
[11, 16, 52], computational chemistry [14], environmental science
[20], and astronomy [59]. Given an undirected weighted graph
𝐺 = (𝐶,𝑊), where 𝐶 is a set of items and𝑊 is a set of weighted
edges indicating the distances between pairs of items in 𝐶 , AHC
initializes each item into its own cluster and repeatedly merges
the next pair of clusters with the smallest distance until no pair of
clusters have a distance below a given threshold.

When two clusters are considered for merging in AHC, the dis-
tance between the clusters is defined by a linkage criterion. A com-
monly used [40, 62] linkage criterion in practice is the average

distance over all pairs of edges across items in the two clusters.
Other linkage criteria such as minimum (resp. maximum) distance
are also used and results in more aggressive (resp. conservative)
merging of clusters compared to average distance. Some specialized
and efficient algorithms [3, 25, 42, 45, 56] only focus on min-linkage
which reduces AHC to the simpler minimum spanning tree prob-
lem. For our primary motivating scenario of fuzzy deduplication,
average-linkage is the most appropriate criterion. Min-linkage is
too aggressive and leads to clustering very dissimilar items, and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514062

C1 C2

C3C4

0.01

0.02

C12

C3C4 0.02

?… …

Figure 1: The merge of 𝐶1 and 𝐶2 determines the merge of

𝐶3.

max-linkage tends to be too conservative and results in detection
of too few duplicates. Thus, in this paper we focus on the case of
average-linkage, which is also a more challenging problem.

Due to increasing data volumes in real-world applications, the
need to support AHC on Big Data platforms such as Spark is grow-
ing. For example, the Microsoft Dynamics 365 service applies clus-
tering to find duplicates in their customer profile databases, which
can have 100s of millions of records. Centralized (aka single-node)
AHC algorithms, which work effectively on relatively small datasets
by operating on the data in-memory, are however impractical on
large datasets due to their high space complexity (𝑂 (|𝐶 |2)) and
time complexity (𝑂 (|𝐶 |2 log |𝐶 |)) that lead to memory and CPU
bottlenecks on a single machine.

A straightforward adaptation of the centralized AHC algorithms
to a scale-out, distributed setting does not perform well because
the cost of accessing edges to neighboring nodes in the algorithm
becomes excessively high. For example, when the AHC algorithm
merges a pair of clusters, it must update distances between the
newly merged cluster and all other clusters. In centralized AHC,
the update is achieved via a set of relatively cheap writes in mem-
ory. However, in a distributed setting with multiple compute nodes
(e.g., VMs) working on partitions of the data, this update requires
data shuffles across partitions, which is significantly slower. Further-
more, in the distributed setting, multiple iterations of re-partitioning
and clustering may be needed thereby amplifying the data shuffle
cost.

The natural idea of parallelizing the merge operations holds
promise, but is challenging to achieve since merges may have de-
pendencies as illustrated in Figure 1. After the merge of 𝐶1 and 𝐶2,
the distance between 𝐶12 and 𝐶3 determines whether 𝐶3 should
be merged with 𝐶12 or 𝐶4. In other words, the merge of 𝐶3 de-
pends on the merge of 𝐶1 and 𝐶2, thereby introducing difficulty in
parallelizing merges when the graph is distributed.

The state-of-the-art distributed AHC algorithm is based on [13].
The authors show that when the linkage criterion satisfies a prop-
erty called “cluster aggregate inequality” [38], we can concurrently
merge all mutual nearest neighbor pairs in the graph without affect-
ing correctness of the result. A mutual nearest neighbor pair is a
pair of nodes (A, B) such that A is B’s nearest neighbor and B is
A’s nearest neighbor. Importantly, they show that this property is

0m

20m

40m

60m

1 2 3 4 5 6 7 8 9 10 … 58

#M
er

ge
s

Iteration

MutualNN

PACk

...

(b)(a)

0
50

100
150
200
250

Ti
m

e
(m

in
ut

e)

MutualNN

PACk

Figure 2: An example real-world dataset with injected du-

plicates: (a) Our proposed PACk achieves 12× speed-up com-

pared to MutualNN. (b) PACk finishes in 5 iterations, while

MutualNN takes 58 iterations with a long tail of fewermerges.

satisfied by linkage criteria including average, max and min – and
hence is applicable for our motivating scenarios. An algorithm that
exploits this observation, which we refer to as MutualNN is rela-
tively straightforward to implement in a distributed, map-reduce
platform using traditional relational operators such as aggregation
and join. However, as we show in this paper, this algorithm is in-
efficient because the number of mutual nearest neighbors is often
limited in real-world datasets. Therefore, it often requires multiple
(10’s) of iterations, with only a few cluster merges possible per
iteration as shown in Figure 2. Consequently, MutualNN performs
many data scans and shuffles, which lead to large execution time.

In this paper we present the PACk algorithm that builds on the
above idea by introducing two novel techniques: distance-based
partitioning and distance-aware merging within a partition. Intu-
itively, the distance-based partitioning algorithm aims to include
a set of nearest neighbors in the same partition for each item. It
thereby allows more merges to happen within each partition. The
distance-aware merging algorithm computes distance bounds to
safely merge as many mutual nearest neighbors as possible inside
a partition. We show that PACk always produces the same result
as centralized AHC. In addition, PACk can perform merges having
dependencies in one iteration with guaranteed correctness, which
MutualNN cannot do. Our approach parallelizes merges much more
effectively and can sharply reduce the number of iterations required,
and therefore the overall running time – see Figure 2 for an example
on a real-world dataset.

The contributions of this paper are: (1) We present PACk, an
efficient distributed clustering algorithm for agglomerative hierar-
chical clustering. We prove the correctness of PACk, and we have
developed an efficient implementation of PACk on Spark. (2) We
provide an analytical performance analysis of PACk. We show that
PACk is more efficient and needs fewer iterations than MutualNN.
(3) We present extensive experimental results comparing the perfor-
mance and scalability of PACk with MutualNN on a variety of real-
world and synthetic graph datasets. PACk consistently outperforms
MutualNN with speed-ups ranging from 2× to 19× (median=9×). Its
compute resources including CPU and memory are comparable to
MutualNN and modestly higher. PACk also scales well to relatively
large graphs. For example, on a real-world graph evaluated by the
Dynamics 365 service in Microsoft for the task of fuzzy dedupli-
cation containing over 250 million items and 680 million edges,
PACk finishes in 40 minutes using 16 commodity eight-core VMs,
achieving 5× speed-up compared to MutualNN.

We organize the paper as follows: we present the background for
AHC in Section 2. We introduce PACk in Section 3. We present the
correctness proof and analytical performance analysis in Section 4.
We present our experimental evaluation result in Section 5. Finally,
we discuss related work in Section 6 and conclude in Section 7.

2 BACKGROUND

2.1 Cluster Labeling and Distance Comparison

When two pairs of clusters have the same distance, we must break
ties deterministically to ensure that the result of clustering is de-
terministic regardless of whether a centralized or distributed AHC
algorithm is used. Therefore, in addition to the scalar distance be-
tween clusters, we take the cluster labels into comparison.

We assume each initial item 𝑐 ∈ 𝐶 has an associated label denoted
by 𝑙𝑎𝑏𝑒𝑙 (𝑐) (e.g., integer, string, etc.). The labels form a totally
ordered set.We further assume that the cluster label is themaximum
label of the cluster’s items:

𝑙𝑎𝑏𝑒𝑙 (𝐶) = max
𝑐∈𝐶

(
𝑙𝑎𝑏𝑒𝑙 (𝑐)

)
(1)

Let 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) be the scalar distance between cluster𝐶𝑖 and𝐶 𝑗 ,
so that we can define weight𝑤 (𝐶𝑖 ,𝐶 𝑗) as a three-element tuple:

Definition 1 (Cluster Pair Edge Weight).

𝑤 (𝐶𝑖 ,𝐶 𝑗) =
(
𝑑𝑖𝑠𝑡, 𝑙𝑎𝑏𝑒𝑙1, 𝑙𝑎𝑏𝑒𝑙2

)
where 𝑑𝑖𝑠𝑡 = 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗), 𝑙𝑎𝑏𝑒𝑙1 = min(𝑙𝑎𝑏𝑒𝑙 (𝐶𝑖), 𝑙𝑎𝑏𝑒𝑙 (𝐶 𝑗)), and
𝑙𝑎𝑏𝑒𝑙2 = max(𝑙𝑎𝑏𝑒𝑙 (𝐶𝑖), 𝑙𝑎𝑏𝑒𝑙 (𝐶 𝑗)).

When we compare two edges, we always compare the three-
element weight tuples𝑤 (𝐶𝑖 ,𝐶 𝑗) instead of only the scalar distances
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗).

Example 1 (Labeling). Assume we use integer labels in Figure 3

such as 𝑙𝑎𝑏𝑒𝑙 (𝐶1) = 1, 𝑙𝑎𝑏𝑒𝑙 (𝐶2) = 2, 𝑙𝑎𝑏𝑒𝑙 (𝐶13) = 3, and so on.

Two weight examples are 𝑤 (𝐶1,𝐶2) = (0.05, 1, 2) and 𝑤 (𝐶3,𝐶2) =
(0.05, 2, 3), so 𝑤 (𝐶1,𝐶2) < 𝑤 (𝐶3,𝐶2) because tuple (0.05, 1, 2) <
(0.05, 2, 3).

2.2 Agglomerative Hierarchical Clustering

Given an undirected weighted graph 𝐺 (𝐶,𝑊), where 𝐶 is a set of
items and𝑊 is a set of weights indicating the distances between
pairs of items in 𝐶 , and a threshold 𝜃 > 0, Agglomerative Hierar-
chical Clustering (AHC) algorithm starts by treating each item as a
singleton cluster, iteratively merges nearest cluster pairs, and stops
when no two clusters are less than distance 𝜃 . Algorithm 1 shows
the centralized AHC algorithm, which is straightforward when the
entire graph fits in memory.

There exist several linkage criteria to compute the distance func-
tion between clusters (Line 5) in AHC. Here we list a few:

• Max-linkage (complete-linkage) [12]:
𝑑𝑖𝑠𝑡 (𝐶𝑖 𝑗 ,𝐶𝑥) = max

(
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥), 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥)

)
• Min-linkage (single-linkage) [22, 48]:
𝑑𝑖𝑠𝑡 (𝐶𝑖 𝑗 ,𝐶𝑥) = min

(
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥), 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥)

)
• Average-linkage [50]:
𝑑𝑖𝑠𝑡 (𝐶𝑖 𝑗 ,𝐶𝑥) = 1

|𝐶𝑖 𝑗 | · |𝐶𝑥 | ·
∑

𝑐∈𝐶𝑖 𝑗 ,𝑐′ ∈𝐶𝑥

𝑑𝑖𝑠𝑡 (𝑐, 𝑐 ′)

Given its suitability for the fuzzy deduplication problem as noted
earlier, in the rest of this paper, we focus on Average-linkage.

Algorithm 1: Centralized AHC

Input: Cluster graph𝐺 = (𝐶,𝑊) ; Threshold 𝜃
Output: Clusters𝐶∗

1 while there exists 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) ≤ 𝜃 do

2 (𝐶𝑖 ,𝐶 𝑗) ⇐ 𝑎𝑟𝑔𝑚𝑖𝑛
𝐶𝑖 ,𝐶𝑗 ∈𝐶∧𝐶𝑖≠𝐶𝑗

(
𝑤 (𝐶𝑖 ,𝐶 𝑗)

)

3 𝐶𝑖 𝑗 ⇐ 𝐶𝑖 ∪𝐶 𝑗

4 𝐶 ⇐ 𝐶 ∪ {𝐶𝑖 𝑗 } −𝐶𝑖 −𝐶 𝑗

5 Compute 𝑤 (𝐶𝑖 𝑗 ,𝐶𝑥) for each𝐶𝑥 ∈ 𝐶

6 𝐶∗ ⇐ 𝐶

Iter. 1

C1

C2

C3 C4

C5

C6

0.03

0.04

0.05

0.08
0.06

0.060.05

0.05

C13

C2

C6

0.065

0.060.05

All unlabeled distances in the first graph are 0.1;
Edges with distance 0.1 are omitted in all graphs.

C4

C5
0.04

0.06

C13

C2

C6

0.065

0.06

0.05C123 C6

0.077

0.06

C45

Iter. 4
C123 C456

0.09

❶ ❷

❸❺ ❹

Iter. 3
Iter. 2

C45

0.08

0.09

0.0950.097

Figure 3: An example that applies Algorithm 1 to six items.

𝜃 = 0.08.

Example 2 (Centralized AHC). Figure 3 is an example that

applies Algorithm 1 to six items with threshold 𝜃 = 0.08. Edges are
labelled with distances. In the first graph, unlabeled distances are

all 0.1. In all the graphs, edges with distance≥0.1 are omitted. The

algorithm keeps merging nearest pairs until the remaining edges are

greater than 0.08.

2.3 Distributed AHC

Although the centralized AHC algorithm is straightforward, devel-
oping an efficient distributed AHC algorithm is challenging. The
efficiency of distributed depends primarily on two factors. The first
factor is the number of iterations. Similar to the centralized AHC,
a distributed AHC usually takes multiple iterations to finish. In
distributed AHC however, each iteration has certain costs such as
scanning the graph and writing the intermediate result to persistent
storage at the end of the iteration. The second factor is data shuffle.
In each iteration, every compute node (VM) works on a partition
of a large graph. Since edges can span across partitions, VMs have
to shuffle data to find neighbors and update distances. Therefore,
techniques that reduce number of iterations and data shuffle cost
can lead to greater efficiency and improved performance.

The state-of-the-art distributed AHC is MutualNN [13], which
parallelizes merges to reduce number of iterations and data shuffle.
MutualNN is based on the Cluster Aggregate Inequality property [13,

Algorithm 2: MutualNN

Input: Cluster graph𝐺 = (𝐶,𝑊) ; Threshold 𝜃
Output: Clusters𝐶∗

/* Compute in parallel */

1 while there exists 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) ≤ 𝜃 do

2 𝑁𝑁 ⇐ For each𝐶 in𝐺 , compute its nearest neighbor

3 𝑀𝑁𝑁 ⇐ Find mutual nearest neighbor pairs by self-join on

𝑁𝑁

4 𝐺 ⇐ Merge mutual nearest neighbors and their edges by join

and aggregation

38] that makes parallel merges possible. Specifically, in each itera-
tion, MutualNN merges all mutual nearest neighbor pairs (𝐶𝑥 ,𝐶𝑦)
where 𝐶𝑥 ’s nearest neighbor is 𝐶𝑦 and vice versa. MutualNN guar-
antees that its result is the same as the centralized AHC as long as
the linkage satisfies Cluster Aggregate Inequality:

∀𝐶𝑖 ,𝐶 𝑗 ,𝐶𝑥 : 𝑑𝑖𝑠𝑡 (𝐶𝑖 𝑗 ,𝐶𝑥) ≥ min
(
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥), 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥)

)
(2)

The intuition behind Cluster Aggregate Inequality is: if 𝐶𝑥
has a unique nearest neighbor 𝐶𝑦 , 𝑑𝑖𝑠𝑡 (𝐶𝑦,𝐶𝑥) must be smaller
than any other 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥) or 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥), i.e. 𝑑𝑖𝑠𝑡 (𝐶𝑦,𝐶𝑥) <

min
(
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥), 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥)

)
. Hence, merging any other clusters

𝐶𝑖 and 𝐶 𝑗 cannot generate a new cluster 𝐶𝑖 𝑗 whose distance to 𝐶𝑥
is closer than 𝑑𝑖𝑠𝑡 (𝐶𝑦,𝐶𝑥). Therefore, when 𝐶𝑥 and 𝐶𝑦 are mutual

nearest neighbors, we can safely merge them. The min-, max-, and
average-linkage all satisfy this inequality. The detailed proof of
MutualNN correctness can be found in [13]. We show why Average-
Linkage satisfies the inequality in [55].

Algorithm 2 shows how MutualNN works. In each iteration, it
finds all mutual nearest neighbor pairs, merges them, and computes
the new weights for newly merged clusters. However, MutualNN
is inefficient as we see in Figure 2, because the number of mu-
tual nearest neighbors is often limited in real-world datasets and
MutualNN still takes too many iterations. Therefore, we propose
a Partition-based distributed Agglomerative hierarchical Cluster-
ing (PACk) algorithm which significantly increases the number of
merges in each iteration to improve the efficiency.

3 PACk ALGORITHM FOR DISTRIBUTED AHC

3.1 Intuition

PACk achieves its efficiency using two novel algorithms: distance-
based partitioning of the graph, and distance-aware merging within
each partition. When partitioning the graph, PACk places clusters
with their top nearest neighboring clusters together. To limit the size
of each partition, for each cluster in a partition, we only include a list
of edges with the shortest distances to it, and represent all ignored
edges as a lower bound 𝑏𝐿 indicating that their distances are greater
than 𝑏𝐿 . The distance-aware merging algorithm works on each
partition and performs merges locally. Whenever it merges a cluster
pair, it always ensures that the two clusters are mutual nearest
neighbors by checking the distance bounds, which guarantees the
correctness of the result.1 Compared to MutualNN, PACk performs

1Similar to MutualNN, PACk also works for Max-, Min-, Average-, and any other linkage
criterion that satisfies Cluster Aggregate Inequality. The proof of correctness is in
Section 4.1.

many more merges in each iteration, thereby reducing the total
number of iterations required. Although the shuffle cost for one
iteration of PACk could exceed that of MutualNN, since the number
of iterations are significantly reduced (Figure 2), the overall shuffle
cost of PACk is also much less compared to MutualNN.

Below we provide intuition on why performing more merges in
each iteration can improve performance. Observe that for a given
input graph, the total number of pair-wise merges done is the
same regardless of the specific AHC algorithm used. For instance,
given the input in Figure 3, we need four merges to get 𝐶13, 𝐶123,
𝐶45, and 𝐶456. Performing more merges in each iteration reduces
running time for three reasons: (1) Merges are performed in parallel,
which can take less time compared to sequential execution. (2) More
merges per iteration reduces the number of iterations, thereby
saving the fixed overheads incurred for each iteration. (3) More
merges in one iteration reduces the shuffle cost of intermediate
results in the following iterations. For example, assume a distributed
algorithm finishes in four iterations as shown in Figure 3. It has to
generate Graph 2 (resp. Graph 3 and 4) after Iteration 1 (resp. Iter. 2
and 3), and shuffle the graphs’ weights to compute nearest neighbor
etc. for the next Iteration 2 (resp. Iter. 3 and 4). In comparison,
PACk requires one iteration as shown in Figure 4, so we save the
shuffle cost of three intermediate graphs, Graph 2, 3, and 4, in
Figure 3. Note that the intermediate weights such as 𝑤 (𝐶13,𝐶2),
𝑤 (𝐶123,𝐶6), etc. are still generated locally within each partition,
but they are discarded once merging is done for each partition. So
these intermediate weights are never shuffled after local merging.

Figure 2b shows an example illustrating how PACk can perform
much more merges in one iteration than MutualNN does. It plots
the number of merges done by both algorithms on one of our exper-
imental datasets. In the first iteration, PACk completes 99% merges,
which is much more than MutualNN’s 32%. Moreover, in each of
the following iterations, PACk still completes the majority of the
remaining merges, while MutualNN does only a much smaller per-
centage. For instance, in the second iteration, PACk does 98% of its
remaining merges, while MutualNN does only 37% of its remaining
ones. PACk’s ability to perform the majority of remaining merges
in each iteration significantly reduces the number of iterations and
cost of data shuffle, which shortens the running time.

3.2 Overview

Algorithm 3 describes PACk. We assume the input is a graph 𝐺 =
(𝐶,𝑊) where 𝐶 is the initial item set and𝑊 is the weights defined
in Section 2.12. PACk keeps merging clusters in iterations as long as
the graph has weights that are below the distance threshold. Each
iteration consists of four steps:

(1) Partitioning. We partition the graph by putting clusters with
their top nearest neighbors together, so that multiple merges have
a chance to happen within each partition.

(2) Distance-aware Merging. Within each partition, we merge as
manymutual nearest neighbor pairs as possible. For each merge, we
track the distance bounds between the newly merged clusters and

2In practice,𝑊 usually contains only the pairs with meaningful distance (e.g., two
strings share at least one token) so that |𝑊 | � |𝐶 |2. Various indexing techniques are
used to efficiently retrieve close pairs in different scenarios (e.g., Locality Sensitive
Hashing for Jaccard distance, space-partitioning trees for Euclidean distance, n-gram
for edit distance, and so on). They are orthogonal to our contribution in this paper.

Algorithm 3: PACk

Input: Cluster graph𝐺 = (𝐶,𝑊) ; Threshold 𝜃
Output: Clusters𝐶∗

1 while there exists 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) ≤ 𝜃 do

2 𝑃 ⇐ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝐺) // Algorithm 5 or 6

3 𝐶′ ⇐ {𝐿𝑜𝑐𝑎𝑙𝑙𝑦𝑀𝑒𝑟𝑔𝑒 (𝑝) |𝑝 ∈ 𝑃 } // Algorithm 4

4 𝐶 ⇐ Integrate𝐶′

5 𝑊 ⇐ Merge weights based on𝐶

6 𝐶∗ ⇐ 𝐶

C1

C2

C3 C4

C5

C6

0.03

0.04

0.05

0.08
0.06

0.060.05

0.05

All unlabeled distances in the first graph are 0.1;
Edges with distance 0.1 are omitted in all graphs.

C123 C456
0.09

0.08

Partitioning
& Merging

Figure 4: An example that applies PACk to six items. 𝜃 = 0.08.

PACk finishes in one iteration.

the other clusters. By comparing the distance bounds, we guarantee
to always merge mutual nearest pairs.

(3) Integration. The output clusters of the distance-aware merg-
ing need to be integrated because there may be overlapping clusters.
Aswe prove in Theorem 2, every cluster in the output of Algorithm 4
is a correct merge of a mutual nearest pair. Therefore, if two clusters
in the output overlap, one must be the superset of the other. Then
the integration algorithm keeps the maximal clusters, i.e. those that
are not a strict subset of any other cluster.

(4) Graph Update. For each merged cluster, we assign the new
label to all its members using a join. Then we aggregate the edges
between any two clusters to calculate sum and average distances.

Figure 4 is an example that applies PACk to the same input of
Example 2. It finishes in one iteration as wewill see in the remainder
of Section 3.

Next, we start with the distance-aware merging in Section 3.3,
which is a natural extension of the centralized AHC algorithm and
allows us to do merge on a partial graph (i.e., a partition). Then, we
describe the partitioning algorithm to partition a given graph in
Section 3.4.

3.3 Distance-Aware Merging

We start with the distance-aware merging algorithm that takes
a partition as input and outputs merged clusters. It requires dis-
tance bounds as input for each partition, which will be explained
in Section 3.4. Developing a merging algorithm that works for a
partition and guarantees correctness is challenging because (a) a
partition is usually limited by size to fit into a VM’s memory, and
(b) in one iteration, each partition cannot know the change outside
this partition.

We develop a Distance-Aware Merging algorithm that tracks
distance bounds to address the above challenges. First, for each
cluster𝐶𝑖 in a partition, instead of requiring that all its edges reside
in memory, we only require its nearest neighbors to form an edge
list L(𝐶𝑖) defined below, so that the memory size per partition

can be limited. Second, we convert each distance from a scalar to a
range, so that the edges outside the partition (i.e. ∉ L(𝐶𝑖)) can be
represented by a wildcard edge indicating the lower bound of their
distances to 𝐶𝑖 . By leveraging the bounds, we are able to safely
detect when two clusters are mutually nearest.

Specifically, we defineL(𝐶𝑖) as the list of nearest neighbors of𝐶𝑖 ,
whose size limit is a configurable parameter. For each 𝐶 𝑗 ∈ L(𝐶𝑖),
we define 𝑏𝐿 (𝐶𝑖 ,𝐶 𝑗) and 𝑏𝑈 (𝐶𝑖 ,𝐶 𝑗) as the lower and upper bounds
of 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) respectively. 𝑏𝐿 (𝐶𝑖 ,𝐶 𝑗) and 𝑏𝑈 (𝐶𝑖 ,𝐶 𝑗) are initial-
ized to 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗). In addition to the above bounds, we always
automatically attach a special wildcard 𝐶∗

𝑖 into L(𝐶𝑖). Its lower
bound 𝑏𝐿 (𝐶𝑖 ,𝐶∗

𝑖) indicates that all remaining neighbors are beyond
distance 𝑏𝐿 (𝐶𝑖 ,𝐶∗

𝑖). Its 𝑏𝑈 (𝐶𝑖 ,𝐶∗
𝑖) is an application-specific large

value (e.g.,∞) indicating the upper bound.
By the definition of Average-linkage in Section 2.2, we can com-

pute the distance between 𝐶𝑖 𝑗 and any other 𝐶𝑥 as

𝑑𝑖𝑠𝑡 (𝐶𝑖 𝑗 ,𝐶𝑥) =
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥) · |𝐶𝑖 | |𝐶𝑥 | + 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥) · |𝐶 𝑗 | |𝐶𝑥 |(

|𝐶𝑖 | + |𝐶 𝑗 |
)
· |𝐶𝑥 |

=
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥) · |𝐶𝑖 | + 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥) · |𝐶 𝑗 |

|𝐶𝑖 | + |𝐶 𝑗 |

Similarly, we compute the bounds in three cases:

(1) If a neighbor 𝐶𝑥 exists in both L(𝐶𝑖) and L(𝐶 𝑗), we can
precisely compute the bounds as:

𝑏𝐿 (𝐶𝑖 𝑗 ,𝐶𝑥) =
𝑏𝐿 (𝐶𝑖 ,𝐶𝑥) |𝐶𝑖 | + 𝑏𝐿 (𝐶 𝑗 ,𝐶𝑥) |𝐶 𝑗 |

|𝐶𝑖 | + |𝐶 𝑗 |

𝑏𝑈 (𝐶𝑖 𝑗 ,𝐶𝑥) =
𝑏𝑈 (𝐶𝑖 ,𝐶𝑥) |𝐶𝑖 | + 𝑏𝑈 (𝐶 𝑗 ,𝐶𝑥) |𝐶 𝑗 |

|𝐶𝑖 | + |𝐶 𝑗 |

(2) If a neighbor 𝐶𝑥 exists in only one edge list, say, L(𝐶𝑖), we
use the wildcard 𝐶∗

𝑗 for 𝐶 𝑗 :

𝑏𝐿 (𝐶𝑖 𝑗 ,𝐶𝑥) =
𝑏𝐿 (𝐶𝑖 ,𝐶𝑥) |𝐶𝑖 | + 𝑏𝐿 (𝐶 𝑗 ,𝐶∗

𝑗) |𝐶 𝑗 |
|𝐶𝑖 | + |𝐶 𝑗 |

𝑏𝑈 (𝐶𝑖 𝑗 ,𝐶𝑥) =
𝑏𝑈 (𝐶𝑖 ,𝐶𝑥) |𝐶𝑖 | + 𝑏𝑈 (𝐶 𝑗 ,𝐶∗

𝑗) |𝐶 𝑗 |
|𝐶𝑖 | + |𝐶 𝑗 |

(3) If a neighbor 𝐶𝑥 does not exist in any edge list, we use the
wildcard edge (𝐶𝑖 𝑗 ,𝐶∗

𝑖 𝑗) to represent it. The bounds can be

derived from edge (𝐶𝑖 ,𝐶∗
𝑖) and (𝐶 𝑗 ,𝐶∗

𝑗):

𝑏𝐿 (𝐶𝑖 𝑗 ,𝐶∗
𝑖 𝑗) =

𝑏𝐿 (𝐶𝑖 ,𝐶∗
𝑖) |𝐶𝑖 | + 𝑏𝐿 (𝐶 𝑗 ,𝐶

∗
𝑗) |𝐶 𝑗 |

|𝐶𝑖 | + |𝐶 𝑗 |

𝑏𝑈 (𝐶𝑖 𝑗 ,𝐶∗
𝑖 𝑗) =

𝑏𝑈 (𝐶𝑖 ,𝐶∗
𝑖) |𝐶𝑖 | + 𝑏𝑈 (𝐶 𝑗 ,𝐶∗

𝑗) |𝐶 𝑗 |
|𝐶𝑖 | + |𝐶 𝑗 |

We keep merging clusters within the partition as long as (1)
we can find a pair of mutual nearest neighbor (𝐶𝑖 ,𝐶 𝑗); and (2)
the upper bound of 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) (i.e., 𝑏𝑈 (𝐶𝑖 ,𝐶 𝑗)) is no greater than
𝜃 . Algorithm 4 shows more detail. It takes a partition 𝑃ℎ and a
threshold 𝜃 as input. 𝑃ℎ consists of a set of clusters Cℎ and the edge
lists of the clusters {L(𝐶𝑖) |𝐶𝑖 ∈ Cℎ}. It generates a set of clusters
𝐶𝑜𝑢𝑡 as output.

Algorithm 4: Distance-aware Merging for Each Partition

Input: Single partition 𝑃ℎ = (Cℎ, {L(𝐶𝑖) |𝐶𝑖 ∈ Cℎ }) ; Threshold 𝜃
Output: Clusters𝐶𝑜𝑢𝑡

/* Compute in memory */

1 𝐺 ⇐ Build a graph from 𝑃ℎ
2 for𝐶𝑖 ∈ Cℎ do
3 𝑁𝑁 (𝐶𝑖) ⇐𝐶𝑖 ’s nearest neighbor whose upper bound is smaller than

the lower bounds of other𝐶𝑖 ’s neighbors; 𝑛𝑢𝑙𝑙 if non-existent

4 while 𝑡𝑟𝑢𝑒 do
5 if

∃(𝐶𝑖 ,𝐶 𝑗) : (𝑁𝑁 (𝐶𝑖) = 𝐶 𝑗) ∧ (𝑁𝑁 (𝐶 𝑗) = 𝐶𝑖) ∧ (𝑏𝑈 (𝐶𝑖 ,𝐶 𝑗) ≤ 𝜃)
then

6 Merge𝐶𝑖 with𝐶 𝑗 , and update G and 𝑁𝑁 (·)
7 else
8 break

9 𝐶𝑜𝑢𝑡 ⇐Merged clusters in𝐺

Figure 5: Example of hub radius, in which 𝑟ℎ𝑢𝑏 (𝐶ℎ) = 𝑟 (𝐶𝑥1)+
𝑑𝑖𝑠𝑡 (𝐶𝑥1 ,𝐶ℎ).

3.4 Partitioning

In Section 3.3, we show how distance bounds work in distance-
aware merging. Next we show how to partition a graph and obtain
distance bounds. A partitioning algorithm such as a random par-
titioning, puts random clusters together in each partition, which
likely cannot be merged, thereby rendering it ineffective. Therefore,
an effective partitioning algorithm must be carefully designed to
let the distance-aware merging perform as many merges as possi-
ble for each partition. Intuitively, we want to place clusters with
their nearest neighbors together in the same partition, so that more
merges can happen locally within that partition. We show in Sec-
tion 4 that a carefully designed partitioning algorithm needs no
more than half the number of iterations of MutualNN, which signif-
icantly improves the efficiency. We first present the distance-based
partitioning Algorithm 5 to illustrate the key idea, and then we
present Algorithm 6 that refines Algorithm 5 to allow it to work in
practice with the memory constraint of a compute node.

Intuitively, Algorithm 5 puts clusters with their nearest neigh-
bors together to let the merging algorithm perform as many merges
as possible. Specifically, Algorithm 5 focuses on clusters that have
mutual nearest neighbors (i.e., hubs). It creates a partition for each
hub by choosing an appropriate radius that covers many nearest
neighbors but not overlaps other partitions too much.

Algorithm 5 describes the partitioning algorithm. First, it gets a
radius for each cluster𝐶𝑥 (Line 11 to 13). The radius is 10 times the
distance between 𝐶𝑥 and its second nearest neighbor (the number
10 helps us reduce number of iterations as we will see in Section 4.3).
Now, if we create a partition for each cluster with the radius, the
partitions may overlap heavily, and some merges may redundantly

Algorithm 5: Distance-based Partitioning

Input: Cluster graph𝐺 = (𝐶,𝑊) ; Bivariate distance function 𝑑𝑖𝑠𝑡 (·, ·)
Output: Partitions 𝑃
/* Compute in parallel */

1 𝐻𝑢𝑏 ⇐ {𝐶ℎ |𝐶ℎ has a mutual nearest neighbor𝐶′
ℎ and

𝑙𝑎𝑏𝑒𝑙 (𝐶ℎ) < 𝑙𝑎𝑏𝑒𝑙 (𝐶′
ℎ) }

2 𝑟ℎ𝑢𝑏 (·) ⇐ CalcRadius (𝐺,𝐻𝑢𝑏,𝑑𝑖𝑠𝑡 (·, ·)) // Defined below

3 foreach𝐶ℎ ∈ 𝐻𝑢𝑏 do
4 Cℎ ⇐ {𝐶ℎ } ∪ {𝐶𝑥 |𝑤 (𝐶ℎ,𝐶𝑥) ∈𝑊 & 𝑑𝑖𝑠𝑡 (𝐶ℎ,𝐶𝑥) ≤ 𝑟ℎ𝑢𝑏 (𝐶ℎ) }
5 foreach𝐶𝑥 ∈ Cℎ do
6 L(𝐶𝑥) ⇐ {𝑤 (𝐶𝑦 ,𝐶𝑥) |𝑑𝑖𝑠𝑡 (𝐶𝑥 ,𝐶𝑦) ≤ 𝑟ℎ𝑢𝑏 (𝐶ℎ) } ∪ {wildcard

edge for𝐶𝑥 }
7 𝑃ℎ ⇐ (Cℎ, {L(𝐶𝑥) |𝐶𝑥 ∈ Cℎ })

// Each partition 𝑃ℎ is a tuple of cluster set and edge

list set

8 𝑃 ⇐ {𝑃ℎ |𝐶ℎ ∈ 𝐻𝑢𝑏 }
9 return 𝑃

10 Function CalcRadius (𝐺 = (𝐶,𝑊), 𝐻𝑢𝑏,𝑑𝑖𝑠𝑡 (·, ·))
11 foreach𝐶𝑥 ∈ 𝐶 do
12 𝐶𝑦 ⇐ the 2nd nearest neighbor of𝐶𝑥

13 𝑟 (𝐶𝑥) ⇐ 10 · 𝑑𝑖𝑠𝑡 (𝐶𝑥 ,𝐶𝑦)
14 foreach𝐶ℎ ∈ 𝐻𝑢𝑏 do
15 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝐶ℎ) ⇐ {𝐶ℎ } ∪ {𝐶𝑥 |𝑤 (𝐶ℎ,𝐶𝑥) ∈𝑊 }
16 𝑟ℎ𝑢𝑏 (𝐶ℎ) ⇐ max

𝐶𝑥 ∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝐶ℎ)
&𝑑𝑖𝑠𝑡 (𝐶ℎ,𝐶𝑥)≤𝑟 (𝐶𝑥)

(
𝑟 (𝐶𝑥) + 𝑑𝑖𝑠𝑡 (𝐶𝑥 ,𝐶ℎ)

)

happen in many partitions. So we control the number of partitions
by focusing on the “hubs” (Line 13). A hub is a cluster that has a
mutual nearest neighbor in 𝐺 , which will be merged because its
radius covers its nearest neighbor. In other words, a partition in-
cluding a hub and its mutual nearest neighbor ensures at least one
merge. Therefore, we keep only hubs’ partitions but increase the
hub radius to cover clusters in other partitions. Specifically, when
a hub 𝐶ℎ is covered by another cluster 𝐶𝑥 ’s radius, we increase the
hub’s radius to cover𝐶𝑥 ’s radius (Line 14 to 16). Then we can safely
ignore all non-hub’s partitions. Note that the hubs’ partitions may
still overlap, but the overlapping space is much smaller and will not
hurt efficiencymuch in practice. Figure 5 shows an example of calcu-
lating the hub’s radius, in which 𝑟ℎ𝑢𝑏 (𝐶ℎ) = 𝑟 (𝐶𝑥1) +𝑑𝑖𝑠𝑡 (𝐶𝑥1 ,𝐶ℎ)
turns out to be the maximum radius for𝐶ℎ . Finally from Line 3 to 7,
for each hub, we collect the clusters within its radius and those
clusters’ nearest neighbors to form their edge lists.

In theory, Algorithm 5 might create very large partitions that
exceeds the memory available on a VM. In order to limit the size of
each partition, we use 𝑘𝑁 to limit the number of nearest neighbors
of hubs, and 𝑘𝐿 to limit the size of edge lists. As a result, we simplify
Algorithm 5 to get the version with size limit (Algorithm 6). For
each hub, it simply gets 𝑘𝑁 nearest neighbors and top 𝑘𝐿 edges.

Example 3 (Partitioningwith Size Limit). Assume 𝑘𝑁 = 𝑘𝐿 =
4 in Algorithm 6. Given the input graph in Figure 4, we find 2 hubs

{𝐶1,𝐶4}.
𝐶1 forms a partition 𝑃1 with its nearest 4 neighbors𝐶3,𝐶2,𝐶6, and

𝐶4. When 𝑃1 is passed to Algorithm 4, 𝐶1 and 𝐶3 are firstly merged

3Hubs can be efficiently detected through a relational group-by query and then a
self-join. The group-by scans the graph whose size is |𝑊 |. Again, |𝑊 | � |𝐶 |2 in
practice because users usually remove pairs with long distances. The self-join only
joins a table of nearest neighbors of size |𝐶 |.

Algorithm 6: Partitioning with Size Limit

Input: Cluster graph𝐺 = (𝐶,𝑊) ; Bivariate distance function
𝑑𝑖𝑠𝑡 (·, ·) ; Neighbor limit 𝑘𝑁 ; Edge list limit 𝑘𝐿

Output: Partitions 𝑃
/* Compute in parallel */

1 𝐻𝑢𝑏 ⇐ {𝐶ℎ |𝐶ℎ has a mutual nearest neighbor𝐶′
ℎ and

𝑙𝑎𝑏𝑒𝑙 (𝐶ℎ) < 𝑙𝑎𝑏𝑒𝑙 (𝐶′
ℎ) }

2 foreach𝐶ℎ ∈ 𝐻𝑢𝑏 do

3 Cℎ ⇐ {𝐶ℎ } ∪ {top 𝑘𝑁 neighbors in𝑊 }
4 foreach𝐶𝑥 ∈ Cℎ do

5 L(𝐶𝑥) ⇐ {top 𝑘𝐿 neighbors’ weights in𝑊 } ∪ {wildcard
edge for𝐶𝑥 }

6 𝑃ℎ ⇐ (Cℎ, {L(𝐶𝑥) |𝐶𝑥 ∈ Cℎ })
// Each partition 𝑃ℎ is a tuple of cluster set and

edge list set

7 𝑃 ⇐ {𝑃ℎ |𝐶ℎ ∈ 𝐻𝑢𝑏 }

to get 𝐶13. Then 𝐶13 and 𝐶2 become mutual nearest and are merged

into 𝐶123.

𝐶4 forms a partition 𝑃4 with its nearest 4 neighbors𝐶5,𝐶6,𝐶3, and

𝐶1. When 𝑃4 is passed to Algorithm 4,𝐶1 and𝐶3 are merged first and

𝑑𝑖𝑠𝑡 (𝐶13,𝐶6) are updated to 0.065. So 𝐶6’s nearest neighbor becomes

𝐶4 and is no longer blocked by𝐶1. Then𝐶4 and𝐶5 are merged to𝐶45.

Finally 𝐶6 and 𝐶45 are merged to 𝐶456.

In summary, Algorithm 6 creates two partitions 𝑃1 and 𝑃4, which
are passed to Algorithm 4 to generate 𝐶123 and 𝐶456 respectively. The

whole process ends in one iteration.

Discussion of 𝑘𝑁 and 𝑘𝐿 . In practice, moderate 𝑘𝑁 and 𝑘𝐿 in a
wide range like [50, 500] should work reasonably well as we will
see in experiments in Section 5.3. If 𝑘𝑁 and 𝑘𝐿 are too large, it can
adversely affect performance because too many distant neighbors
are scanned and shuffled without increasing the number of merges
in each iteration. Another benefit of using moderate 𝑘𝑁 and 𝑘𝐿
is to balance the load. For instance, when 𝑘𝑁 = 𝑘𝐿 = 500, the
worst-case space of each partition is only around 10 MB (𝑂 (𝑘𝑁𝑘𝐿 ·
𝑠𝑖𝑧𝑒𝑃𝑒𝑟𝐸𝑑𝑔𝑒)), and the worst-case time to cluster a partition is only
around 10 milliseconds (𝑂 (𝑘𝑁𝑘𝐿 · log(𝑘𝑁𝑘𝐿))). In such case, no
partition can become a straggler.

4 ANALYSIS OF CORRECTNESS AND
PERFORMANCE

In this section we first prove the correctness of PACk and then ana-
lyze the performance of the algorithms. Specifically, We propose a
Cluster Directed Acyclic Graph (DAG) in Section 4.1 to prove the
correctness of PACk. In Section 4.2 and 4.3, we use the DAG to prove
that the number of iterations of PACk is half of MutualNN’s. In Sec-
tion 4.4, we use a simplified cost model to show the performance of
PACk is better than MutualNN in an example deduplication scenario.

4.1 Cluster DAG and Correctness

Intuitively, we prove the correctness by showing that every cluster
we generate must be a merge of two mutual nearest neighbors. It
is consistent with the Centralized AHC (Algorithm 1), which also
always merges two mutual nearest neighbors.

We propose a Cluster Directed Acyclic Graph (DAG) that helps
usmodel the number of iterations, which is necessary for estimating
the data shuffle cost and running time. Note that our algorithm
never explicitly constructs the DAG during execution. The DAG
below is only conceptual and for our performance analysis.

Given the set of initial singleton clusters𝐶 , the function 𝑑𝑖𝑠𝑡 (·, ·),
and the threshold 𝜃 , the DAG 𝐷 = (C , 𝐸) is constructed based
on the execution of Algorithm 1. Specifically, we define Initial

Clusters as the clusters given in the input graph, define Merged

Clusters as those merged by Algorithm 1 in all iterations (i.e. 𝐶𝑖 𝑗 in
Line 3 of Algorithm 1), and define set C as the union of all Initial
Clusters and all Merged Clusters. We further define the following
functions to help our presentation below: (i) For eachMerged cluster
𝐶𝑥 , we denote its two direct subclusters by 𝐶𝐿 (𝐶𝑥) and 𝐶𝑅 (𝐶𝑥).
Also, we call 𝐶𝑥 as the “parent” 𝐶𝑃 (.) of its two direct subclusters.
E.g., 𝐶𝑃 (𝐶𝐿 (𝐶𝑥)) = 𝐶𝑥 and 𝐶𝑃 (𝐶𝑅 (𝐶𝑥)) = 𝐶𝑥 . (ii) If a cluster
is merged with another, we define them as “siblings” 𝐶𝑆 (.). For
example, 𝐶𝑆 (𝐶𝐿 (𝐶𝑥)) = 𝐶𝑅 (𝐶𝑥) and 𝐶𝑆 (𝐶𝑅 (𝐶𝑥)) = 𝐶𝐿 (𝐶𝑥). For
simplicity, we let 𝐶𝐿 (𝐶𝑥) = 𝐶𝐿𝑥 , 𝐶

𝑅 (𝐶𝑥) = 𝐶𝑅𝑥 , 𝐶
𝑃 (𝐶𝑥) = 𝐶𝑃𝑥 ,

and 𝐶𝑆 (𝐶𝑥) = 𝐶𝑆𝑥 hereafter when the context is clear. Also, we
abbreviate nested functions such as 𝐶𝐿 (𝐶𝑅 (𝐶𝑥)) = 𝐶𝐿𝑅𝑥 hereafter.

The edge set 𝐸 captures all the dependencies of merges. Specif-
ically, a directed edge (𝐶𝑥 ,𝐶𝑦) means that 𝐶𝑥 must be generated
before 𝐶𝑦 is generated. There are two types of edges: “Subset De-
pendency” and “Weight Dependency”.

Definition 2 (Subset Dependency Edge). For eachMerged clus-

ter𝐶𝑥 , we define two subset dependency edges (𝐶𝐿𝑥 ,𝐶𝑥) and (𝐶𝑅𝑥 ,𝐶𝑥).

Intuitively, Subset Dependency means that 𝐶𝐿𝑥 and 𝐶𝑅𝑥 must be
the prerequisites of 𝐶𝑥 .

Definition 3 (Weight Dependency Edge). For each pair of

Merged clusters 𝐶𝑥 and 𝐶𝑦 that satisfies 𝐶𝑥 ∩𝐶𝑦 = ∅, we build an
edge (𝐶𝑥 ,𝐶𝑦) if and only if:

∃𝐶 ′
𝑦 ∈ {𝐶𝐿𝑦,𝐶𝑅𝑦 },𝐶 ′

𝑥 ∈ {𝐶𝐿𝑥 ,𝐶𝑅𝑥 } :

𝑤 (𝐶 ′
𝑦,𝐶

′
𝑥) < 𝑤 (𝐶𝐿𝑦,𝐶𝑅𝑦)

Each Weight Dependency (𝐶𝑥 ,𝐶𝑦) means that 𝐶𝑦 cannot be
generated yet because 𝐶 ′

𝑦 ’s nearest neighbor is 𝐶
′
𝑥 instead of its

sibling 𝐶𝑆 (𝐶 ′
𝑦).

One can view the DAG as one or more binary trees (i.e. dendro-
grams) plus extra edges: all Initial/Merged clusters and the Subset
Dependency edges form one or more binary trees, and the Weight
Dependency are the extra edges.

Example 4 (Cluster DAG). Figure 6 is the Cluster DAG of Exam-

ple 2. 𝐶1 to 𝐶6 are the Initial singleton clusters. 𝐶13, 𝐶45, 𝐶123, and

𝐶456 are Merged clusters.

The solid lines represent Subset Dependency, which in fact form two

binary trees (i.e., dendrograms) of the clustering process. For instance,

𝐶𝐿 (𝐶13) = 𝐶1, 𝐶
𝑅 (𝐶13) = 𝐶3, 𝐶

𝑃 (𝐶13) = 𝐶123, and 𝐶
𝑆 (𝐶13) = 𝐶2.

The dashed lines representWeight Dependency.Weight Dependency

(𝐶13, 𝐶456) is because 𝐶6’s nearest neighbor has been 𝐶1 until the

merge (i.e., generation) of 𝐶13.

Theorem 1. The constructed DAG 𝐷 does not have cycles.

In order to prove Theorem 1 and to facilitate our following anal-
ysis, we define a few concepts.

C123 C456

C13 C45

C1 C3 C2 C4 C5 C6

Figure 6: The Cluster DAG

of Example 2. Solid lines

are subset dependency.

Dashed lines are weight

dependency.

•••

Figure 7: Illustration

of the proof of Theo-

rem 1. A cycle will lead to

𝑤 (𝐶𝐿𝑥1 ,𝐶
𝑅
𝑥1) < 𝑤 (𝐶𝐿𝑥2 ,𝐶

𝑅
𝑥2) < ...

< 𝑤 (𝐶𝐿𝑥𝑚 ,𝐶
𝑅
𝑥𝑚) < 𝑤 (𝐶𝐿𝑥1 ,𝐶

𝑅
𝑥1),

contradiction.

C123 C456

C13 C45

C1 C3 C2 C4 C5 C6

Frontier

C123 C456

C13 C45

C2 C6

Frontier

C123 C456
Frontier

Figure 8: The change of Frontier in Example 5.

Definition 4 (Generated/Ungenerated Clusters). At the
beginning of an algorithm’s iteration (i.e. Line 1 of Algorithm 1 or

Line 1 of Algorithm 3), a cluster in C is a Generated Cluster if it

is an initial cluster or is already generated through merging by the

algorithm. Otherwise, it is an Ungenerated Cluster.

Definition 5 (Frontier). At the beginning of an algorithm’s

iteration, a Frontier 𝐹 is the set of clusters such that each cluster

𝐶𝑥 ∈ 𝐹 satisfies both conditions below:

• 𝐶𝑥 is a Generated Cluster.

• 𝐶𝑥 does not have parent 𝐶𝑃𝑥 , or 𝐶
𝑃
𝑥 is an Ungenerated Cluster.

In other words, the frontier is the “snapshot” of the clusters at
the beginning of each iteration in the algorithm.

Example 5 (Generated/Ungenerated Clusters and Fron-
tier). Given Example 2, suppose a clustering algorithm finishes in

two iterations. The first iteration generates 𝐶13 and 𝐶45. The second

iteration generates 𝐶123 and 𝐶456.

Figure 8 shows how the frontier changes.

Initially, only {𝐶1,𝐶2, ...,𝐶6} are Generated, which form the fron-

tier. After the first iteration,𝐶13 and𝐶45 are Generated. So the frontier

becomes {𝐶13,𝐶2,𝐶45,𝐶6}. After the second iteration, all clusters are
Generated. The frontier becomes {𝐶123,𝐶456}.

Now we can prove Theorem 1 by contradiction (Figure 7). The
idea is to show that (1) Any cluster𝐶𝑥 in the cycle must be a Merged
cluster; (2) Each edge (𝐶𝑥 ,𝐶𝑦) in a cycle satisfy 𝑤 (𝐶𝐿𝑥 ,𝐶𝑅𝑥) <

𝑤 (𝐶𝐿𝑦,𝐶𝑅𝑦), leading to a contradiction that𝑤 (𝐶𝐿𝑥 ,𝐶𝑅𝑥) < 𝑤 (𝐶𝐿𝑥 ,𝐶𝑅𝑥)
as we go through the cycle. The detailed proof is in [55].

4.1.1 Correctness. After defining the set of all clusters C , we can
prove the correctness of our algorithm.

Theorem 2. The output of Algorithm 3 is the same as that of

Algorithm 1.

Frontier

Figure 9: 𝑙𝑒𝑛(·, 𝐹) Examples:

𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 1 and 𝑙𝑒𝑛(𝐶𝑦, 𝐹)
= 2.

…

Frontier

…

Figure 10: When 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) =
1, 𝐶𝐿𝑥 and 𝐶𝑅𝑥 must be mutual

nearest neighbors in 𝐹 .

Proof. (Sketch) We prove that (A) every Merged cluster in Algo-
rithm 3 is in the DAG, and that (B) every cluster with 0 out-degree
in the DAG is generated by Algorithm 3.

(A) All Merged clusters are generated in Line 6 of Algorithm 4,
which guarantees that 𝐶𝑖 and 𝐶 𝑗 are mutual nearest. Therefore, 𝐶𝑖
and 𝐶 𝑗 can be safely merged, because any merge of other clusters
won’t change the fact that 𝐶𝑖 and 𝐶 𝑗 are mutual nearest neighbors
[13, 38]. In addition, when integrating generated clusters (Line 4
in Algorithm 3), we only remove cluster and do not generate extra
clusters. So every Merged cluster in Algorithm 3 is in C .

(B) We prove by contradiction. Suppose there exists a cluster
with 0 out-degree in the DAG and it is not generated by Algorithm 3.
We check all its direct dependents. There are two cases:

(1) All its dependents are generated.
(2) At least one dependent is ungenerated. Let it be 𝐶𝑥 . Then

we check the dependents of 𝐶𝑥 .

We keep checking the dependents of the ungenerated cluster un-
til all dependents are generated. This process should always stop
because all Initial clusters are Generated by definition.

When we find the ungenerated𝐶𝑥 whose dependents are all gen-
erated, its direct children 𝐶𝐿𝑥 and 𝐶𝑅𝑥 must be mutual nearest in the
graph because 𝐶𝑥 ’s dependents are all generated (by Definition 3).
Then the partitioning algorithm should build a partition for 𝐶𝐿𝑥
and 𝐶𝑅𝑥 , and Line 6 of Algorithm 4 should generate 𝐶𝑥 = 𝐶𝐿𝑥 ∪𝐶𝑅𝑥 .
Contradiction.

So every cluster with 0 out-degree in the DAG is generated by
Algorithm 3. �

4.2 Number of Iterations of MutualNN
We define length to facilitate our proofs below. Note that length
is defined only on the DAG, which is irrelevant to the distance
function. We define 𝑙𝑒𝑛(𝐶𝑥) as the longest distance from any Initial
cluster to 𝐶𝑥 ∈ C , and 𝑙𝑒𝑛𝑚𝑎𝑥 = max𝐶𝑥 ∈C (𝑙𝑒𝑛(𝐶𝑥)).

Example 6 (Length from Initial Cluster). In the DAG in Fig-

ure 6, 𝑙𝑒𝑛(𝐶1) = 𝑙𝑒𝑛(𝐶2) = ... = 𝑙𝑒𝑛(𝐶6) = 0, 𝑙𝑒𝑛(𝐶13) = 𝑙𝑒𝑛(𝐶45) =
1, and 𝑙𝑒𝑛(𝐶123) = 𝑙𝑒𝑛(𝐶456) = 2. So 𝑙𝑒𝑛𝑚𝑎𝑥 = 2.

Given a frontier 𝐹 and an Ungenerated cluster 𝐶𝑥 , we define
𝑙𝑒𝑛(𝐶𝑥 , 𝐹) as the distance between 𝐹 to 𝐶𝑥 . Formally, let 𝑝𝑎 =
(𝐶𝑧 , ...,𝐶𝑥) be a valid path from𝐶𝑧 to𝐶𝑥 where only the first cluster
𝐶𝑧 is in 𝐹 (i.e. 𝐹 ∩ 𝑝𝑎 = {𝐶𝑧 }). Let 𝑃𝐴 be the set of such paths.
𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = max𝑝𝑎∈𝑃𝐴 (length of 𝑝𝑎), i.e., the maximum length of
these paths.

Example 7. Figure 9 is an example where Frontier 𝐹 =
{𝐶𝑧 ,𝐶𝐿𝑥 ,𝐶𝑅𝑥 }.

C1

C2

C3 C4

C5

C6

0.03

0.04

0.05

0.08
0.06

0.060.05

0.05

All unlabeled distances in the first graph are 0.1;
Edges with distance 0.1 are omitted in all graphs.

C13

C2

C6

0.065

0.06

0.05

C45

C123 C456
0.09

0.08

0.095

Figure 11: An example that applies MutualNN to six items. 𝜃 =
0.08. MutualNN finishes in two iterations.

Regarding𝐶𝑥 , there are three valid paths in 𝑃𝐴: (𝐶𝑧 ,𝐶𝑥), (𝐶𝐿𝑥 ,𝐶𝑥),
and (𝐶𝑅𝑥 ,𝐶𝑥). So 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 1. Note that (𝐶𝑧 ,𝐶𝐿𝑥 ,𝐶𝑥) is not a valid
path in 𝑃𝐴 because the second cluster 𝐶𝐿𝑥 is also in 𝐹 , violating the
definition.

Regarding 𝐶𝑦 , there are four valid paths in 𝑃𝐴: (𝐶𝑧 ,𝐶𝑦),
(𝐶𝑧 ,𝐶𝑥 ,𝐶𝑦), (𝐶𝐿𝑥 ,𝐶𝑥 ,𝐶𝑦), and (𝐶𝑅𝑥 ,𝐶𝑥 ,𝐶𝑦). So 𝑙𝑒𝑛(𝐶𝑦, 𝐹) = 2.

Theorem 3. Given a dataset, the number of iterations of MutualNN
is 𝑙𝑒𝑛𝑚𝑎𝑥 of the DAG.

The idea is to prove that each iteration of MutualNN generates
all clusters 𝐶𝑥 with 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 1. Before that, we need to prove a
lemma:

Lemma 1. Given a Merged cluster𝐶𝑥 whose direct children are𝐶𝐿𝑥
and 𝐶𝑅𝑥 , if there exists a 𝐶𝑦 such that 𝑤 (𝐶𝑦,𝐶𝐿𝑥) < 𝑤 (𝐶𝐿𝑥 ,𝐶𝑅𝑥) OR
𝑤 (𝐶𝑦,𝐶𝑅𝑥) < 𝑤 (𝐶𝐿𝑥 ,𝐶𝑅𝑥), the DAG must have a path including two

edges (𝐶𝑦,𝐶𝑃𝑦) and (𝐶𝑃𝑦 ,𝐶𝑥).

The lemma above means, if 𝐶𝑦 is closer to any of 𝐶𝑥 ’s children
than the child’s sibling, there must be a path from 𝐶𝑦 to its parent

𝐶𝑃𝑦 to 𝐶𝑥 . The detailed proof is in [55].
Now we can prove Theorem 3.

Proof. In each iteration, given a 𝐶𝑥 that satisfies 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) =
1, 𝐶𝐿𝑥 and 𝐶𝑅𝑥 must be mutual nearest in 𝐹 . Otherwise, if there
exists a 𝐶𝑦 ∈ 𝐹 that is closer to 𝐶𝐿𝑥 (or 𝐶𝑅𝑥), there should be a path

(𝐶𝑦,𝐶𝑃𝑦 ,𝐶𝑥) according to Lemma 1. Since 𝐶𝑦 ∈ 𝐹 , 𝐶𝑃𝑦 must be
Ungenerated, resulting in 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) ≥ 2, violating 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 1,
contradiction. So 𝐶𝑥 will be generated when 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 1.

So after iteration 𝑡 , MutualNN generates all the clusters with
𝑙𝑒𝑛(𝐶𝑥) ≤ 𝑡 . Therefore, MutualNN generates the whole DAG after
𝑙𝑒𝑛𝑚𝑎𝑥 iterations, which is the length of the longest paths. �

Example 8 (MutualNN). Figure 11 is an example that applies

MutualNN to six items. It takes two iterations, which equals the length

of the longest paths in Cluster DAG in Figure 6.

4.3 Number of Iterations of PACk
In this section, we assume metric space in which the distance func-
tion satisfies triangle inequality, then we can prove that our algo-
rithm takes much fewer iterations than MutualNN. But note that
metric space is not a requirement of the correctness of PACk.

First we prove that, if the 𝑑𝑖𝑠𝑡 (·, ·) between individual items
satisfy triangle inequality, the 𝑑𝑖𝑠𝑡 (·, ·) between clusters also satisfy
triangle inequality in Average-Linkage.

Theorem 4. 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑘) ≤ 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) + 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑘)

Frontier

Distance Subset Dep. Weight Dep.

Figure 12:When 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 2,𝐶𝑥 ’s children are not in 𝐹 , and
𝐶𝐿𝐿𝑥 ’s nearest neighbor in 𝐹 is 𝐶𝑦 , Algorithm 3 will generate

𝐶𝑥 . (Double lines indicate distances.)

We prove it by enumerating the distances (detail in [55]).

Theorem 5. Algorithm 3 finishes in �𝑙𝑒𝑛𝑚𝑎𝑥/2� iterations when
it uses the Distance-based Partitioning (Algorithm 5) and 𝑑𝑖𝑠𝑡 (·, ·) is
a metric.

Similar to the proof for MutualNN, we can prove that each itera-
tion in Algorithm 3 generates all clusters 𝐶𝑥 with 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) ≤ 2.

Lemma 2. In each iteration, Algorithm 3 generates all clusters 𝐶𝑥
that satisfy 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) ≤ 2 where 𝐹 is the frontier.

Now we can prove Lemma 2 as the following proof sketch. More
detail is in [55].

Proof. (Sketch) When 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 1 (Figure 10), similar to the
proof of MutualNN, 𝐶𝐿𝑥 and 𝐶𝑅𝑥 must be mutual nearest neighbors
in 𝐹 . Then 𝐶𝑥 will be generated in the iteration.

When 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 2, depending on whether 𝐶𝑥 ’s children are
in 𝐹 , there are three cases. In each case, we will prove that 𝐶𝑥 ’s de-
pendents will be in𝐶𝑥 ’s partition so that𝐶𝑥 ’s children will become
mutual nearest and be merged. The detailed proof is in [55].

Here we briefly present one situation in Case (3), which shows
why we set the radius to 10 times the distance between𝐶𝐿𝐿𝑥 and its
second nearest neighbor. In Case (3), when 𝐶𝐿𝐿𝑥 ’s second nearest
neighbor is not𝐶𝑅𝑥 ’s child. Let𝐶

𝐿𝐿
𝑥 ’s second nearest neighbor be𝐶𝑦 ,

and 𝑑𝑖𝑠𝑡 (𝐶𝐿𝐿𝑥 ,𝐶𝑦) = 𝑑 . Then we can bound many distances as in

Figure 12. The longest distance is 𝑑𝑖𝑠𝑡 (𝐶𝐿𝐿𝑥 ,𝐶𝑆𝑖) ≤ 10𝑑 , where𝐶𝑆𝑖 is

a cluster whose parent 𝐶𝑃𝑖 has a weight dependency (𝐶𝑃𝑖 ,𝐶𝑥). �

Using Lemma 2, we now prove Theorem 5.

Proof. (Sketch)We can prove by induction that, in 𝑖-th iteration,
Algorithm 3 generates clusters 𝐶𝑥 with 𝑙𝑒𝑛(𝐶𝑥) ≤ 2𝑖 . So in the
�𝑙𝑒𝑛𝑚𝑎𝑥/2�-th iteration, all clusters are generated. �

We now derive the following corollary for Algorithm 6.

Corollary 1. If 𝑑𝑖𝑠𝑡 (·, ·) is a metric, and 𝑘𝑁 and 𝑘𝐿 are large

enough that every |Cℎ | and |L(𝐶𝑥) | in Algorithm 6 are no less than

the corresponding |Cℎ | and |L(𝐶𝑥) | in Algorithm 5 respectively, Al-

gorithm 3 using Partitioning with Size Limit (Algorithm 6) finishes in

�𝑙𝑒𝑛𝑚𝑎𝑥/2� iterations.

4.4 Simplified Cost Model

In this section, we develop a simplified cost model for the running
time 𝜏 in the distributed system, and then compare the cost of
MutualNN and PACk.

We define 𝜏 as the sum of running time of all iterations:

𝜏 =
∑#𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑖=1 (𝜏𝑠 (𝐺𝑖) + 𝜏𝑐 (𝐺𝑖))

In Iteration 𝑖 , where𝐺𝑖 is the input graph, the running time consists
of two main parts: data shuffle time 𝜏𝑠 (𝐺𝑖), and cpu time 𝜏𝑐 (𝐺𝑖).
Following the cost models for distributed systems like Spark [2]
and Hadoop [23, 24] that assume almost uniform distribution of
data4, we further define:

𝜏𝑠 (𝐺𝑖) =
𝑠𝑖𝑧𝑒 (𝐺𝑖)

𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑝𝑒𝑒𝑑 · #𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠

where 𝑠𝑖𝑧𝑒 (𝐺𝑖) is the size of the graph in bytes, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑝𝑒𝑒𝑑 is
the number of bytes the system can shuffle in every unit time, and
#𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠 is the number of executors; and

𝜏𝑐 (𝐺𝑖) =
𝑜𝑝𝑒𝑟 (𝐺𝑖) · 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

#𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠

where 𝑜𝑝𝑒𝑟 (𝐺𝑖) is the number of cpu operations to process the
graph and 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is the time for each cpu operation. In
practice, #𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠 is much less than the number of partitions.

Example Deduplication Scenario. Now we present the cost in
a simplified scenario. Assume a set of original items 𝑆 , each of
which has 𝑑𝑢 duplicates. In practice, each item is very similar to its
duplicates (e.g., distance ≤ 0.05), but its duplicates are less similar
to each other (e.g., distance > 0.05). This is a “hub-spoke” graph
where each original item is a hub and its duplicates are spokes. Each
item and its duplicates can be viewed as a group. To simplify the
analysis, further assume that groups are very different from one
another, which means no edge across groups as their distances are
above the threshold. Let the input graph be𝐺1 with initial singleton
clusters𝐶 (𝐺1) and edge weights𝑊 (𝐺1). So |𝐶 (𝐺1) | = |𝑆 | · (𝑑𝑢 + 1),
and |𝑊 (𝐺1) | = |𝑆 | · (𝑑𝑢+1)𝑑𝑢

2 .
Next, we use the Big Theta (Θ) notation to represent the asymp-

totic complexity.

MutualNN. In each iteration, all duplicates find their nearest
neighbor (NN) as the original item, but the original item’s NN
is only one duplicate. So MutualNN merges only one pair within
each group. Therefore, for the 𝑖-th iteration,𝐶 (𝐺𝑖) = |𝑆 | · (𝑑𝑢+2−𝑖),
and |𝑊 (𝐺𝑖) | = |𝑆 | · (𝑑𝑢+2−𝑖) (𝑑𝑢+1−𝑖)2 . It takes 𝑑𝑢 iterations to finish.

Each iteration has 3 steps: (1) Find NN through an aggregation. (2)
Find mutual NN through a join of the NN pairs. (3) Merge mutual
NN and their edges. More detailed cost is in [55], and we only
present the total costs here due to space limit:

𝑠𝑖𝑧𝑒 (𝐺𝑖) = Θ((𝑑𝑢 + 2 − 𝑖)2 |𝑆 |) · 𝑠𝑖𝑧𝑒𝑃𝑒𝑟𝐸𝑑𝑔𝑒

𝑜𝑝𝑒𝑟 (𝐺𝑖) = Θ((𝑑𝑢 + 2 − 𝑖)2 |𝑆 |)

4We empirically evaluate the performance on skewed data in Section 5.1.

Therefore,

𝜏 =
#𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠∑

𝑖=1

(𝜏𝑠 (𝐺𝑖) + 𝜏𝑐 (𝐺𝑖))

=Θ(𝑑𝑢3) |𝑆 | ·
(

𝑠𝑖𝑧𝑒𝑃𝑒𝑟𝐸𝑑𝑔𝑒

𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑝𝑒𝑒𝑑 · #𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠
+
𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

#𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠

)

Intuitively, the 𝜏 contains Θ(𝑑𝑢3) |𝑆 | because the graph has
Θ(𝑑𝑢2) |𝑆 | edges initially and has Θ((𝑑𝑢 − 𝑖)2) |𝑆 | edges after the
i-th iteration. The algorithm stops after 𝑑𝑢 iterations, resulting in∑𝑑𝑢
𝑖=1 Θ((𝑑𝑢 − 𝑖)2) |𝑆 | = Θ(𝑑𝑢3) |𝑆 | complexity.

PACk. In practice, since identical items (like “Seattle” vs “Seat-
tle”) are usually aggregated together before clustering happens,
so the number of different duplicates (like “Seattle” vs misspelled
“Seatttle”) is usually very small (e.g., 𝑑𝑢 ≤ 100). Thus, 𝑘𝑁 and 𝑘𝐿
are very likely ≥ 𝑑𝑢, meaning each item and its duplicates end up
in the same partition. So the algorithm finishes in only 1 iteration.

The only iteration has 3 major steps on 𝐺1 (due to space limit,
the detailed minor steps are in [55]): partitioning, distance-aware
merging, and cluster integration with graph update. The total cost
of all steps is:

𝑠𝑖𝑧𝑒 (𝐺1) =Θ(𝑑𝑢2 · |𝑆 |) · 𝑠𝑖𝑧𝑒𝑃𝑒𝑟𝐸𝑑𝑔𝑒

𝑜𝑝𝑒𝑟 (𝐺1) =Θ(|𝑆 | · (𝑑𝑢2 log𝑑𝑢))

Therefore,

𝜏 =𝜏𝑠 (𝐺1) + 𝜏𝑐 (𝐺1)

=Θ(𝑑𝑢2) |𝑆 | ·
𝑠𝑖𝑧𝑒𝑃𝑒𝑟𝐸𝑑𝑔𝑒

𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑝𝑒𝑒𝑑 · #𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠

+ Θ(𝑑𝑢2 log𝑑𝑢) |𝑆 | ·
𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

#𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠

Comparison. PACk is less expensive than MutualNN in both data
shuffle and CPU time in this example. In data shuffle, which is
usually orders of magnitude slower than CPU computation, PACk’s
Θ(𝑑𝑢2) term in complexity saves much more time than MutualNN’s
Θ(𝑑𝑢3). In CPU computation, PACk’s Θ(𝑑𝑢2 log𝑑𝑢) is also better
than MutualNN’s Θ(𝑑𝑢3). The Θ(log𝑑𝑢) term is usually very small
in practice (e.g., ≤ 10), because it is bounded by 𝑘𝑁 and 𝑘𝐿 . So PACk
is more efficient in this example.

In other real-world graphs, the graph structure is more complex
than this example scenario. There could be random edges with long
distances across different groups, which are difficult to be captured
by the cost model. So we present experimental evaluations on the
real-world data to compare the performance. As we will see in
the evaluation, PACk still notably out-performs the state-of-the-art
MutualNN on real-world datasets.

5 EVALUATION

In this section we evaluate PACk’s (1) performance, (2) scalability
and (3) sensitivity to key parameters of the algorithm and compare
it with the state-of-the-art algorithm MutualNN.

Dataset. We evaluated PACk (Section 3) on six real, five modified-
real and one synthetic datasets shown in Table 1.

The six real datasets are Song, Cite, LiveJ, Wiki, Urban, and
Bright. Song and Cite use Jaccard distance and are from the Mag-
ellan Data Repository [8]. Song has the titles, releases, and artist

Table 1: Datasets. Numbers in parentheses are of skewed

data.

Data Type #Items #Edges

Song

Real

1.0M 1.1M
Cite 4.3M 1.9M
LiveJ 4.8M 69.0M
Wiki 1.8M 28.5M
Urban 0.4M 6.5M
Bright 0.8M 24.0M
Real1

Modified-

Real

258.4M (35.4M) 680.4M (20.9M)
Real2 76.8M (10.5M) 358.3M (34.9M)
Real3 19.7M (2.7M) 107.7M (3.2M)
USPS 99.5M (13.6M) 427.4M (39.4M)
IMDB 11.4M (1.6M) 41.0M (1.2M)
FEBRL Synthetic 10.0M (10.0M) 124.7M (11.6M)

names of 1.0M songs. We tokenize each string into a set of tokens,
and then keep the pairs of sets with Jaccard distances ≤ 0.4 to
get 1.1M edges. Cite is the union of Citeseer and DBLP paper ti-
tles containing 4.3M items. Similar to Song, we also tokenize and
keep the pairs with Jaccard distance ≤ 0.4 to get 1.9M edges. LiveJ
and Wiki are large graphs from Stanford Large Network Dataset
Collection [29]. We assign random distances following uniform
distribution in (0, 1] for the edges. LiveJ [1, 30] is an online social
network with 4.8M items and 69.0M edges. Wiki [27, 58] is the
hyperlink network between articles in the most popular categories.
It has 1.8M items and 28.5M edges. Urban and Bright use Euclidean
distance. Urban is a dataset of road accidents within Great Britain ur-
ban areas from the UCI Machine Learning Repository [15]. We keep
pairs within 0.5 km to get a graph with 0.4M items and 6.5M edges.
Bright [5] is a location-based social network dataset from [29]. We
retrieve the distinct locations and keep pairs within 0.5 km to get a
graph with 0.8M items and 24.0M edges.

We additionally use six datasets to freely vary the number of
duplicates, making the task more challenging. They include five
modified-real datasets (Real1, Real2, Real3, USPS, and IMDB) and
one synthetic dataset (FEBRL). The Real1, Real2, and Real3 are pro-
prietary datasets used by three different applications in Microsoft.
They include names, addresses and other contact information of
organizations. USPS is a dataset of addresses in the United States,
from which we extract distinct concatenation of street address,
city, state and zip code. IMDB contains movie data from the Inter-
net Movie Data Base, in particular the Title, Directors and Genres
columns. FEBRL [6] is a synthetic dataset generated using an open
source tool. We extract person name, address, suburb, state, and
postcode columns from it.

We generate duplicates for these six datasets following uniform
and skewed distributions. In the uniform setting, we create 9 similar
items for each original item by inserting or deleting random char-
acters. Then we perform a self-join on the data and keep the pairs
with Jaccard distance ≤ 0.4. As shown in Table 1, the input graphs
has 10.0 to 258.4 million items, with 41.0 to 680.4 million edges. In
the skewed setting, we make the number of duplicates follow the
Zipfian distribution where the exponent= 3. Then we again keep
the pairs with Jaccard distance ≤ 0.4. As shown in the parentheses
in Table 1, the input graphs has 1.6 to 35.4 millions items, with
1.2 to 39.4 million edges. (We also evaluate the performance when
Jaccard distance ≤ 0.2 in the uniform setting in [55].)

0
100
200
300
400
500
600

Song Cite LiveJ Wiki Urban Bright

Ti
m

e
(m

in
ut

e)

Dataset

MutualNN

PACk

*

0

5

10

15

20

Song Cite LiveJ Wiki Urban Bright

Sp
ee

d-
up

Dataset

*

Figure 13: PACk is much more efficient than MutualNN on

real datasets; The speed-up ranges from 2.2× to 18.9×. (*:
MutualNN exceeds 10 hours on Bright, meaning the speed-up

on Bright ≥ 14.8×.)

0

50

100

150

200

250

Real1 Real2 Real3 USPS IMDB FEBRL

Ti
m

e
(m

in
ut

e)

Dataset

MutualNN

PACk

0

5

10

15

20

Real1 Real2 Real3 USPS IMDB FEBRL

Sp
ee

d-
up

Dataset

Figure 14: PACk is much more efficient than MutualNN on

modified-real and synthetic datasets when number of du-

plicates follows uniform distribution; The speed-up ranges

from 4.4× to 17.4×.

0

50

100

150

200

250

Real1 Real2 Real3 USPS IMDB FEBRL

Ti
m

e
(m

in
ut

e)

Dataset

MutualNN

PACk

0

5

10

15

20

Real1 Real2 Real3 USPS IMDB FEBRL

Sp
ee

d-
up

Dataset

Figure 15: PACk is much more efficient than MutualNN on

modified-real and synthetic datasets when number of du-

plicates follows Zipfian distribution; The speed-up ranges

from 6.4× to 19.8×.

Baseline. We compare with the state-of-the-art algorithm that
merges mutual nearest neighbors (MutualNN in Section 2.3) in each
iteration. The idea was proposed in [38] and later simplified and
implemented in [13].

Setting. We conduct experiments on Azure Databricks Spark clus-
ters. The cluster has 16 D8s_v3 virtual machines. Each VM has 8
cores and 32 GB memory, running Apache Spark 2.4.3 and Scala
2.11. The default values of 𝑘𝑁 and 𝑘𝐿 are 500.

5.1 Performance

Our algorithm is more efficient than the state-of-the-art MutualNN
on various datasets. Specifically, we see 2.2× to 18.9× speed-up on
the six real datasets (Figure 13), 4.4× to 17.4× speed-up on the six
modified-real and synthetic datasets in uniform setting (Figure 14),
6.4× to 19.8× speed-up on the modified-real and synthetic datasets
in Zipfian setting (Figure 15).

0
10
20
30
40
50
60

Real1 Real2 Real3 USPS IMDB FEBRL

#I
te

ra
tio

ns

Dataset

MutualNN

PACk

(a)

0E+0

2E+5

4E+5

6E+5

8E+5

Real1 Real2 Real3 USPS IMDB FEBRL

Sh
uf

fle
 D

at
a

(M
B)

Dataset

MutualNN

PACk

(b)

Figure 16: PACk is more efficient than MutualNN because (a)

PACk takes fewer iterations; (b) PACk shuffles less data.

0
50

100
150
200
250
300
350

2 4 8 16

Ti
m

e
(m

in
ut

e)

#VM

Real1 Real2 Real3
USPS IMDB FEBRL

Figure 17: PACk scales well to the number of VMs.

(a) (b)

0
10
20
30
40
50
60

2X 4X 6X 8X 10X

Ti
m

e
(m

in
ut

e)

Size (Inreasing #Duplicates)

Real1 Real2 Real3
USPS IMDB FEBRL

0
10
20
30
40
50
60

20% 40% 60% 80% 100%

Ti
m

e
(m

in
ut

e)

Size (Inreasing #Groups)

Real1 Real2 Real3
USPS IMDB FEBRL

Figure 18: PACk scales almost linearly with the size of data in

terms of (a) #duplicates per group; (b) #groups.

PACk is more efficient than MutualNN because PACk finishes in
fewer iterations and shuffles less data. For example, on the six
modified-real and synthetic datasets in uniform setting, PACk takes
only 8.6% to 22.2% of iterations in MutualNN (Figure 16a), and PACk
shuffles 45.2% to 88.2% of the data in MutualNN (Figure 16b).

5.2 Scalability

In this experiment we evaluate the scalability of PACk. We vary the
number of VMs from 2 to 16. As Figure 17 illustrates, PACk scales
well when we vary the number of VMs. For example, on Real1
dataset, the running time using 4 VMs is roughly half the time
using 2 VMs. As we increase the VMs, the curve of running time
flattens. It is because the merges within each iteration are almost
exhaustively parallelized, while the data shuffle between iterations
gradually dominates the running time.

Next, we vary the number of items per duplicate group from 2
to 10 (i.e. duplicates from 1 to 9). As Figure 18a shows, PACk scale
almost linearly with the number of duplicates.

Next, we vary the number of duplicate groups from 20% to 100%
of the original input (fixing the number of items per group at 10).
PACk scale almost linearly with the number of groups (Figure 18b).

5.3 Parameter Sensitivity

In this experiment we study how parameters in PACk impact per-
formance. Recall that, in Algorithm 6, 𝑘𝑁 controls the size of each

(a) (b)

0

20

40

60

80

5 50 500

Ti
m

e
(m

in
ut

e)

kN

Real1 Real2 Real3
USPS IMDB FEBRL

0

50

100

150

200

5 50 500

Ti
m

e
(m

in
ut

e)

kL

Real1 Real2 Real3
USPS IMDB FEBRL

Figure 19: (a) When 𝑘𝐿 = 500, time slightly decreases as 𝑘𝑁
grows because more neighbors are included in a partition;

but increases for overly large 𝑘𝑁 = 1000. (b) When 𝑘𝑁 = 500,
time decreases as 𝑘𝐿 grows because more edges are included

in a partition; but increases for overly large 𝑘𝐿 = 1000.

partition, and 𝑘𝐿 controls the size of each edge lists. We begin by
varying the parameters to see how running time changes.

We first fix 𝑘𝐿 = 500 and vary 𝑘𝑁 in {5, 10, 50, 100, 500, 1000}.
As Figure 19a shows, the running time decreases slightly as 𝑘𝑁
grows, because more neighbors are included in a partition and more
merges can be done. The time then increases slightly for overly
large 𝑘𝑁 = 1000 as too many neighbors only adds the shuffle cost.

We then fix 𝑘𝑁 = 500 and vary 𝑘𝐿 in {5, 10, 50, 100, 500, 1000}. As
Figure 19b shows, the running time decreases as 𝑘𝐿 grows, because
more edges are included in a partition and more merges can be
done. The time then increases slightly for overly large 𝑘𝐿 = 1000
because too many edges only adds the shuffle cost.

6 RELATEDWORK

The study of Agglomerative Hierarchical Clustering (AHC) dates
back to 1950s with a focus on centralized algorithms [21, 26, 28,
39, 40, 49]. The idea is to initially treat each node as a singleton
cluster, and then iteratively merge small clusters into bigger clus-
ters based on their pair-wise distances. When two clusters are
merged, their distance to a third cluster is updated according to
their individual distances. There exist several strategies. For exam-
ple, Single-linkage [22, 48] takes the minimum distance; Complete-
linkage [12] takes the maximum distance; Average-linkage [50]
uses the unweighted or weighted average distance. Others strate-
gies include Minimax [4]. These papers assume a centralized AHC
that stores the graph in memory. They do not scale to large datasets
since they are limited by the compute resources (CPU and memory)
available on a single machine.

Researchers have also developed distributed AHC algorithms. In
2005, Ding and He [13] proposed multi-level hierarchical clustering
(MutualNN), which merges mutually nearest cluster pairs concur-
rently. They proved that MutualNN generates the same result as
centralized AHC as long as the distance function satisfies Cluster
Aggregate Inequality, which is a stronger version of “reducibility
property” [38] proposed in 1980s. Sun et al. [51] implemented AHC
using Map-Reduce. Their algorithm collects top K edges with maxi-
mal weights from worker nodes to the driver node and merges as
many pairs as possible in the centralized driver node. Its scalability
is limited to the data size that can fit in the driver node. As a com-
parison, PACk performs clustering distributedly in worker nodes,
which has better scalability. Zhang et al. [60, 61] solved AHC under
Euclidean distance. They utilize a quad-tree or kd-tree to partition

vertices in the Euclidean space, cluster them within each partition,
and finally merge clusters. Their technique cannot be generalized
to other distance functions like cosine, Jaccard, etc.

Some approximate algorithms reduce the running time by sac-
rificing accuracy. Ma et al. [35] merge multiple clusters in each
iteration as long as their distances are within a predefined thresh-
old. A few papers [9, 10, 31] merge edges whose distances are less
than an increasing threshold in iterations. Tanaseichuk et al. [52]
applies K-means to group items into clusters first and then uses
AHC within each cluster. Gilpin et al. [17] group items in Euclidean
space into buckets and then apply AHC within each bucket. These
approximate algorithms produce different clustering results than
conventional AHC does.

Another line of work focuses on special cases of AHC or spe-
cial computational settings. Single-linkage as a special case of
AHC is similar to the typical minimum spanning tree problem.
Several efficient distributed single-linkage algorithms have been
proposed [3, 25, 42, 45, 56]. Dash et al. [10] proposed an algorithm
using shared memory architecture. Some researchers developed a
parallel AHC on shared-memory [43] or SIMDmachines [32, 33, 46].

Other partitioning strategies exist in some graph systems. For
example, Pregel [36] performs message passing between vertices
to perform computation on a graph. Each vertex and its neighbors
can be viewed as a trivial partition, and its message passing can be
supported as data shuffle on Spark using GraphX [19]. In addition,
Distributed GraphLab [34] performs edge-cut and PowerGraph [18]
performs vertex-cut to partition graphs. These strategies do not
leverage the domain knowledge for AHC such as mutual nearest
neighbors and distance bounds. In comparison, PACk is particularly
designed for AHC and has better performance both analytically
and in practice.

Many academic and industrial tools support centralized AHC.
The examples include MATLAB, R [41], ScikitLearn [44] and
SciPy [53] in Python, etc. Similar to the centralized AHC in the
papers above, the scalability of these tools is limited to the size of
data that can fit in a single node.

7 CONCLUSION

We propose an efficient, distributed agglomerative hierarchical clus-
tering (AHC) algorithm PACk that scales well to large data sets. PACk
derives its efficiency from novel distance-based partitioning and
distance-aware merging techniques that enable significantly more
merges to be performed in parallel, thereby reducing the number of
iterations required as well as the data shuffle cost. We implement
PACk on Spark, and compare it to the state-of-the-art approach. Our
evaluation on several synthetic and real-world datasets including
Microsoft Dynamics 365 shows that PACk achieves consistently
large speedups ranging from 2× to 19× with a median of 9×.

ACKNOWLEDGMENTS

We thank Silu Huang, Wentao Wu, Chi Wang, and Arnd Christian
König for their insightful comments on the paper, and Swapna
Akula, Katchaguy Areekijseree, Meiyalagan Balasubramanian, and
Lengning Liu for their design, implementation, and optimization in
Microsoft Dynamics 365 Customer Insights.

REFERENCES
[1] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large

social networks: Membership, growth, and evolution. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’06, page 44–54, New York, NY, USA, 2006. Association for Computing
Machinery.

[2] L. Baldacci and M. Golfarelli. A cost model for spark sql. IEEE Transactions on
Knowledge and Data Engineering, 31(5):819–832, 2019.

[3] M. Bateni, S. Behnezhad, M. Derakhshan, M. Hajiaghayi, R. Kiveris, S. Lattanzi,
and V. Mirrokni. Affinity clustering: Hierarchical clustering at scale. In Advances
in Neural Information Processing Systems, pages 6864–6874, 2017.

[4] J. Bien and R. Tibshirani. Hierarchical clustering with prototypes via minimax
linkage. Journal of the American Statistical Association, 106(495):1075–1084, 2011.

[5] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement
in location-based social networks. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1082–
1090, 2011.

[6] P. Christen. Febrl - an open source data cleaning, deduplication and record
linkage system with a graphical user interface. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, page
1065–1068, 2008.

[7] W. W. Cohen and J. Richman. Learning to match and cluster large high-
dimensional data sets for data integration. In Proc. SIGKDD, page 475–480,
2002.

[8] S. Das, A. Doan, P. S. G. C., C. Gokhale, P. Konda, Y. Govind, and D. Paulsen.
The magellan data repository. https://sites.google.com/site/anhaidgroup/useful-
stuff/data.

[9] M. Dash, H. Liu, P. Scheuermann, and K. L. Tan. Fast hierarchical clustering and
its validation. Data Knowl. Eng., 44(1):109–138, Jan. 2003.

[10] M. Dash, S. Petrutiu, and P. Scheuermann. Ppop: Fast yet accurate parallel
hierarchical clustering using partitioning. Data Knowl. Eng., 61(3):563–578, June
2007.

[11] Daxin Jiang, Chun Tang, and Aidong Zhang. Cluster analysis for gene expression
data: a survey. IEEE Transactions on Knowledge and Data Engineering, 16(11):1370–
1386, 2004.

[12] D. Defays. An efficient algorithm for a complete link method. The Computer
Journal, 20(4):364–366, 1977.

[13] C. Ding and X. He. Cluster aggregate inequality and multi-level hierarchical
clustering. In Knowledge Discovery in Databases: PKDD, pages 71–83, 2005.

[14] G. M. Downs and J. M. Barnard. Clustering methods and their uses in computa-
tional chemistry. Reviews in computational chemistry, 18:1–40, 2002.

[15] D. Dua and C. Graff. UCI machine learning repository, 2017.
[16] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and

display of genome-wide expression patterns. Proceedings of the National Academy
of Sciences, 95(25):14863–14868, 1998.

[17] S. Gilpin, B. Qian, and I. Davidson. Efficient hierarchical clustering of large high
dimensional datasets. In Proc. CIKM, page 1371–1380, 2013.

[18] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In 10th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 12), pages 17–30,
2012.

[19] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.
Graphx: Graph processing in a distributed dataflow framework. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pages
599–613, 2014.

[20] P. Govender and V. Sivakumar. Application of k-means and hierarchical clustering
techniques for analysis of air pollution: A review (1980–2019). Atmospheric
Pollution Research, 11(1):40–56, 2020.

[21] J. C. Gower. A comparison of some methods of cluster analysis. Biometrics,
23(4):623–637, 1967.

[22] J. C. Gower and G. J. Ross. Minimum spanning trees and single linkage cluster
analysis. Journal of the Royal Statistical Society: Series C (Applied Statistics),
18(1):54–64, 1969.

[23] H. Herodotou. Hadoop performance models. Technical report, http://www.cs.
duke.edu/starfish/files/hadoop-models.pdf, 2011.

[24] H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based optimization
of mapreduce programs. Proc. VLDB Endow., 4(11):1111–1122, Aug. 2011.

[25] C. Jin, R. Liu, Z. Chen, W. Hendrix, A. Agrawal, and A. Choudhary. A scalable
hierarchical clustering algorithm using spark. In Proc. BIGDATASERVICE, page
418–426, 2015.

[26] S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254,
1967.

[27] C. Klymko, D. F. Gleich, and T. G. Kolda. Using triangles to improve community
detection in directed networks. In The Second ASE International Conference on
Big Data Science and Computing, BigDataScience, 2014.

[28] G. N. Lance and W. T. Williams. A General Theory of Classificatory Sorting
Strategies: 1. Hierarchical Systems. The Computer Journal, 9(4):373–380, 1967.

[29] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, June 2014.

[30] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community Structure
in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined
Clusters. Internet Mathematics, 6(1):29 – 123, 2009.

[31] K. Li, Y. He, and K. Ganjam. Discovering enterprise concepts using spreadsheet
tables. In SIGKDD, page 1873–1882, 2017.

[32] X. Li. Hierarchical clustering on simd machines with alignment network. In
Proceedings CVPR ’89: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 660–665, 1989.

[33] X. Li. Parallel algorithms for hierarchical clustering and cluster validity. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(11):1088–1092, 1990.

[34] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed graphlab: A framework for machine learning and data mining in the
cloud. Proc. VLDB Endow., 5(8):716–727, Apr. 2012.

[35] X.-L. Ma, H.-F. Hu, S.-F. Li, H.-M. Xiao, Q. Luo, D.-Q. Yang, and S.-W. Tang. Dhc:
Distributed, hierarchical clustering in sensor networks. Journal of Computer
Science and Technology, 26:643–662, 07 2011.

[36] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data, pages
135–146, 2010.

[37] A.-A. Mamun, T. Mi, R. Aseltine, and S. Rajasekaran. Efficient sequential and
parallel algorithms for record linkage. Journal of the American Medical Informatics
Association, 21(2):252–262, 2014.

[38] F. Murtagh. Complexities of hierarchic clustering algorithms: state of the art.
Computational Statistics Quarterly, 1(2):101–113, 1984.

[39] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97,
2012.

[40] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an overview,
ii. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
7(6):e1219, 2017.

[41] D. Müllner. fastcluster: Fast hierarchical, agglomerative clustering routines for r
and python. Journal of Statistical Software, Articles, 53(9):1–18, 2013.

[42] V. Olman, F. Mao, H. Wu, and Y. Xu. Parallel clustering algorithm for large data
sets with applications in bioinformatics. IEEE/ACMTransactions on Computational
Biology and Bioinformatics, 6(2):344–352, 2009.

[43] C. F. Olson. Parallel algorithms for hierarchical clustering. Parallel Computing,
21(8):1313 – 1325, 1995.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[45] S. Rajasekaran. Efficient parallel hierarchical clustering algorithms. IEEE Trans-
actions on Parallel and Distributed Systems, 16(6):497–502, 2005.

[46] E. M. Rasmussen and P. Willett. Efficiency of hierarchic agglomerative clustering
using the icl distributed array processor. Journal of Documentation, 45:1–24, 1989.

[47] A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke. Personalized recommenda-
tion in social tagging systems using hierarchical clustering. In Proceedings of the
2008 ACM Conference on Recommender Systems, RecSys ’08, page 259–266, New
York, NY, USA, 2008. Association for Computing Machinery.

[48] R. Sibson. SLINK: An optimally efficient algorithm for the single-link cluster
method. The Computer Journal, 16(1):30–34, 1973.

[49] P. H. Sneath. The application of computers to taxonomy. Microbiology, 17(1):201–
226, 1957.

[50] R. Sokal and C. Michener. A Statistical Method for Evaluating Systematic Rela-
tionships. University of Kansas science bulletin. University of Kansas, 1958.

[51] T. Sun, C. Shu, F. Li, H. Yu, L. Ma, and Y. Fang. An efficient hierarchical clustering
method for large datasets with map-reduce. In 2009 International Conference on
Parallel and Distributed Computing, Applications and Technologies, pages 494–499,
2009.

[52] O. Tanaseichuk, A. Hadj Khodabakhshi, D. Petrov, J. Che, T. Jiang, B. Zhou,
A. Santrosyan, and Y. Zhou. An efficient hierarchical clustering algorithm for
large datasets. Austin Journal of Proteomics, Bioinformatics, 2(1):1–6, 2015.

[53] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020.

[54] F. Wang, J. Li, J. Tang, J. Zhang, and K. Wang. Name disambiguation using atomic
clusters. In Proc. WAIM, pages 357–364, 2008.

[55] Y. Wang, V. Narasayya, Y. He, and S. Chaudhuri. An efficient partition-based
distributed agglomerative hierarchical clustering algorithm for deduplication.

Technical report, https://www.microsoft.com/en-us/research/publication/tech-
report-pack/, 2021.

[56] C.-H. Wu, S.-J. Horng, and H.-R. Tsai. Efficient parallel algorithms for hierarchical
clustering on arrays with reconfigurable optical buses. J. Parallel Distrib. Comput.,
60(9):1137–1153, Sept. 2000.

[57] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive clustering-based approach
to integrating source query interfaces on the deep web. In Proc. SIGMOD, page
95–106, 2004.

[58] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. Local higher-order graph
clustering. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, page 555–564, New York, NY,
USA, 2017. Association for Computing Machinery.

[59] V. Zappala, A. Cellino, P. Farinella, and Z. Knezevic. Asteroid families. i-
identification by hierarchical clustering and reliability assessment. The Astro-
nomical Journal, 100:2030–2046, 1990.

[60] W. Zhang, G. Zhang, X. Chen, Y. Liu, X. Zhou, and J. Zhou. Dhc: A distributed
hierarchical clustering algorithm for large datasets. Journal of Circuits, Systems
and Computers, 28(04):1950065, 2019.

[61] W. Zhang, G. Zhang, Y. Wang, Z. Zhu, and T. Li. Nnb: An efficient nearest
neighbor search method for hierarchical clustering on large datasets. In IEEE
ICSC 2015, pages 405–412, 2015.

[62] Y. Zhao, G. Karypis, and U. Fayyad. Hierarchical clustering algorithms for
document datasets. Data mining and knowledge discovery, 10(2):141–168, 2005.

A Near-Optimal Approach to Edge Connectivity-Based
Hierarchical Graph Decomposition

Lijun Chang
The University of Sydney

Lijun.Chang@sydney.edu.au

Zhiyi Wang
The University of Sydney

zwan9517@uni.sydney.edu.au

ABSTRACT

Driven by applications in graph analytics, the problem of efficiently
computing all 𝑘-edge connected components (𝑘-ECCs) of a graph
𝐺 for a user-given 𝑘 has been extensively and well studied. It is
known that the 𝑘-ECCs of 𝐺 for all possible values of 𝑘 form a
hierarchical structure. In this paper, we study the problem of ef-
ficiently constructing the hierarchy tree for 𝐺 which compactly
encodes the 𝑘-ECCs for all possible 𝑘 values in space linear to
the number of vertices 𝑛. All existing approaches construct the
hierarchy tree in O

(
𝛿 (𝐺) × TKECC (𝐺)

)
time, where 𝛿 (𝐺) is the

degeneracy of𝐺 and TKECC (𝐺) is the time complexity of comput-
ing all 𝑘-ECCs of 𝐺 for a specific 𝑘 value. To improve the time
complexity, we propose a divide-and-conquer approach running
in O

(
(log𝛿 (𝐺)) × TKECC (𝐺)

)
time, which is optimal up to a loga-

rithmic factor. However, a straightforward implementation of our
algorithmwould result in a space complexity ofO((𝑚+𝑛) log𝛿 (𝐺)).
As main memory also becomes a scarce resource when process-
ing large-scale graphs, we further propose techniques to optimize
the space complexity to 2𝑚 + O(𝑛 log𝛿 (𝐺)), where𝑚 is the num-
ber of edges in 𝐺 . Extensive experiments on large real graphs and
synthetic graphs demonstrate that our approach outperforms the
state-of-the-art approaches by up to 28 times in terms of running
time, and by up to 8 times in terms of main memory usage. As a
by-product, we also improve the space complexity of computing
all 𝑘-ECCs for a specific 𝑘 to 2𝑚 + O(𝑛).

PVLDB Reference Format:

Lijun Chang and Zhiyi Wang. A Near-Optimal Approach to Edge
Connectivity-Based Hierarchical Graph Decomposition. PVLDB, 15(6):
1146 - 1158, 2022.

doi:10.14778/3514061.3514063

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://lijunchang.github.io/ECo-Decompose/.

1 INTRODUCTION

Graphs have been widely used to model the relationships among
entities in real-world applications — such as social networks, collab-
oration networks, communication networks, E-commerce networks,
web search, and biology—where entities are represented by vertices
and relationships are represented by edges. With the proliferation

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514063

4−ECC 3−ECC

v1
v2

v3 v4

v5 v6

v7

v9

v8

(a) A toy graph

2−ECC

4−ECC 3−ECC

v9v8v7v6v5v4v3v2v1
(b) ECo-decomposition

Figure 1: A toy graph and its ECo-decomposition

of graph data, one of the fundamental problems in graph analytics
is to compute the set of all maximal 𝑘-edge connected subgraphs,
called 𝑘-edge connected components and abbreviated as 𝑘-ECCs, for
a user-given 𝑘 [4, 10, 35, 38]. A graph is 𝑘-edge connected, if it re-
mains connected after removing any set of 𝑘 −1 edges. For example,
for the graph in Figure 1(a), the subgraphs induced by vertices
{𝑣1, . . . , 𝑣5} and {𝑣6, . . . , 𝑣9} are the two 3-ECCs, while the former
is also a 4-ECC. Computing 𝑘-ECCs has many applications, such
as discovering cohesive blocks (communities) in social networks
(e.g., Facebook) [34], identifying closely related entities for social
behavior mining [3], measuring robustness of communication net-
works [10], and matrix completability analysis [12].

Specifying the appropriate 𝑘 value for an application is however
not trivial and usually requires a trial-and-error process. Moreover,
different applications may specify different 𝑘 values. Thus, it is
essential to pre-compute a data structure, such that 𝑘-ECCs for any
given 𝑘 can be efficiently retrieved from the data structure. It is
known that the 𝑘-ECCs for all possible values of 𝑘 form a hierar-
chical structure [37], as the 𝑘-ECCs for a specific 𝑘 are disjoint and
each 𝑘-ECC is entirely contained in a (𝑘 − 1)-ECC [7]. For example,
Figure 1(b) depicts the hierarchy tree T for the 𝑘-ECCs of the graph
𝐺 in Figure 1(a), where leaf nodes are vertices of 𝐺 and non-leaf
nodes correspond to 𝑘-ECCs of𝐺 . With the constructed tree T , the
set of 𝑘-ECCs for any 𝑘 can be extracted from T in time linear to
the size of the 𝑘-ECCs. Thus, it becomes a problem of efficiently
constructing the hierarchy tree for 𝑘-ECCs of all possible 𝑘 values.
We term the problem as Edge Connectivity-based hierarchical graph
decomposition, abbreviated as ECo-decomposition.

Besides inheriting all the above applications, computing ECo-
decomposition (i.e., the hierarchy tree) also has a wide range of
other applications as follows.

• Hierarchical Organization and Visualization of Graphs. ECo-
decomposition constructs a hierarchical organization of
a graph. It can facilitate graph-topology analysis [6], and
assist users to visualize a graph in a multi-granularity man-
ner [24], i.e., zoom in and zoom out based on the edge
connectivities of subgraphs.

• Graph Sparsification. ECo-decomposition efficiently com-
putes the steiner connectivity for all edges (see Section 4.1).

It is shown in [5, 17] that independently sampling edges ac-
cording to their steiner connectivities can sparsify a graph
(i.e., reduce the number of edges) while preserving the val-
ues of all cuts with a small multiplicative error.

• Steiner Component Search. ECo-decomposition is also an
inherent preprocessing step towards efficient online steiner
component search [7, 21], which is the problem of comput-
ing the subgraph with the maximum edge connectivity for
a user-given set of query vertices [7].

The state-of-the-art approaches compute the ECo-decomposition
(i.e., construct the hierarchy treeT) either in a top-downmanner [7]
or a bottom-up manner [37]. The top-down approach ECo-TD con-
structs the hierarchy tree by computing 𝑘-ECCs of𝐺 for all possible
𝑘 values in increasing order [7], while the bottom-up approach
ECo-BU computes 𝑘-ECCs of𝐺 for all possible 𝑘 values in decreas-
ing order [37]. Computation sharing techniques are exploited in
ECo-TD and ECo-BU based on the observation that the working
graph in an iteration for computing 𝑘-ECCs could be smaller than
the input graph𝐺 , e.g., the working graph in ECo-TD for computing
𝑘-ECCs is not 𝐺 but the set of (𝑘 − 1)-ECCs of 𝐺 which are the re-
sults of the previous iteration [7]. Nevertheless, the worst-case time
complexities of ECo-TD and ECo-BU are still O

(
𝛿 (𝐺) ×TKECC (𝐺)

)
,

where TKECC (𝐺) is the time complexity of computing all 𝑘-ECCs
of 𝐺 for a specific 𝑘 and 𝛿 (𝐺) is the degeneracy of 𝐺 which is
equal to the maximum value among the minimum vertex degrees
of all subgraphs of 𝐺 [23]. It is interesting to observe that this time
complexity is the same as the straightforward approach that inde-
pendently computes 𝑘-ECCs of 𝐺 for all possible 𝑘 values, as the
largest 𝑘 will be no larger than 𝛿 (𝐺).
Our Near-Optimal Approach. In this paper, we separate the com-
putation into two parts: we first compute the steiner connectivity
for all edges of𝐺 , and then construct the hierarchy tree T based on
the computed steiner connectivities. The steiner connectivity of an
edge (𝑢, 𝑣), denoted as 𝑠𝑐 (𝑢, 𝑣), is the largest 𝑘 such that a 𝑘-ECC
of 𝐺 contains (𝑢, 𝑣). We show in the paper that the hierarchy tree
of the ECo-decomposition can be constructed in O(𝑚) time given
the steiner connectivities of all edges of 𝐺 , where𝑚 is the number
of edges of 𝐺 . As a result, the main problem of ECo-decomposition
is to efficiently compute the steiner connectivity for all edges of 𝐺 .

We propose a divide-and-conquer approach ECo-DC to compute
the steiner connectivities of all edges. The general idea is that
given the set 𝐸𝐻𝐿 of edges of 𝐺 whose steiner connectivities are

in the range [𝐿,𝐻], i.e., 𝐸𝐻𝐿 = {(𝑢, 𝑣) ∈ 𝐸 (𝐺) | 𝐿 ≤ 𝑠𝑐 (𝑢, 𝑣) ≤ 𝐻 },
we compute the exact steiner connectivity for all edges of 𝐸𝐻𝐿 as

follows. If 𝐿 = 𝐻 , then 𝑠𝑐 (𝑢, 𝑣) = 𝐿 for every edge (𝑢, 𝑣) ∈ 𝐸𝐻𝐿 and

the problem is solved. Otherwise, let 𝑀 =
⌈𝐿+𝐻

2

⌉
, we divide the

problem into two sub-problems, 𝐸′ and 𝐸′′, to be solved recursively;
here, 𝐸′ = 𝐸𝑀−1

𝐿 = {(𝑢, 𝑣) ∈ 𝐸 (𝐺) | 𝐿 ≤ 𝑠𝑐 (𝑢, 𝑣) ≤ 𝑀 − 1} and
𝐸′′ = 𝐸𝐻𝑀 = {(𝑢, 𝑣) ∈ 𝐸 (𝐺) | 𝑀 ≤ 𝑠𝑐 (𝑢, 𝑣) ≤ 𝐻 }. The critical

procedure is to efficiently divide a search problem 𝐸𝐻𝐿 into two: 𝐸′

and 𝐸′′. We prove that 𝐸′ is exactly the set of edges of 𝐸𝐻𝐿 that are

not in𝑀-ECCs of the subgraph of𝐺 induced by 𝐸𝐻𝐿 and all edges of

𝐺 whose steiner connectivities are larger than 𝐻 , and 𝐸′′ = 𝐸𝐻𝐿 \𝐸
′.

In addition, computation sharing techniques are exploited to bound
the time complexity of ECo-DC by O

(
(log𝛿 (𝐺)) × TKECC (𝐺)

)
.

ECo-DC is optimal up to a logarithmic factor in terms of time
complexity, since the time complexity of an ECo-decomposition
algorithm is clearly lower bounded by TKECC (𝐺). However, a naive
implementation of ECo-DC would result in a space complexity of
O
(
(𝑛 +𝑚) log𝛿 (𝐺)

)
which is infeasible for large graphs. We first

show that the space complexity can be reduced toO(𝑚+𝑛 log𝛿 (𝐺)).
Although this is much lower than the naive implementation, it is
still too high to be applied to billion-scale graphs due to running
out-of-memory, as the constant hidden by the big-O notation is
large. In view of this, we further propose techniques to reduce the
space complexity to 2𝑚 + O(𝑛 log𝛿 (𝐺)) by explicitly bounding the
constant on𝑚 by 2, while not increasing the time complexity; our
space-optimized approach is denoted as ECo-DC-AA.

Extensive empirical studies on large graphs demonstrate that our
approach ECo-DC-AA outperforms the state-of-the-art approaches
ECo-TD and ECo-BU by up to 28 times in terms of running time, and
by up to 8 times in terms of memory usage. Take the Twitter graph
that has 1.2 billion undirected edges as an example, ECo-DC-AA fin-
ishes in 78minutes by consuming 15GBmemory, while ECo-TD and
ECo-BU (as well as ECo-DC) run out-of-memory on amachine with
128GB memory; on the other hand, our space-optimized versions
of ECo-TD and ECo-BU finish in 13.9 and 36.8 hours, respectively.

Our main contributions are summarized as follows.

• We propose a near-optimal approach to ECo-decomposition,
which reduces the time complexity fromO(𝛿 (𝐺)×TKECC (𝐺))
to O((log𝛿 (𝐺)) × TKECC (𝐺)).

• We propose techniques to reduce the space complexity of
our approach fromO

(
(𝑛+𝑚) log𝛿 (𝐺)

)
to 2𝑚+O(𝑛 log𝛿 (𝐺)),

such that billion-scale graphs can be processed in the main
memory of a commodity machine.

• As a by-product, we significantly reduce the memory usage
of the state-of-the-art 𝑘-ECC computation algorithm pro-
posed in [10]. Moreover, our space optimization techniques
can be generally applied to other graph algorithms.

• We conduct extensive empirical studies on large real and
synthetic graphs to evaluate the efficiency of our approaches.

Organization. The rest of the paper is organized as follows. Sec-
tion 2 gives preliminaries of the studied problem, and Section 3
presents the existing algorithms. We propose a near-optimal ap-
proach in Section 4, and develop techniques to reduce the memory
usage of our algorithms in Section 5. Section 6 reports the results
of our experimental studies, and Section 7 provides an overview
of related works. Finally, Section 8 concludes the paper. Proofs are
omitted due to limit of space and can be found in the full version [1].

2 PRELIMINARIES

In this paper, we consider a large unweighted and undirected graph
𝐺 = (𝑉 , 𝐸), with vertex set𝑉 and edge set 𝐸. The number of vertices
and the number of undirected edges in𝐺 are denoted by 𝑛 = |𝑉 | and
𝑚 = |𝐸 |, respectively. Given a vertex subset 𝑉𝑠 ⊆ 𝑉 , the subgraph
of 𝐺 induced by vertices 𝑉𝑠 is denoted by 𝐺 [𝑉𝑠] = (𝑉𝑠 , {(𝑢, 𝑣) ∈
𝐸 | 𝑢, 𝑣 ∈ 𝑉𝑠 }). Given an edge subset 𝐸𝑠 ⊆ 𝐸, the subgraph of 𝐺
induced by edges 𝐸𝑠 is denoted by 𝐺 [𝐸𝑠] = (∪(𝑢,𝑣) ∈𝐸𝑠 {𝑢, 𝑣}, 𝐸𝑠).
For an arbitrary graph 𝑔, we use 𝑉 (𝑔) and 𝐸 (𝑔) to, respectively,
denote its set of vertices and its set of edges.

g3

v1
v2

v5v3

g1

v10 v11

v13

v6
v8v7

v9

v12

v4 g2

Figure 2: An example graph

2−ECC

3−ECC

4−ECC

3−ECC(g1 ⊕ g2)

v9v8v7v6 v10 v12v11 v13

v5v4v3v2v1

(g1)

(g3)

(G = g1 ⊕ g2 ⊕ g3)

Figure 3: Hierarchy tree T

4

2

3

4
4 4 4

4

4 44 4 3

3

3

3 3

3 3 3

3

2

333

3

3

v13

v11

v6
v8

v9

v1
v2

v5v3
v10

v4
v7

v12

Figure 4: Steiner connectivi-

ties

s1 v10 v11

v13

v6
v8v7

v9

v12

Figure 5: GS33 (𝐺) for

the graph in Figure 2

A graph is 𝑘-edge connected if the remaining graph is still con-
nected after the removal of any 𝑘 − 1 edges from it. Note that,
by definition, a graph with less than 𝑘 edges (e.g., consisting of a
singleton vertex) is not considered to be 𝑘-edge connected. Then,
𝑘-edge connected component is defined as follows.

Definition 2.1: (𝑘-edge Connected Component [10]) Given
a graph 𝐺 , a subgraph 𝑔 of 𝐺 is a 𝑘-edge connected component

(abbreviated as 𝑘-ECC) of 𝐺 if (i) 𝑔 is 𝑘-edge connected, and (ii) 𝑔
is maximal (i.e., any super-graph of 𝑔 is not 𝑘-edge connected).

Consider the graph in Figure 2, the entire graph is a 2-ECC but
not a 3-ECC (since the graph will be disconnected after removing
edges (𝑣5, 𝑣12) and (𝑣9, 𝑣11)). The subgraph 𝑔1 is a 4-ECC, and 𝑔3 is
a 3-ECC. Note that 𝑔2, although is 3-edge connected, is not a 3-ECC
since its super-graph 𝑔1 ⊕ 𝑔2 is also 3-edge connected (i.e., 𝑔2 is not
maximal). Here, 𝑔1 ⊕ 𝑔2 denotes the union of 𝑔1 and 𝑔2, which also
includes the cross edges between vertices of 𝑔1 and vertices of 𝑔2.

Hierarchy Tree of 𝑘-ECCs. It is shown in [7] that the 𝑘-ECCs of
a graph satisfy the following properties.

(1) Each 𝑘-ECC is a vertex-induced subgraph.
(2) Any two distinct 𝑘-ECCs for the same 𝑘 value are disjoint.
(3) Each𝑘-ECC for𝑘 > 1 is entirely contained in a (𝑘 − 1)-ECC.

Thus, the 𝑘-ECCs of a graph 𝐺 for all possible 𝑘 values can be
compactly represented by a hierarchy tree T , where leaf nodes of T
correspond to vertices of 𝐺 and non-leaf nodes of T correspond to
distinct 𝑘-ECCs of 𝐺 . Note that, to distinguish vertices of T from
that of𝐺 , we refer to vertices of T as nodes. Figure 3 illustrates the
hierarchy tree for 𝑘-ECCs of the graph in Figure 2.

We call non-leaf nodes of T as ECC nodes, and each ECC node is
associated with a weight. An ECC node of weight 𝑘 corresponds to
a 𝑘-ECC which is the subgraph of𝐺 induced by all leaf nodes in the
subtree ofT rooted at the ECC node. For example, the left 3-ECC node
in Figure 3 corresponds to the 3-ECC 𝑔1 ⊕ 𝑔2 in Figure 2, which is
the subgraph induced by vertices 𝑣1, . . . , 𝑣9. Note that, if a subgraph
𝑔 is both a 𝑘-ECC and a (𝑘 + 1)-ECC, it is only represented once in
the hierarchy tree by an ECC node of weight 𝑘 + 1. For example, the
entire graph 𝐺 is both a 2-ECC and a 1-ECC, and is represented by
the ECC node of weight 2. Thus, each non-leaf node will have at
least two children, and the size of the hierarchy tree T is linear to 𝑛.

It is worth pointing out that for any given 𝑘 , the set of all 𝑘-ECCs
of 𝐺 can be efficiently obtained from the hierarchy tree T in time
linear to the size of the 𝑘-ECCs.

Problem Statement. Given a large graph𝐺 , we study the problem
of efficiently constructing the hierarchy tree for the set of all𝑘-ECCs

of 𝐺 . We term this problem as Edge Connectivity-based hierarchical
graph decomposition, and abbreviate it as ECo-decomposition.

In this paper, we will consider the algorithm for computing
all 𝑘-ECCs of 𝑔 for a given 𝑘 as a black-box, denoted KECC(𝑔, 𝑘).
While any of the algorithms in [4, 10, 38] can be used to implement
KECC(𝑔, 𝑘), we implement the state-of-the-art algorithm in [10] in
our experiments, and use TKECC (𝐺) to denote the time complexity
of KECC(𝑔, 𝑘) when 𝐺 is taken as the input graph.

3 EXISTING SOLUTIONS

In this section, we briefly review the two state-of-the-art approaches,
and discuss their time complexities. The existing approaches com-
pute the ECo-decomposition (i.e., the hierarchy tree) either in a
top-down manner [7] or in a bottom-up manner [37].

A Top-Down Approach: ECo-TD. The top-down approach con-
structs the hierarchy tree in a top-down manner, which is achieved
by explicitly computing 𝑘-ECCs of 𝐺 for all 𝑘 values in increasing
order [7]. The pseudocode is shown in Algorithm 1, denoted by
ECo-TD. Initially, the root ECC node 𝑟 of weight 1, which corre-
sponds to the entire input graph 𝐺 , is created for T (Line 1); note
that, without loss of generality here 𝐺 is assumed to be connected.
Then, it recursively adds the set of children to each ECC node in a
top-down fashion by invoking Construct-TD (Line 2).

Algorithm 1: ECo-TD(𝐺)
1 Create the root ECC node 𝑟 of T with weight 1;

2 Construct-TD(𝑟, 1,𝐺) ;
3 return T;

Procedure Construct-TD(ecc, 𝑘, 𝑔)
4 𝜙𝑘+1 (𝑔) ← KECC(𝑔, 𝑘 + 1) ;
5 if 𝜙𝑘+1 (𝑔) is the same as 𝑔 (i.e., 𝑔 ∈ 𝜙𝑘+1 (𝑔)) then
6 Change the weight of ecc to 𝑘 + 1;

7 Construct-TD(ecc, 𝑘 + 1, 𝑔) ;

8 else

9 for each vertex 𝑣 of 𝑔 that is not in subgraphs of 𝜙𝑘+1 (𝑔) do
10 Create a leaf node for 𝑣 to be a child of ecc in T;

11 for each connected subgraph 𝑔′ ∈ 𝜙𝑘+1 (𝑔) do
12 Create an ECC node ecc′ of weight 𝑘 + 1 to be a child of

ecc in T;
13 Construct-TD(ecc′, 𝑘 + 1, 𝑔′) ;

Given an ECC node ecc of weight 𝑘 whose corresponding graph
is 𝑔 (i.e., 𝑔 is a 𝑘-ECC of 𝐺), Construct-TD constructs the set of

Algorithm 2: ECo-BU(𝐺)
1 Create one leaf node in T for each vertex of𝐺 ;

2 Compute an upper bound 𝑘max (𝐺) of the largest 𝑘 such that𝐺 has

a non-empty 𝑘-ECC;

3 for 𝑘 ← 𝑘max (𝐺) down to 1 do
4 𝜙𝑘 (𝐺) ← KECC(𝐺,𝑘) ;
5 for each connected subgraph 𝑔 ∈ 𝜙𝑘 (𝐺) do
6 Create an ECC node ecc in T with weight 𝑘 ;

7 Add the set of nodes of T that correspond to vertices of 𝑔

to be the children of ecc;

8 Contract 𝑔 into a single super-vertex in𝐺 , to which ecc

corresponds;

9 return T;

children of ecc. To do so, it first computes the set of (𝑘 + 1)-ECCs
of 𝑔 (Line 4), denoted 𝜙𝑘+1 (𝑔). If 𝜙𝑘+1 (𝑔) is the same as 𝑔 which
means that𝑔 itself is (𝑘+1)-edge connected (Line 5), then the weight
of ecc is increased to 𝑘 + 1 (Line 6) and the recursion continues for
𝑔 (Line 7). Otherwise, the set of children of ecc is added as follows:
(i) a leaf node is added for each vertex of 𝑔 that is not in 𝜙𝑘+1 (𝑔)
(Lines 9–10); (ii) an ECC node is added for each connected subgraph
𝑔′ of 𝜙𝑘+1 (𝑔) (Lines 11–12). The recursion continues for each newly
added ECC node (Line 13).

A Bottom-Up Approach: ECo-BU. The bottom-up approach con-
structs the hierarchy tree in a bottom-up fashion, which is achieved
by computing 𝑘-ECCs of𝐺 for all 𝑘 values in decreasing order [37].
The pseudocode is shown in Algorithm 2, denoted ECo-BU.

Time Complexities.We first prove the following lemma.

Lemma 3.1: Let 𝑘max (𝐺) be the largest 𝑘 such that 𝐺 contains a

non-empty 𝑘-ECC, and 𝛿 (𝐺) be the degeneracy of 𝐺 which is equal

to the maximum value among the minimum vertex degrees of all

subgraphs of 𝐺 [23]. Then, we have 𝑘max (𝐺) ≤ 𝛿 (𝐺).
We actually observe that 𝑘max (𝐺) = 𝛿 (𝐺) for all real and syn-

thetic graphs tested in our experiments. Thus, the largest 𝑘 that is
input to Construct-TD of Algorithm 1 is 𝛿 (𝐺), and the time com-
plexity of ECo-TD is O

(
𝛿 (𝐺) × TKECC (𝐺)

)
.1 Note that, the time

complexity analysis of ECo-TD is tight: for example, consider an
input graph 𝐺 that itself is 𝛿 (𝐺)-edge connected.

Following Lemma 3.1, the upper bound 𝑘max (𝐺) can be set as
𝛿 (𝐺) at Line 2 of Algorithm 2. Thus, the time complexity of ECo-BU
isO

(
𝛿 (𝐺)×TKECC (𝐺)

)
, 2 as the degeneracy of𝐺 can be computed in

O(𝑚) time [23]. Note that, the time complexity analysis of ECo-BU
is also tight: for example, consider a graph that has no 𝑘-ECCs other
than a 𝛿 (𝐺)-ECC and 𝐺 itself which is 2-edge connected.

The degeneracy 𝛿 (𝐺), although can be bounded by O(
√
𝑚) in

the worst case [31], may still be large, especially for large graphs.
For example, 𝛿 (𝐺) is more than 2, 000 for the largest graphs tested
in our experiments (see Table 1 in Section 6). As a result, ECo-BU

1Although the time complexity of ECo-TD is analyzed to be O
(
𝛼 (𝐺) × TKECC (𝐺)

)
in [7] where 𝛼 (𝐺) is the arboricity of𝐺 , this is the same as O

(
𝛿 (𝐺) × TKECC (𝐺)

)
since 𝛼 (𝐺) ≤ 𝛿 (𝐺) ≤ 2𝛼 (𝐺) − 1 [31].
2It is worth pointing out that the original algorithm in [37] is designed for I/O-efficient
settings, and its time complexity cannot be bounded by O

(
𝛿 (𝐺) × TKECC (𝐺)

)
as the

upper bound 𝑘max (𝐺) is set as the maximum degree of𝐺 in [37].

and ECo-TD are taking excessively long time for processing large
graphs due to their high time complexity of O

(
𝛿 (𝐺) × TKECC (𝐺)

)
,

not to mention their high space complexity (see Section 5).

Handling Dynamic Graphs. Techniques for handling dynamic
graphs have also been proposed in [7]. The general idea is based on
the fact that deleting an edge from a graph or inserting a new edge
into a graph will change the edge connectivity of the graph by at
most 1, and moreover most of the 𝑘-ECCs will remain unchanged.
These techniques can be directly adopted to maintain the hierar-
chy tree for dynamic graphs. We omit the details, as we focus on
speeding up the construction of the hierarchy tree in this paper.

4 A NEAR-OPTIMAL APPROACH

In this section, we propose an approach for ECo-decomposition that
runs in O

(
(log𝛿 (𝐺)) × TKECC (𝐺)

)
time. To achieve this, we will

need to avoid the explicit computation and enumeration of 𝑘-ECCs
for all possible 𝑘 values which would take O

(
𝛿 (𝐺) × TKECC (𝐺)

)
time. Instead, we use a two-step paradigm, which first computes
the steiner connectivity for all edges of 𝐺 and then constructs the
hierarchy tree based on the steiner connectivities, as follows.

1 Step-I: Compute the steiner connectivity for all edges of𝐺 ;

2 Step-II: Construct the hierarchy tree based on the computed steiner

connectivities;

In the following, we first in Section 4.1 propose an algorithm to
compute the steiner connectivities of all edges in O

(
(log𝛿 (𝐺)) ×

TKECC (𝐺)
)
time, and then in Section 4.2 present an algorithm to

construct the hierarchy tree in O(𝑚) time based on the computed
steiner connectivities.

4.1 Computing Steiner Connectivities

Definition 4.1: (Steiner Connectivity [7]) Given a graph 𝐺 , the
steiner connectivity of an edge (𝑢, 𝑣), denoted 𝑠𝑐 (𝑢, 𝑣), is the largest
𝑘 such that a 𝑘-ECC of 𝐺 contains both 𝑢 and 𝑣 .

For example, in Figure 4, the steiner connectivity of each edge is
computed as shown on the edge, e.g., 𝑠𝑐 (𝑣1, 𝑣4) = 4. Given a graph
𝐺 , let 𝜙𝑘 (𝐺) be the set of 𝑘-ECCs of 𝐺 , then all edges of 𝜙𝑘 (𝐺)
have steiner connectivity at least 𝑘 and all edges of 𝐺 that are not
in 𝜙𝑘 (𝐺) have steiner connectivity smaller than 𝑘 . In this subsec-
tion, we propose a divide-and-conquer approach for computing the
steiner connectivities of all edges in a graph. Note that, although
the concept of steiner connectivity is borrowed from [7], all our
techniques in the following are new.

A Graph Shrink Operator GS𝑘2
𝑘1
(·). We first introduce a graph

shrink operator GS𝑘2
𝑘1
(·) for 𝑘1 ≤ 𝑘2. Given a graph 𝐺 , the result of

GS𝑘2
𝑘1
(𝐺) is still a graph. It is obtained from 𝐺 by (1) removing all

vertices and edges that are not in 𝑘1-ECCs of𝐺 and (2) contracting
each (𝑘2 + 1)-ECC of𝐺 into a super-vertex. Note that, the resulting

graph of GS𝑘2
𝑘1
(·) may have parallel edges. For example, GS33 (𝐺) for

the graph 𝐺 in Figure 2 is shown in Figure 5 which is obtained
by (1) removing edges (𝑣5, 𝑣12) and (𝑣9, 𝑣11), and (2) contracting

subgraph 𝑔1 into a super-vertex 𝑠1. There are two parallel edges
between 𝑠1 and 𝑣7 in Figure 5.

The graph shrink operator GS𝑘2
𝑘1
(·) has several properties which

will be useful for computing steiner connectivities. Firstly, applying

the operator GS𝑘2
𝑘1
(·) preserves the steiner connectivity for all edges

in the resulting graph.

Property 1: Given a graph𝐺 and two integers 𝑘1 ≤ 𝑘2, the steiner

connectivity of each edge of GS𝑘2
𝑘1
(𝐺) when computed in GS𝑘2

𝑘1
(𝐺) is

the same as that computed in 𝐺 .

Secondly, the steiner connectivity for all edges of GS𝑘
𝑘
(𝐺) is 𝑘 .

For example, all edges in Figure 5 have steiner connectivity 3.

Property 2: Given a graph𝐺 and an integer 𝑘 , every edge of GS𝑘
𝑘
(𝐺)

has steiner connectivity 𝑘 .

Thirdly, multiple operations of GS𝑘2
𝑘1
(·) can be chained together.

Property 3: Given a graph𝐺 and four integers 𝑘1 ≤ 𝑘2 and 𝑘3 ≤ 𝑘4
such that max{𝑘1, 𝑘3} ≤ min{𝑘2, 𝑘4}, we have GS𝑘4

𝑘3

(
GS𝑘2
𝑘1
(𝐺)

)
=

GS
min{𝑘2,𝑘4 }
max{𝑘1,𝑘3 }

(𝐺).

Our Divide-and-Conquer Approach: ECo-DC. From Property 2,
we know that the steiner connectivities of all edges of GS𝑘

𝑘
(𝐺)

are 𝑘 . Moreover, from the definitions of steiner connectivity and
the graph shrink operator, we know that all edges whose steiner
connectivities are 𝑘 will be in GS𝑘

𝑘
(𝐺). Thus, to compute steiner

connectivities of all edges of 𝐺 , it suffices to compute GS𝑘
𝑘
(𝐺) for

𝑘 ∈ [1, 𝛿 (𝐺)]. Instead of naively computing GS𝑘
𝑘
(𝐺) independently

for each 𝑘 ∈ [1, 𝛿 (𝐺)] which would take O
(
𝛿 (𝐺) ×TKECC (𝐺)

)
time,

we propose a divide-and-conquer approach based on the fact that

GS𝑘
𝑘
(𝐺) is entirely contained in GS𝑘2

𝑘1
if 𝑘1 ≤ 𝑘 ≤ 𝑘2.

Algorithm 3: ECo-DC(𝐺)
1 Compute the degeneracy 𝛿 (𝐺) of𝐺 ;

2 Compute-DC(𝐺, 1, 𝛿 (𝐺)) ;
3 ConstructHierarchy(𝐺, 𝑠𝑐 (·, ·)) ; /* See Algorithm 4 */;

4 return T;

Procedure Compute-DC(𝑔, 𝐿,𝐻)
5 if 𝐿 = 𝐻 then

6 for each edge (𝑢, 𝑣) ∈ 𝐸 (𝑔) do 𝑠𝑐 (𝑢, 𝑣) ← 𝐿;

7 else

8 Choose an integer𝑀 such that 𝐿 < 𝑀 ≤ 𝐻 ;

9 𝜙𝑀 (𝑔) ← KECC(𝑔,𝑀) ; /* Compute 𝑀-ECCs of 𝑔 */;

10 Let 𝑔1 be the graph obtained from 𝑔 by contracting each
connected subgraph of 𝜙𝑀 (𝑔) into a super-vertex, and 𝑔2 be
𝜙𝑀 (𝑔) ; /* 𝑔1 = GS𝑀−1

𝐿 (𝐺), 𝑔2 = GS𝐻𝑀 (𝐺) */;

11 Compute-DC(𝑔1, 𝐿,𝑀 − 1) ;
12 Compute-DC(𝑔2, 𝑀,𝐻) ;

The pseudocode of our approach is shown in Algorithm 3, de-
noted ECo-DC. It first computes the degeneracy 𝛿 (𝐺) of𝐺 (Line 1),
and then invokes procedure Compute-DC with input (𝐺, 1, 𝛿 (𝐺))
to compute the steiner connectivities of all edges (Line 2), while

Line 3 constructs the hierarchy tree and will be discussed in Sec-
tion 4.2. The input to Compute-DC consists of a graph 𝑔 and an
interval [𝐿,𝐻]. If 𝐿 = 𝐻 , then the steiner connectivities of all edges
of 𝑔 are set as 𝐿 (Lines 5–6). Otherwise, an integer𝑀 is chosen such
that 𝐿 < 𝑀 ≤ 𝐻 (Line 8), then the set 𝜙𝑀 (𝑔) of 𝑀-ECCs of 𝑔 is
computed (Line 9) and two graphs 𝑔1 and 𝑔2 are obtained from 𝑔
based on 𝜙𝑀 (𝑔) (Line 10), and finally the algorithm continues on
𝑔1 (Line 11) and on 𝑔2 (Line 12).

We prove by the following lemma that when initially invoking
Compute-DC with graph 𝐺 and interval [1, 𝛿 (𝐺)], the graph 𝑔
being processed for each recursion with interval [𝐿,𝐻] is GS𝐻𝐿 (𝐺).

Lemma 4.1: For Compute-DC, if the input graph 𝑔 is GS𝐻𝐿 (𝐺), then
the two graphs 𝑔1 and 𝑔2 obtained at Line 10 are exactly GS𝑀−1

𝐿 (𝐺)
and GS𝐻𝑀 (𝐺), respectively.

GS
δ(G)
M3

(G)

.

G = GS
δ(G)
1 (G)

GSM1−1
1 (G) GS

δ(G)
M1

(G)

GSM2−1
1 (G) GSM1−1

M2
(G) GSM3−1

M1
(G)

Figure 6: Recursion tree

Based on Lemma 4.1, the recursion tree of invokingCompute-DC
with input (𝐺, 1, 𝛿 (𝐺)) is as shown in Figure 6.

The correctness and time complexity of Algorithm 3 are proved
by the two theorems below.

Theorem4.1:Algorithm 3 correctly computes the steiner connectivity

for all edges of 𝐺 .

Theorem4.2: The time complexity of Algorithm 3 isO(ℎ×TKECC (𝐺)),
where ℎ is the height of the recursion tree in Figure 6.

Near-Optimal Time Complexity. Algorithm 3 correctly com-
putes the steiner connectivities of all edges regardless of the choice
of𝑀 at Line 8, as long as 𝐿 < 𝑀 ≤ 𝐻 . Yet, the time complexity of
Algorithm 3 would vary for different choices of𝑀 . For example, if
𝑀 is always set as 𝐿 + 1 or always set as 𝐻 , then the height of the
recursion tree would be 𝛿 (𝐺) and thus the time complexity of Algo-
rithm 3 would be O(𝛿 (𝐺) ×TKECC (𝐺)) on the basis of Theorem 4.2.
To make the time complexity as low as possible, we will need to
reduce the height of the recursion tree. Thus, we propose to set𝑀 as⌈𝐿+𝐻

2

⌉
, and prove in the following theorem that the time complexity

of Algorithm 3 then becomes O
(
(log𝛿 (𝐺)) × TKECC (𝐺)

)
.

Theorem 4.3: By setting𝑀 =
⌈𝐿+𝐻

2

⌉
, the time complexity of Algo-

rithm 3 is O
(
(log𝛿 (𝐺)) × TKECC (𝐺)

)
.

Following the above theorem, we set𝑀 =
⌈𝐿+𝐻

2

⌉
in Algorithm 3.

The time complexity of ECo-DC, which isO
(
(log𝛿 (𝐺))×TKECC (𝐺)

)
,

is optimal up to a logarithmic factor log𝛿 (𝐺). This is because
the time complexity of ECo-decomposition cannot be lower than
TKECC (𝐺), as ECo-decomposition also implicitly computes the𝑘-ECCs
of 𝐺 ; specifically, the 𝑘-ECCs of 𝐺 can be obtained from the hierar-
chy tree in time linear to the sizes of the 𝑘-ECCs.

GS33(G)

Compute 4-ECCs

s1 s2
(v5, v12)

(v9, v11)

Compute 2-ECCs

v10 v11

v13

v6
v8v7

v9

v12

v4

v1
v2

v5v3

Compute 3-ECCs

v10 v11

v13

v6
v8v7

v9

v12

v4

v1
v2

v5v3

G = GS41(G)

GS21(G)

GS43(G)

(v5, v12)
s′ s1 s2

(v9, v11)

v10 v11

v6
v8v7

v9

v12

(v5, v7)

(v4, v7)

s

v4

v1
v2

v5v3

GS22(G)

v13 GS44(G)

GS11(G)

Figure 7: Running example of ECo-DC

Example 4.1: Here, we apply ECo-DC on the graph 𝐺 in Figure 2
as an example. Figure 7 indicates the whole running process of
ECo-DC on𝐺 , where the top-most part is 𝐺 itself. The degeneracy
is 𝛿 (𝐺) = 4. Then, we compute the steiner connectivities of all edges
of 𝐺 by invoking Compute-DC with input 𝐺 and [𝐿,𝐻] = [1, 4].
Here, GS41 (𝐺) is the same as 𝐺 . As 𝐿 ≠ 𝐻 and

⌈𝐿+𝐻
2

⌉
= 3, we

compute the 3-ECCs of 𝐺 and obtain the subgraphs induced by
𝑆1 = {𝑣1, 𝑣2, . . . , 𝑣9} and 𝑆2 = {𝑣10, . . . , 𝑣13}, respectively. Thus, we
obtain the two graphs GS21 (𝐺) and GS43 (𝐺) as shown in the middle
layer of Figure 7. The computation continues on these two graphs
with intervals [1, 2] and [3, 4], respectively.

The graph GS43 (𝐺) is composed of the two 3-ECCs of𝐺 as shown
in right part of the middle layer of Figure 7. We compute the
4-ECCs of GS43 (𝐺), and obtain the subgraph induced by vertices
{𝑣1, 𝑣2, . . . , 𝑣5}. Thus, all edges among vertices {𝑣1, 𝑣2, . . . , 𝑣5} have
steiner connectivities 4 as indicated in GS44 (𝐺), while the other

edges have steiner connectivities 3 as demonstrated in GS33 (𝐺).
The graph GS21 (𝐺) is obtained by contracting each of 𝑆1 and 𝑆2

into a super-vertex as shown in the left part of the middle layer of
Figure 7. In GS21 (𝐺), there are two parallel edges between 𝑠1 and
𝑠2, corresponding to edges (𝑣9, 𝑣11) and (𝑣5, 𝑣12), respectively. As
GS21 (𝐺) is 2-edge connected, the steiner-connectivities of (𝑣9, 𝑣11)
and (𝑣5, 𝑣12) are 2. �

4.2 Constructing the Hierarchy Tree

Given the steiner connectivities of all edges of a graph 𝐺 , Algo-
rithm 4 constructs the hierarchy tree of ECo-decomposition of 𝐺
in a bottom-up manner. The main idea is as follows. First, the hier-
archy tree T is initialized as a forest of singleton nodes. Then, for
each edge (𝑢, 𝑣) ∈ 𝐸 (𝐺) in non-increasing order regarding 𝑠𝑐 (·, ·),
we identify the tree in T (specifically, the root 𝑟𝑢 of the tree) con-
taining𝑢 and the tree (specifically, the root 𝑟𝑣 of the tree) containing
𝑣 . If 𝑢 and 𝑣 are already in the same tree (i.e., 𝑟𝑢 = 𝑟𝑣), then we do
nothing. Otherwise, we merge the two trees into one in T , with
the root of this newly formed tree having weight 𝑠𝑐 (𝑢, 𝑣).

Algorithm 4: ConstructHierarchy

Input: A graph𝐺 with 𝑠𝑐 (𝑢, 𝑣) for each edge (𝑢, 𝑣)
Output: The hierarchy tree of ECo-decomposition of𝐺

1 Initialize an empty hierarchy tree T;
2 for each vertex 𝑢 ∈ 𝑉 (𝐺) do Insert a singleton node 𝑢 into T;
3 for each edge (𝑢, 𝑣) ∈ 𝐸 (𝐺) in non-increasing 𝑠𝑐 (𝑢, 𝑣) order do
4 Let 𝑟𝑢 (resp 𝑟𝑣) be the root of the tree in T containing 𝑢 (resp

𝑣);

5 if 𝑟𝑢 = 𝑟𝑣 then continue;

6 else if both 𝑟𝑢 and 𝑟𝑣 are ECC nodes with weight 𝑠𝑐 (𝑢, 𝑣) then
7 Merge 𝑟𝑢 and 𝑟𝑣 into a single ECC node;

8 else if none of 𝑟𝑢 or 𝑟𝑣 is an ECC node with weight 𝑠𝑐 (𝑢, 𝑣) then
9 Create a new ECC node in T with weight 𝑠𝑐 (𝑢, 𝑣) , and add

𝑟𝑢 and 𝑟𝑣 as its children;

10 else

11 Without loss of generality, assume 𝑟𝑢 is an ECC node with

weight 𝑠𝑐 (𝑢, 𝑣) , and add 𝑟𝑣 as a child of 𝑟𝑢 in T;

The pseudocode of constructing the hierarchy tree is illustrated
in Algorithm 4, denoted by ConstructHierarchy. The input of the
algorithm is a graph 𝐺 with 𝑠𝑐 (𝑢, 𝑣) precomputed for each edge
(𝑢, 𝑣). It first initializes an empty hierarchy tree (Line 1), and creates
a single-node tree in T for each vertex of𝐺 (Line 2). Then, the trees
in T will be merged with each other to form ECC nodes in the
hierarchy tree. For each edge (𝑢, 𝑣) ∈ 𝐸 (𝐺) sorted by 𝑠𝑐 (𝑢, 𝑣) in
non-increasing order (Line 3), the roots of the trees in T containing
node 𝑢 and node 𝑣 are found, represented by 𝑟𝑢 and 𝑟𝑣 respectively
(Line 4). If 𝑟𝑢 = 𝑟𝑣 , it implies that vertices𝑢 and 𝑣 have already been
merged into the same tree so that the algorithm skips the current
edge (Line 5); otherwise, the algorithm merges 𝑟𝑢 and 𝑟𝑣 into a
single tree based on the following three cases. (1) If both 𝑟𝑢 and 𝑟𝑣
are ECC nodes with weight 𝑠𝑐 (𝑢, 𝑣), it merges 𝑟𝑢 and 𝑟𝑣 into a single
ECC node (Lines 6–7). (2) If neither 𝑟𝑢 nor 𝑟𝑣 is an ECC node with
weight 𝑠𝑐 (𝑢, 𝑣), it creates a new ECC node in T with weight 𝑠𝑐 (𝑢, 𝑣)
whose children are 𝑟𝑢 and 𝑟𝑣 (Lines 8–9). (3) The last situation is
that one of 𝑟𝑢 or 𝑟𝑣 is an ECC node with weight 𝑠𝑐 (𝑢, 𝑣) and the
other is not; note that, if the other one is an ECC node, then its
weight must be larger than 𝑠𝑐 (𝑢, 𝑣). Assume that 𝑟𝑢 is the one with
weight 𝑠𝑐 (𝑢, 𝑣), 𝑟𝑣 would be added as a child of 𝑟𝑢 . Similar steps
would be applied to the situation where 𝑟𝑣 is the one with weight
𝑠𝑐 (𝑢, 𝑣) (Lines 10–11).

The most time-consuming operation in Algorithm 4 is Line 4,
which aims to find the root of the tree that contains a node 𝑢

in a forest T . A naive implementation of this operation would
take O(𝑛) time by tracing the parent pointers starting from node
𝑢 in the tree, and then the total time complexity of Algorithm 4
would be O(𝑛 ×𝑚). This can be improved to O(𝑚) by resorting
to the disjoint-set data structure. Recall that, a disjoint-set data
structure D partitions a universe of elements into a collection
of sets, and each set is represented by one of its element (called
representative) [15]. There are two operations supported by the data
structureD: find the set that contains a specific element; merge two
sets into one. In our case, the universe of the data structureD is the
set of leaf nodes of the hierarchy tree T , and there is a one-to-one
correspondence between sets in D and trees in T . Whenever we
merge two trees in T , we also union the two corresponding sets
in D. Moreover, we point each set (specifically, the representative
element of the set) of D to the root of the tree in T to which the
set corresponds. This pointer is used for efficiently identifying the
root of the tree that contains a node (i.e., Line 4). As each of the two
operations on D takes amortized constant time [15] 3 and sorting
the edges at Line 3 can be achieved in linear time by counting
sort [15], the time complexity of Algorithm 4 is O(𝑚).

5 OPTIMIZING THE SPACE USAGE

A straightforward implementation of Algorithm 3 would result in
a space complexity of O((𝑚 + 𝑛) log𝛿 (𝐺)), i.e., each level of the
recursion tree of Figure 6 would require storing a separate copy
of the input graph 𝐺 . This space complexity is too high for large
graphs. In this section, we focus on optimizing the space usage of
ECo-DC. We first in Section 5.1 discuss how to implement ECo-DC
in O(𝑚 +𝑛 log𝛿 (𝐺)) space by using doubly-linked list-based graph
representation, where the constant hidden by the big-O notation is
large. Then, in Section 5.2 we further optimize the space usage of
ECo-DC by using adjacency array-based graph representation and
other nontrivial optimizations; this results in our space-efficient al-
gorithm ECo-DC-AA that has space complexity 2𝑚+O(𝑛 log𝛿 (𝐺)).
As a result, we can process billion-scale graphs with an ordinary
PC. For example, experiments in Section 6 show that our adjacency
array-based algorithms can process twitter-2010 and com-friendster,
which have 1.2 and 1.8 billion undirected edges, respectively, with
at most 15GB and 24GB main memory. In contrast, the linked list-
based algorithms run out-of-memory even with 128GB memory.

5.1 Doubly-Linked List-based Implementation

In this subsection, we discuss how to implement ECo-DC by using
doubly-linked list-based graph representation, which is also the
representation used by the state-of-the-art KECC algorithm [10]
and the two state-of-the-art ECo-decomposition algorithms [7, 37].
The main reason for the existing approaches to choose this repre-
sentation is that KECC iteratively modifies the graph — i.e., contract
two (super-)vertices into one and remove (super-)vertices of degree
less than 𝑘 [10] — which can be easily implemented by using the
linked list-based graph representation. We abstract these two graph
modification operations as vertex contraction and vertex removal,

3To be more precise, the amortized time complexity of each operation on D is the
inverse of the Ackermann function of 𝑛 [15]. As this function grows very slowly and
is bounded by 4 for all practical values of 𝑛, we consider it as a constant.

respectively. Note that ECo-TD also uses the vertex removal opera-
tion (see Lines 11–13 of Algorithm 1), and ECo-BU uses the vertex
contraction operation (see Line 8 of Algorithm 2).

vi

vj

.

.

.

vj

vi

Figure 8: Doubly-linked list-based graph representation

Recall that, the linked list-based graph representation stores the
adjacent edges of each vertex in a linked list [15]. For example,
Figure 8 illustrates the linked lists for the adjacent edges of 𝑣𝑖 and
𝑣 𝑗 . In addition, a cross pointer is constructed in the implementation
for each edge (𝑣𝑖 , 𝑣 𝑗) which points to its reverse direction (𝑣 𝑗 , 𝑣𝑖),
as each undirected edge will have two copies in the representation,
one copy for each direction. Vertex removal can be implemented
efficiently as follows. Suppose we are removing vertex 𝑣𝑖 from the
graph; note that we also need to remove all edges ending at 𝑣𝑖 which
scatter across the linked lists. To achieve this, we iterate through all
the adjacent edges of 𝑣𝑖 , and for each edge (𝑣𝑖 , 𝑣 𝑗), we first locate its
reverse edge (𝑣 𝑗 , 𝑣𝑖) via the cross pointer and then remove (𝑣 𝑗 , 𝑣𝑖)
from the doubly-linked list of 𝑣 𝑗 which can be achieved in constant
time. When it comes to vertex contraction, the process becomes
slightly more complicated. Suppose we are contracting 𝑣𝑖 and 𝑣 𝑗 .
We use one of the vertices (e.g., 𝑣𝑖) to represent the resulting super-
vertex, and the process is divided into two parts: the edges starting
from 𝑣 𝑗 should start from 𝑣𝑖 ; the edges end at 𝑣 𝑗 ought to end at 𝑣𝑖 .
For the first part, we could simply connect the head of the linked list
of 𝑣 𝑗 to the tail of the linked list of 𝑣𝑖 . For the second part, we iterate
through all the adjacent edges of 𝑣 𝑗 , and for each edge (𝑣 𝑗 , 𝑣𝑘), we
first locate its reverse edge (𝑣𝑘 , 𝑣 𝑗) via the cross pointer and then
update the edge to be (𝑣𝑘 , 𝑣𝑖).

Based on the linked list-based graph representation, ECo-DC
(i.e., Algorithm 3) can be implemented fairly easily. Specifically,
to construct 𝑔1 = GS𝑀−1

𝐿 (𝑔) and 𝑔2 = GS𝐻𝑀 (𝑔) = 𝜙𝑀 (𝑔) from
𝑔 = GS𝐻𝐿 (𝐺) at Line 10 of Compute-DC, we first split each linked
list (that corresponds to the adjacent edges of a vertex) into two,
one to be used in 𝑔1 and the other in 𝑔2, as 𝑔1 and 𝑔2 have disjoint
sets of edges. We then apply the contraction operation for the edges
in 𝑔1. In this way, we do not create any new edges in Compute-DC;
note however that, the number of vertices may double (i.e., one
copy in 𝑔1 and one in 𝑔2). Overall, ECo-DC has a space complexity
of O(𝑚 + 𝑛 log𝛿 (𝐺)), by noting that it traverses the recursion tree
of Figure 6 in a depth-first manner.

5.2 Adjacency Array-based Implementations

Although the space complexity of ECo-DC has been reduced from
O((𝑚 + 𝑛) log𝛿 (𝐺)) to O(𝑚 + 𝑛 log𝛿 (𝐺)) in Section 5.1, this is
still too high to be applied to large graphs (see our experimental
results in Section 6) as the constant hidden by the big-O notation
is large. Firstly, for each edge in the linked lists, three pointers and
one number (where the number indicates the other end-point of
the edge) need to be stored. Thus, the graph representation will
consume at least 8𝑚 integers, by noting that each undirected edge

is stored twice. Secondly, the graph may be stored three times
(i.e., simultaneously have three copies in main memory) during
the computation, i.e., once in Compute-DC and twice in KECC

as KECC will modify the graph that is input to it [10]. In this
subsection, we propose an adjacency array-based implementation
to explicitly bound the constant on 𝑚 by 2 such that the space
complexity becomes 2𝑚+O(𝑛 log𝛿 (𝐺)), and at the same time keep
the time complexity unchanged which is challenging. Note that, we
do not optimize the constant on 𝑛 log𝛿 (𝐺), as real-world graphs
usually have much more edges than vertices, i.e.,𝑚 usually is the
dominating factor.

v7 v8

v6 v7 v8 v9

v9 v6 v8 v9 v6 v7 v9 v6 v7 v8

0 3 6 9 12pstart

edges

2 5 8 11pend

v6 v7 v8 v9

Figure 9: Adjacency array-based graph representation

The adjacency array-based graph representation is also known as
the compressed sparse row (CSR) representation. It uses two arrays
to represent a graph, and assumes that the vertices are taking ids
from {0, . . . , 𝑛 − 1}. We denote the two arrays by 𝑝𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑑𝑔𝑒𝑠 .
The set of adjacent edges (specifically, neighbours) of each vertex
is stored consecutively in an array, and then all such arrays are
concatenated into the large array 𝑒𝑑𝑔𝑒𝑠 . The start position of the
set of adjacent edges of vertex 𝑖 in 𝑒𝑑𝑔𝑒𝑠 is stored in 𝑝𝑠𝑡𝑎𝑟𝑡 [𝑖], and
thus the set of adjacent edges of vertex 𝑖 is stored consecutively
in the subarray 𝑒𝑑𝑔𝑒𝑠 [𝑝𝑠𝑡𝑎𝑟𝑡 [𝑖], . . . , 𝑝𝑠𝑡𝑎𝑟𝑡 [𝑖 + 1] − 1]. Figure 9
demonstrates such a representation for the subgraph 𝑔2 of Figure 2;
please ignore the part of “𝑝𝑒𝑛𝑑” for the current being. The array
𝑝𝑠𝑡𝑎𝑟𝑡 is of size 𝑛 + 1, while the array 𝑒𝑑𝑔𝑒𝑠 is of size 2𝑚.

Efficient Implementation ofVertexRemoval andContraction.

To achieve the space complexity of 2𝑚 +O(𝑛 log𝛿 (𝐺)), we will not
be allowed to create any new copies of 𝑒𝑑𝑔𝑒𝑠 , even if temporarily.
This makes it challenging to efficiently implement vertex removal
and vertex contraction which are the two primitive operations used
by the algorithms. In the following, we discuss how to implement
these two operations efficiently with the help of some additional
data structures of size O(𝑛).

v9 v8

v6 v7 v8 v9

v7 v6 v8 v9 v6 v9 v7 v6 v8 v7

0 3 6 9 12pstart

edges

1 5 7 10pend

v6 v7 v8 v9

Figure 10: After removing vertex 𝑣7

Vertex removal in the adjacency array-based graph represen-
tation can be implemented by marking the vertex as “removed”.
Recall that, when vertex 𝑖 is “removed”, the edge (𝑗, 𝑖) that ends
at 𝑖 should also be removed from the adjacent edges of 𝑗 for each
neighbor 𝑗 of 𝑖 . This cannot be implemented efficiently without

cross pointers, but storing cross pointers is not affordable for achiev-
ing the space complexity of 2𝑚 + O(𝑛 log𝛿 (𝐺)). To circumvent this,
we propose to remove (𝑗, 𝑖) from the adjacent edges of 𝑗 in a lazy
way, i.e., delay it to the moment when we actually need to traverse
all adjacent edges of 𝑗 . Thus, we introduce another array, named
𝑝𝑒𝑛𝑑 , of size 𝑛, where the entry 𝑝𝑒𝑛𝑑 [𝑗] explicitly stores the last
position of the adjacent edges of vertex 𝑗 in 𝑒𝑑𝑔𝑒𝑠 and is initialized
with 𝑝𝑠𝑡𝑎𝑟𝑡 [𝑗 + 1] − 1; see Figure 9. When we need to traverse all
the adjacent edges of 𝑗 , we loop through all the index values 𝑖𝑑𝑥
from 𝑝𝑠𝑡𝑎𝑟𝑡 [𝑗] to 𝑝𝑒𝑛𝑑 [𝑗]: if the edge 𝑒𝑑𝑔𝑒𝑠 [𝑖𝑑𝑥] should have been
removed (i.e., the other end-point of this edge is “removed”), we first
swap 𝑒𝑑𝑔𝑒𝑠 [𝑖𝑑𝑥] with 𝑒𝑑𝑔𝑒𝑠 [𝑝𝑒𝑛𝑑 [𝑗]] and then decrement 𝑝𝑒𝑛𝑑 [𝑗]
by one. In this way, all the remaining (i.e., active) adjacent edges
of vertex 𝑗 would be consecutive in 𝑒𝑑𝑔𝑒𝑠 starting from position
𝑝𝑠𝑡𝑎𝑟𝑡 [𝑗] and ending at 𝑝𝑒𝑛𝑑 [𝑗], while the edges in 𝑒𝑑𝑔𝑒𝑠 whose
indices are between 𝑝𝑒𝑛𝑑 [𝑗] +1 and 𝑝𝑠𝑡𝑎𝑟𝑡 [𝑗 +1] −1 are “removed”.
Thus, the amortized time of removing an edge is constant. For ex-
ample, the result of removing vertex 𝑣7 from the graph of Figure 9
is shown in Figure 10; here, for illustration purpose, we assume that
the graph has been traversed once such that 𝑒𝑑𝑔𝑒𝑠 is reorganized.

When contracting vertex 𝑖 and vertex 𝑗 , following the same
ideas as Section 5.1 we also use 𝑣𝑖 to represent the resulting super-
vertex and divide the process into two parts: the edges starting
from 𝑣 𝑗 should start from 𝑣𝑖 ; the edges ending at 𝑣 𝑗 ought to end
at 𝑣𝑖 . For the first part, instead of moving adjacent edges around
which would create temporary copies of 𝑒𝑑𝑔𝑒𝑠 and furthermore
increase the time complexity, we use two additional arrays, 𝑠𝑣_𝑛𝑒𝑥𝑡
and 𝑠𝑣_𝑙𝑎𝑠𝑡 , each of size 𝑛 to represent the super-vertices. That
is, 𝑠𝑣_𝑛𝑒𝑥𝑡 chains together all vertices that belong to the same
super-vertex, implicitly represented as a singly-linked list; specif-
ically, 𝑠𝑣_𝑛𝑒𝑥𝑡 [𝑖] stores the id of the next vertex (i.e., after 𝑖) in
the super-vertex. To efficiently merge two super-vertices (that are
represented as singly-linked lists), we also store in 𝑠𝑣_𝑙𝑎𝑠𝑡 [𝑖] the
id of the last vertex in the super-vertex 𝑖 . For example, Figure 11(a)
shows the values of 𝑠𝑣_𝑛𝑒𝑥𝑡 and 𝑠𝑣_𝑙𝑎𝑠𝑡 for the graph of Figure 9;
note that, the part in the dotted rectangle illustrates the linked
lists that represent the super-vertices, and is not physically stored.
When contracting (super-)vertex 𝑖 with (super-)vertex 𝑗 , we first
update 𝑠𝑣_𝑛𝑒𝑥𝑡 [𝑠𝑣_𝑙𝑎𝑠𝑡 [𝑖]] to 𝑗 to connect the two linked lists into
one, and then update 𝑠𝑣_𝑙𝑎𝑠𝑡 [𝑖] to 𝑠𝑣_𝑙𝑎𝑠𝑡 [𝑗]; this can be conducted
in constant time. Note that, 𝑠𝑣_𝑙𝑎𝑠𝑡 [𝑖] is only useful and up-to-date
if 𝑖 is the first vertex in a linked list, i.e., 𝑠𝑣_𝑙𝑎𝑠𝑡 [·] for all other
vertices are not updated and will not be used. Figure 11(b) shows
the result of contracting 𝑣6 and 𝑣8; notice that 𝑣6 and 𝑣8 are now
linked together. To iterate over all edges adjacent to (super-)vertex
𝑖 , we use a pointer 𝑝 which is initialized as 𝑖 and is then iteratively
updated by 𝑠𝑣_𝑛𝑒𝑥𝑡 [𝑝] until reaching the end of the linked list.
These 𝑝 values correspond to ids of the vertices that are contracted
into (super-)vertex 𝑖 . Thus, the edges adjacent to (super-)vertex 𝑖 are
𝑒𝑑𝑔𝑒𝑠 [𝑝𝑠𝑡𝑎𝑟𝑡 [𝑝], . . . , 𝑝𝑒𝑛𝑑 [𝑝]] for all 𝑝 values along the iterations.

For the second part of vertex contraction (i.e., edges ending at 𝑣 𝑗
ought to end at 𝑣𝑖), explicitlymodifying the edge end-points without
maintaining cross pointers would be time consuming. To tackle this
issue, we propose to use an additional disjoint-set data structure of
size O(𝑛) to represent the super-vertices. The universe of the data
structure is the vertex set𝑉 , and each super-vertex corresponds to a
set in the data structure that consists of the vertices contained in the

sv next

sv last v6 v7 v8 v9

v6 v7 v8 v9

Disjoint Set

v6 v7 v8 v9

v6 v7 v8 v9

v6 v7 v8 v9

(a) Before contraction

v6

v6 v8

v8

sv next

sv last v8 v7 v8 v9

v8 v7 v8 v9

Disjoint Set v7 v9

v7 v9

v6 v7 v8 v9

(b) After contraction

Figure 11: Example of contracting 𝑣6 and 𝑣8

super-vertex. When we contract two super-vertices, we also union
their corresponding sets in the data structure. In addition, we point
the representative of a set in the data structure to the vertex that
represents the corresponding super-vertex, in the same way as that
in constructing the hierarchy tree in Section 4.2. The last row of
Figure 11 illustrates the disjoint sets, where the representative of a
set is shown in bold, e.g., 𝑣6 and 𝑣8 are in the same set in Figure 11(b)
with 𝑣6 being the representative.

Our Space-Optimized Algorithms. With the ideas presented
above, we first optimize the space usage of KECC by using the
adjacency array-based graph representation, as it is an essential
procedure used in ECo-DC. We denote our space-optimized ver-
sion of KECC as KECC-AA. Note that, with the above implementa-
tions of vertex removal and vertex contraction, the input graph to
KECC-AA is always represented by 𝑝𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑑𝑔𝑒 which are not
changed, although the order of the adjacent edges for each vertex
may change. Thus, we do not need to store another copy of the
input graph, and the space complexity of KECC-AA is 2𝑚 + O(𝑛).

WithKECC-AA, we are now ready to present our space-optimized
version of ECo-DC. It is worth pointing out that directly replacing
KECC with KECC-AA in Algorithm 3 will not achieve our desired
space complexity. The main idea is still based on the fact that 𝑔1 and
𝑔2 in Algorithm 3 have disjoint sets of edges. But now, we cannot
afford to first construct 𝑔1 and 𝑔2 from 𝑔, and then release the mem-
ory of 𝑔, as this will double the intermediate memory consumption.
To tackle this issue, we always expand the right child of a node
in the recursion tree (see Figure 6) before expanding the left child.
This is based on the observation that, for a non-leaf node in the
recursion tree, the graph processed by its right child is always a
subgraph of the current graph while the graph processed by the left
child is obtained by contracting each connected component (of the
graph of the right child) into a super-vertex in the current graph.
Thus, to process the right child, we can directly work on 𝑝𝑠𝑡𝑎𝑟𝑡 and
𝑒𝑑𝑔𝑒𝑠 by rearranging the adjacent edges of each vertex and using a
local array of size 𝑛 to bookmark the number of adjacent edges of
each vertex in the subgraph. After expanding the right child (and
its descendants) and to process the left child, we further create a
local copy of 𝑠𝑣_𝑛𝑒𝑥𝑡 , 𝑠𝑣_𝑙𝑎𝑠𝑡 and the disjoint-set data structure,
which are all of size O(𝑛), to implement the contraction operation.

The pseudocode of the adjacency array-based implementation
of ECo-DC is illustrated in Algorithm 5, denoted by ECo-DC-AA.
It is generally similar to Algorithm 3, with three differences. Firstly,
it invokes KECC-AA instead of KECC at Line 10. Secondly, it ex-
pands the right child first (Lines 11-13). Thirdly, it interleaves the
execution of Algorithm 4 with Construct-DC-AA (Lines 2, 3, 7).

Algorithm 5: ECo-DC-AA(𝐺)
1 Compute the degeneracy 𝛿 (𝐺) of𝐺 ;

2 Execute Lines 1–2 of Algorithm 4;

3 Construct-DC-AA(𝐺, 1, 𝛿 (𝐺)) ;
4 return T;

Procedure Construct-DC-AA(𝑔, 𝐿,𝐻)
5 if 𝐿 = 𝐻 then

6 for each edge (𝑢, 𝑣) ∈ 𝐸 (𝑔) do
7 Execute Lines 4–11 of Algorithm 4 with 𝑠𝑐 (𝑢, 𝑣) equal to 𝐿;

8 else

9 𝑀 ←
⌈
𝐿+𝐻
2

⌉
;

10 𝜙𝑀 (𝑔) ← KECC-AA(𝑔,𝑀) ;
11 for each connected subgraph 𝑔′ ∈ 𝜙𝑀 (𝑔) do
12 Construct-DC-AA(𝑔′, 𝑀,𝐻) ;
13 Contract 𝑔′ into a super-vertex in 𝑔;

14 Construct-DC-AA(𝑔, 𝐿,𝑀 − 1) ;

The reason of interleaving is that explicitly storing the steiner con-
nectivities of all edges would increase the space consumption by
at least 2𝑚 + O(𝑛), and interleaving eliminates the requirement
of storing the steiner connectivities. This interleaving is correct
because the right child is always expanded before the left child
for each node in the recursion tree (Figure 6), and thus the steiner
connectivities are computed in non-increasing order. Note that, we
also exploit this interleaving to reduce the memory consumption for

ECo-DC, ECo-TD and ECo-BU in our experiments.
The correctness of ECo-DC-AA directly follows from the cor-

rectness of ECo-DC and the discussions in the above two para-
graphs, and the time complexity of ECo-DC-AA remains the same
as ECo-DC since our adjacency array-based implementation does
not increase the time complexity of vertex removal and contraction.
The space complexity of ECo-DC-AA becomes 2𝑚 + O(𝑛 log𝛿 (𝐺)),
as it conducts a depth-first traversal of the recursion tree (Figure 6)
and each level of the recursion tree only requires a local data struc-
ture of size O(𝑛).

With the same idea as ECo-DC-AA, we can also implement
ECo-TD and ECo-BU by using the adjacency array-based graph
representation such that their space complexities become 2𝑚+O(𝑛)
while their time complexities remain unchanged. We denote our
space-optimized versions of ECo-TD and ECo-BU by ECo-TD-AA
and ECo-BU-AA, respectively.

6 EXPERIMENTS

In this section, we conduct extensive performance studies to evalu-
ate the efficiency and effectiveness of our techniques. Specifically,
we evaluate the following ECo-decomposition algorithms:

• ECo-TD (Algorithm 1): the existing top-down approach
proposed in [7] that uses the doubly-linked list-based graph
representation.

• ECo-BU (Algorithm 2): an adaptation of the existing bottom-
up approach proposed in [37] that uses the doubly-linked
list-based graph representation.

• ECo-DC (Algorithm 3): our near-optimal approach (Algo-
rithm 3) that uses the doubly-linked list-based graph repre-
sentation and has a space complexity of O(𝑚 + 𝑛 log𝛿 (𝐺)).

Table 1: Statistics of graphs (𝑑 : average degree, 𝛿 : degeneracy)

ID Dataset 𝑚 𝑛 𝑑 𝛿

D1 ca-CondMat 91,286 21,363 8.55 25
D2 soc-Epinions1 405,739 75,877 10.69 67
D3 web-Google 3,074,322 665,957 9.23 44
D4 as-Skitter 11,094,209 1,694,616 13.09 111
D5 cit-Patents 16,518,947 3,774,768 8.75 64
D6 soc-pokec 22,301,964 1,632,803 27.32 47
D7 wiki-topcats 25,444,207 1,791,489 28.41 99
D8 com-lj 34,681,189 3,997,962 17.35 360
D9 soc-LiveJournal1 42,845,684 4,843,953 17.69 372
D10 com-orkut 117,185,083 3,072,441 76.28 253
D11 uk-2002 261,556,721 18,459,128 28.34 943
D12 webbase 854,809,761 115,554,441 14.79 1,506
D13 twitter-2010 1,202,513,344 41,652,230 57.74 2,488
D14 com-friendster 1,806,067,135 65,608,366 55.06 304

• ECo-TD-AA, ECo-BU-AA and ECo-DC-AA: space-optimized
versions of ECo-TD, ECo-BU and ECo-DC by using the ad-
jacency array-based graph representation (Section 5.2).

In addition, we also evaluate two 𝑘-ECC computation algorithms:

• KECC: the state-of-the-art algorithm proposed in [10] that
uses the doubly-linked list-based graph representation.

• KECC-AA: our space-optimized version of KECC that uses
the adjacency array-based graph representation (Section 5.2).

All algorithms are implemented in C++ and compiled with GNU
GCC with the -O3 optimization. All experiments are conducted on
a machine with Intel(R) Xeon(R) 3.6GHz CPU and 128GB memory
running Ubuntu. We evaluate the performance of all algorithms on
both real and synthetic graphs as follows.

Real Graphs. We evaluate the algorithms on fourteen real graphs
from different domains, which are downloaded from the Stanford
Network Analysis Platform 4 and the Laboratory of Web Algorith-
mics 5. Statistics of the graphs are shown in Table 1, where the
second last column and the last column respectively show the aver-
age degree and the degeneracy. The graphs are ranked regarding
their numbers of edges. We denote the graphs by D1, . . ., D14.

Synthetic Graphs. We evaluate the algorithms on power-law
graphs that are generated by the graph generator GTGraph 6. A
power-law graph is a random graph in which edges are randomly
added such that the degree distribution follows a power-law distri-
bution. Firstly, we generate fourteen power-law graphs, PL1, . . .,
PL14, where the number of vertices varies from 16 thousand to
133 million with an increasing factor of 2. The average degree of
the power-law graphs are around 24.5; as a result, the number of
undirected edges of the power-law graphs varies from 198 thousand
to 1.6 billion. The degeneracy of these graphs varies from 18 to 25.

Secondly, we further generate six power-law graphs fixing the
number of vertices to be the same as PL7 (i.e., around one million),
PL7_1, . . ., PL7_6, where the number of edges increases with a
factor of 2. The resulting degeneracy of these graphs increases from
21 (for PL7) to 1, 380 (for PL7_6), also roughly with a factor of 2.

Evaluation Metrics. For all the evaluations, we record both the
processing time and the peak main memory usage. Each testing is

4http://snap.stanford.edu/
5http://law.di.unimi.it/datasets.php
6http://www.cse.psu.edu/~madduri/software/GTgraph/

run three times, and the average results are reported. All algorithms
are run in main memory and use a single thread. For the reported
processing time, we exclude the I/O time that is used for loading
a graph from disk to main memory. The peak memory usage of a
program is recorded by /usr/bin/time 7.

6.1 Results for ECo-decomposition

In this subsection, we evaluate the six ECo-decomposition algo-
rithms regarding their processing time and main memory usage.

Results on Real Graphs. We first evaluate the algorithms on real
graphs. The results are illustrated in Figure 12. For better com-
parison, we separate the algorithms into two groups: linked list-
based algorithms (i.e., ECo-TD, ECo-BU, and ECo-DC), and space-
optimized algorithms (i.e., ECo-TD-AA, ECo-BU-AA, and ECo-DC-AA).
The processing time of the three linked list-based algorithms is il-
lustrated in Figure 12(a). We can see that our near-optimal approach
ECo-DC consistently runs faster than the two state-of-the-art ap-
proaches ECo-TD and ECo-BU, which is inline with our theoretical
analysis that the former has a lower time complexity than the lat-
ter two. However, all the three algorithms fail to process the two
billion-scale graphs D13 and D14, due to running out-of-memory.
On the other hand, our space-optimized algorithms are able to pro-
cess these billion-scale graphs as shown in Figure 12(b), due to their
reduced main memory usage. The overall trend is similar to their
counterparts in Figure 12(a), i.e., ECo-DC-AA consistently performs
the best. When comparing the top-down approach ECo-TD-AA
with the bottom-up approach ECo-BU-AA, there is no clear win-
ner despite of having the same time complexity, as their practical
performance is sensitive to the graph topology. For example, the
processing time of ECo-TD-AA, ECo-BU-AA, and ECo-DC-AA on
D13 are respectively 13.9hrs, 36.8hrs and 1.3hrs, while that on D14
are respectively 29.4hrs, 13.3hrs and 3.3hrs.

The main memory usage of the six algorithms is demonstrated
in Figure 12(c). It is evident that our space-optimized algorithms
(ECo-TD-AA, ECo-BU-AA, ECo-DC-AA) consume much less mem-
ory than the linked list-based algorithms (ECo-TD, ECo-BU, ECo-DC),
where ECo-TD and ECo-BU are the two state-of-the-art approaches.
For example, the peak memory usage of our space-optimized al-
gorithms is at most 15GB for D13 and is at most 24GB for D14,
while the linked list-based algorithms run out-of-memory even
with 128GB memory. There are two things worth mentioning for
Figure 12(c). Firstly, it appears that ECo-TD consumes more mem-
ory than ECo-DC. This is due to implementation differences, i.e.,
we used the original implementation of ECo-TD from [7] while
our implementations of ECo-BU and ECo-DC slightly optimized
the constant on 𝑚 in the space complexity. We do not optimize
the code of ECo-TD, as linked list-based implementations, which
are outperformed by their space-optimized counterparts, are not
our main focus. Secondly, the linked list-based algorithm consume
more memory on D13 than on D12, while for our space-optimized
algorithms, the situation is the opposite. This is because (1) D13
has more edges but less vertices than D12, (2) the memory usage
of linked list-based algorithms is mainly dominated by the part on

7https://man7.org/linux/man-pages/man1/time.1.html

(a) Processing time of linked list-based algorithms (b) Processing time of space-optimized algorithms (c) Memory usage of all algorithms

Figure 12: Results of ECo-decomposition on real graphs (best viewed in color)

(a) Processing time (vary 𝑛 and𝑚, fix average degree) (b) Memory usage (vary 𝑛 and𝑚, fix average degree)

(c) Processing time (vary𝑚, fix 𝑛) (d) Memory usage (vary𝑚, fix 𝑛)

Figure 13: Results of ECo-decomposition on power-law graphs

(a) Processing time (𝑘-ECC computation)

(b) Memory usage (𝑘-ECC computation)

Figure 14: Results of 𝑘-ECC on real graphs

𝑚 in the space complexity, while the memory usage of our space-
optimized algorithms is also affected by the part on 𝑛. This is also
observed for 𝑘-ECC computation algorithms in Figure 14(b).

Results on Synthetic Graphs. The processing time and mem-
ory usage of the six algorithms on power-law graphs are shown
in Figure 13. The overall trend is similar to that on real graphs
in Figure 12. That is, our divide-and-conquer algorithms ECo-DC
and ECo-DC-AA run the fastest, and our space-optimized algo-
rithms consume much less memory than the linked list-based al-
gorithms, e.g., the latter run out-of-memory on PL14 which has
1.6 billion undirected edges. It is interesting to observe that our
space-optimized bottom-up approach ECo-BU-AA also perform
quite well on power-law graphs that have small degeneracy (i.e.,
at most 25), see Figure 13(a). The results on power-law graphs by
varying𝑚 and fixing 𝑛 are shown in Figure 13(c) and Figure 13(d);
note that the degeneracy of these graphs also increases with𝑚. We
can see that ECo-BU-AA now runs slower than ECo-DC-AA when
the degeneracy becomes large, e.g., the degeneracy of PL7_5 and
PL7_6 are 705 and 1, 380, respectively. From Figure 13, we can also
observe that ECo-DC-AA scales almost linearly to large graphs for
both the processing time and the memory usage.

Table 2: Compare KECC-AA with NetworkX (𝑘 = 8)

Dataset
NetworkX KECC-AA

Time (s) Memory (MB) Time (s) Memory (MB)
D1 768.89 164.66 0.021 5.73
D2 1412.99 772.74 0.022 23.16

6.2 Results for 𝑘-ECC Computation

In this subsection, we evaluate our space-optimized algorithm
KECC-AA for 𝑘-ECC computation. We first compare KECC-AA
with the linked list-based counterpartKECC that is proposed in [10].
The results on real graphs for 𝑘 = 8 are shown in Figure 14. We can
observe that KECC-AA significantly reduces the memory usage
compared with KECC. For example, KECC consumes 78GB and
119GB memory respectively for processing D13 and D14, while
KECC-AA only consumes 11GB and 17GB memory for these two
graphs. It is also interesting to see that KECC-AA is slightly faster
than KECC. This is because KECC-AA benefits from increased
cache hit-rate by using adjacency array-based graph representation.

We also compare KECC-AA with the 𝑘-ECC computation algo-
rithm in NetworkX, a popular Python module for graph analytics.
The results on the two smallest real graphs D1 and D2 for 𝑘 = 8
are shown in Table 2; we do not test NetworkX on larger graphs as

106

107

108

109

1010

 0 200 400 600 800 1000 1200

T
ot

al
 S

iz
e

of
 k

-E
C

C
 S

ub
m

at
ric

es

k

(a) Netflix

104

106

108

1010

1012

1014

 0 20 40 60 80 100 120 140

T
ot

al
 S

iz
e

of
 k

-E
C

C
 S

ub
m

at
ric

es

k

(b) Amazon_reviews

Figure 15: Matrix completability analysis

it is too slow. We can see that KECC-AA significantly outperforms
NetworkX for 𝑘-ECC computation, e.g., on D2, KECC-AA is more
than 60, 000 times faster and consumes 32 times less memory than
NetworkX. Although there are factors of programming language
difference (i.e., C++ vs. Python), it is clear that KECC-AA has signif-
icant advantages over the implementation in NetworkX. It will be
an interesting future work to implement KECC-AA in NetworkX.

6.3 Applications

In this subsection, we illustrate applying our ECo-decomposition
algorithms in applications. Firstly, our algorithms directly speed
up the index construction for steiner component search studied
in [7, 21], which use the hierarchy tree as an index structure for
efficiently processing online queries. Secondly, our algorithms can
facilitate matrix completability analysis, where matrix completion
is typically used for recommendation [12]. Specifically, a matrix can
be represented as a bipartite graph 𝐺 = (𝑈 ∪ 𝐿, 𝐸) with𝑈 ∩ 𝐿 = ∅
and 𝐸 ⊆ 𝑈 ×𝐿. Each row of the matrix corresponds to a vertex of𝑈 ,
each column corresponds to a vertex of 𝐿, and each non-zero entry
at position (𝑖, 𝑗) corresponds to an undirected edge between 𝑖 ∈ 𝑈
and 𝑗 ∈ 𝐿. The problem of matrix completion is to predicate values
for the entries of the matrix that currently have value 0 (i.e., with
value missing). It has been shown in [12] that the higher the edge
connectivity of the corresponding bipartite graph, the more accu-
rate the low-rank matrix completion. Thus, the higher the value
of 𝑘 such that 𝑖 and 𝑗 are contained in the same 𝑘-ECC, the more
accurate the predicated value of the (𝑖, 𝑗)-th entry of the matrix.
The hierarchy tree constructed by our algorithms can be used to
efficiently obtain the largest 𝑘 such that 𝑖 and 𝑗 are contained in
the same 𝑘-ECC, and thus to estimate the accuracy of the matrix
completion for the (𝑖, 𝑗)-th entry. Also, the hierarchy tree can be
used to efficiently retrieve the submatrices, whose corresponding
bipartite graphs are 𝑘-edge connected, to run the matrix comple-
tion algorithm and can be used to provide a guide on choosing
the appropriate 𝑘 . For example, Figures 15(a) and 15(b) show the
total size of the submatrices whose corresponding bipartite graphs
are 𝑘-edge connected, for datasets Netflix and Amazon_reviews;
here, the size of a submatrix is #rows × #columns. Netflix 8 has
|𝑈 | = 480, 189, |𝐿 | = 17, 770, |𝐸 | = 100, 480, 507, 𝑘max = 1, 076,
and Amazon_reviews 9 has |𝑈 | = 6, 643, 669, |𝐿 | = 2, 441, 053,
|𝐸 | = 29, 928, 296, 𝑘max = 140. We can see that Netflix is much
denser than Amazon_reviews and can be completed more accu-
rately than Amazon_reviews. In particular, the total size of the
submatrices whose corresponding bipartite graphs are 200-edge

8https://www.kaggle.com/netflix-inc/netflix-prize-data
9http://snap.stanford.edu/data/web-Amazon-links.html

connected is more than 10% of the entire matrix size for Netflix,
while there is no such submatrix for Amazon_reviews.

7 RELATEDWORK

Besides the existing works on ECo-decomposition as discussed in
Sections 1 and 3, we categorize other related works as follows.

𝑘-ECC Computation. In the literature, there are three approaches
for computing all 𝑘-ECCs of a graph for a given 𝑘 : cut-based ap-
proach [26, 35, 38], decomposition-based approach [10], and ran-
domized approach [4]. In this paper, we adopted the decomposition-
based approach [10] for 𝑘-ECC computation — which is the state
of the art — and further optimized its memory usage.

Edge Connectivity Computation. Computing the edge connec-
tivity between two vertices has been studied in graph theory [18],
which is achieved by maximum flow techniques [15]. The state-of-
the-art algorithms compute the maximum flow exactly in O(𝑛×𝑚)
time [25] and approximately in almost linear time [22, 30]. Index
structures have also been developed to efficiently process vertex-to-
vertex edge connectivity queries [2, 20]. However, steiner connectiv-
ity as computed in this paper, which measures the connectivity in a
subgraph, is different from edge connectivity as computed in [2, 20],
which measures the connectivity in the input graph. Thus, these
techniques cannot be applied. Moreover, it is worth mentioning
that none of our algorithms involve maximum flow computation.

Cohesive SubgraphComputation. Extracting cohesive subgraphs
from a large graph has also been extensively studied in the literature
(see [9] for a recent survey). Here, the cohesiveness of a subgraph
usually is measured by the minimum degree (aka, 𝑘-core) [29, 36],
the average degree (aka, edge density) [8, 11, 19], theminimumnum-
ber of triangles each edge participates in (aka, 𝑘-truss) [14, 27], and
the vertex connectivity [33]. For some of the measures, the cohesive
subgraphs for different cohesiveness values also form hierarchical
structures and efficient algorithms have been proposed to construct
these hierarchical structures, e.g., core decomposition [13], truss de-
composition and its higher-order variants [28], and density-friendly
graph decomposition [16, 32]. However, due to inherently different
problem natures, these techniques are inapplicable to computing
ECo-decomposition of a graph.

8 CONCLUSION

In this paper, we proposed a near-optimal algorithm ECo-DC-AA
for constructing the hierarchy tree of 𝑘-ECCs for all possible 𝑘
values. ECo-DC-AA has both a lower time complexity and a lower
space complexity compared with the state-of-the-art approaches
ECo-TD and ECo-BU. Extensive experimental results on large graphs
demonstrate that ECo-DC-AA outperforms ECo-TD and ECo-BU
by up to 28 times in terms of running time and by up to 8 times
regarding memory usage. As a result, ECo-DC-AAmakes it possible
to process billion-scale graphs in the main memory of a commodity
machine. As a by-product, we also significantly reduced the mem-
ory usage of the state-of-the-art 𝑘-ECC computation algorithm.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council Fund-
ings of FT180100256 and DP220103731.

REFERENCES
[1] [n.d.]. full version: https://lijunchang.github.io/pdf/2022-ecd-tr.pdf.
[2] Charu C. Aggarwal, Yan Xie, and Philip S. Yu. 2009. GConnect: A Connectivity

Index for Massive Disk-resident Graphs. PVLDB 2, 1 (2009), 862–873.
[3] Rakesh Agrawal, Sridhar Rajagopalan, Ramakrishnan Srikant, and Yirong Xu.

2003. Mining newsgroups using networks arising from social behavior. In Proc.
of WWW’03. 529–535.

[4] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Linear-time enumer-
ation of maximal K-edge-connected subgraphs in large networks by random
contraction. In Proc. of CIKM’13. 909–918.

[5] András A. Benczúr and David R. Karger. 2002. Randomized Approximation
Schemes for Cuts and Flows in Capacitated Graphs. CoRR cs.DS/0207078 (2002).

[6] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir.
2007. A model of Internet topology using k-shell decomposition. Proceedings of
the National Academy of Sciences of the United States of America 104, 27 (2007),
11150—-11154.

[7] Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. 2015. Index-
based Optimal Algorithms for Computing Steiner Components with Maximum
Connectivity. In Proc. of SIGMOD’15.

[8] Lijun Chang and Miao Qiao. 2020. Deconstruct Densest Subgraphs. In Proc. of
WWW’20. 2747–2753.

[9] Lijun Chang and Lu Qin. 2018. Cohesive Subgraph Computation over Large Sparse
Graphs. Springer Series in the Data Sciences.

[10] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang.
2013. Efficiently computing k-edge connected components via graph decomposi-
tion. In Proc. of SIGMOD’13. 205–216.

[11] Moses Charikar. 2000. Greedy approximation algorithms for finding dense
components in a graph. In Proc. of APPROX’00. 84–95.

[12] Dehua Cheng, Natali Ruchansky, and Yan Liu. 2018. Matrix completability
analysis via graph k-connectivity. In Proc. of AISTATS’18. 395–403.

[13] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. 2011. Efficient core
decomposition in massive networks. In Proc. of ICDE’11. 51–62.

[14] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.
National Security Agency Technical Report (2008), 16.

[15] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
2001. Introduction to Algorithms. McGraw-Hill Higher Education.

[16] Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2017. Large Scale
Density-friendly Graph Decomposition via Convex Programming. In Proc. of
WWW’17. 233–242.

[17] Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Pani-
grahi. 2011. A general framework for graph sparsification. In Proc. of STOC’11.
71–80.

[18] Alan Gibbons. 1985. Algorithmic Graph Theory. Cambridge University Press.
[19] A. V. Goldberg. 1984. Finding a Maximum Density Subgraph. Technical Report.

Berkeley, CA, USA.

[20] R. E. Gomory and T. C. Hu. 1961. Multi-Terminal Network Flows. J. Soc. Indust.
Appl. Math. 9, 4 (1961). http://dx.doi.org/10.2307/2098881

[21] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. 2017.
On Minimal Steiner Maximum-Connected Subgraph Queries. IEEE Trans. Knowl.
Data Eng. 29, 11 (2017), 2455–2469.

[22] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. 2013.
An Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected
Graphs, and its Multicommodity Generalizations. In Proc. of SODA’13.

[23] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and clustering
and Graph Coloring Algorithms. J. ACM 30, 3 (1983), 417–427.

[24] An Nguyen and Seok-Hee Hong. 2017. k-core based multi-level graph visualiza-
tion for scale-free networks. In Proc. of PacificVis’17. 21–25.

[25] James B. Orlin. 2013. Max flows in O(nm) time, or better. In Proc. of STOC’13.
765–774.

[26] Apostolos N. Papadopoulos, Apostolos Lyritsis, and Yannis Manolopoulos. 2008.
SkyGraph: an algorithm for important subgraph discovery in relational graphs.
Data Min. Knowl. Discov. 17, 1 (Aug. 2008), 20. https://doi.org/10.1007/s10618-
008-0109-y

[27] Kazumi Saito and Takeshi Yamada. 2006. Extracting Communities from Complex
Networks by the k-dense Method. In Proc. of ICDMw’06. 300–304.

[28] Ahmet Erdem Sariyüce and Ali Pinar. 2016. Fast Hierarchy Construction for
Dense Subgraphs. PVLDB 10, 3 (2016), 97–108.

[29] Stephen B. Seidman. 1983. Network structure and minimum degree. Social
Networks 5, 3 (1983), 269 – 287.

[30] Jonah Sherman. 2013. Nearly Maximum Flows in Nearly Linear Time. In Proc. of
FOCS’13.

[31] Manuel Sorge and et al. 2013. The graph parameter hierarchy.
[32] Bintao Sun, Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2020.

KClist++: A Simple Algorithm for Finding k-Clique Densest Subgraphs in Large
Graphs. Proc. VLDB Endow. 13, 10 (2020), 1628–1640.

[33] DongWen, Lu Qin, Ying Zhang, Lijun Chang, and Ling Chen. 2019. Enumerating
k-Vertex Connected Components in Large Graphs. In Proc. of ICDE’19. 52–63.

[34] Douglas R. White and Frank Harary. 2001. The cohesiveness of blocks in social
networks: Node connectivity and conditional density. Sociological Methodology
31 (2001).

[35] Xifeng Yan, X. Jasmine Zhou, and Jiawei Han. 2005. Mining closed relational
graphs with connectivity constraints. In Proc. of KDD’05 (Chicago, Illinois, USA).
10. https://doi.org/10.1145/1081870.1081908

[36] Kai Yao and Lijun Chang. 2021. Efficient Size-Bounded Community Search over
Large Networks. Proc. VLDB Endow. 14, 8 (2021), 1441–1453.

[37] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2017. I/O
efficient ECC graph decomposition via graph reduction. VLDB J. 26, 2 (2017).
https://doi.org/10.1007/s00778-016-0451-4

[38] Rui Zhou, Chengfei Liu, Jeffrey Xu Yu, Weifa Liang, Baichen Chen, and Jianxin
Li. 2012. Finding Maximal k-Edge-Connected Subgraphs from a Large Graph. In
Proc. of EDBT’12.

Hu-Fu: Efficient and Secure SpatialQueries over Data Federation

Yongxin Tong†, Xuchen Pan†, Yuxiang Zeng‡, Yexuan Shi†, Chunbo Xue†, Zimu Zhou#,
Xiaofei Zhang§, Lei Chen‡, Yi Xu†, Ke Xu†, Weifeng Lv†

†State Key Laboratory of Software Development Environment, Beihang University, China
†Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, China

‡The Hong Kong University of Science and Technology #Singapore Management University §University of Memphis
†{yxtong, panxuchen, skyxuan, xuechunbo, xuy, kexu, lwf}@buaa.edu.cn, ‡{yzengal, leichen}@cse.ust.hk,

#zimuzhou@smu.edu.sg, §xiaofei.zhang@memphis.edu

ABSTRACT

Data isolation has become an obstacle to scale up query processing
over big data, since sharing raw data among data owners is often
prohibitive due to security concerns. A promising solution is to
perform secure queries over a federation of multiple data owners
leveraging secure multi-party computation (SMC) techniques, as
evidenced by recent federation work over relational data. However,
existing solutions are highly inefficient on spatial queries due to
excessive secure distance operations for query processing and their
usage of general-purpose SMC libraries for secure operation im-
plementation. In this paper, we propose Hu-Fu, the first system for
efficient and secure spatial query processing on a data federation.
The idea is to decompose the secure processing of a spatial query
into as many plaintext operations and as few secure operations
as possible, where fewer secure operators are involved and all se-
cure operators are implemented dedicatedly. As a working system,
Hu-Fu supports not only query input in native SQL, but also het-
erogeneous spatial databases (e.g., PostGIS, Simba, GeoMesa, and
SpatialHadoop) at the backend. Extensive experiments show that
Hu-Fu usually outperforms the state-of-the-arts in running time
and communication cost while guaranteeing security.

PVLDB Reference Format:

Yongxin Tong, Xuchen Pan, Yuxiang Zeng, Yexuan Shi, Chunbo Xue, Zimu

Zhou, Xiaofei Zhang, Lei Chen, Yi Xu, Ke Xu, and Weifeng Lv. Hu-Fu:

Efficient and Secure Spatial Queries over Data Federation. PVLDB, 15(6):

1159 - 1172, 2022.

doi:10.14778/3514061.3514064

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/BUAA-BDA/Hu-Fu.

1 INTRODUCTION

Efficient processing of spatial queries over large-scale data is essen-
tial for a wide spectrum of smart city applications including taxi-
calling [68], logistics planning [65], map service [70], and contact-
tracing [36] to name a few. Although the volume of spatial data

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514064

continues to grow, it becomes increasingly difficult for these appli-
cations to take full advantage of the big spatial data due to the data
isolation problem (a.k.a. isolated data) [9, 13, 49, 66]. Spatial datasets
at city or nation scale are often privately possessed and separately
owned by multiple parties, where sharing raw data among parties
or uploading raw data to a third party (e.g., a cloud) is prohibitive
due to legal regulations (e.g., GDPR [56]) or commercial reasons.

A promising paradigm to tackle the data isolation problem is to
perform secure queries over a data federation [4], which consists
of multiple data owners a.k.a. data silos [31, 36, 50], who agree on
the same schema and manage their own data autonomously. Note
that this paradigm differs from conventional federated databases
[26, 48] in the extra security requirement. In general, secure query
processing over data federation can be solved by well-known tech-
niques such as secure multi-party computation (SMC) [7]. Yet, only
recently did pioneer studies such as SMCQL [4] and Conclave [57]
take the first step towards practice with efficient query execution
plans upon SMC libraries for (relational) data federation. Unsur-
prisingly, more applications are being built on federations of spatial
data owners.

Example 1. During COVID-19, several mobile network operators
(e.g., China Mobile [38] and China Telecom [53]) have cooperated
as a spatial data federation to identify who has been to infectious
areas through their location data [55]. Executing spatial queries (e.g.,
range query or distance join) over a spatial data federation can help
identify contacts in infectious areas across multiple organizations’
spatial data without leaking privacy.

Example 2. AMAP (a.k.a. GaoDe Map) [3] has united over 8 Chi-
nese travel companies into an integrated taxi-calling platform to
offer users the taxis resources from all participating companies
[54]. A spatial data federation can protect the distribution of taxis’
locations of each company, which could be a business secret, from
leaking to others.

Nevertheless, directly adapting the state-of-the-art data feder-
ation solutions [4, 57] to spatial data can be inefficient. From our
empirical study (Sec. 2.2) of a kNN query on a real dataset, they are
at least 142× slower, and have at least 1, 216× higher communica-
tion cost than plaintext query processing. There are two reasons
for such inefficiency. (i) Existing solutions process spatial queries
with excessive secure distance operations, which occupy over 90%
of the time cost. For example, SMCQL [4] and Conclave [57] would
securely sort spatial objects by distances to the query point and
pick the top-k objects, where each sorting involves numerous se-
cure distance comparisons. (ii) Previous studies [4, 57] are built on

general-purpose SMC libraries, which may sacrifice the efficiency
of specific operations for other considerations. For example, our
experiment shows that the secure summation in ObliVM [35], the
SMC library adopted by SMCQL [4], can be accelerated by 15× via
dedicated implementations [19].

In this paper, we aim at efficient and secure spatial queries over a
data federation, whichwe call as federated spatial queries. Wemainly
study five queries (federated range query/counting, kNN query,
distance join and kNN join) commonly seen in spatial database
research [16, 43, 64] and follow the semi-honest adversary model
adopted by previous work [4, 23, 57, 60]. Moreover, we develop a
more practical solution than [4, 57] by eliminating the need for an
honest broker and supporting more data silos (these works support
no more than 3 data silos whereas we tested up to ten).

To this end, we propose Hu-Fu, a system for efficient and secure
processing of federated spatial queries. As explained above, secure
operations are usually slow and easily become the efficiency bot-
tleneck. Thus, the key idea of Hu-Fu is to decompose a federated
spatial query into asmany plaintext operations and as few secure op-
erations as possible without compromising security, where (i) no se-
cure distance-related operations are involved and (ii) the secure op-
erations have implementations faster than those in general-purpose
SMC libraries. To realize this idea and implement a practical system,
Hu-Fu consists of three components: an query rewriter with novel
decomposition plans, a set of drivers adaptable to heterogeneous
databases and an easy-to-use query interface with SQL support.
Specifically, the query rewriter identifies a set of plaintext and se-
cure operators to cover the queries of interest, and adopts novel
decomposition plans to minimize the usage of secure operators
while ensuring security. The drivers provide the implementations
of secure operators with dedicated SMC protocols and plaintext op-
erations as interfaces on top of the heterogeneous spatial databases
adopted by different data silos. The query interface supports spatial
queries in native SQL for easy usage.

Our main contributions and results are summarized as follows.
• To the best of our knowledge, Hu-Fu is the first system on effi-
cient and secure spatial queries over a data federation.

• Wedevise novel decomposition plans for federated spatial queries.
After decomposition, an execution plan involves only a limited
number of secure operators that can be effectively supported
with fast and dedicated implementations.

• Hu-Fu is an efficient, easy-to-use system that supports query
input in SQL and heterogeneous spatial databases, e.g., Post-
GIS [45], MySQL [61], SpatiaLite [51], Simba [64], GeoMesa [27],
and SpatialHadoop [16].

• Extensive evaluations show that Hu-Fu usually outperforms the
state-of-the-arts [4, 57] in efficiency. Compared with two strong
baselines, namely SMCQL-GIS and Conclave-GIS, which are ex-
tended from SMCQL [4] and Conclave [57] to spatial queries,
Hu-Fu is up to 4 orders of magnitude faster and 5 orders of mag-
nitude lower in communication than SMCQL-GIS and Conclave-
GIS with the same security level.

In the rest of this paper, we define our problem scope and iden-
tify the inefficiency of existing solutions in Sec. 2. We present an
overview of Hu-Fu in Sec. 3 and elaborate on its functional compo-
nents in Sec. 4, Sec. 5 and Sec. 6. Finally, we present the evaluations
in Sec. 7, review the related work in Sec. 8, and conclude in Sec. 9.

2 PROBLEM STATEMENT
This section clarifies our problem scope (Sec. 2.1) and highlights
the challenges (Sec. 2.2) that motivate the design of Hu-Fu.

2.1 Problem Scope
We consider a data federation 𝐹 (“federation” for short) consisting of
𝑛 data silos (“silos” for short, denoted by 𝐹𝑖), where each silo holds
multiple spatial objects. Each spatial object 𝑜 has a location 𝑙𝑜 and
other attributes 𝑎𝑜 . The federation supports federated spatial queries
over the spatial objects of all silos under the following settings.

• Spatial queries: The federation 𝐹 should support mainstream
spatial queries including range query, range counting, kNN query,
distance join, and kNN join [52, 64].

• Autonomous databases: Each silo is an autonomous database that
does not share its raw spatial objects with other silos. This is
aligned with real-world data federations [4–6, 57].

• Semi-honest adversaries: Each silo honestly executes queries re-
ceived and returns authentic results, but may attempt to infer
data from other silos during query execution. This assumption
is common in query processing over a data federation [4, 57].

We focus on query processing with the following requirements.

• Efficiency requirements. We care about the running time and
communication cost to execute exact queries over multiple si-
los. Short running time is desirable since real applications may
process massive queries and a long latency can have bad effects
(e.g., it may cause an extended spread of diseases for contact
tracing or degraded user experience for taxi-calling). Minimal
communication cost is critical in distributed query processing
[17, 43] and secure query processing [29]. Approximate query
processing over data federation [6, 14] is out of our scope because
applications such as contact tracing require accurate results. We
consider multiple silos as aligned with real-world applications.
Similar to existing federated query solutions [4, 57], the storage
efficiency, which mainly depends on silos themselves, is not our
primary concern.

• Security requirements. We target the scenario where input
queries are public to all silos yet neither the query user nor any
silo could deduce extra information from the final results. For
instance, in federated kNN query, the query user can only know
the final result (i.e. k nearest neighbors), and cannot infer the
ownership of these k nearest neighbors. Such requirements are
common in secure query processing [7].

Security is often of utmost priority due to laws (e.g., GDPR [44]
and CCPA [39]) on data protection. To satisfy the security require-
ment, existing systems [4, 57] rely on an honest broker to securely
collect the partial answers (which may have sensitive data) from
each silo. For other operations, they still rely on secure protocols
(e.g., summing the local counts from each silo to answer a range
counting). However, real-world brokers (e.g., Acxiom [1] and Expe-
rian [21]), which need to be paid a lot for data broker services, may
still leak sensitive data for profit or by accident [47]. Thus, we do
not assume an honest broker in Hu-Fu.

Formally, we define the federated spatial queries of interest below.
They are common in existing spatial data systems [16, 43, 64]. Here,
function 𝑑 (𝑝, 𝑜) is the distance between spatial objects 𝑝 and 𝑜 .

Definition 1 (Federated Range Query/Counting). Given a federa-
tion 𝐹 = {𝐹1, · · · , 𝐹𝑛}, and a query range R, federated range query
returns all objects 𝑜 ∈ 𝐹 located in R; federated range counting

returns the number of these objects. These two queries should only
return the final results without revealing any information of 𝐹𝑖 (e.g.,
the ownership of objects, the number of objects) to 𝐹 𝑗 (𝑗 ≠ 𝑖).

Definition 2 (Federated kNN Query). Given a federation 𝐹 =
{𝐹1, · · · , 𝐹𝑛}, a query point 𝑝 and an integer 𝑘 , federated kNN query

returns a set kNN(𝐹, 𝑝, 𝑘) of 𝑘 spatial objects such that

∀𝑜 ∈ kNN(𝐹, 𝑝, 𝑘),∀𝑜 ′ ∈ 𝐹 − kNN(𝐹, 𝑝, 𝑘), 𝑑 (𝑝, 𝑜) ≤ 𝑑 (𝑝, 𝑜 ′)

without revealing information except the returned set to any 𝐹𝑖 .

Definition 3 (Federated Distance Join). Given an input dataset
of spatial objects 𝑅, a federation 𝐹 = {𝐹1, · · · , 𝐹𝑛} and a radius 𝑟 ,
federated distance join returns each 𝑜 ∈ 𝑅 with each 𝑜 ′ ∈ 𝐹 that
satisfies 𝑑 (𝑜, 𝑜 ′) ≤ 𝑟 as pairs, without revealing the ownership of
𝑜 ′ ∈ 𝐹𝑖 to 𝐹 𝑗 (𝑗 ≠ 𝑖).

𝑅 �𝑟 𝐹 = {(𝑜, 𝑜 ′) |𝑜 ∈ 𝑅, 𝑜 ′ ∈ 𝐹, 𝑑 (𝑜, 𝑜 ′) ≤ 𝑟 }

Definition 4 (Federated kNN Join). Given an input dataset of
spatial objects 𝑅, a federation 𝐹 = {𝐹1, · · · , 𝐹𝑛} and 𝑘 , federated
kNN join returns each 𝑜 ∈ 𝑅 with each 𝑜 ′ ∈ kNN(𝐹, 𝑜, 𝑘) as pairs,
without revealing information except the returned set to 𝐹𝑖 .

𝑅 �kNN 𝐹 = {(𝑜, 𝑜 ′) |𝑜 ∈ 𝑅, 𝑜 ′ ∈ kNN(𝐹, 𝑜, 𝑘)}

2.2 Challenges
Federated spatial queries can be realized by secure multi-party
computation (SMC) [7], as in prior studies for relational data [4,
57]. Nevertheless, our empirical study shows that they are highly
inefficient on spatial queries, as explained below.

2.2.1 Inefficiency on Federated Spatial Queries. As an illustrative
study, we perform federated kNN query by extending SMCQL [4]
and Conclave [57], two representative solutions to secure query
processing on (relational) data federations.

Overviewof Existing Solutions.The general framework to apply
SMC techniques for secure query processing over data federations
is to decouple query execution into first plaintext queries within
each silo and then secure computations of the final results across
silos [4, 57]. This is because SMC protocols are slow and such a
framework accelerates query processing without compromising
security. Existing solutions differ in the underlying SMC techniques
they apply for secure operations, where garbled circuit (GC) and
secret sharing (SS) are two mainstream SMC techniques [7]. Specifi-
cally, SMCQL [4], the first solution for secure query processing over
a data federation, uses ObliVM [35], a prevalent GC based library.
Since ObliVM only supports two silos, Conclave [57] adopts an SS
based technique (Sharemind [11]), which enables query processing
on three silos.

Setup. We extend SMCQL [4] and Conclave [57] to federated kNN
queries as follows. Following the “plaintext + secure” processing
pipeline, each silo first conducts a plaintext kNN query and returns
the 𝑘 nearest points (along with their distances) to the query point.
Then, the final k nearest neighbors are derived from these returned
points, which are securely sorted by their distances to the query
point and the k nearest ones are picked. We experiment with two
silos with 𝑘 = 16. Other implementations and experimental setup
details are in Sec. 7.1.

Table 1: Percentage of time spent for plaintext or SMC operations

for a federated kNN query via existing solutions.

System Plaintext SMC

SMCQL-GIS 0.14% 99.86%
Conclave-GIS 0.10% 99.90%

(a) Running time (b) Communication cost

Figure 1: Inefficiency of Conclave-GIS and SMCQL-GIS on federated

kNNquery,where SMCQL-GIS andConclave-GIS are our extensions

on SMCQL [4] and Conclave [57] to spatial queries (see Sec. 7.1).

Results. Fig. 1 plots the running time and communication cost to
process a single federated kNN query leveraging existing solutions.
The results are averaged over 50 queries. Compared with Public, i.e.
plaintext kNN query execution without the security requirement,
the secure counterpart incurs 142× to 212× longer running time and
1, 216× to 22, 510× higher communication cost. Although SMCQL-
GIS yields a shorter running time and a lower communication cost
than Conclave-GIS, SMCQL-GIS is only applicable to the scenario of

two silos for its usage of GC based SMC techniques. Yet it still takes
2.86 seconds for a single federated kNN query, which can hurt user
experiences in applications where time efficiency is critical.

2.2.2 Understanding the Efficiency Bottleneck. Prior studies are
inefficient on federated spatial queries for the following reasons.

• Excessive Secure Distance Operations. When processing a
federated kNN query, over 99% time is spent on SMC operations
(e.g., secure distance comparisons) as shown in Table 1. For ex-
ample, SMCQL-GIS and Conclave-GIS adopt sorting to find 𝑘
nearest neighbors among 𝑛𝑘 candidates by using 𝑂 (𝑛𝑘 log(𝑛𝑘))
secure distance comparisons, and a single secure distance com-
parison takes 209 ms in SMCQL-GIS and 248 ms in Conclave-GIS,
which equals to the time of at least 106 plaintext comparisons.

• Reliance on General-Purpose Libraries. Existing methods
use general-purpose libraries to implement SMC operations (e.g.,
ObliVM [35] in SMCQL [4]). General-purpose libraries some-
times sacrifice efficiency for generalization or compatibility. For
example, the secure summation we used can be 16× faster than
that in ObliVM (see Sec. 7). As will be shown in Sec. 4, we can
process federated spatial queries with only a few secure oper-
ations. This facilitates acceleration with libraries dedicated to
such operations [11, 19, 28].

Takeaways.Our study shows that existing secure query processing
solutions (e.g., [4, 57]) for data federations are inefficient for spatial
queries. The inefficiency comes from (i) massive secure distance
operations, and is exacerbated by (ii) adopting general-purpose
libraries for these SMC operations. In response, we propose Hu-Fu,
a solution with (i) a novel execution plan for federated spatial
queries that involve notably fewer secure operations (see Sec. 4)
and (ii) each secure operator can be implemented in high efficiency
via dedicated algorithms (see Sec. 5). As next, we give an overview
of Hu-Fu and elaborate on its functional modules in the following.

Drivers

Query Interface
Query Rewriter

Hu-Fu

Federated Spatial Queries

Plaintext Primitives
Secure Primitives

Federated kNN Join Federated Distance Join

Plaintext Range Query Plaintext Range Counting

Basic Operators
Secure Summation Secure Comparison Secure Set Union

…
Silo 1 Silo 2 Silo 3 Silo 4 Silo 5 Silo n

Federated Range Query

Sil 1

SpatiaLite

Federated Range CountingFederated kNN Query

Figure 2: Illustration of Hu-Fu architecture.

3 HU-FU OVERVIEW
Hu-Fu is a solution that enables efficient and secure spatial queries
over a data federation. It addresses the inefficiency of federated
spatial query processing (see Sec. 2.2.2) via two modules: (i) a novel
query rewriter that decomposes federated spatial queries into
plaintext and secure operators, with the former executed within each
silo and the latter across silos; (ii) drivers that implement these
operators as plaintext and secure primitives leveraging dedicated
algorithms and optimizations. Hu-Fu also contains a transparent
query interface to support federated spatial queries written in
native SQL. We briefly explain its architecture and workflow below.

3.1 Architecture
Fig. 2 illustrates the architecture of Hu-Fu, which consists of three
modules: the query interface, the query rewriter and drivers. From
a functional perspective, the query rewriter and drivers optimize
the efficiency of federated spatial queries, and the query interface
improves the usability of Hu-Fu.

Query Rewriter (Sec. 4). It decomposes federated spatial queries
into plaintext operators (executed within silos) and secure operators
(executed across silos). We define two plaintext operators (plaintext
range query and range counting) and three secure operators (secure
summation, comparison and set union) as the basic operators, upon
which we design novel execution plans that decompose mainstream
federated spatial queries (federated range query, range counting,
kNN query, distance join and kNN join) into these basic operators.

Drivers (Sec. 5). Hu-Fu’s drivers implement the basic operators
defined in the query rewriter as efficient primitives that can adapt
to heterogeneous spatial databases at the backend. Each operator is
implemented by a specific primitive. Specifically, secure operators
are implemented as secure primitives with dedicated optimizations
[11, 19, 28]. Plaintext operators are implemented as plaintext prim-

itives on top of the underlying spatial databases, which support
various systems, e.g., PostGIS [45], SpatiaLite [51], MySQL [61],
GeoMesa [27], Simba [64] and SpatialHadoop [16].

Query Interface (Sec. 6). This module (i) provides a transparent
and unified federation view to users, and (ii) supports federated
spatial queries written in SQL. We implement the query interface
by extending the schema manager and parser of Calcite [8]. We
also provide interfaces such as JDBC for easy integration of Hu-Fu
to users’ programs.

Fed ServerFed ServerFed ServerFed ServerUser Hu-Fu Query
Interface & Rewriter

Federated
Spatial Query

Parse Query

Rewrite and
Optimize Query

Basic Operators
Plaintext Primitives

Local Result
Secure

Primitives
Final Result

Query Result

Systems
Hu-Fu
Drivers

Spatial
Silo 1

Silo 2
Silo n

Figure 3: Illustration of Hu-Fu workflow.

3.2 Workflow
Fig. 3 shows the workflow of Hu-Fu with a user querying a data
federation of 𝑛 silos. The query interface and query rewriter are
deployed on the user machine to provide a portal for spatial services.
Each silo runs an instance of Hu-Fu drivers to interact with its
underlying spatial databases.

Suppose the user’s spatial service issues a federated spatial query
written in SQL. When a federated spatial query comes in, it is first
parsed by the query interface. Then the query rewriter transforms
and optimizes the query into a sequence of plaintext and secure
operators. These operators are then sent to drivers for execution as
plaintext and secure primitives. First, the plaintext primitives are
executed on the underlying spatial databases at each silo to get the
local results. Afterward, the local results are collected to perform
the secure primitives for the final query result, which is returned
to the user by the query interface.

4 QUERY REWRITER
This section presents Hu-Fu’s query rewriter, which decomposes
federated spatial queries into multiple basic operators. We first
define the basic operators in Sec. 4.1 before explaining the overall
decomposition strategies in Sec. 4.2. Specifically, we categorize
the five federated spatial queries into radius-known and radius-

unknown queries, and elaborate on their decomposition in Sec. 4.3
and Sec. 4.4. We discuss other practical issues in Sec. 4.5.

4.1 Basic Operators
Our acceleration strategy is to decompose queries into basic operators

such that distance-related operations are restricted within silos in

plaintext, leaving only secure operations across silos. The selection
of basic operators is explained below.

4.1.1 Operator Selection Principles. We propose two categories
of basic operators: plaintext and secure operators. The plaintext
operators perform local queries within each individual silo, while
the secure operators securely collect the local query results from
different silos as the final output.

• Plaintext Operators. They can involve the distance-related op-
erations compulsory in spatial queries, but should be common
operations widely supported by diverse spatial databases.

• Secure Operators. They should avoid distance-related opera-
tions, and efficiently implemented operators are preferable.

Following these principles, we choose two plaintext operators
(plaintext range query, plaintext range counting) and three secure
operators (secure summation, secure comparison, secure set union).
We define each basic operator and justify our selections below.

4.1.2 Plaintext Operators. Wedefine two plaintext operators: plain-
text range query and plaintext range counting. These operators are
performed within each silo 𝐹𝑖 . Hence, they can be conducted in
plaintext without compromising security.

Definition 5 (Plaintext Range Query/Counting). For a silo 𝐹𝑖 ,
given a query range R, the plaintext range query PRQ𝐹𝑖 (R) returns
in plaintext the spatial objects in 𝐹𝑖 withinR, and the plaintext range
counting PRC𝐹𝑖 (R) further returns the number of such objects.

The plaintext operators comply with the principles described in
Sec. 4.1.1, because (i) the returned results can be securely collected
without secure distance operations (see Sec. 4.1.3) and (ii) they are
supported by almost all spatial databases [43]. These operators are
implemented as plaintext primitives in Hu-Fu drivers, which we
defer to Sec. 5.1. The query range can be a circle, a rectangle or
other shapes. For ease of presentation, we focus on a circular range
in Sec. 4.2-4.4 and discuss extensions to other shapes in Sec. 4.5.

4.1.3 Secure Operators. Based on the secure multi-party computa-
tion techniques [11, 19, 28], we define three secure operators: secure
summation, secure comparison, and secure set union. These opera-
tors are performed across silos and responsible for secure result
collection from local query results returned by plaintext operators.
Definition 6 (Secure Summation). For a federation 𝐹 = {𝐹1, · · · ,
𝐹𝑛}, where each silo 𝐹𝑖 holds a number 𝛽𝑖 , this operator calculates
the sum

∑𝑛
𝑖=1 𝛽𝑖 , while avoiding leaking 𝛽𝑖 to 𝐹 𝑗 (𝑗 ≠ 𝑖).

SSM𝐹 (𝛽1, · · · , 𝛽𝑛) =
𝑛∑
𝑖=1

𝛽𝑖

Definition 7 (Secure Comparison). For a federation 𝐹 = {𝐹1, · · · ,
𝐹𝑛}, where each silo 𝐹𝑖 holds a number 𝛽𝑖 , and a value 𝑘 , this
operator compares

∑𝑛
𝑖=1 𝛽𝑖 with 𝑘 without leaking

∑𝑛
𝑖=1 𝛽𝑖 or 𝛽𝑖 to

any 𝐹 𝑗 (𝑗 ≠ 𝑖).

SCP𝐹 (𝛽1, · · · , 𝛽𝑛, 𝑘) = 𝑠𝑖𝑔𝑛
(𝑛∑
𝑖=1

𝛽𝑖 − 𝑘
)

Definition 8 (Secure Set Union). For a federation 𝐹 = {𝐹1, · · · , 𝐹𝑛},
where each silo 𝐹𝑖 holds a set of spatial objects 𝑆𝑖 = {𝑜𝑖1, · · · , 𝑜

𝑖
𝑚𝑖

},
this operator computes the union of spatial objects from all silos,
without leaking the ownership of each 𝑜 ∈ 𝑆𝑖 to 𝐹 𝑗 (𝑗 ≠ 𝑖).

SSU𝐹 (𝑆1, · · · , 𝑆𝑛) =
𝑛⋃
𝑖=1

𝑆𝑖

The secure operators comply with the principles in Sec. 4.1.1
since (i) they do not involve distance operations and (ii) there are
dedicated techniques for efficient implementations (see Sec. 5.2).

4.2 Overall Decomposition Strategies
The principle of query rewriter is to decompose federated spatial
queries into as many plaintext operators and as few secure op-
erators as possible such that a large portion of the query can be
executed in plaintext without compromising security. At a high
level, a federated spatial query is first executed as plaintext opera-
tors in each silo, where the results are then securely assembled as
the final result. At the minimum, one secure operator is compul-
sory, and additional secure operators may be necessary if there are
extra interactions across silos. Given the basic operators defined in
Sec. 4.1, we classify federated spatial queries into two categories
and explain their decomposition strategies as follows (see Table 2).
• Radius-Known Queries. For a radius-known query, it needs
only one secure operator for result collection in the ideal case.

This is because our plaintext operators already support plain-
text range query and counting. For result collection, a secure
set union or summation operator is required. We introduce the
decomposition plans for radius-known queries in Sec. 4.3.

• Radius-UnknownQueries. For a radius-unknown query, e.g., a
federated kNN query, we convert the query into multiple rounds
of radius-known queries. There can be cross-silo communication
between rounds, and extra secure operators are necessary, which
is secure comparison in our case. We adopt binary search to
minimize the number of rounds and secure operators involved.
We explain the decomposition plans for radius-unknown queries
in Sec. 4.4.

4.3 Decomposing Radius-Known Queries
Among the five federated spatial queries, range query, range count-
ing, and distance join belong to radius-known queries.

Decomposition Plan. Federated range query can be decomposed
into 𝑛 plaintext range queries with radius 𝑟 , where each plaintext
range query retrieves the local result from each one of 𝑛 silos. Sim-
ilarly, federated range counting can be decomposed into 𝑛 plaintext
range counting. Observing that a distance join can be viewed as
|𝑅 | times of range queries with different query points but the same
radius, federated distance join is decomposed into |𝑅 | × 𝑛 plaintext
range queries with radius 𝑟 . For result collection across silos, fed-
erated range counting needs a secure summation to aggregate the
counts without revealing the count of any silo. For federated range
query, it needs a secure set union to assemble the result without
revealing the objects’ ownership. For federated distance join, it also
first assembles the results of the plaintext range query in each silo
and then executes only one secure set union across silos.

Complexity Analysis. For ease of presentation, we denote the
time complexity of plaintext range query/counting as 𝑇𝑞 and 𝑇𝑐 ,
respectively. For federated range query/counting, each silo executes
a plaintext range query/counting and a secure set union/summation.
Thus, their time complexities are 𝑂 (𝑇𝑞 + 𝑛 + |𝑆 |) and 𝑂 (𝑇𝑐 + 𝑛3),
where |𝑆 | is the size of returned set. The communication costs are
𝑂 (𝑛 + |𝑆 |) and𝑂 (𝑛2), respectively. For federated distance join, each
silo executes |𝑅 | plaintext range queries, resulting in a time cost
of 𝑂 (|𝑅 |𝑇𝑞 + 𝑛 + |𝑆 |) with 𝑂 (𝑛 + |𝑆 |) communication cost. The
complexity analysis of secure operators is deferred to Sec. 5.2.

4.4 Decomposing Radius-Unknown Queries
Federated kNN query and kNN join are radius-unknown queries,
because there is no specific range in these queries. Thus, their
decomposition plan is to first get an appropriate range and then
filter the points in the range, as explained in detail below.

Decomposition Plan. Similar to the relation between federated
range query and federated distance join in Sec. 4.3, federated kNN
join can be viewed as |𝑅 | independent federated kNN queries. Hence,
we mainly explain how to decompose a federated kNN query.

• Basic Idea. Recall from Sec. 4.2, the strategy to decompose
radius-unknown queries is to convert them into multiple rounds
of radius-known queries. We first derive a radius (denoted by
𝑡ℎ𝑟𝑒𝑠) via a binary search and then retrieve the spatial objects
within this radius. Note that obtaining the exact counting result
during the binary search via secure summation may leak extra
information of silos. For example, the query user can get the

Algorithm 1: Rewriter of the federated kNN query
kNN(𝐹, 𝑝, 𝑘) over a data federation 𝐹 = {𝐹1, · · · , 𝐹𝑛}

1 [𝑙, 𝑢] ← [0, 𝑣0], where 𝑣0 is a predefined upper bound;

2 while 𝑢 − 𝑙 ≥ 𝜖0 do
3 𝑡ℎ𝑟𝑒𝑠 ← (𝑙 + 𝑢)/2;

4 𝛽𝑖 ← plaintext range counting PRC𝐹𝑖 (circle(𝑝, 𝑡ℎ𝑟𝑒𝑠));

5 𝑠𝑔𝑛 ← secure comparison SCP𝐹 (𝛽1, · · · , 𝛽𝑛, 𝑘);

6 if 𝑠𝑔𝑛 = −1 then 𝑙 ← 𝑡ℎ𝑟𝑒𝑠;

7 else if 𝑠𝑔𝑛 = 1 then 𝑢 ← 𝑡ℎ𝑟𝑒𝑠;

8 else break;

9 𝑆𝑖 ← plaintext range query PRQ𝐹𝑖 (circle(𝑝, 𝑡ℎ𝑟𝑒𝑠));

10 query answer 𝑟𝑒𝑠 ← secure set union SSU𝐹 (𝑆1, · · · , 𝑆𝑛);

number of objects within a range, which reveals the federation’s
data distribution. Hence, we only judge whether the counting
result is larger than 𝑘 and adopt a secure comparison instead. As

long as 𝑡ℎ𝑟𝑒𝑠 is between the 𝑘𝑡ℎ and the (𝑘+1)𝑡ℎ nearest distance,

the retrieved objects should be the 𝑘𝑡ℎ nearest neighbors.
• Algorithm Details. Alg. 1 illustrates decomposing a federated
kNN query. Lines 1-8 derive the radius. We initialize a lower
bound (𝑙 = 0) and upper bound (𝑢 = 𝑣0) of the radius, where 𝑣0
can be set as the diameter of the area or defined by the user. We
then perform a binary search in lines 2-8, where 𝜖0 is the precision
lower bound of distance, which can be set as the precision of the
locations’ coordinates. In each iteration, 𝑡ℎ𝑟𝑒𝑠 is set as (𝑙 + 𝑢)/2
in line 3. For the current radius 𝑡ℎ𝑟𝑒𝑠 , we perform a plaintext

range counting for each silo in line 4 and a secure comparison

between the sum of each silo’s count (𝛽𝑖) and the integer 𝑘 in
line 5. Lines 6-8 adjust the boundary of the searching radius. If
the total count is smaller than 𝑘 , the current radius is too short,
and we update 𝑙 to 𝑡ℎ𝑟𝑒𝑠 as the new lower bound (line 6). If the
total count is larger than 𝑘 , it means there are sufficient points
within 𝑡ℎ𝑟𝑒𝑠 and we update the upper bound 𝑢 as 𝑡ℎ𝑟𝑒𝑠 in line 7.
The binary search guarantees that 𝑡ℎ𝑟𝑒𝑠 is sufficiently close to

the 𝑘𝑡ℎ nearest distance. In the last round (lines 9-10), a plaintext
range query PRQ𝐹𝑖 (𝑐𝑖𝑟𝑐𝑙𝑒 (𝑝, 𝑡ℎ𝑟𝑒𝑠)) is performed on each silo
and we use a secure set union to get the final result.

Complexity Analysis. Alg. 1 takes at most 𝑂 (log 𝑣0
𝜖0
) rounds to

get the threshold (lines 2-8). In each round, the plaintext range
counting (line 4) takes𝑂 (𝑇𝑐) time, and the secure comparison (line
5) takes 𝑂 (𝑛) time. The adjustment of the binary search boundary
(lines 6-8) takes 𝑂 (1) time. After obtaining the final threshold, the
algorithm calls a plaintext range query in 𝑂 (𝑇𝑞) time to get local
results (line 9) and a secure set union in𝑂 (𝑛+𝑘) time to assemble the
results. Thus, the total time complexity is𝑂 (𝑇𝑞 +𝑘+ (𝑛+𝑇𝑐) log 𝑣0

𝜖0
).

In secure comparison (line 5), each silo communicates with the other
𝑛−1 silos. Thus, the communication cost for a single round is𝑂 (𝑛2)
and there are 𝑂 (𝑛2 log 𝑣0

𝜖0
) rounds in total. The communication

of secure set union (line 10) is 𝑂 (𝑛 + 𝑘). The time complexity of
federated kNN join is similar to federated kNN query, multiplied
by a factor |𝑅 |, i.e. 𝑂 (|𝑅 |𝑇𝑞 + |𝑅 |𝑘 + |𝑅 | (𝑛 +𝑇𝑐) log 𝑣0

𝜖0
).

Example 3. We illustrate the execution of a federated kNN query
with query point (4, 4) and𝑘 = 4 over 3 silos in Fig. 4, and the objects
marked with the same color belong to the same silo. The query

rewriter decomposes this query into multiple rounds of radius-
known queries. In the 1st round, a plaintext range counting with
center (4, 4) and radius 4 is sent to each silo and a secure comparison
with 𝑘 is performed across silos. And we get 9 objects, which is
greater than𝑘 . Hence in the 2nd round, the radius decreases to 2 and
resent to silos for plaintext range counting and secure comparison.
There are 2 objects, which is smaller than 𝑘 . Thus in the 3rd round,
the radius increases to 3 and the procedure continues, where the
range counting result equals to 𝑘 and the search terminates. Finally,
a plaintext range query with center (4, 4) and radius 3 plus a secure
set union are performed to get the 4 objects.

4.5 Discussions
We highlight the following discussions on the query rewriter.

Security of Rewriter.We prove the security of our query rewriter
based on the composition lemma in [24] (Section 7.3.1). The idea
is to show the decomposition plans for radius-known queries and
radius-unknown queries will not reveal any extra information other
than the final result due to the usage of secure operators. We also
present a case study that proves it is hard for a semi-honest adver-
sary to attack Hu-Fu. Please refer to Appendix A of our full paper
[15] for the proof and case study due to the page limitation.

Differential Privacy toAccelerate Radius-UnknownQueries.

We exploit differential privacy [34] to further accelerate federated
kNN query and federated kNN join from two aspects.

• Tighten Predefined Upper Bound.We ask each 𝐹𝑖 to conduct

a local kNN query in plaintext and return the𝑘𝑡ℎ object’s distance

to the query point 𝑑𝑘𝑖 . Since directly returning such value may
expose the real distances of silos, we apply the truncated Laplace
mechanism [5] on it. That is, let each silo add a positive noise

and get the perturbed value 𝑑 ′𝑖
𝑘 . We can tighten the upper bound

as the smallest distance in all silos, i.e. 𝑣0 = min𝑖 𝑑
′
𝑖
𝑘 , since there

are at least 𝑘 points in this range.
• ReduceRunningTime andCommunicationCost in Secure

Comparison. The secure comparison in Alg. 1 compares
∑𝑛
1 𝛽𝑖

with 𝑘 , which incurs at least 𝑂 (𝑛2) running time and communi-
cation cost. It can be reduced to𝑂 (𝑛) when

∑𝑛
1 𝛽𝑖 notably differs

from 𝑘 . In this case, each silo can add a Laplacian noise [34] on
its local counting result to hide the real counts of each silo, and
then aggregate the perturbed results. If the perturbed result is
much smaller/larger than 𝑘 , we directly adjust the threshold.

Beyond Mainstream Spatial Queries. The decomposition plan
for radius-known queries applies to federated range query/count-
ing with other query range types (e.g., rectangle). This is because
the plaintext range query/counting with arbitrary shapes of query
ranges is supported in each silo’s underlying spatial data systems
(e.g., PostGIS). The query rewriter also supports aggregation queries,
e.g., the aggregate attribute on the result of kNN query or range
query. Specifically, the aggregation of kNN query can be decom-
posed the same as the federated kNN query, by only replacing the
last secure set union with a secure summation. The range aggregate
query can be decomposed similarly to a federated range counting.

5 DRIVERS
This section presents Hu-Fu’s drivers, which offer interfaces and
implementations on top of silos’ spatial databases for the unified and

Plaintext Range Counting
Secure Comparison

0 4 8

4

8

9 > k

Plaintext Range Counting
Secure Comparison

0 4 8

4

8

2 < k

Plaintext Range Counting
Secure Comparison

0 4 8

4

8

4 = k

Plaintext Range Query
Secure Set Union

0 4 8

4

8

Figure 4: Running example of a federated kNN query (𝑘 = 4).

Table 2: The number of basic operators in the decomposition plans of federated spatial queries. Radius-known queries only involve one secure

operator (secure set union/summation) for secure result collection. Radius-unknown queries are executed in multiple rounds which require

extra secure operator (secure comparison) to ensure security. Here, 𝑛 is the number of silos.

Category Federated Spatial Query
Number of Plaintext Operator Number of Secure Operator

Range Query Range Counting Comparison Set Union/Summation

Radius-Known

Federated Range Query 𝑛 0 0 1/0

Federated Range Counting 0 𝑛 0 0/1

Federated Distance Join 𝑛 |𝑅 | † 0 0 1/0

Radius-Unknown
Federated kNN Query 𝑛 𝑂 (𝑛 log

𝑣0
𝜖0
) ‡ 𝑂 (log

𝑣0
𝜖0
) 1/0

Federated kNN Join 𝑛 |𝑅 | 𝑂 (𝑛 |𝑅 | log 𝑣0
𝜖0
) 𝑂 (|𝑅 | log 𝑣0

𝜖0
) 1/0

† |𝑅 | is the size of the input dataset 𝑅 in the federated distance join and federated kNN join.
‡ 𝑣0 and 𝜖0 are user-defined parameters for processing the federated kNN query and federated kNN join.

efficient execution of decomposition plans generated by the query
rewriter. A driver, which consists of plaintext primitives and secure

primitives, is deployed on each silo. Upon receiving a decomposition
plan, plaintext operators are first executed at each silo with plaintext
primitives and then secure operators are performed via the secure
primitives for result assembling. As next, we elaborate on plaintext
primitives (Sec. 5.1) and secure primitives (Sec. 5.2) to efficiently
implement the basic operators defined in the query rewriter.

5.1 Plaintext Primitives
The plaintext primitives implement plaintext range query and plain-
text range counting. They are implemented as an interface on top
of the underlying spatial databases for portability and to harness
existing range query and range counting implementations.

Primitive Implementation.The implementation of plaintext prim-
itives is dependent on the underlying spatial databases.

• For databases where range query and range counting are avail-
able, e.g., Simba [64] and PostGIS [45], we directly call the corre-
sponding functions for plaintext range query or counting. For
example, in PostGIS, a plaintext range counting on silo 𝐹𝑖 with
the center 𝑝 and radius 𝑟 of a circular range can be implemented
by calling the SQL below.

SELECT COUNT (*) FROM 𝐹𝑖
WHERE ST_DWithin(p, 𝐹𝑖 .location , r);

• For databases without such queries, drivers provide a default
implementation of range query and range counting. For example,
GeoMesa [27] only provides an interface of range query. Thus,
we implement range counting by first running a range query,
and then counting the cardinality of the returned set.

Time Complexity. The time complexity of plaintext primitives
depends on the native implementation in spatial databases. For
example, plaintext range counting takes𝑂 (log𝑚) time with spatial
indices [46], where 𝑚 is the data size. Yet plaintext range query
may need 𝑂 (log𝑚 + |𝑆 |) time, where 𝑆 is the query result.

Discussions. We make two notes on the plaintext primitives.

• To support the differential privacy based acceleration for feder-
ated kNN query (see Sec. 4.5), Hu-Fu drivers provide an optional
plaintext kNN query interface. The plaintext kNN is implemented
by a function call on spatial databases with native kNN query
(e.g., PostGIS [45] and Simba [64]).

• Since the time complexity of plaintext primitives varies, the
efficiency of federated spatial queries can be limited by the slow-
est plaintext primitive if silos are using heterogeneous spatial
databases (see Sec. 7.4). Thus, more efficient plaintext range
query/counting is out of our scope.

5.2 Secure Primitives
The Secure primitives implement secure summation, comparison,
and set union, which are independent of the underlying spatial
databases. Recall that secure primitives take the local results from
plaintext primitives as inputs. To avoid idle waiting for slow silos
and to reuse local results across silos, each silo buffers its local
results of plaintext primitives executed on itself. We implement
secure primitives on top of such a buffer, as explained next.

Primitive Implementation. Each secure primitive is implemented
with a dedicated secure protocol for higher efficiency than the cor-
responding operation in general-purpose SMC libraries. We present
the details of each secure primitive below.

Secure Summation. The implementation of secure summation
is based on Ref. [19]. First, all of the 𝑛 silos first agree on 𝑛 different
public parameters 𝑈 = {𝑢1, 𝑢2, · · · , 𝑢𝑛}. Then, each silo 𝐹𝑖 chooses

a random 𝑛 − 1 degree polynomial 𝑡𝑖 (𝑥) = (
∑𝑛−1
𝑘=1 𝑎𝑖𝑘𝑥

𝑘) + 𝑣𝑖 and
calculates 𝑛 values of the polynomial, 𝑡𝑖 (𝑢1), · · · , 𝑡𝑖 (𝑢𝑛). Specially,
𝑎𝑖𝑘 indicates the random coefficient independently generated by silo
𝐹𝑖 , and 𝑣𝑖 denotes the local counting result of silo 𝐹𝑖 . These variables
are held by silo 𝐹𝑖 only and kept secret from others. Afterward, each
silo 𝐹𝑖 sends the value of polynomial 𝑡𝑖 (𝑢 𝑗) to all other 𝐹 𝑗 (𝑖 ≠ 𝑗).

When any silo 𝐹 𝑗 receives all {𝑡𝑖 (𝑢 𝑗) |𝑖 ≠ 𝑗} from the other silos, it

sums up those values 𝑆 (𝑢 𝑗) =
∑𝑛
𝑖=1 𝑡𝑖 (𝑢 𝑗) = (

∑𝑛−1
𝑘=1 (𝑢

𝑘
𝑗

∑𝑛
𝑖=1 𝑎𝑖𝑘)) +∑𝑛

𝑖=1 𝑣𝑖 and sends the summations 𝑆 (𝑢 𝑗) to the query user. The

user can regard 𝑆 (𝑢 𝑗) as a linear equation 𝑆 (𝑢 𝑗) =
∑𝑛−1
𝑘=1 𝑢

𝑘
𝑗 𝑧𝑘 + 𝑧𝑛 ,

where 𝑛 unknown variables are 𝑧𝑘 =
∑𝑛
𝑖=1 𝑎𝑖𝑘 (for 𝑘 = 1, · · · , 𝑛−1)

and 𝑧𝑛 =
∑𝑛
𝑖=1 𝑣𝑖 . Moreover, the user knows {𝑢1, 𝑢2, · · · , 𝑢𝑛} and

the values {𝑆 (𝑢1), 𝑆 (𝑢2), · · · , 𝑆 (𝑢𝑛)}. Thus, the user can solve the
𝑛 unknown variables by Gauss elimination and get the value of∑𝑛

𝑖=1 𝑣𝑖 (i.e. the unknown variable 𝑧𝑛).
Secure Comparison. The primitive compares a user given con-

stant𝑘 with the sum of each silo’s local result (e.g., {𝛽𝑖 }) and ensures
that either 𝛽𝑖 or

∑𝑛
𝑖=1 𝛽𝑖 is confidential to any silos 𝐹 𝑗 (𝑗 ≠ 𝑖) and the

query user. The main idea is calculating 𝑋 (
∑𝑛
𝑖=1 𝛽𝑖 − 𝑘) instead of∑𝑛

𝑖=1 𝛽𝑖 −𝑘 , where𝑋 is a random and positive real number, because
the latter result discloses the value of

∑𝑛
𝑖=1 𝛽𝑖 . Accordingly, we re-

duce our secure comparison into the classic secure multiplication
and hence adopt the existing secure multiplication protocol [11]
to ensure security. Specifically, the secure multiplication protocol
requires two multipliers 𝑥 and 𝑦 are both divided into 𝑛 shares
𝑋 =

∑𝑛
𝑖=1 𝑥𝑖 , 𝑌 =

∑𝑛
𝑖=1 𝑦𝑖 and each share is distributed into 𝑛 silos,

e.g., 𝑥𝑖 and 𝑦𝑖 for silo 𝐹𝑖 . This protocol can protect the values of
𝑋,𝑌, 𝑥𝑖 , 𝑦𝑖 from the attackers in all𝑛 silos. In our reduction,𝑌 equals∑𝑛
𝑖=1 𝛽𝑖 − 𝑘 and 𝑦𝑖 = 𝛽𝑖 −

𝑘
𝑛 . Since each silo has already known its

local result 𝛽𝑖 , the user only sends 𝑘
𝑛 to all silos. After that, each

silo randomly generates a positive real number 𝑥𝑖 and calculates

𝑋𝑌 = (
∑𝑛
𝑖=1 𝑥𝑖) (

∑𝑛
𝑖=1 (𝛽𝑖 −

𝑘
𝑛)) by using the secure multiplication

protocol (see [11] for more details), then returns 𝑋𝑌 to the user.
Finally, the user derives the final result of our secure comparison
by the sign of 𝑋𝑌 without leaking any sensitive information.

Secure Set Union. We implement this primitive as a random
shares based two-phase union method [28]. Specifically, each silo
adds its results and some fake records to a global set in the first
phase and removes them from the set in the second phase. We
use differential privacy to reduce the number of fake records and
thus the communication cost. Observing that adding and removing
fake records can be done independently, we split the global set into
batches to allow parallel execution. Then each silo can add and
remove noise data from each batch independently, resulting in a
shorter latency.
ComplexityAnalysis. For secure summation, the time complexity
to solve the linear equations is 𝑂 (𝑛3), with 𝑂 (𝑛2) communication
cost [19]. For secure comparison, the time complexity of the secure
multiplication is 𝑂 (𝑛). It also has a communication cost of 𝑂 (𝑛2)
[11]. The time complexity and communication cost of secure set
union are both 𝑂 (𝑛 + |𝑆 |), where 𝑆 is the final global set [28].

6 QUERY INTERFACE
This section presents the query interface of Hu-Fu. For easy usabil-
ity, the interface offers a unified federation view to users (Sec. 6.1)
and supports federated spatial queries in SQL (Sec. 6.2).

6.1 Unified Federation View
Hu-Fu’s query interface provides a federation view to the query
user, while the detailed information of silos is hidden. This allows
the user to send queries without worrying about the silo organiza-
tion and also protects the data security of individual silos.

We implement the unified federation view by extending the
schema manager of Calcite [8], a popular query processing frame-
work. In Calcite’s schema manager, each table is independent and
indivisible. We add silo as an abstraction layer below the table of
schema manager. Thus each table contains multiple silo objects, and
each object records the identity information of the corresponding
silo. The silo identity information is used when executing secure
primitives. Specifically, the query rewriter will attach the identi-
fying information of all silo-level tables in the table of schema
manager when distributing secure operators. Each silo only exe-
cutes the corresponding secure primitives if the attached identity
information matches the one locally stored.

6.2 Federated Spatial Queries in SQL
Based on the unified federation view, Hu-Fu query interface sup-
ports federated spatial queries in SQL by extending the SQL parser
of Calcite. The semantics are almost the same as regular SQL queries.
Specifically, we add two keywords: DWithin and kNN.

For example, a federated range counting on a circular range
centered at the point 𝑝 with radius 𝑟 can be written in SQL as

SELECT COUNT (*) FROM F WHERE DWithin(p, F.location , r);

where DWithin(𝑝, 𝐹 .𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑟) returns whether the distance be-
tween 𝑝 and an object 𝑜 ∈ 𝐹 is shorter than 𝑟 . A federated kNN join
on a dataset 𝑅 and federation 𝐹 with 𝑘 can be written in SQL as

SELECT R.id, F.id FROM R JOIN F

ON kNN(R.location , F.location , k);

where kNN(𝑅.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐹 .𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑘) indicates whether a spatial ob-
ject 𝑜 ′ ∈ 𝐹 is in the kNN set of query point 𝑜 ∈ 𝑅. Other queries
can be written as SQL similarly with these two keywords.

7 EVALUATION
This section presents the evaluations of Hu-Fu. We first introduce
the experimental setup (Sec. 7.1), and then present the overall perfor-
mance (Sec. 7.2), scalability (Sec. 7.3) and results with heterogeneous
spatial databases across silos (Sec. 7.4).

7.1 Experimental Setup

Datasets. We conduct experiments on the following two datasets,
where each spatial object has a location and a unique ID.

• Multi-company Spatial Data in Beijing (BJ). This dataset
was collected by 10 companies in Beijing, in June 2019, which has
1, 029, 081 spatial objects in total. The locations of these objects
fall into an area from 39.5◦N ∼ 42.0◦N and 115.5◦E ∼ 117.2◦E.
We use the dataset to simulate a real-world federation, where
each company can be naturally regarded as a silo. We do not alter
the distributions of spatial objects across silos, and only vary the
silo number 𝑛 or query-specific parameters (e.g., 𝑘 for federated
kNN query) during the evaluation.

• OpenStreetMap (OSM). This is a popular open dataset to eval-
uate large-scale spatial analytics [16, 43, 64]. We mainly use this
dataset in the scalability test, where we sample 104-109 spatial
objects from the Asia dataset in the OpenStreetMap [40]. Specif-
ically, to simulate the spatial overlaps as in the BJ dataset, we
assign a random silo ID for each point in the dataset and make
each silo have the same number of data points.

Baselines.We compare Hu-Fu with the following baselines.

• Public. It directly collects local results from each silo without
any secure operation, and serves as the upper bound of query
processing efficiency.

• SMCQL-GIS & SMCQL-GISext. It adopts the principles of SM-
CQL [4], a garbled circuit (GC) based solution for relational
data, to support spatial queries. We implement SMCQL-GIS and
SMCQL-GISext with ObliVM [35], which is also used in SMCQL
and only supports two silos. So we only provide the results of
SMCQL-GIS and SMCQL-GISext over two silos. And SMCQL-
GISext is a variant of SMCQL-GIS without assuming an honest
broker, and uses our secure set union to assemble results.

• Conclave-GIS & Conclave-GISext. It adopts the principles of
Conclave [57], the state-of-the-art secret sharing (SS) based feder-
ation solution for relational data, to support spatial queries. Note
that we implement Conclave-GIS and Conclave-GISext with a
different SS based library, MP-SPDZ [29], rather than Sharemind
[11] in the original Conclave. Because Sharemind is devised for
only three silos [7] and it is a commercial library. In contrast,
MP-SPDZ is a popular open-source library that supports more
than three silos based on secret sharing. And Conclave-GISext is
a variant of Conclave-GIS without assuming an honest broker,
and uses our secure set union to assemble results.

These secure baselines implement federated spatial queries by
exploiting similar queries for relational data in SMCQL or Con-
clave. Our extensions follow the strategy of having plaintext spatial
queries within each silo’s database and securely computing the
final results. Specifically, for federated range query, these baselines
execute plaintext range query in each silo and collect the partial
results by either the honest broker or our secure set union. For
federated range counting, they execute plaintext range counting and
use secure summation to compute the final result. For federated kNN
query, we regard it as a top-k query with a user-defined function
(UDF). For example, each silo runs plaintext kNN query to compute
𝑘 candidate neighbors along with their distances to the query object.
Then, all 𝑛 silos securely find the 𝑘 nearest neighbors among 𝑛𝑘
candidates. For federated distance join/kNN join, we refer to their
query plans for join queries and regard a federated distance/kNN
join as multiple federated range/kNN queries.

Metrics.We assess the query processing efficiency by two metrics.

• Running time. It is the time cost from receiving the query from
a user to returning the query result to the user.

• Communication cost. It is the total network communication
among the user and all silos for this query.

All the experimental results are the average of 50 repetitions.

Environment.We run all experiments on a cluster of 11 machines.
Eachmachine has 32 Intel(R) Xeon(R) Gold 5118 2.30GHz processors
and 64GB memory with Ubuntu 18.04 LTS. The network bandwidth
between machines is up to 10 GB/s. Among the 11 machines, one
is as the user and the honest broker for SMCQL-GIS and Conclave-
GIS, and the other 10 are data silos. We use PostgreSQL 10.15 with
PostGIS extension as the default spatial database for all silos. To
show the support of heterogeneous spatial database systems by
Hu-Fu, we also use MySQL 5.7 [61], Sqlite3 with SpatiaLite exten-
sion [51], GeoMesa 3.0.0 [27], Simba 1.0 [64] and SpatialHadoop
2.4.3 [16] as different silos, as will be explained in Sec. 7.4. They all
use spatial indexes (R-Tree in PostGIS, Simba, SpatialHadoop and

2 4 6 8 10
Silo Number

101

103

105

R
un

ni
ng

 T
im

e(
m

s)

2 4 6 8 10
Silo Number

100

105

1010

C
om

m
.(K

B/
Q

ue
ry

)

(a) Running time and communication cost of varying the silo number

4 8 16 32 64
k

101

103

105

R
un

ni
ng

 T
im

e(
m

s)

4 8 16 32 64
k

100

105

1010

C
om

m
.(K

B/
Q

ue
ry

)

(b) Running time and communication cost of varying the value of k

Figure 5: Performance of federated kNN query.

2 4 6 8 10
Silo Number

102

104

106

R
un

ni
ng

 T
im

e(
m

s)
2 4 6 8 10

Silo Number

101

103

105

C
om

m
.(M

B/
Q

ue
ry

)

Figure 6: Performance of federated kNN join.

2 4 6 8 10
Silo Number

101

102

103

R
un

ni
ng

 T
im

e(
m

s)

2 4 6 8 10
Silo Number

100

101

102

103

C
om

m
.(K

B/
Q

ue
ry

)

(a) Running time and communication cost of varying the silo number

10-5 10-4 10-3 10-2 10-1

Query Area(%)

101

102

R
un

ni
ng

 T
im

e(
m

s)

10-5 10-4 10-3 10-2 10-1

Query Area(%)

100

102

C
om

m
.(K

B/
Q

ue
ry

)

(b) Running time and communication cost of varying the query area

Figure 7: Performance of federated range counting.

MySQL, R*-Tree in SpatiaLite, and Z-Curve in GeoMesa) to speed
up plaintext primitives by up to 2042× (in Appendix F [15]).

7.2 Results on Real Dataset
This series of experiments compare the efficiency of different meth-
ods for all five federated spatial queries on the real dataset BJ. All
the query points are randomly sampled from the dataset. We vary
the number of silos from 2 to 10, and also test the impact of query-
specific parameters. We set 𝑘 to 16 for federated kNN query and
kNN join, and the default query area of federated range query, range
counting and distance join as 0.001%, and vary them from 4 to 64
and 0.00001% to 0.1% respectively. The range of these query-specific
parameters is aligned with previous study [64]. When evaluating
the query-specific parameters, we use 6 silos by default.

7.2.1 Performance of Federated kNN Query. Fig. 5a shows the run-
ning time and communication cost of federated kNN query. Hu-Fu
is 109.6× to 7, 198.8× faster than SMCQL-GIS and Conclave-GIS,
and has 2 to 5 orders ofmagnitude lower communication cost.When
the number of silos increases from 2 to 10, the running time and

2 4 6 8 10
Silo Number

20

25

30
35

R
un

ni
ng

 T
im

e(
m

s)

2 4 6 8 10
Silo Number

100

102

C
om

m
.(K

B/
Q

ue
ry

)
(a) Running time and communication cost of varying the silo number

10-5 10-4 10-3 10-2 10-1

Query Area(%)

101

102

R
un

ni
ng

 T
im

e(
m

s)

10-5 10-4 10-3 10-2 10-1

Query Area(%)

100

102

104
C

om
m

.(K
B/

Q
ue

ry
)

(b) Running time and communication cost of varying the query area

Figure 8: Performance of federated range query.

2 4 6 8 10
Silo Number

500

1000
1500

R
un

ni
ng

 T
im

e(
m

s)

2 4 6 8 10
Silo Number

1

10

C
om

m
.(M

B/
Q

ue
ry

)

Figure 9: Performance of federated distance join.

communication cost of Hu-Fu only increase by up to 2.9× and 13.9×,
while those of Conclave-GIS drastically increase by up to 153.3×
and 1, 884.3×. Both metrics of Hu-Fu increase because the secure
comparison and secure set union used in this query grow linearly
with the silo number. Compare with Conclave-GIS and SMCQL-GIS,
the running time and communication cost of Conclave-GISext and
SMCQL-GISext increase marginally (less than 20 ms and 200 KB,
respectively), which shows that our secure set union can efficiently
assemble query results without an honest broker.

We also vary 𝑘 from 4 to 64 and plot the running time and com-
munication cost in Fig. 5b. As 𝑘 increases from 4 to 64, the running
time and communication cost of Hu-Fu only increase by 0.1× and
1.1×, while those of Conclave-GIS increase by 51.3× and 50.7×. The
impact of 𝑘 is less obvious than the silo number on Hu-Fu, because
only the secure set union is linearly dependent on 𝑘 . Again, the
efficiency of Conclave-GISext is similar to that of Conclave-GIS.
The drastic increase in running time and communication cost of
Conclave-GIS and Conclave-GISext is expected because it involves
many secure primitives that are time-consuming.

Recall that we apply differential privacy (DP) to accelerate kNN
queries (see Sec. 4.5). To prove the gain of the optimization, we list
the running time and communication cost with and without DP
in Table 3. With DP, the running time is reduced by up to 19.6%,
and the communication cost by up to 47.7%. Compared with the
improvement, the overhead of injecting the DP noise is very mar-
ginal, which takes 2 𝜇𝑠 time cost and less than 1 KB communication
cost when processing one federated kNN query. Such a notable im-
provement is because the complexity of DP noise injection is 𝑂 (1)
and the summation only requires for transmission of 𝑛 integers,
while a secure comparison has 𝑂 (𝑛) time complexity and 𝑂 (𝑛2)
communication cost.

7.2.2 Performance of Federated kNN Join. Fig. 6 shows the per-
formance of federated kNN join. The results of Conclave-GIS and

Table 3: Ablation of DP optimization for federated kNN query.

Silo Number 2 4 6 8 10

Hu-Fu 26.1 45.1 58.6 89.6 100.5
Running

Time (ms)
Hu-Fu

without DP
26.9 50.3 72.9 107.0 116.9

Hu-Fu 39.4 160.8 357.7 475.1 588.3
Comm.

(KB)
Hu-Fu

without DP
58.5 234.8 493.0 784.0 1125.2

Conclave-GISext with over 8 silos are omitted since they incur over
6 hours for a single query. Hu-Fu is still the most efficient, which is
up to 360.2×/15, 814.2× faster than SMCQL-GIS/Conclave-GIS with
247.8×/185, 151.0× lower communication cost. The running time
and communication cost of SMCQL-GISext and Conclave-GISext
slightly increase over SMCQL-GIS and Conclave-GIS. The impact
of 𝑘 is similar to federated kNN query (see Appendix B [15]).

7.2.3 Performance of Federated Range Counting. Fig. 7 shows the
results of federated range counting. This query only returns the
counting result and thus does not need a secure set union to protect
data ownership. Hence, we exclude SMCQL-GISext and Conclave-
GISext since they only differ from SMCQL-GIS and Conclave-GIS
with an extra secure set union, which is unnecessary in this query.
Hu-Fu is up to 15.2× faster than SMCQL-GIS with a slightly higher
communication cost (within 7 KB). Considering the increasing net-
work bandwidth, the gap in communication cost is acceptable. Com-
pared with Conclave-GIS, Hu-Fu is up to 10.8× faster with 17.9×
lower communication cost. The running time and communication
cost of Hu-Fu increase by 0.6× and 13.2× respectively when silo
number increases to 10, mainly due to the secure summation.

We also demonstrate the impact of the query area on query
efficiency in Fig. 7b. As is shown, the running time of all methods
is relatively stable. It is expected because secure operations are
the bottleneck of running time whereas the larger query area only
increases the running time of plaintext operations.

7.2.4 Performance of Federated Range Query. Fig. 8 illustrates the
results of federated range query. The efficiency of SMCQL-GIS and
Conclave-GIS is the same as Public (i.e. the non-secure baseline),
because they both rely on an honest broker to securely collect
partial answers in each silo without leaking them to any others.
Under this assumption, all systems can be reduced to Public, which
uses a server (e.g., an honest broker in SMCQL-GIS and a center
server in Public) to directly collect local range query result from
each silo. For example, Hu-Fu with an honest broker also has the
same efficiency as Public (see Appendix D [15]). Under a more
general setting without this assumption, Hu-Fu, SMCQL-GISext
and Conclave-GISext have the same efficiency because they all use
our secure set union for results assembling. The use of secure set
union only leads to a marginal increase in running time (within 250
ms) and communication cost (lower than 3.1 MB) over Public. Note
that the order of increase in running time and communication cost
matches the complexity analysis for the secure set union in Sec. 5.2,
which grows linearly with the silo number and the amount of data
returned. As shown in Fig. 8b, when the query area expands, all
methods have a higher running time and communication cost, due
to the increase of the number of spatial objects in the final result.

104 105 106 107 108 109

Data Size

101

103

105

R
un

ni
ng

 T
im

e(
m

s)

104 105 106 107 108 109

Data Size

101

103

105

107

C
om

m
.(K

B/
Q

ue
ry

)

(a) Running time and communication cost of federated kNN query

104 105 106 107 108 109

Data Size

103

105

107

R
un

ni
ng

 T
im

e(
m

s)

104 105 106 107 108 109

Data Size

101

103

105

107
C

om
m

.(M
B/

Q
ue

ry
)

(b) Running time and communication cost of federated kNN join

104 105 106 107 108 109

Data Size

101

102

103

R
un

ni
ng

 T
im

e(
m

s)

104 105 106 107 108 109

Data Size

101

102

103

C
om

m
.(K

B/
Q

ue
ry

)

(c) Running time and communication cost of federated range counting

104 105 106 107 108 109

Data Size

101

102

R
un

ni
ng

 T
im

e(
m

s)

104 105 106 107 108 109

Data Size

101

103

C
om

m
.(K

B/
Q

ue
ry

)

(d) Running time and communication cost of federated range query

104 105 106 107 108 109

Data Size

102

103

104

R
un

ni
ng

 T
im

e(
m

s)

104 105 106 107 108 109

Data Size

100

101

102

C
om

m
.(M

B/
Q

ue
ry

)

(e) Running time and communication cost of federated distance join

Figure 10: Scalability test of federated spatial queries.

7.2.5 Performance of Federated Distance Join. Fig. 9 presents the
performance of federated distance join. Note that all the methods
treat federated distance join as multiple independent federated
range queries, where the total number of these range queries is
|𝑅 | = 100 in this test. Thus, it is reasonable that the ranking of all
the methods is similar to that in federated range query (see Fig. 8).
The impact of query area is similar to federated range query (see
Appendix B [15]).

Takeaways. Overall, Hu-Fu is up to 15, 814.2× faster than SMCQL-
GIS and Conclave-GIS, with up to 5 orders of magnitude lower
communication cost. The efficiency gain of Hu-Fu over the base-
lines is more notable in federated kNN query, kNN join, and range
counting, which is at least 2.4× faster in running time and 4.9×
lower in communication cost than Conclave-GIS. SMCQL-GIS and
Conclave-GIS are more efficient in federated range query and dis-
tance join, because these baselines are reduced to Public and need
no secure operation with the honest broker. Note that for federated
range query and distance join, Hu-Fu achieves the same efficiency
as SMCQL-GISext and Conclave-GISext, the variants of SMCQL-GIS
and Conclave-GIS without an honest broker.

7.3 Results on Scalability Test
In this experiment, we scale the total number of spatial objects
from 104 to 109 over OSM dataset to assess the scalability of Hu-Fu.
Other parameters are set to the default values as in Sec. 7.2. For
example, the number of silos is 6, 𝑘 = 16 for federated kNN query
and kNN join, and the query area for federated range query, range
counting and distance join is 0.001%. Recall that SMCQL-GIS and
SMCQL-GISext only support two silos and are excluded since 6
silos are used in this test. The running time and communication
cost on the five spatial queries are shown in Fig. 10.

For a fixed data size, we observe that Hu-Fu is notably more
efficient than Conclave-GIS and Conclave-GISext on federated kNN
query, kNN join and range counting (see Fig. 10a-10c). For federated
range query and distance join, Conclave-GIS behaves the same as
Public due to the honest broker, while Hu-Fu achieves the same
efficiency as Conclave-GISext, which requires no honest broker.

We are more interested in the efficiency with the increase of
data size. We observe that the efficiency of federated kNN query,
kNN join and range counting is insensitive to the increase of the
data size. This is because the increase of data size mainly affects the
time cost of plaintext primitives, which only accounts for a small
portion (due to efficient indexes in each silo) in the running time.
In contrast, the running time and communication cost of federated
range query and distance join notably increase with the increase
of the data size because more spatial objects are retrieved in each
silo, which leads to a higher cost for both plaintext range query
and secure set union.

Takeaways. Hu-Fu trivially scales with data size for federated
kNN query, kNN join and range counting because these queries are
relatively insensitive to data size. Both metrics of Hu-Fu increase
with the data size for federated range query and distance join, yet
Hu-Fu is still reasonably efficient for them on large-scale data. For
example, in Hu-Fu, a federated range query takes 250 ms running
time and 2.6 MB communication cost on the data size of 109.

7.4 Results on Heterogeneous Silos
This experiment aims to demonstrate the feasibility of Hu-Fu on
heterogeneous spatial databases. Specifically, we use 6 different
databases for each silo on the BJ dataset: PostGIS [45], MySQL [61],
SpatiaLite [51], Simba [64], GeoMesa [27], and SpatialHadoop [16].
Other parameters are set as the default values as in Sec. 7.2.

Fig. 11 plots the running time breakdown i.e. plaintext vs. se-
cure primitives for radius-unknown (i.e. federated kNN query) and
radius-known (i.e. federated range counting) queries (see Appen-
dix C [15] for more results). We make the following observations.

• Given homogeneous underlying spatial databases (PostGIS), our
Hu-Fu significantly reduces the running time of secure primi-
tives e.g., 3, 935.4× compared with Conclave-GIS for federated
kNN query. Such acceleration in secure primitives is the primary
contributor to Hu-Fu’s gain in running time.

• Heterogeneous underlying spatial databases affect the running
time. Specifically, the running time of plaintext primitives is
limited by the slowest spatial database, which may increase the
overall query processing time. In this experiment, the running
time of plaintext primitives notably increases from 4ms to 579 ms
when replacing PostGIS with heterogeneous databases (where

Figure 11: Running time breakdown.

SpatiaLite and MySQL are the slowest), which takes even longer
than the secure primitives in Hu-Fu. The running time of secure
primitives also marginally increases due to idle waiting for the
local results from the slowest silo.

Takeaways. Hu-Fu functions with silos running heterogeneous
databases. Although Hu-Fu dramatically speeds up the secure prim-
itives in a federated spatial query, the efficiency of plaintext primi-
tives in each silo’s databases may affect the overall running time.
Particularly, the time cost of plaintext primitives can be limited by
the slowest database in the federation. To unleash the full potential
of Hu-Fu, fast spatial databases in each silo are recommended.

8 RELATEDWORK
Distributed spatial database systems are popular solutions to query
processing on big spatial data. These systems improve query pro-
cessing via data partition and indexing techniques (e.g., R-tree [46])
in Hadoop (e.g., SpatialHadoop [16] and Hadoop-GIS [2]) or Spark
(e.g., Simba [64], GeoSpark [69], and LocationSpark [52]). However,
the data partition techniques are inapplicable in a data federation
since the entire data is held by the autonomous data silos. Moreover,
security is not the major concern in these systems.

Past studies of secure spatial query processing mainly focus on
encrypted databases [25], where data is encrypted and stored in
a third-party platform (e.g., a cloud platform) to process queries
securely. For example, existing work [18, 30, 62, 67] study the se-
cure kNN query on encrypted databases and prior studies [59, 63]
focus on securely processing range queries. In these studies, a data
owner outsources its data and hence the sensitive data is encrypted
before being uploaded to a third party. Intuitively, homomorphic
encryption techniques (e.g., Paillier [42] and SEAL [37]) are used to
guarantee security. Different from this setting, in a data federation,
data silos autonomously manage their own data and hence do not
need to encrypt their own data and upload it to a third party.

Rather than the general distributed databases or outsourced
databases, our work is more aligned with the problem settings of
federated databases and data federation, where the entire dataset is
held in multiple autonomous databases. The research on federated
databases dates back to 1979 (see surveys [26, 48]). Early efforts
focused on finding solutions to access data in autonomous databases
[41], while recent studies on federated databases support diverse
data types, e.g., on federated graph databases [58]. Note that the
autonomous database here means that data can be only managed by
its held silo which is different from a self-driving database [32, 33].

Data federation is an emerging concept developed from federated
databases. It shares a similar architecture with federated databases.
Yet, the major difference is that a data federation imposes certain
secure requirements during query processing, while a federated
database does not. For example, SMCQL [4] is the first secure query

processing solution over a data federation and Conclave [57] is the
state-of-the-art solution. Wang et al. [60] explored join-aggregate
queries over a data federation of two silos and Ge et al. [23] stud-
ied secure functional dependency discovery in a data federation.
All these studies adopt SMC techniques to achieve secure query
processing for relational data with exact results.

Other studies investigate approximate query processing over a
relational data federation. For example, Shrinkwrap [5], SAQE [6]
and Crypt𝜖 [14] use differential privacy to trade off between accu-
racy and efficiency in query processing. In contrast, we focus on
exact query processing, since accurate results can be crucial for
spatial applications like contact tracing [22].

In short, our work is inspired by the emerging trend of secure
query processing over a data federation, yet focuses on spatial
queries with exact results. Our Hu-Fu significantly improves the
efficiency of federated spatial queries over the extensions of SM-
CQL [4] and Conclave [57], the state-of-the-arts for relational data.

9 CONCLUSION
In this paper, we propose the first system Hu-Fu for efficient and
secure spatial queries over a data federation. Existing solutions are
inefficient to process such queries due to excessive secure distance
operations and the usage of general-purpose secure multi-party
computation (SMC) libraries for implementing secure operators.
To overcome the inefficiency, we design a novel query rewriter to
decompose the spatial queries into as many plaintext operators
and as few secure operators as possible. In particular, our secure
operators involve no distance operation and have dedicated im-
plementations faster than general-purpose SMC libraries. More-
over, Hu-Fu supports heterogeneous spatial databases (e.g., PostGIS,
Simba, GeoMesa, and SpatialHadoop), as well as query input in
native SQL. Finally, extensive experiments show that Hu-Fu is up to
4 orders of magnitude faster and takes 5 orders of magnitude lower
communication cost than the state-of-the-arts. In the future study,
we plan to support more spatial queries and analytics in Hu-Fu, e.g.,
spatial keyword search.

ACKNOWLEDGMENTS
We are grateful to anonymous reviewers for their constructive com-
ments. Yongxin Tong’s work is partially supported by the National
Key Research and Development Program of China under Grant No.
2018AAA0101100, the National Science Foundation of China (NSFC)
under Grant No. U21A20516, U1811463, 62076017, the State Key Lab-
oratory of Software Development Environment Open Funding No.
SKLSDE-2020ZX-07 and WeBank Scholars Program. This research
was supported by the Lee Kong Chian Fellowship awarded to Zimu
Zhou by Singapore Management University. Yuxiang Zeng and Lei
Chen’s work is partially supported by National Key Research and
Development Program of China Grant No. 2018AAA0101100, the
Hong Kong RGC GRF Project 16202218, CRF Project C6030-18G,
C1031-18G, C5026-18G, AOE Project AoE/E-603/18, RIF Project
R6020-19, Theme-based project TRS T41-603/20R, China NSFC No.
61729201, Guangdong Basic and Applied Basic Research Founda-
tion 2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX
and ITS/470/18FX, Microsoft Research Asia Collaborative Research
Grant, HKUST-NAVER/LINE AI Lab, Didi-HKUST joint research
lab, HKUST-Webank joint research lab grants.

REFERENCES
[1] Acxiom. 2021. https://www.acxiom.com/
[2] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[3] AMAP. 2021. https://www.amap.com
[4] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel N. Kho, and

Jennie Rogers. 2017. SMCQL: Secure Query Processing for Private Data Networks.
PVLDB 10, 6 (2017), 673–684.

[5] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers.
2018. ShrinkWrap: Efficient SQL Query Processing in Differentially Private Data
Federations. PVLDB 12, 3 (2018), 307–320.

[6] Johes Bater, Yongjoo Park, Xi He, Xiao Wang, and Jennie Rogers. 2020. SAQE:
Practical Privacy-Preserving Approximate Query Processing for Data Federations.
PVLDB 13, 11 (2020), 2691–2705.

[7] Fattaneh Bayatbabolghani and Marina Blanton. 2018. Secure Multi-Party Com-
putation. In CCS. 2157–2159.

[8] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources. In SIGMOD. 221–230.

[9] Paolo Bellavista, Luca Foschini, and AlessioMora. 2021. Decentralised Learning in
Federated Deployment Environments: A System-Level Survey. ACM Computing
Surveys 54, 1 (2021), 15:1–15:38.

[10] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness The-
orems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended
Abstract). In STOC. 1–10.

[11] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A Framework
for Fast Privacy-Preserving Computations. In ESORICS. 192–206.

[12] David Chaum, Claude Crépeau, and Ivan Damgård. 1988. Multiparty Uncondi-
tionally Secure Protocols (Extended Abstract). In STOC. 11–19.

[13] Yong Cheng, Yang Liu, Tianjian Chen, and Qiang Yang. 2020. Federated learning
for privacy-preserving AI. Communications of the ACM 63, 12 (2020), 33–36.

[14] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala,
and Somesh Jha. 2020. Crypt𝜖 : Crypto-Assisted Differential Privacy on Untrusted
Servers. In SIGMOD. 603–619.

[15] Hu-Fu: Efficient and Secure Spatial Queries over Data Federation (Technical Re-
port). 2021. https://github.com/BUAA-BDA/Hu-Fu/blob/dev/Hu-Fu_Technical_
Report.pdf

[16] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[17] Ahmed Eldawy and Mohamed F. Mokbel. 2017. The Era of Big Spatial Data.
PVLDB 10, 12 (2017), 1992–1995.

[18] Yousef Elmehdwi, Bharath K. Samanthula, and Wei Jiang. 2014. Secure k-nearest
neighbor query over encrypted data in outsourced environments. In ICDE. 664–
675.

[19] Fatih Emekçi, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi. 2007.
Privacy preserving decision tree learning over multiple parties. Data & Knowledge
Engineering 63, 2 (2007), 348–361.

[20] David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2018. A Pragmatic Intro-
duction to Secure Multi-Party Computation. Foundations and Trends in Privacy
and Security 2, 2-3 (2018), 70–246.

[21] Experian. 2021. https://www.experian.com/
[22] Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie

Abeler-Dörner, Michael Parker, David Bonsall, and Christophe Fraser. 2020. Quan-
tifying SARS-CoV-2 transmission suggests epidemic control with digital contact
tracing. Science 368, 6491 (2020), eabb6936.

[23] Chang Ge, Ihab F. Ilyas, and Florian Kerschbaum. 2019. Secure Multi-Party
Functional Dependency Discovery. PVLDB 13, 2 (2019), 184–196.

[24] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.
Cambridge university press.

[25] Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. 2002.
Executing SQL over encrypted data in the database-service-provider model. In
SIGMOD. 216–227.

[26] Dennis Heimbigner and Dennis McLeod. 1985. A Federated Architecture for
Information Management. ACM Transactions on Information Systems 3, 3 (1985),
253–278.

[27] James N. Hughes, Andrew Annex, Christopher N. Eichelberger, Anthony Fox,
AndrewHulbert, andMichael Ronquest. 2015. GeoMesa: a distributed architecture
for spatio-temporal fusion. In SPIE. 94730F.

[28] Pawel Jurczyk and Li Xiong. 2011. Information Sharing across Private Databases:
Secure Union Revisited. In SocialCom/PASSAT. 996–1003.

[29] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Computa-
tion. In CCS. 1575–1590.

[30] Manish Kesarwani, Akshar Kaul, Prasad Naldurg, Sikhar Patranabis, Gagandeep
Singh, Sameep Mehta, and Debdeep Mukhopadhyay. 2018. Efficient Secure
k-Nearest Neighbours over Encrypted Data. In EDBT. 564–575.

[31] Jinkyu Kim, Heonseok Ha, Byung-Gon Chun, Sungroh Yoon, and Sang K. Cha.
2016. Collaborative analytics for data silos. In ICDE. 743–754.

[32] Jan Kossmann, Martin Boissier, Alexander Dubrawski, Fabian Heseding, Caterina
Mandel, Udo Pigorsch, Max Schneider, Til Schniese, Mona Sobhani, Petr Tsayun,
Katharina Wille, Michael Perscheid, Matthias Uflacker, and Hasso Plattner. 2021.
A Cockpit for the Development and Evaluation of Autonomous Database Systems.
In ICDE. 2685–2688.

[33] Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo
Li, Tianqing Wang, and Shifu Li. 2021. openGauss: An Autonomous Database
System. PVLDB 14, 12 (2021), 3028–3041.

[34] Ninghui Li, Min Lyu, Dong Su, and Weining Yang. 2016. Differential Privacy:
From Theory to Practice. Morgan & Claypool Publishers.

[35] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
ObliVM: A Programming Framework for Secure Computation. In S&P. 359–376.

[36] Xiaoyuan Liu, Ni Trieu, Evgenios M. Kornaropoulos, and Dawn Song. 2020.
BeeTrace: A Unified Platform for Secure Contact Tracing that Breaks Data Silos.
IEEE Data Engineering Bulletin 43, 2 (2020), 108–120.

[37] Microsoft SEAL (release 3.6). 2021. https://github.com/Microsoft/SEAL
[38] China Mobile. 2021. https://www.chinamobileltd.com
[39] State of California Department of Justice. 2018. California Consumer Privacy

Act (CCPA). https://oag.ca.gov/privacy/ccpa
[40] OpenStreetMap. 2021. https://www.openstreetmap.org
[41] M. Tamer Özsu and Patrick Valduriez. 2020. Principles of Distributed Database

Systems, 4th Edition. Springer.
[42] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In EUROCRYPT. 223–238.
[43] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How

Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.
[44] European Parliament and The Council of the European Union. 2016. The general

data protection regulation (GDPR). https://eugdpr.org
[45] PostGIS. 2021. https://www.postgis.org/
[46] Hanan Samet. 2006. Foundations of multidimensional and metric data structures.

Academic Press.
[47] Facebook scandal: Who is selling your personal data? 2018. https://www.bbc.

com/news/technology-44793247
[48] Amit P. Sheth and James A. Larson. 1990. Federated Database Systems for Man-

aging Distributed, Heterogeneous, and Autonomous Databases. ACM Computing
Surveys 22, 3 (1990), 183–236.

[49] Yexuan Shi, Yongxin Tong, Zhiyang Su, Di Jiang, Zimu Zhou, and Wenbin Zhang.
2021. Federated Topic Discovery: A Semantic Consistent Approach. IEEE Intell.
Syst. 36, 5 (2021), 96–103.

[50] Tianshu Song, Yongxin Tong, and Shuyue Wei. 2019. Profit Allocation for Feder-
ated Learning. In IEEE BigData. 2577–2586.

[51] SpatiaLite. 2021. http://live.osgeo.org/en/overview/spatialite_overview.html
[52] MingJie Tang, Yongyang Yu, Qutaibah M. Malluhi, Mourad Ouzzani, and Walid G.

Aref. 2016. LocationSpark: A Distributed In-Memory Data Management System
for Big Spatial Data. PVLDB 9, 13 (2016), 1565–1568.

[53] China Telecom. 2021. http://www.chinatelecom-h.com/
[54] Numerous Beijing Taxi Brands to Collectively Connect to Amap’s Ride-hailing

Platform to Enable Online Operation. 2021. https://aag.cc/newsinfo/517126.html
[55] Communication travel card. 2021. https://xc.caict.ac.cn/
[56] Paul Voigt and Axel Von dem Bussche. 2017. The EU General Data Protection

Regulation (GDPR): A Practical Guide. Vol. 10. Springer International Publishing.
[57] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei

Lapets, and Azer Bestavros. 2019. Conclave: secure multi-party computation on
big data. In EuroSys. 3:1–3:18.

[58] Xuan-Son Vu, Addi Ait-Mlouk, Erik Elmroth, and Lili Jiang. 2019. Graph-based In-
teractive Data Federation System for Heterogeneous Data Retrieval and Analytics.
In WWW. 3595–3599.

[59] Peng Wang and Chinya V. Ravishankar. 2013. Secure and efficient range queries
on outsourced databases using Rp-trees. In ICDE. 314–325.

[60] Yilei Wang and Ke Yi. 2021. Secure Yannakakis: Join-Aggregate Queries over
Private Data. In SIGMOD. 1969–1981.

[61] MySQL (with supports to GIS). 2021. https://www.mysql.com/
[62] Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, and Nikos Mamoulis. 2009.

Secure kNN computation on encrypted databases. In SIGMOD. 139–152.
[63] Songrui Wu, Qi Li, Guoliang Li, Dong Yuan, Xingliang Yuan, and Cong Wang.

2019. ServeDB: Secure, Verifiable, and Efficient Range Queries on Outsourced
Database. In ICDE. 626–637.

[64] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. 2016. Simba:
Efficient In-Memory Spatial Analytics. In SIGMOD. 1071–1085.

[65] Yi Xu, Yongxin Tong, Yexuan Shi, Qian Tao, Ke Xu, and Wei Li. 2019. An Efficient
Insertion Operator in Dynamic Ridesharing Services. In ICDE. 1022–1033.

[66] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. FederatedMachine
Learning: Concept and Applications. ACM Transactions on Intelligent Systems
and Technology 10, 2 (2019), 12:1–12:19.

[67] Bin Yao, Feifei Li, and Xiaokui Xiao. 2013. Secure nearest neighbor revisited. In
ICDE. 733–744.

[68] Jieping Ye. 2019. Transportation: A Data Driven Approach. In SIGKDD. 3183.

[69] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL. 70:1–70:4.

[70] Yu Zheng, Xing Xie, and Wei-Ying Ma. 2010. GeoLife: A Collaborative Social
Networking Service among User, Location and Trajectory. IEEE Data Engineering
Bulletin 33, 2 (2010), 32–39.

Sortledton: a Universal, Transactional Graph Data Structure

Per Fuchs
TU Munich

per.fuchs@cs.tum.edu

Domagoj Margan
Imperial College London

d.margan15@imperial.ac.uk

Jana Giceva
TU Munich // MDSI

jana.giceva@in.tum.de

ABSTRACT

Despite the wide adoption of graph processing across many differ-
ent application domains, there is no underlying data structure that
can serve a variety of graph workloads (analytics, traversals, and
pattern matching) on dynamic graphs with transactional updates.

In this paper, we present Sortledton, a universal graph data struc-
ture that addresses the open problem by being carefully optimizing
for the most relevant data access patterns used by graph computa-
tion kernels. It can support millions of transactional updates per
second, while providing competitive performance (1.22x on av-
erage) for the most common graph workloads to the best-known
baseline for static graphs – csr. With this, we improve the ingestion
throughput over state-of-the-art dynamic graph data structures,
while supporting a wider range of graph computations under trans-
actional guarantees, with a much simpler design and significantly
smaller memory footprint (2.1x that of csr).

PVLDB Reference Format:

Per Fuchs, Domagoj Margan, and Jana Giceva. Sortledton: a Universal,
Transactional Graph Data Structure. PVLDB, 15(6): 1173 - 1186, 2022.

doi:10.14778/3514061.3514065

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/PerFuchs/gfe_driver.

1 INTRODUCTION

Graph processing on dynamic datasets is an increasingly important
problem for many application domains, from recommender systems
to fraud and threat detections [25, 46, 50, 51]. Today many scenarios
need to perform a wide range of graph computations – analytics,
graph pattern matching (gpm), and traversals – on diverse datasets,
which can be highly dynamic and entail millions of edge insertions
per second [50]. For example, Alibaba uses a combination of graph
analytics and interactive graph traversals for fraud detection [17],
while the Twitter recommendation service is based on gpm and
traversals [25, 51]. Both need to perform the above-mentioned
analysis while ingesting many updates per second [17, 51].

Building a system that can efficiently process such a diverse set
of graph algorithms over a dynamic graph dataset is still an open
problem. This is largely because such a system needs an underlying
data structure that can absorb a high rate of transactional updates,
while efficiently processing the wide range of heterogeneous graph

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514065

Figure 1: Supporting scans, transactional updates and inter-

sections for a universal graph data structure is challenging.

workloads. Designing such a universal data structure is a non-trivial
challenge, that we discuss and address in this paper.

Figure 1 depicts the related work landscape in the context of
supporting such requirements. Most of the existing related work
has not succeeded at supporting all of them. Let’s focus on the
data structure that stores the neighborhood of vertices. First, to
achieve a competitive performance on graph analytical workloads
(e.g., page rank) or traversals (e.g., single-source shortest path) the
data structure needs to support fast scans [57]. Second, to efficiently
support gpm (e.g., triangle counting), the data needs to be sorted to
enable fast intersections [1, 22, 41]. Third, to support the ingestion
of high update rates, the data structure needs to be dynamically
adjustable. Finally, to ensure correct results for the concurrently
executing analytical queries in the presence of updates [39], the data
structure needs to support versioning (e.g., MVCC [43]). An avid
reader will notice that satisfying any 2 out of the 3 requirements is
relatively simple but the combination of all three is challenging.

As a result, most prior work has focused on static graphs [18, 22,
29, 52] or foregoes support for gpm when operating on dynamic
graphs [19, 30, 36, 57]. Furthermore, most dynamic graph data
structures do not provide transactional guarantees. Hence, many
of the graph algorithms that have been developed for static graphs
cannot be run concurrently with updates [19, 30, 36]. Livegraph was
the first system to propose a multi-versioned, transactional data
structure, by storing two timestamps per edge [57]. However, this
triples the memory consumption and hurts the scan performance.
To the best of our knowledge, only Teseo [34] provides concurrent
support for all three requirements, depicted in Figure 1. However,
Teseo imposes a significantly more complex design than us (CSR-
like), without demonstrating advantages in performance.

We first present a systematic analysis of memory access patterns
to support optimal performance, e.g., sequential vertex access or
sequential neighborhood access. Utilizing a framework composed of
different basic data structures, we isolate and quantify the effects
of access patterns.

Based on our insights, we propose Sortledton – an adjacency list-

like universal data structure that can ingest millions of transactional
updates per second while supporting the high performance exe-
cution of heterogeneous graph workloads. Sortledton uses a sorted
set data structure to store neighborhoods, which can be scanned
as fast as a contiguous region of memory, while supporting fast
intersections for gpm computations and up to 5 million transac-
tional edge updates. We show that Sortledton can outperform all
competitors for update throughput. At the same time, we are either
faster or on par even with the highly specialized systems for all
graph workloads on dynamic datasets and on average only 1.2x
slower than running the computations on a static graph stored in
csr [49] format.

2 BACKGROUND AND MOTIVATION

To better motivate the problem, we start by detailing what we
mean by heterogeneous graph workloads. Three graph workloads
categories exist in the literature: graph analytics, graph pattern
matching (gpm), and graph traversals [8]. Notable example algo-
rithms for each category are PageRank, triangle count, and single-
source-shortest path. The survey by Sahu et al. finds that all three
workload categories are frequent use-cases in graph databases com-
putations [50]. For example, Alibaba uses a combination of graph
analytics (finding big bicliques) and interactive graph traversals
for fraud detection [17] and Twitter recommends tweets based on
gpm as well as traversals [25, 51]. Both companies describe these
workloads as highly dynamic [17, 51]. Despite the increasing neces-
sity for efficient support of diverse dynamic graph workloads, most
graph processing systems target only a single workload category
or static graph computations [18, 22, 29, 52, 57].

2.1 Understanding the Problem

There are two key challenges when designing a universal graph
data structure for all aforementioned workload categories on dy-
namic graphs. The first one is to support a wide range of operations:
(1) all workloads require fast scanning of neighborhoods, (2) high
throughput of new edges requires fast insertions, and (3) gpm needs
intersection [12, 22, 41]. It is relatively easy to achieve a combi-
nation of any two of these operations. Scans and inserts can be
supported by a vector – with an amortized push_back operation.
However, intersections are slow because they run in O(𝑁 × 𝑀),
with 𝑁 and𝑀 being the cardinalities of the participating vectors.
Scans and intersections can be supported by a sorted array but this
is a static data structure and individual insertions are very slow. Fast
intersections and inserts can be supported with a hash set. How-
ever, hash sets have empty slots which require the evaluation of a
predicate for each scanned element. Hence, supporting all three op-
erations requires a trade-off and we address this with a systematic
study in Section 3 and a data structure design in Section 4.

The second challenge is to run updates concurrently alongside
computations while maintaining the correct semantics [39, 54].
Most graph algorithms are developed for static graphs. Therefore,
they require a static view of the graphs. In dynamic environments,
this can be provided by concurrency control systems. In particular,
multi-version concurrency control allows us to write to the newest
version of the graph and read older static versions. We address

this by first identifying the specific transactional requirements
in Section 3.5 before describing a graph-optimized concurrency
control system in Section 5.

2.2 Memory Access Patterns

Graph workloads are known to be memory access bound [7, 20].
Hence, optimizing for their memory access patterns is most impor-
tant. We identify four common memory access patterns:

(1) sequential access to the neighborhoods of all vertices
(2) sequential access to the edges within a neighborhood
(3) random access to algorithm-specific properties, e.g., scores

for PageRank or distances for bfs
(4) random access to the neighborhoods of all vertices

The PageRank (pr) algorithm in Listing 1 exhibits all access pat-
terns except the second. It accesses all neighborhoods and edges
sequentially in the order of the vertices (line 3) and reads the contri-
butions array at random locations (line 4). The random vertex access

pattern typically arises within traversal algorithms.

Data: contrib: V-sized array, contributions per vertex this
round, scores: V-sized array, scores next round

1 for v ∈ V do

2 incoming← 0

3 for e ∈ v.neighbors do
4 incoming← incoming + contrib[𝑒]

5 scores[𝑣] ← incoming
Algorithm 1: An example for sequential vertex access: the

main loop of a PageRank algorithm.

2.3 Graphalytics Benchmark

To quantify the effects of optimizing for different memory access
patterns, we use the kernels specified by the LDBC Graphalytics
Benchmark [11]. These cover all three graph workload categories
and all four access patterns. The benchmark includes 5 kernels:
weakly connected component (wcc), PageRank (pr), community
detection via label propagation (cdlp), breadth-first search (bfs),
weighted single-source shortest path (sssp), and local clustering co-
efficient (lcc). The first three are examples of analytical algorithms.
The next two are graph traversals and the last one is dominated by
triangle counting – a typical gpm algorithm. All algorithms exhibit
the sequential neighborhood access and algorithm-specific property

access patterns. The analytical algorithms show sequential vertex ac-

cess, while sssp and lcc access the neighborhoods in random order.
The direction-optimized bfs exhibits both vertex access patterns,
but is dominated by sequential vertex access.

Forwcc, pr, bfs, and sssp, we used the reference implementation
of the Graph Algorithm Platform Benchmark Suite (gap bs) [6]. lcc
and cdlp are implemented as in Teseo [34].

The Graphalytics Benchmark also provides the graph dataset (Ta-
ble 1). The Graph500-x datasets are synthetic power-law graphs.
The scale factor x describes the number of edges and vertices in
the graph; each increment doubles the number of vertices and
edges. Uniform-x datasets are like Graph500-x but they have a uni-
form degree distribution. dota-league, com-friendster, yahoo-songs,
and edit-wiki are real-world graphs. The latter two are from the

Table 1: Graph datasets with number of edges and ver-

tices, average degree and size in memory when stored as an

undirected graph with 8 Bytes per vertex and 16 Bytes per

weighted edge.

Graph #V #E 𝐷 Size [𝐺𝐵]

dota-league 61K 51K 836 1.6
graph500-22, uniform-22 2M 64M 26 2.0
yahoo-songs 1.6M 256M 315 7.6
edit-wiki 51M 255M 22 7.6
graph500-24, uniform-24 9M 260M 29 8.3
graph500-26, uniform-26 33M 1B 33 33.9
com-friendster 29M 2B 72 67.0

Table 2: Operations for a universal graph data structure.

Operation Complexity Required for

Basic

get_neighbors O(1) all workloads
scan_neighbors O(𝐷) all workloads
insert_edge O(log𝐷) all dynamic workloads
insert_vertex O(log𝑉) all dynamic workloads
delete_edge O(log𝐷) some dynamic workloads
delete_vertex O(𝐷)1 some dynamic workloads

Set functionality

find_edge O(log𝐷) updates, consistency checks
intersect_neighbors O(𝐷) gpm

KONECT project [31] and are bipartite networks with edge creation
timestamps.

3 REQUIREMENTS AND DESIGN GOALS

Now that we understand the key challenges for building a universal
graph data structure for dynamic graphs, we discuss our systematic
approach to designing one. To address the heterogeneity challenge
of Section 2.1, we begin by outlining the requirements for a graph
data structure in general, i.e., the necessary operations. They are
listed in Table 2. We categorize them into basic and set function-
ality. The first category is supported by most former graph data
structures [19, 30, 36, 57]. However, the second category is not cap-
tured by them as they store neighborhoods in list data structures.
Hence, their intersect_neighbors operation has the complexity of
O(𝑁 ×𝑀) with 𝑁 and𝑀 being the size of the participating neigh-
borhoods. Similarly, their find_edge operation completes in O(𝐷)
(𝐷 defined as the average degree of the graph). Efficient support
of these operations is critical for gpm and dynamic workloads that
update or delete edges. Hence, a universal graph data structure
should store neighborhoods in set data structures. In the next sub-
sections, we show how the memory access patterns from Section 2.2
influence the design of graph data structures by running multiple
microbenchmarks.

Figure 2: Example graph with hub vertex, 𝐻 , and vertices (𝐴,
𝐵, 𝐶) with their neighbors.

Figure 3: Classical graph data structure designs 1© CSR, 2©
Vector-based adjacency list for example graph fromFigure 2.

3.1 Sequential Vertex Access

The first memory access pattern is (1) sequential vertex access, e.g.,
the outer loop of pr (see Listing 1). Ideally, one should store the
neighborhoods of all vertices contiguously in memory. The csr

data structure, depicted in Figure 3, is specifically optimized for
this access pattern. It is a static structure and it stores all neighbors
in a large array in the order of the vertices they belong to.

We analyze the effects of suchmemory layout optimizations with
a simple microbenchmark. We compare the runtimes of the algo-
rithms from the Graphalytics benchmark (c.f. Section 2.3) executed
on csr and a simple sorted vector-based adjacency list, as presented
in Figure 3. Such an adjacency list implementation stores the neigh-
borhoods in random memory places with no relationship to each
other, thereby representing the other end of the spectrum. Even
when using the adjacency list, one can add software prefetching
instructions to optimize for the predictable vertex access pattern.

1The delete_vertex operations cannot be supported in O(log V) due to the fact that all
edges which reference this vertex need to be deleted.

(a) sequential vertex access: vector ad-

jacency list vs csr.

(b) sequential adjacency access: vary-

ing edge block sizes vs vectors.

(c) algorithmic-specific properties:

Teseo sparse vs dense domain.

Figure 4: Effects of optimizing for different access patterns (cf. Section 2.2.)

We do so only for the bfs algorithm by adding a single prefetch
instruction to fetch the neighborhood three vertices ahead.

The normalized runtimes are shown in Figure 4a, where a ratio
above 1 means the csr is faster. We observe that even though pr

and wcc heavily rely on sequential vertex access, an adjacency
list mostly stays within 40% of the runtime of a csr. Only wcc

on com-friendster has a slowdown of over 1.4. lcc and sssp show
speedups of 20% for graph500-24. They have a dominant random
vertex access pattern and we suspect that csr results in a higher
false sharing of the cache lines.

We conclude that while optimizing for the sequential vertex ac-
cess is beneficial, it is not strictly necessary for good analytical
performance because optimizing for sequential vertex access only
addresses a small fraction of all memory accesses, i.e., the first mem-
ory access to a new neighborhood. These are in the order of |𝑉 |
while patterns (3) and (4) can occur in the order of |𝐸 | accesses,
where 𝐸 can be at least 10x larger than 𝑉 [31, 35].

3.2 Sequential Neighbourhoods Access

Next, we analyze the effects of optimizing for the sequential neigh-
borhood access pattern. Ideally, one would use a contiguous memory
region for each neighborhood, as done by Livegraph [57]. However,
no dynamic set data structure with such properties supports inter-
sections. Therefore, we check how well the access pattern can be
supported by sorted sets that maintain blocks of elements (e.g., B+
trees [13] or unrolled skip lists [45]).

To do that, we compare the runtimes of the Graphalytics algo-
rithms on: (1) vector-based adjacency list where neighborhoods are
completely continuous to (2) the adjacency sets in sorted blocks that
are linked together via pointers. We vary the block size. Intuitively,
a larger block size would lead to lower run times.

The normalized runtimes are shown in Figure 4b. We note that
all algorithms show nearly equal performance on both data struc-
tures when (2) uses a block size larger than or equal to 256 edges.
We conclude that optimal sequential neighborhood access can be
supported by set data structures with at least 256 edges per block.

3.3 Random Access to Algorithm Properties

The third memory access pattern is reading the algorithm-specific
properties. Thus, it is not influenced by the memory layout of the
graph data structure itself. However, we can influence the data
structure that holds algorithmic-specific properties by choosing the

domain of the vertex identifiers. We hypothesize that it is the most
important access pattern because it happens in the innermost loop
of the computation and is random, e.g., pr line 4 of Listing 1.

To explore the effects, we test two options for the vertex identifier
domain: dense and sparse. Most data structures store the dense

domain ([0, . . . |𝑉 |]) [19, 30, 36, 57], and many graph algorithms
are implemented assuming this domain, i.e. they use arrays to store
algorithmic-specific properties. However, storing a dense domain
complicates the deletion of vertices and we cannot assume that
the vertex identifiers provided by the user to a graph database are
dense [11, 21]. Therefore, we explore storing the sparse domain.

Since, our framework for microbenchmarks does not support
sparse vertex identifier domains, we evaluate the effects of a sparse
domain vs dense domain using Teseo [34]. We show normalized
runtimes in Figure 4c. Running on a dense domain is very beneficial
for most algorithms, leading up to 6x performance improvements.
In the case of Teseo, the main overhead is from using a hash map
to translate edges from a sparse to a dense domain.

An alternative would be to rewrite all graph algorithms to use
concurrent hash maps to store algorithmic-specific properties, e.g.,
the contrib and scores array in Listing 1, so, they can run on the
sparse domain directly. This, however, would incur similar over-
heads. Furthermore, it complicates the parallelization of the algo-
rithm due to using concurrent hash maps instead of arrays.

In conclusion, any graph data structure for analytics needs to
store a dense vertex identifier domain. In the dynamic setting with
user-provided vertex IDs this requires translating a sparse domain
into a dense domain when inserting new vertices.

3.4 Random Vertex Access

Finally, the random vertex access pattern happens when neighbor-
hoods of vertices are accessed in an unpredictable order. This is
typical for graph traversals, e.g., sssp. Ideally, one aims to mini-
mize the latency for retrieving the neighborhood of a vertex. Given
the need for dense vertex identifiers, we can use the IDs as offsets
in a vector to store the mapping, as done in many existing data
structures [19, 30, 57]. This minimizes lookup latency compared
to other mapping data structures like trees and hash sets because
vectors need exactly one memory access per lookup. We measure
that using a std::sorted_map or a robin hood hashmap2 instead

2https://github.com/martinus/robin-hood-hashing

of a vector for the mapping, resulting in slowdowns between 1.1x
and 3x, depending on the algorithm and graph.

In conclusion, we establish that a universal dynamic data struc-
ture for heterogeneous workloads needs to have:

(1) a set data structure for neighborhoods to run intersections
(2) a neighborhood data structure keeping large blocks of edges

for sequential neighborhood access (3.2)
(3) ability to expose a sparse and a dense vertex domain to the

user (3.3)
(4) a low-latency index for random vertex access (3.4)

Furthermore, we find that optimizing for sequential vertex access
can be beneficial, but is not as critical as for other access patterns.

3.5 Transaction on Graphs

The second challenge we address is the support for running updates
and analytics concurrently and in isolation using mvcc to reuse
static analytical and gpm solutions in dynamic settings. For this, we
identify the transactional requirements of graph workloads.

Concurrency Control: Graph workloads are read-heavy and
common read-write transactions are very simple [2, 4, 6, 11, 25, 46,
51]. While queries can take up to tens of seconds for analytics or
multiple minutes for gpm, the majority of write transactions add a
single edge with corresponding vertices and properties, which are
very fast operations. Furthermore, many of the read-write requests
are actually writes with a priori known write set [4, 21].

The design of the upcoming sql standard extension for graph
transactions (gql and sql/pgq [23, 28]) reveals further insights into
the type of graph transactions that need to be supported. While
sql/pgq is read-only, gql supports writes as described earlier as
well as graph construction [3]. The latter involves complex read-
write transactions that can touch large parts of the graph. We
summarize that graph transactions fall in the following categories
with a descending frequency of occurrence:

(1) long-running and complex read-only queries
(2) short and simple writes with known write set
(3) complex read-write requests with arbitrary large, unpre-

dictable read- and write sets

Hence, an ideal graph concurrency control system should:

(1) decouple read-only queries from write requests
(2) support high throughput writes with a known write set
(3) provide support for read-write transactionswith large read/write

sets

In this paper, we focus on the first two points. Small read/write sets
can be supported by htap protocols [43] but large read/write sets
combined with highly frequent updates require novel concurrency
control mechanisms and are out of scope for this paper.

Version Storage:All entities are small (e.g., an edge takes only 4
or 8 bytes). Thus, versioned storage should induce no overhead for
unversioned records and little overhead for versioned edges. Second,
vertices and edges have only two states: present or not. Multiple
versions can only occur if vertices/edges are inserted, updated, or
deleted multiple times before a version can be garbage collected
which is rare. Hence, an efficient system should optimize for the
case of one and two versions.

Consistency:Most graph systems assume the following consis-
tency guarantees:

• no dangling edge: ∀(𝑎, 𝑏) ∈ 𝐸 => 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉
• no duplicate edge

• reverse edge exists (for undirected graphs): ∀(𝑎, 𝑏) ∈ 𝐸 →
∃(𝑏, 𝑎) ∈ 𝐸

Enforcing these rules requires an implicit read set in write-only
transactions (e.g., an edge insertion also reads the edge and its
vertices to ensure non-existence of the edge and existence of the
vertices). These read sets can be determined from the write sets.
Concurrency control protocols used in relational databases are a
natural way to enforce that these consistency guarantees hold atom-
ically. Hence, transaction handling is also relevant for graph pro-
cessing and graph streaming systems. The outlined requirements
are addressed in Section 5.

4 DATA STRUCTURE DESIGN

Our design implements the operations from Table 2 and is opti-
mized for random vertex access, sequential neighborhood access, and
algorithm-specific property access. Supporting only these three ac-
cess patterns allows a simple design because neighborhoods can be
independent data structures.

Finally, our data structure has no hidden costs like amortized
operations or background threads, runs analytics without the need
for any precomputation, and ingests updates into read-optimized
segments directly.

4.1 High-Level Design

There are two high-level designs for graph data structures. We
name them adjacency list-like and CSR-like because their main char-
acteristics stem from these classical data structures (Figure 3). The
adjacency list-like design has one adjacency index and an adjacency

list for each neighborhood. The neighborhoods are sets Set<ID>
of destinations, and the index is a map Map<ID, Set<ID>>. The
CSR-like design stores all neighborhoods in one data structure and
maintains an index of offsets for it. The formalization of the in-
dex is Map<ID, offset>. A strawman of the neighborhood data
structure is a set of edges: Set<pair<ID, ID>>. However, this is
neither performant for computation nor space-efficient because it
replicates the source of the edges many times. Ideally, we need a
set that stores sources and destinations clustered by source.

We compare both designs in terms of the memory access pat-
terns from Section 2.2. Both optimize for random vertex access with
their indices and neither influences the algorithm-specific access.
Furthermore, the CSR-like design optimizes for both sequential ver-

tex access and sequential neighborhood access, while the adjacency
list-like design only optimizes for sequential neighborhood access.

Given our insight that optimizing for sequential vertex access is
less beneficial than for any other pattern (Figure 4), we choose the
adjacency list-like design. This has three advantages.

First, an adjacency list-like data structure is embarrassingly paral-
lel at the granularity of vertices because its neighborhoods are inde-
pendent. Parallelization at this granularity is successfully utilised in
the vertex-centric computation model and many algorithms [6, 37].
Second, the maintenance of the index is simple and cheap because it
is independent of changes to the neighborhoods. This is opposed to

Figure 5: Two-level vector.

the expensive maintenance in the CSR-like design where one edge
insertion leads to multiple index updates. This requires solutions
that impede random vertex access, e.g. lazy or amortized index up-
dates [34, 36]. Finally, the adjacency list-like design allows reusing
well-studied map and set data structures from prior research [27].
The CSR-like design requires a novel data structure that incorpo-
rates the factorization of edges into existing set designs [34]. The
key insight is to decompose the problem of building a graph data
structure into choosing a map and set type, and parallelizing them.
Next, we pick a suitable map and set candidate.

4.2 Data Structure

The adjacency index maps vertex IDs to vertex records. A record
contains multiple fields: a pointer to the neighborhood, its size and
a read-write latch for parallelization.

As described in Section 3.4, to minimize the latency of a map
lookup, we use a vector. To concurrently resize the vector without
locking it for updates, we use two levels (Figure 5). The first level
is small and has a fixed size. It holds pointers to the second-level
segments that contain the vector’s elements. When resizing the
vector, we allocate exponentially growing second-level segments
and add a corresponding pointer in the first level concurrently [14].

The adjacency sets store the neighborhood of each vertex. For
a universal graph data structure, they should support intersections
and sequential neighborhood access (Section 3) - sorted sets that
store blocks of edges are well-suited. Typical implementations of
such sets are B+ trees [13] and unrolled skip lists [45]. We choose
the second because it does not need global rebalancing [26]. In
contrast to the original unrolled skip list, we keep edges within
blocks sorted. We show this structure in Figure 6 3 . The elements
of the unrolled skip list are blocks of edges combined with the
header containing: the number of edges, the highest destination
within the block, and pointers for each level of the skip list.

The data structure supports standard set operations by combin-
ing ordinary skip list algorithms to find the correct block and then
a binary search within the block to find the correct position for
reading or writing. Blocks split into two when they fill up, and
merge into one when they are less than half full. Therefore, the fill
ratio of our block is between 50% and 100%. Both insertions and
deletions move at most block size elements. Hence, the operations
complete in O(max(log𝐷,𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒)).

With such properties, an unrolled skip list is a good choice for
hub vertices. However, for vertices with neighborhoods smaller
than the block size, we use headerless, power of two-sized vectors
(Figure 6 2). This is space-efficient and follows the power-law
distribution [57]. Insertions and deletions respect the sorted order
and complete in O(𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒).

The block size influences the performance of graph computations
(cf. Section 3.2) and edge insertion throughput which we analyze
in Figure 7 when loading Graph500-24 edge-by-edge (meps stands
for million edges per second). A block size of 128 leads to the highest
throughput. With smaller blocks, insertions suffer from random
memory access to find the correct block. For larger blocks, inser-
tions need to shift a larger number of edges within the blocks. We
expect similar results for other power-law graphs. For uniform
graphs, block sizes above the average degree show no influence on
performance because all neighborhoods are kept in single blocks.

Vertex identifier translation Analytical workloads require a
dense vertex identifier domain but in dynamic settings users usually
provide identifiers from sparse domains (Section 3.3). Therefore, we
provide a simple binary translation between the domains, and an
interface to access both. Performance critical computations should
use the dense domain and translate the inputs and outputs as de-
tailed in Section 6. Figure 6 1 shows these translations as logical-
to-physical and physical-to-logical indices (lp-index/pl-index). To
store the translation, we use a concurrent hash set [47] from sparse
to dense, and a concurrent two-level vector from dense to sparse
domains.

Edge Properties Edge properties are common in graph analyt-
ics, gpm, and traversals. Their storage should be governed by their
access patterns as detailed by Gupta et al. [24]. They are usually
accessed during scans and should follow the same order as the
edges. However, as many workloads do not access them, columnar
storage is preferred [24]. Hence, we store them at the end of each
edge block, in the same order as the edges (Figure 6).

4.3 Parallelization

We have one read-write latch per vertex to allow multi-threaded ac-
cess (see Figure 6 1). Before executing any operation on the vertex
or its edges, the latch needs to be locked. This locking mechanism
is simple. It scales because the number of latches in the system
grows with the number of vertices. It is dead-lock-free because
most operations require only a single latch, and we guarantee a
global locking order for intersections and multiple open scans.

Our locking model can lead to scalability bottlenecks when pro-
cessing hub vertices. To overcome this, one can parallelize the
unrolled skip list with one latch per block. That way, we can im-
plement all operations such that at most one block per skip list
level needs to be locked at any time [45]. Additionally, we propose
optimistic latches [9] for all read operations, but scans. However,
we choose the simple locking model because it has better scalability
than all competitors (Section 7.2), and leave the concurrent skip list
implementation for future work.

5 CONCURRENCY CONTROL

Now, we describe the design of our graph-optimized transaction
support that addresses the second challenge of running updates con-
currently with computations (Section 3). In relational systems, this
is achieved by mvcc protocols [16, 43, 48]. However, in graph trans-
actions, the writes are simpler, and the versioned items (edges and
vertices) are at most 8 bytes. Therefore, we adapt prior work from
relational systems [43, 48] to these new characteristics with the
goal to minimize memory usage and computational overhead. For

Figure 6: Sortledton’s data structure for vertices 𝐻 , 𝐴 and 𝐵 of the graph in Figure 2: 1© Translation and Adjacency Index, 2©
Vectors for small neighborhoods, 3© unrolled skip list for hub vertices, 4© size and neighborhoods versioning.

Figure 7: Sortledton’s insertion throughput with varying

block sizes.

durability, we propose using group commits, command write-ahead
logging, and snapshotting as described thoroughly for relational
workloads [38, 42, 43, 53], which can be implemented with low over-
head [55]. However, we do not implement it because it is orthogonal
to the other aspects of our design.

Version Storage: The version store aims to keep the memory
overhead per edge as low as possible. An edge version records
the type of the operation (insertion, update, or deletion), a com-
mit timestamp, and the associated property. We store the version
records as a linked list directly behind the edge in the block. The list
is ordered from new to old versions. Versions of adjacency set sizes
and vertices are stored similarly. Figure 6 4 shows an example: the
user inserted (3, 0) with property 𝑅, updated the property to 𝑍 and
deleted it at timestamp 𝑇𝑥 and 𝑇𝑦 , respectively. The neighborhood
size 4 (a) of 3 has two versions: 4 at timestamp𝑇0 before (3, 0) was
deleted and 3 after the insertion at 𝑇𝑦 . A linked list stores the edge
versions for the deletion and the two property updates, the latest
property value is also stored directly in the edge block.

We optimize for the case of two edge versions or less (Section 3.5).
For a single version-edge, no version record is stored and the edge

is assigned the implicit timestamp first version (𝑇0) for all operations.
For two version-edges, we store the version record inline.

Concurrency Protocol: Our concurrency protocol handles the
first and second requirements that were outlined in Section 3.5. It
decouples reads from writes and optimizes for high throughput
on writes with a priori known write set. It adapts mvcc with read-
only optimization (romvcc) and two-phase locking. The read-write
transaction protocol has five steps:

(1) claim all locks in a global order
(2) complete all reads with the newest versions and abort if the

consistency guarantees are not fulfilled (Section 3.5)
(3) get a commit timestamp
(4) complete all writes using the commit timestamp
(5) release all locks

We leverage the a priori known read and write-sets to claim
all locks in a global order at the beginning of the transaction [48].
Furthermore, as the protocol cannot abort after finishing the read
step, no rollback logging is necessary.

For read-only transactions, we draw a commit timestamp. When
reading a value, we first acquire a read lock, read the latest version
before our commit-timestamp, and then release the read lock. De-
spite being pessimistic, the read locks are practically harmless as
they are only held for the duration of one read operation. Further-
more, using locks for read-only transactions, allows more scalable
implementations of read-write transactions. That is, it guarantees
atomic commit without the overheads of other protocols (e.g., an
atomic commit and a validation phase, or drawing two timestamps
for read-write transactions [34, 57]).

We give a proof sketch for the correctness of the protocol. Let
𝑡1 and 𝑡2 be transactions with commit timestamps 𝑥1 and 𝑥2. If
both are read-write transactions, they are serializable by 2PL. Let

𝑡1 be read-only and 𝑡2 be read-write. If 𝑥1 < 𝑥2, 𝑡1 cannot read any
values written by 𝑡2 because 𝑡2 versions are written with timestamp
𝑥2. If 𝑥2 < 𝑥1, we can reason that 𝑡2 already holds all locks before
𝑡1 starts because the locking phase is completed before 𝑡2 gets
its timestamp. Since 𝑡2 releases its locks only after completing, 𝑡1
needs to wait for the commit or abort of 𝑡2, when it tries to read any
value written by 𝑡2. Hence, it reads all values of 𝑡2 after a commit
or none after an abort.

Garbage Collection: We address garbage collection in two
steps: (1) when can a version be collected, and (2) who collects
them? We collect a version once no transaction can access it any-
more. That is, we track the timestamps of all active transactions
and collect all versions which are invisible to all active transactions
as done in Hyper [10]. This is an important optimization to avoid
long version chains in the presence of long-running transactions.
Garbage is collected by the threads that execute write transactions.
This leads to good data locality, requires no background threads
and memory is freed where and when it is needed [16, 43].

6 IMPLEMENTATION

We implemented Sortledton by composing existing data struc-
tures. The adjacency index and the indices for translation use the
ConcurrentVector and ConcurrentHashMap from Intel’s Thread-
ing Building Blocks [47]. For our adjacency sets, we implemented
the unrolled skip list from Platz et al. [45] with slight modifications
as indicated in Section 4.2 and 4.3.

Our interface is similar to prior work [19, 34] with two excep-
tions. First, we allow the user to access both the sparse and the
dense vertex identifiers. We run graph computations by translating
inputs into the dense domain, then running the analytics, and fi-
nally translating the output back to the original sparse domain. We
show this process in Listing 2. The translation is fast because the
input to most computations is small while the output translation is
cheap and easy to parallelize. For example, a bfs receives its start
ID as input and outputs one distance value per vertex. So, we need
𝑉 +1 parallel translations, which take only a fraction of the runtime.

Data: tx: ReadOnlyTransaction, start_vertex: logical_id
Result: result: array of size V containing the hop distance

from start_vertex
1 start_vertex_dense← tx.dense_id(start_vertex)

2 distances← bfs(start_vertex_dense)

3 for i← 0 to V do

4 result[𝑖] ← pair(tx.sparse_id(i), distances[𝑖])
Algorithm 2: Running a bfs on a dense domain using

sparse identifiers externally.

Second, we optimize the interface that scans neighborhoods.
Prior works offer three different methods to access their neigh-
borhoods: (1) via an iterator interface [19, 57], (2) by providing a
lambda function executed for each edge [34, 52], or (3) by direct
memory access (e.g., for the CSR). However, using an iterator or
a lambda function executes two or one function(s) per edge, re-
spectively. To avoid this, we allow direct memory access to blocks
without any versions. In Figure 8, we present a comparison of graph
computations with and without this optimization. It can lead to
speedups of up to 2.3x.

Figure 8: Slowdownwhen using an iterator interface instead

of direct memory access.

7 EVALUATION

We run our experiments on a dual-socket machine with Intel Xeon
E5-2680v4 processors, which has 70 MiB of L3 cache, 14 hardware
threads, and 256 gb of memory. We compiled all systems with gcc

v10.2 and the O3 parameter. Further, we disabled Linux’s numa
aware page migration feature. Numbers reported are the median of
5 runs. For Graphalytics kernels, runtimes include translation costs
for inputs and outputs for all systems but Teseo on sparse identifiers.
We use a state-of-the-art kernel implementation (see Section 2.3)
and we disable disk-logging for all systems. For Sortledton, we set
the block size to 512 trading insertion for analytical performance
(cf . Figure 4b and Figure 7). We add software prefetching to bfs as
described in Section 3.2.

7.1 Qualitative Comparison to Related Work

We compare our work to a diverse range of state-of-the-art dynamic
graph data structures that support single edge updates: Stinger [19],
GraphOne [30], LLama [36], Livegraph [57], and Teseo [34]. We
relate the data structures used by all systems with the memory
access patterns (Section 2.2) and the high-level designs (Section 4.1).

Stinger, GraphOne, andLivegraph are adjacency list-like. Hence,
they have good support for random vertex access and are not opti-
mized for sequential vertex access. Livegraph uses one vector per
neighborhood for optimal sequential neighborhood access. Stinger
and GraphOne use one (14 edges) and two fixed block sizes (8 or
512 edges) for their neighborhoods, respectively. All of them use
neighborhood data structures that appent.he inserts. Hence, they
achieve good isolation of writing and reading threads for concur-
rency control of read-only queries. However, this does not allow
for efficient graph pattern matching.

LLama and Teseo have a CSR-like design and optimize for se-
quential vertex access. LLama’s read-store holds multiple snapshots.
A snapshot is a sorted array of new edges since the last snapshot.
Writes are buffered in a key-value store. We create a new snapshot
every 10 seconds as suggested by the authors [36]. The snapshot-
ting fragments neighborhoods. Hence, LLama does not optimize
for sequential neighborhood access. However, this is hidden due to
temporal locality when the computation follows the sequential ver-
tex access pattern. The combination of random vertex access and
sequential neighborhood access is most challenging for LLama.

Teseo stores its vertices and edges in a B+ tree with 2MB-sized
leaves containing packed memory arrays [33]. Packed memory

Figure 9: Edge insertion throughput with random edge or-

dering. GraphOne upholds lower consistency guarantees.

arrays store blocks of elements interleaved with gaps to allow in-
sertions. Blocks contain multiple neighborhoods and up to 512
edges. Thus, Teseo has good support for sequential vertex access

and sequential neighborhood access. For random vertex access, Teseo
uses a hash map that is lazily updated. Teseo is designed to store
sparse vertex identifiers and needs to compute a dense mapping to
interface with existing graph algorithms. They need to translate
each edge read during analytics into the dense domain. Since this is
expensive, the authors provide a specialized version that can load
only graphs with dense identifiers. For graph computations, we
measure both versions.

7.2 Insertions Performance

The experiment evaluates the throughput of single edge insertions
in all systems. We add all edges of the input graph in random order,
one-by-one as undirected edges with no sleep time on the user side.
The addition of an edge checks if both vertices exist and inserts
them if not. The next step asserts that the edge does not exist
before inserting it. Livegraph, Teseo, and Sortledton perform all
operations for each edge insertion encapsulated in a transaction,
thereby ensuring atomicity and isolation. The other systems give no
guarantees and GraphOne cannot check if an edge already exists.

Figure 9 shows the throughput in million edges per second
(meps). Missing bars indicate that a system could not load the
graph due to memory restrictions. For power-law graphs (first 6),
Teseo and Sortledton are superior to the others because their neigh-
borhood sets allow for efficient checks if an edge exists. GraphOne
has similar performance, but as noted earlier does not perform the
check if an edge exists. If we introduce this check, its throughput
would drop to 5 edges per second [34]. Sorltedton’s processes up
to 1.6 million edges per second more than Teseo without using
background threads while using less memory (see Section 7.3) and
versioning adjacency set sizes.

For uniform graphs (first 2 from the right), Stinger demonstrates
the best performance – although, it cannot load uni-26 on our
system due to its high memory consumption. This reveals that for
uniform graphs, it is cheaper to linearly search for the existence of
an edge than paying the price of keeping them sorted.

Resilience to real-world update patterns:Until now, we load
all edges in random order to be comparable with past work [30,
34, 36]. However, the yahoo-songs and edit-wiki graphs show a

Figure 10: Edge insertion throughput with creation order.

strong temporal locality between updates to the same vertex. In
this experiment, we load these graphs in the order of their edge
creation timestamps with no sleep time as opposed to the actual
update frequency of a few edges per minute.

Figure 10 shows the throughput for both creation and random
order of applying the updates. Sortledton, Livegraph, and LLama,
have lower throughput when the graph is loaded in creation order
because they use one lock per vertex leading to higher contention
in bursty workloads. Although Teseo can split large neighborhoods
over multiple blocks, it suffers from higher contentionwhen loading
in sorted order. GraphOne and Stinger are not affected because they
batch updates or use lock-free synchronization, respectively. Stinger
and LLama cannot load edit-wiki in either order. It is a bipartite
graph with 5 times more vertices in one partition, a high edge to
vertex ratio of 5:1 and a high maximum degree of 5M edges.

We conclude that vertex-centric locking is a weak point for
bursty workloads and should be replaced by lock-free synchroniza-
tion. Furthermore, benchmarks should specify the loading order
of edges, because it can significantly influence the system perfor-
mance and they should cover the complete space of graph types, i.e.,
Graphalytics and GAPBS do not include a bipartite graph [6, 11].

7.3 Updates

We next evaluate how the data structures behave when running
a balanced mix of insertions and deletions with the same setup as
in Teseo [34] on an already large graph. The experiment has two
phases. The first 10% of all operations load Graph500-24. After, we
run a balanced mix 9x the operations as insertions and deletions
while keeping the graph size stable. We discuss throughput over
time, average throughput, and memory usage.

Average throughput (Figure 11a) allows us to compare how
the different data structures react to deletions by comparing their
throughput to the insertion-only experiment (Section 7.2). Liveg-
raph and Stinger show no significant difference because they treat
insertions and deletions in the same way. Sortledton’s throughput is
slightly lower due to the creation andmaintenance of version chains.
Teseo profits from deletions as they free space and lead to fewer re-
balances. LLama’s throughput halves compared to insertions-only
and GraphOne’s is 64 times lower.

Throughput over time (Figure 11b) shows how the systems
react to a growing workload and the effects of snapshotting in
LLama and GraphOne. The legend shows the completion time per
system. Teseo and Sortledton finish within 14 minutes while all
other systems take more than 2 hours.

(a) Average throughput. (b) Average througput per second for g500-24. (c) Memory consumption for g500-24.

Figure 11: Throughput andmemory consumptions on amixture of insertions and deletions. Total execution time in the legend.

For Sorteldton, Teseo, and Livegraph, we observe smooth lines
as they perform updates individually and in place. They do not
depend on the current size of the dataset. Stinger loses perfor-
mance while the data structure grows, but has a stable throughput
afterwards. LLama’s throughput decreases over time because of
neighborhood fragmentation and the memory pressure by storing
multiple snapshots. Furthermore, their throughput oscillates due
to the need to digest edges from write to read-store. GraphOne
shows throughput between 0 and 1 million edges per second. The
system becomes unresponsive when applying edges to its read store
because it struggles to locate edges to delete.

Memory consumption in Figure 11c allows us to categorize the
systems into two classes. Livegraph, LLama, and GraphOne show
increasing memory consumption due to partial or missing garbage
collection implementations. Teseo’s, Stinger’s, and Sortledton’s
memory usage grow until the graph reaches its final size at 10%
of all operations. Then they show stable memory consumption.
They use 48 GB (Teseo), 27 GB (Stinger), and 18 GB (Sortledton),
respectively. For reference, storing graph500-24 statically in a csr
requires 8.3 GB. So, Sortledton’s overhead is 2.1x because our blocks
are 75% full on average, and we store the vertex ID translations
in 2 × |𝑉 |. The first overhead is inherent in many dynamic data
structures (e.g., B-trees, vectors, or hash sets). The second is needed
by systems that offer a sparse domain and a dense domain.

This experiment leads us to three conclusions. First, list-based
designs struggle with deletions. Second, batching updates in a write-
optimized store leads to high average throughput but comes at the
cost of unstable throughput and can lead to unresponsiveness. Third,
it is possible to store a dynamic graph in twice the memory needed
for a static graph.

7.4 Multicore Scalability

Figure 12 shows multicore scalability from 1 to 56 threads for all
systems on graph500-24. Teseo and Sortledton execute more than
3.1 and 4.8 million checked edge insertions per second, respectively.
Most other systems achieve less than 500 thousand. GraphOne
achieves 3.4 million unchecked insertions per second.

Both Teseo and Sortledton scale up to 56 threads. Sortledton
scales better because its concurrency control protocol is more light-
weight. One could achieve even better scalability with Sortledton by
using contention-free hash sets for translation between the vertex
domains or adding numa-awareness.

Figure 12: Edge insertion throughput andmulticore scalabil-

ity on graph500-24.

GraphOne does not scale beyond 14 threads because vertex
ID translation is sequential, and due to contention on its write
buffer [34]. However, it is twice as efficient with 14 threads as Teseo
and Sortledton. This is because (1) the different insertion semantics,
and (2) GraphOne batches updates in a circular buffer, then parti-
tions them per vertex and applies the partitions in parallel to the
main data structure. While this design enables high throughput, it
leads to higher update latencies and requires building a snapshot
before analytics. Therefore, it is not suited for Alibaba’s fraud detec-
tion workload with strict latency requirements and computations
per edge insertion [46, 56].

7.5 Analytics

We analyze the influence of the different data structures on the
runtime of analytics, traversals, and gpm queries. We run the Graph-
alytics benchmark kernels as defined in Section 2.3 after loading
the graph edge-by-edge. We normalize the runtimes against using a
csr, which is arguably the best general-purpose baseline for static
graphs. When beneficial, we use a numa optimized csr as baseline.

Figure 13 shows the slowdown of each system. We select dota-
league, Graph500-24, and com-friendster as a representative set of
graphs. Missing bars either indicate that the data structure could not
load the graph due to the memory constraints, or did not complete
the kernel computation within an hour.

Figure 13: Graph kernel runtimes normalized to csr.

lcc, a gpm algorithm, shows no slowdown for Sortledton, a 3x
for Teseo and 11x to 106x or no completion for other systems. This
is due to Teseo’s and Sortledton’s set-based neighborhoods.

wcc and pr exhibit the sequential vertex access and sequential

neighborhood patterns. Sortledton, Teseo on dense vertices, and
LLama have runtimes close to the csr, confirming that support for
either pattern is effective. Teseo on sparse vertices takes up to 14x
longer because it translates each edge into the dense domain using
a hashmap lookup (Section 2.2). Stinger’s small, fixed-size neigh-
borhood blocks lead to pointer chasing (cf. Figure 4b). Livegraph
needs to scan 3x as much data and evaluates a predicate for each
scanned edge. GraphOne implements access to its neighborhood
by copying them into a user-provided vector.

sssp combines random vertex access with sequential neighbor-

hoods accesses. The runtime for all systems, apart from LLama, is
similar to wcc and pr. LLama does not optimize for sequential
neighborhood access in combination with random vertex access.

bfs shows the highest variance among all systems. We use the
direction-optimized variant by Scott Beamer [5]. It exhibits the
sequential vertex and the sequential neighborhood access patterns. It
differs from all other kernels, as it stops scanning early after finding
an edge that satisfies a predicate; often scanning less than 8 edges.
Hence, Livegraph and GraphOne have decreased performance due
to their overheads for accessing a few edges. On graph500-24, other
systems show similar performance as for pr and wcc. However,
slowdowns on com-friendster or dota-league show that bfs is hard
to optimize for. cdlp is dominated by building histograms of IDs.
Hence, it is not indicative for the graph data structure performance.

7.6 Concurrent Read-Write Workload

Weevaluate the influence of concurrently executing updates from Sec-
tion 7.3 and bfs or pr from Section 7.5. Figure 14 shows the latency
of analytics and the throughput of updates when combining 1 to 32
analytical threads with 16 and 48 writers compared to running them
in isolation. The experiment can only be executed by transactional
systems. Teseo cannot execute the workload due to a bug.

When bfs is run concurrently with updates, the throughput is
at most 12% (Sortledton) and 22% (Livegraph) lower than updates
in isolation. When updates run alongside pr, the throughput drops
significantly (Figure 14c). There are two reasons for this: 1) pr
scans complete neighborhoods while bfs scans only parts of most
neighborhoods, 2) pr runs longer transactions. Consequently, pr

holds locks on neighborhoods longer and leads to a higher number
of versions in the system. In particular, a long pr query with 1
analytical thread strains the system with many versions [10]. The
latency of both bfs and pr is higher than in isolation (Figures 14a
and 14d), due to multi-versioned edges which disable our direct
access optimization (Figure 8) and instead follow version chains.

For Livegraph, the concurrent workloads affect each other less.
There are two reasons: 1) the use of a log-structured data struc-
ture that allows writers to append the inserts without affecting
the readers. 2) Livegraph always pays the overhead of having all
edges versioned which lowers efficiency. Despite the interference,
Sortledton is ahead for updates/analytics in all/most cases.

8 RELATED WORK

We discuss graph data structures with support for single edge in-
serts [19, 30, 34, 36, 57]. Figure 1 relates them to the challenges
outlined in Section 2.1. Only, Teseo and Sortledton solve the first
challenge of supporting graph pattern matching by computing in-
tersections in linear time. The second challenge of allowing for
concurrent updates and computations is only addressed by Teseo,
Livegraph, and Sortledton. Livegraph’s concurrency control is based
on an oltp-optimized protocol [32], that causes overheads on ana-
lytical workloads and memory consumption. Teseo’s protocol is an
htap-optimized protocol [43] for general read-write transactions.
This comes at the cost of having a higher overhead on small trans-
actions with a known write set. In particular, they have a higher
abort rate, do rollback logging, need to draw two timestamps per
transaction, and have a sequential validation phase. As a result,
only Teseo and Sorltedton address both challenges, but they follow
fundamentally different designs. Sortledton has an adjacency list-

like design, while Teseo follows the csr-like design. We compared
these designs in Section 4.1. Only Sortledton and Livegraph could
execute analytics and updates concurrently. LLama, GraphOne and
Livegraph optionally support disk-based storage. We discuss three
other differentiators between Sortledton and related work. First,
GraphOne, LLama, and Teseo use read and write-optimized seg-
ments to handle inserts. This leads to lower read performance or
reduced freshness. In the case of LLama and GraphOne, this will
result in unstable throughput over time (cf. Figure 11b). Second, all
competitors rely on background threads to perform data structure
maintenance (e.g. Teseo uses one thread per core for rebalancing
and garbage collection [34]). In particular, in combination with

(a) Sortledton bfs (b) Livegraph bfs (c) Sorltedton pr update throughput

(d) Sortledton pr (e) Livegraph pr (f) Livegraph pr update throughput

Figure 14: Mixed workload for Graph500-24.

compute-intensive gpm this leads to overprovisioning. Finally, most
systems run pre-computations before analytics after applying up-
dates [30, 34, 36]. LLama and GraphOne ingest all buffered writes
into read-optimized storage. Similarly, GraphOne and Teseo create
a snapshot in𝑂 (𝑉) steps before starting analytics. GraphOne stores
the sizes of the neighborhoods to guarantee isolation from new
updates. Teseo creates a translation from sparse to dense vertices.

Batched update graph data structures trade-off update la-
tency for higher throughput. Aspen and Terrace support fast scans
and intersections [15, 44]. Aspen is adjacency list-like and can run
coarse-grained transactions per update batch by a single-writer
copy-on-write scheme. It uses purely functional trees storing blocks
of edges and a functional tree for the adjacency index. Terrace mixes
a adjacency list-like and CSR-like design. It uses three different data
structures depending on the size of the neighborhoods: they inline
small neighborhoods in the index, use packed memory arrays for
medium-sized neighborhoods, and B-Trees for hub vertices.

GraphDatabases.Mature graph databases exist, e.g., Neo4J and
Virtuoso. They use a linked list of edges per vertex and a columnar
relational layout for storage. Neo4J’s concurrency control uses the
isolation level read-committed and Virtuoso uses single version
locking. Hence, both systems could profit by changing to Sortledton
as underlying storage because of its cache-friendly layout and low
neighborhood lookup latencies as well as the higher isolation level
and/or better decoupling of readers and writers, respectively.

Further graph workloads. So far, we have discussed analytics,
traversals, and graph pattern matching workloads because they
drive our design. However, Besta et al. list three further workloads:
local, neighborhood, and the ldbc interactive and business intel-
ligence benchmarks. These can be efficiently supported by our

low-latency index and ability to find existing edges. For the ldbc
workload, like other dynamic data structures, we do not support
labels. For static use cases, the issue is addressed by Mhedhbi et
al. [40].

9 CONCLUSIONS

Sortledton is a sorted, simple, transactional graph data structure
that executes up to 5 million edge updates per second, supports
analytical, gpm, and traversal workloads with runtimes within 1.2x
on average of csrwhile needing only ∼2x the space of csr. Further-
more, it runs analytics and a high number of updates concurrently.
We achieve this by reusing existing data structures.

We construct Sortledton based on two key principles. First, a uni-
versal graph data structure needs to store neighborhoods in sets to
support gpm, consistency, edge updates, and deletions. Second, we
identify four memory access patterns in graph workloads: sequen-
tial vertex, sequential neighborhood, algorithmic-specific property,
and random vertex access patterns. With a series of microbench-
marks, we show that it is more important to optimize for sequential
neighborhood access and algorithmic-specific property access because
they occur once per edge, rather than the other two access pat-
terns that occur once per vertex. Therefore, csr-like designs lose
their main advantage over adjacency list-based designs that are
significantly simpler to build.

ACKNOWLEDGMENTS

We thank Dean De Leo for taking a big step towards making graph
data structure research comparable with his test driver. We thank
Maximilian Bandle, Dominik Durner, and our reviewers for their
valuable feedback.

References
[1] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016.

EmptyHeaded: A Relational Engine for Graph Processing. In Proceedings of the
2016 International Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016. ACM, 431–446. https://doi.org/
10.1145/2882903.2915213

[2] Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter A. Boncz, Orri Erling,
Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, Josep Lluís Larriba-Pey, Nor-
bert Martínez-Bazan, József Marton, Marcus Paradies, Minh-Duc Pham, Arnau
Prat-Pérez, Mirko Spasic, Benjamin A. Steer, Gábor Szárnyas, and Jack Waudby.
2020. The LDBC Social Network Benchmark. CoRR abs/2001.02299 (2020).
arXiv:2001.02299 http://arxiv.org/abs/2001.02299

[3] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.
Fletcher, Claudio Gutiérrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,
Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core for
Future GraphQuery Languages. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018. ACM, 1421–1432. https://doi.org/10.1145/3183713.3190654

[4] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. LinkBench: a database benchmark based on the Facebook
social graph. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013. ACM,
1185–1196. https://doi.org/10.1145/2463676.2465296

[5] Scott Beamer, Krste Asanovic, and David A. Patterson. 2013. Direction-optimizing
breadth-first search. Sci. Program. 21, 3-4 (2013), 137–148. https://doi.org/10.
3233/SPR-130370

[6] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark
Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619 http://arxiv.org/abs/1508.
03619

[7] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. Locality Exists
in Graph Processing: Workload Characterization on an Ivy Bridge Server. In
2015 IEEE International Symposium on Workload Characterization, IISWC 2015,
Atlanta, GA, USA, October 4-6, 2015. IEEE Computer Society, 56–65. https:
//doi.org/10.1109/IISWC.2015.12

[8] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michal Pod-
stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2019. Demysti-
fying Graph Databases: Analysis and Taxonomy of Data Organization, System
Designs, and Graph Queries. CoRR abs/1910.09017 (2019). arXiv:1910.09017
http://arxiv.org/abs/1910.09017

[9] Jan Böttcher, Viktor Leis, Jana Giceva, Thomas Neumann, and Alfons Kemper.
2020. Scalable and robust latches for database systems. In 16th International
Workshop on Data Management on New Hardware, DaMoN 2020, Portland, Oregon,
USA, June 15, 2020. ACM, 2:1–2:8. https://doi.org/10.1145/3399666.3399908

[10] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. 2019. Scalable
Garbage Collection for In-Memory MVCC Systems. Proc. VLDB Endow. 13, 2
(2019), 128–141. https://doi.org/10.14778/3364324.3364328

[11] Mihai Capota, TimHegeman, Alexandru Iosup, Arnau Prat-Pérez, Orri Erling, and
Peter A. Boncz. 2015. Graphalytics: A Big Data Benchmark for Graph-Processing
Platforms. In Proceedings of the Third International Workshop on Graph Data
Management Experiences and Systems, GRADES 2015, Melbourne, VIC, Australia,
May 31 - June 4, 2015. ACM, 7:1–7:6. https://doi.org/10.1145/2764947.2764954

[12] ShumoChu,Magdalena Balazinska, andDan Suciu. 2015. FromTheory to Practice:
Efficient Join Query Evaluation in a Parallel Database System. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015. ACM, 63–78. https://doi.org/10.1145/
2723372.2750545

[13] Douglas Comer. 1979. The Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (1979),
121–137. https://doi.org/10.1145/356770.356776

[14] Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup. 2006. Lock-Free
Dynamically Resizable Arrays. In Principles of Distributed Systems, 10th In-
ternational Conference, OPODIS 2006, Bordeaux, France, December 12-15, 2006,
Proceedings (Lecture Notes in Computer Science), Vol. 4305. Springer, 142–156.
https://doi.org/10.1007/11945529_11

[15] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-latency graph
streaming using compressed purely-functional trees. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen
Fisher (Eds.). ACM, 918–934. https://doi.org/10.1145/3314221.3314598

[16] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimizedOLTP engine. In Proceedings of the ACMSIGMOD International
Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27,
2013. ACM, 1243–1254. https://doi.org/10.1145/2463676.2463710

[17] Bolin Ding, Kai Zeng, and Wenyuan Yu. 2020. Alibaba Sponsor Talk at VLDB.
[18] Vinícius Vitor dos Santos Dias, Carlos H. C. Teixeira, Dorgival O. Guedes, Wag-

ner Meira Jr., and Srinivasan Parthasarathy. 2019. Fractal: A General-Purpose

Graph Pattern Mining System. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019. ACM, 1357–1374. https://doi.org/10.1145/3299869.3319875

[19] David Ediger, Robert McColl, E. Jason Riedy, and David A. Bader. 2012. STINGER:
High performance data structure for streaming graphs. In IEEE Conference on
High Performance Extreme Computing, HPEC 2012, Waltham, MA, USA, September
10-12, 2012. IEEE, 1–5. https://doi.org/10.1109/HPEC.2012.6408680

[20] Assaf Eisenman, Ludmila Cherkasova, Guilherme Magalhaes, Qiong Cai, Paolo
Faraboschi, and Sachin Katti. 2016. Parallel Graph Processing: Prejudice and
State of the Art. In Proceedings of the 7th ACM/SPEC International Conference on
Performance Engineering, ICPE 2016, Delft, The Netherlands, March 12-16, 2016.
ACM, 85–90. https://doi.org/10.1145/2851553.2851572

[21] Orri Erling, Alex Averbuch, Josep Lluís Larriba-Pey, Hassan Chafi, Andrey Gu-
bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The LDBC
Social Network Benchmark: Interactive Workload. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015. ACM, 619–630. https://doi.org/10.1145/2723372.
2742786

[22] Per Fuchs, Peter A. Boncz, and Bogdan Ghit. 2020. EdgeFrame: Worst-Case Opti-
mal Joins for Graph-Pattern Matching in Spark. In GRADES-NDA’20: Proceedings
of the 3rd Joint International Workshop on Graph Data Management Experiences &
Systems (GRADES) and Network Data Analytics (NDA), Portland, OR, USA, June
14, 2020. ACM, 4:1–4:11. https://doi.org/10.1145/3398682.3399162

[23] Alastair Green. 2019. THE GQL MANIFESTO. https://gql.today/
[24] Pranjal Gupta, Amine Mhedhbi, and Semih Salihoglu. 2021. Integrating Column-

Oriented Storage and Query Processing Techniques Into Graph Database Man-
agement Systems. CoRR abs/2103.02284 (2021). arXiv:2103.02284 https://arxiv.
org/abs/2103.02284

[25] Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva Gurumurthy, Volodymyr
Zhabiuk, Quannan Li, and Jimmy J. Lin. 2014. Real-Time Twitter Recommenda-
tion: Online Motif Detection in Large Dynamic Graphs. Proc. VLDB Endow. 7, 13
(2014), 1379–1380. https://doi.org/10.14778/2733004.2733010

[26] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2007. A Simple
Optimistic Skiplist Algorithm. In Structural Information and Communication
Complexity, 14th International Colloquium, SIROCCO 2007, Castiglioncello, Italy,
June 5-8, 2007, Proceedings (Lecture Notes in Computer Science), Vol. 4474. Springer,
124–138. https://doi.org/10.1007/978-3-540-72951-8_11

[27] Stratos Idreos, Kostas Zoumpatianos, Manos Athanassoulis, Niv Dayan, Brian
Hentschel, Michael S. Kester, Demi Guo, Lukas M. Maas, Wilson Qin, Abdul
Wasay, and Yiyou Sun. 2018. The Periodic Table of Data Structures. IEEE Data
Eng. Bull. 41, 3 (2018), 64–75. http://sites.computer.org/debull/A18sept/p64.pdf

[28] SQL ISO. 2020. ISO/IEC CD 9075-16. https://www.iso.org/standard/79473.html
[29] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita

Bala, and L. Paul Chew. 2009. Optimistic parallelism requires abstractions. Com-
mun. ACM 52, 9 (2009), 89–97. https://doi.org/10.1145/1562164.1562188

[30] Pradeep Kumar and H. Howie Huang. 2019. GraphOne: A Data Store for Real-
time Analytics on Evolving Graphs. In 17th USENIX Conference on File and Storage
Technologies, FAST 2019, Boston, MA, February 25-28, 2019. USENIX Association,
249–263. https://www.usenix.org/conference/fast19/presentation/kumar

[31] Jérôme Kunegis. 2013. KONECT: the Koblenz network collection. In 22nd Inter-
national World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17,
2013, Companion Volume. International World Wide Web Conferences Steering
Committee / ACM, 1343–1350. https://doi.org/10.1145/2487788.2488173

[32] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mech-
anisms for Main-Memory Databases. Proc. VLDB Endow. 5, 4 (2011), 298–309.
https://doi.org/10.14778/2095686.2095689

[33] Dean De Leo and Peter A. Boncz. 2019. Fast Concurrent Reads and Updates
with PMAs. In Proceedings of the 2nd Joint International Workshop on Graph Data
Management Experiences & Systems (GRADES) and Network Data Analytics (NDA),
Amsterdam, The Netherlands, 30 June 2019. ACM, 8:1–8:8. https://doi.org/10.1145/
3327964.3328497

[34] Dean De Leo and Peter A. Boncz. 2021. Teseo and the Analysis of Structural
Dynamic Graphs. Proc. VLDB Endow. 14, 6 (2021), 1053–1066. http://www.vldb.
org/pvldb/vol14/p1053-leo.pdf

[35] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[36] Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo I. Seltzer. 2015.
LLAMA: Efficient graph analytics using Large Multiversioned Arrays. In 31st
IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea,
April 13-17, 2015. IEEE Computer Society, 363–374. https://doi.org/10.1109/ICDE.
2015.7113298

[37] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010.
ACM, 135–146. https://doi.org/10.1145/1807167.1807184

[38] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker.
2014. Rethinking main memory OLTP recovery. In IEEE 30th International Con-
ference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014,
Isabel F. Cruz, Elena Ferrari, Yufei Tao, Elisa Bertino, and Goce Trajcevski (Eds.).
IEEE Computer Society, 604–615. https://doi.org/10.1109/ICDE.2014.6816685

[39] Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-Driven Syn-
chronous Processing of Streaming Graphs. In Proceedings of the Fourteenth Eu-
roSys Conference 2019, Dresden, Germany, March 25-28, 2019. ACM, 25:1–25:16.
https://doi.org/10.1145/3302424.3303974

[40] Amine Mhedhbi, Pranjal Gupta, Shahid Khaliq, and Semih Salihoglu. 2020. A+
Indexes: Lightweight and Highly Flexible Adjacency Lists for Graph Database
Management Systems. CoRR abs/2004.00130 (2020). arXiv:2004.00130 https:
//arxiv.org/abs/2004.00130

[41] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph Queries by
Combining Binary and Worst-Case Optimal Joins. Proc. VLDB Endow. 12, 11
(2019), 1692–1704. https://doi.org/10.14778/3342263.3342643

[42] C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M. Schwarz.
1992. ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging. ACM Trans. Database
Syst. 17, 1 (1992), 94–162. https://doi.org/10.1145/128765.128770

[43] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. ACM, 677–689.
https://doi.org/10.1145/2723372.2749436

[44] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluç. 2021. Terrace:
A Hierarchical Graph Container for Skewed Dynamic Graphs. In SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China, June 20-25,
2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM,
1372–1385. https://doi.org/10.1145/3448016.3457313

[45] Kenneth Platz, Neeraj Mittal, and S. Venkatesan. 2019. Concurrent Unrolled
Skiplist. In 39th IEEE International Conference on Distributed Computing Systems,
ICDCS 2019, Dallas, TX, USA, July 7-10, 2019. IEEE, 1579–1589. https://doi.org/
10.1109/ICDCS.2019.00157

[46] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and
Jingren Zhou. 2018. Real-time Constrained Cycle Detection in Large Dynamic
Graphs. Proc. VLDB Endow. 11, 12 (2018), 1876–1888. https://doi.org/10.14778/
3229863.3229874

[47] James Reinders. 2007. Intel threading building blocks - outfitting C++ for multi-core
processor parallelism. O’Reilly. http://www.oreilly.com/catalog/9780596514808/
index.html

[48] Kun Ren, Jose M. Faleiro, and Daniel J. Abadi. 2016. Design Principles for Scaling
Multi-core OLTP Under High Contention. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016. ACM, 1583–1598. https://doi.org/10.1145/2882903.
2882958

[49] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM. https:
//doi.org/10.1137/1.9780898718003

[50] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer
Özsu. 2017. The Ubiquity of Large Graphs and Surprising Challenges of Graph
Processing. Proc. VLDB Endow. 11, 4 (2017), 420–431. https://doi.org/10.1145/
3186728.3164139

[51] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson, and Jimmy J.
Lin. 2016. GraphJet: Real-Time Content Recommendations at Twitter. Proc. VLDB
Endow. 9, 13 (2016), 1281–1292. https://doi.org/10.14778/3007263.3007267

[52] Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’13, Shenzhen, China, February 23-27, 2013.
ACM, 135–146. https://doi.org/10.1145/2442516.2442530

[53] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,
November 3-6, 2013. ACM, 18–32. https://doi.org/10.1145/2517349.2522713

[54] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and Accurate
Computations on Streaming Graphs via Trimmed Approximations. In Proceed-
ings of the Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April
8-12, 2017. ACM, 237–251. https://doi.org/10.1145/3037697.3037748

[55] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014. Fast
Databases with Fast Durability and Recovery Through Multicore Parallelism.
In 11th USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’14, Broomfield, CO, USA, October 6-8, 2014, Jason Flinn and Hank Levy
(Eds.). USENIXAssociation, 465–477. https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/zheng_wenting

[56] Xiaowei Zhu, Zhisong Fu, Zhenxuan Pan, Jin Jiang, Chuntao Hong, Yongchao
Liu, Yang Fang, Wenguang Chen, and Changhua He. 2021. Taking the Pulse of
Financial Activities with Online Graph Processing. ACM SIGOPS Oper. Syst. Rev.
55, 1 (2021), 84–87. https://doi.org/10.1145/3469379.3469389

[57] Xiaowei Zhu, Marco Serafini, Xiaosong Ma, Ashraf Aboulnaga, Wenguang Chen,
and Guanyu Feng. 2020. LiveGraph: A Transactional Graph Storage System
with Purely Sequential Adjacency List Scans. Proc. VLDB Endow. 13, 7 (2020),
1020–1034. https://doi.org/10.14778/3384345.3384351

NBTree: a Lock-free PM-friendly Persistent B+-Tree for
eADR-enabled PM Systems

Bowen Zhang
Shanghai Jiao Tong University

bowenzhang@sjtu.edu.cn

Shengan Zheng
MoE Key Lab of Artificial Intelligence, AI Institute,

Shanghai Jiao Tong University

venero1209@sjtu.edu.cn

Zhenlin Qi
Shanghai Jiao Tong University

qizhenlin@sjtu.edu.cn

Linpeng Huang
Shanghai Jiao Tong University

lphuang@sjtu.edu.cn

ABSTRACT

Persistent memory (PM) promises near-DRAM performance as well

as data persistency. Recently, a new feature called eADR is available

on the 2𝑛𝑑 generation Intel Optane PMwith the 3𝑟𝑑 generation Intel

Xeon Scalable Processors. eADR ensures that data stored within the

CPU caches will be flushed to PM upon the power failure. Thus, in

eADR-enabled PM systems, the globally visible data is considered

persistent, and explicit data flushes are no longer necessary. The

emergence of eADR presents unique opportunities to build lock-free

data structures and unleash the full potential of PM.

In this paper, we propose NBTree, a lock-free PM-friendly B+-
Tree, to deliver high scalability and low PM overhead. To our knowl-

edge, NBTree is the first persistent index designed for eADR-enabled

PM systems. To achieve lock-free, NBTree uses atomic primitives

to serialize leaf node operations. Moreover, NBTree proposes four

novel techniques to enable lock-free access to the leaf during struc-

tural modification operations (SMO), including three-phase SMO,

sync-on-write, sync-on-read, and cooperative SMO. For inner node

operations, we develop a shift-aware search algorithm to resolve

read-write conflicts. To reduce PM overhead, NBTree decouples

the leaf nodes into a metadata layer and a key-value layer. The

metadata layer is stored in DRAM, along with the inner nodes, to

reduce PM accesses. NBTree also adopts log-structured insert and

in-place update/delete to improve cache utilization. Our evaluation

shows that NBTree achieves up to 11× higher throughput and 43×
lower 99% tail latency than state-of-the-art persistent B+-Trees
under YCSB workloads.

PVLDB Reference Format:

Bowen Zhang, Shengan Zheng, Zhenlin Qi, Linpeng Huang. NBTree: a

Lock-free PM-friendly Persistent B+-Tree for eADR-enabled PM Systems.

PVLDB, 15(6): 1187-1200, 2022.

doi:10.14778/3514061.3514066

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/SJTU-DDST/NBTree.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514066
∗ Linpeng Huang and Shengan Zheng are corresponding authors.

1 INTRODUCTION

Byte-addressable persistent memory (PM), such as Intel Optane DC

persistent memory module (DCPMM) [17] is now commercially

available. PM offers DRAM-comparable performance as well as

disk-like durability. In general, PM-equipped platforms support the

asynchronous DRAM refresh (ADR) feature [21], which ensures

that the content of the PM DIMMs, as well as the writes that have

reached the memory controller’s write pending queues (WPQ),

survives power failures. However, writes within CPU caches remain

volatile. Thus, explicit cache line flush instructions and memory

barriers are required to guarantee the persistence of PM writes.

Recently, a new feature called extended ADR (eADR) is available

with the arrival of the 3𝑟𝑑 generation Intel Xeon Scalable Processors

and the 2𝑛𝑑 generation Intel Optane DCPMM [24]. Compared with

ADR, eADR further guarantees that data within CPU caches will

be flushed back to PM after a crash through the reserved energy. It

ensures the persistence of the globally visible data in CPU caches

and eliminates the need to issue costly synchronous flushes. The

emergence of eADR not only facilitates the design of lock-free data

structures but reduces PM write overhead.

Building efficient index structures in PM is promising to offer

both high performance and data durability for in-memory databases.

Most existing persistent indexes [2, 4–6, 28, 32, 37, 40, 43, 47, 59, 61]

are solely designed for ADR-based PM systems. On eADR-enabled

platforms, an intuitive transformation approach is to simply remove

all cache line flush instructions [45]. However, this naïve approach

cannot fully exploit the potential of eADR. Those indexes still suffer

from two major drawbacks even with the eADR support.

First, existing persistent indexes suffer from inefficient concur-

rency control. Locks are widely used in persistent indexes because

none of the existing primitives can atomically modify and persist

data on ADR-based platforms. Atomic CPU hardware primitives,

such as Compare-And-Swap (CAS), can atomically modify the data

but do not guarantee its persistence because CPU caches are volatile.

Therefore, without locking, it’s possible that a store hasn’t been
persisted before a dependent read from another thread, leading to

dirty read anomaly. Fortunately, eADR closes the gap between the

visibility and persistency of the data in CPU caches, making sure

that threads always read persistent data. Thus, eADR provides us

an opportunity to develop efficient lock-free data structures.

Second, existing persistent indexes still impose high overheads

on PM accesses. Prior researches strive to lower PM overhead by

reducing the number of flush instructions, because data flushing is

the primary bottleneck of ADR-based PM systems [37]. With eADR,

explicit data flushes to PM are no longer necessary. However, the

performance of persistent indexes is still restricted by excessive

PM accesses since PM has higher read latency and lower band-

width than DRAM [16, 52, 55]. Especially for the write operations,

although data flushing to PM is off the critical path, dirty cache

lines will eventually be written back to PM due to the limited CPU

cache capacity. Therefore, it’s necessary to redesign the PM-friendly

persistent indexes for eADR-enabled PM systems.

In this paper, we present NBTree, a lock-free PM-friendly B+-Tree
to deliver high scalability and low PM overhead. To our knowledge,

NBTree is the first PM index based on eADR-enabled PM systems.

To achieve high scalability, NBTree proposes a fully lock-free con-

currency control protocol. For leaf node operations, NBTree adopts

log-structured insert and in-place update/delete, combining with CAS
primitives, to support lock-free accesses. When the inserted leaf

is full, NBTree replaces the old leaf with new leaves to maintain

the balance of nodes via structural modification operations (SMO).

NBTree proposes three novel techniques (three-phase SMO, sync-on-

write, and sync-on-read) to deal with the potential anomalies during

the lock-free accesses to the leaf in SMO: (1) Lost update caused by

concurrent updates and deletions to the leaf. NBTree addresses this

anomaly by utilizing three-phase SMO and sync-on-write. When an

update or deletion operates on the leaf during SMO, it first in-place

modifies the old leaf. Then, the modification is either passively mi-

grated to the new leaf by three-phase SMO or actively synchronized

to the new leaf using sync-on-write. (2) Dirty or stale read caused

by concurrent search operations. The lock-free search on the SMO

leaf might read uncommitted dirty data or stale data. NBTree uses

the sync-on-read technique to detect and resolve those anomalies.

To further reduce tail latency, we propose cooperative SMO to make

concurrent insertions to the same SMO leaf work cooperatively.

For inner node operations, NBTree applies hardware transactional

memory (HTM) [26] to achieve atomic writes. Meanwhile, NBTree

designs a shift-aware search algorithm to ensure the lock-free inner

node search reaches the correct leaf.

To reduce PM overhead, NBTree minimizes PM line accesses and

improves cache utilization. For leaf nodes in NBTree, the metadata

and key-value pairs are decoupled into two layers. The metadata

layer is stored in DRAM along with inner nodes. PM only contains

the key-value layer so that the number of PM line reads and writes

is minimized. The volatile part of NBTree can be rebuilt with the

persistent key-value layer after a crash. Moreover, our proposed

log-structured insert and in-place update improve the possibility of

write combining and write hits, optimizing the cache utilization in

eADR-enabled PM systems.

In summary, the contributions of this paper include:

• We provide an in-depth analysis of the benefits of the eADR

feature. Then, we propose NBTree, the first persistent index

based on eADR-enabled PM systems as far as we know.

• We propose lock-free concurrency control for NBTree to

achieve high scalability. Our proposed techniques, such as

three-phase SMO, sync-on-write, sync-on-read, cooperative

SMO, and shift-aware search, ensure strong consistency for

lock-free operations.

• We propose a two-layer leaf node structure for NBTree,

which reduces the number of PM line reads and writes in

each operation and improves cache utilization.

• We implement NBTree and our evaluation results show

that NBTree achieves up to 11× higher throughput and 43×
lower 99% tail latency than state-of-the-art counterparts

under YCSB workloads.

2 BACKGROUND AND MOTIVATION

In this section, we introduce the background of persistent memory

and eADR (Section 2.1), the PM overhead analysis in eADR-enabled

PM systems (Section 2.2), and the challenges of designing lock-free

persistent data structures (Section 2.3).

2.1 Persistent Memory and eADR

Persistent memory (PM), which is now commercially available,

provides many attractive features, such as byte-addressability and

data persistency. However, PM still has higher latency and lower

bandwidth than DRAM. To reduce the write latency, existing PM-

based systems utilize the ADR mechanism [21] to drain the writes

sitting on the write pending queues (WPQ) to PM by the reserved

energy during a power outage. Therefore, data that reaches the

WPQ in ADR-based PM systems is considered persistent, whereas

data in the CPU caches remains volatile. As a result, an additional

pair of the flush instruction (e.g. clwb, clflush, clflushopt) and
memory barrier (e.g. mfence, sfence) is necessary for programmers

to guarantee data persistency [45].

Fortunately, eADR is supported on the 2𝑛𝑑 generation Intel Op-

tane DCPMM with the 3𝑟𝑑 generation Intel Xeon Scalable Pro-

cessors. eADR-enabled PM systems reserve more energy that en-

ables them to flush data in CPU caches to PM after a power fail-

ure, thereby expanding the persistence domain to include CPU

caches [46]. eADR offers the following advantages over ADR.

The first one is reducing PM write overhead. With eADR, the

synchronous flush instructions are no longer necessary, which

reduces PM write overhead in two aspects. (1) Reducing the latency

in the critical path. Previously, the flush instructions and memory

barriers result in high latency in the critical path [37]. (2) Saving

PM write bandwidth. Delaying writes to PM increases write hits

and write combining in CPU caches, which reduces PM writes.

The second one is facilitating the lock-free design. Data struc-

tures can atomically modify and persist data with eADR, which

facilitates the lock-free design in PM. Most lock-free data struc-

tures [1, 18, 36, 41] rely on atomic CPU hardware primitives, such

as CAS. However, in ADR-based PM systems, those primitives can

atomically modify data but cannot ensure their persistence because

CPU caches are volatile. Threads are likely to read unpersisted data

in CPU caches, resulting in the dirty read anomaly. With eADR, the

globally visible data in CPU caches is ensured to be persisted. Thus,

it is possible to modify and persist data atomically.

2.2 PM Overhead Analysis

The performance gap between PM and DRAM encourages people

to design PM-friendly storage systems to reduce I/O overhead.

Previous works [7, 8, 12, 31, 42, 49, 53, 54, 58] designed for ADR-

based PM systems mostly focused on reducing the costly flush

Table 1: The PM overhead of tree operations. (𝑎/𝑏/𝑐 indicates
the PM overhead of an individual insert/delete/update. 𝑛 in-

dicates the number of key-value pairs in the leaf node.)

Flush PM line write PM line read

NVTree [56] 2/2/2 2/2/2 O(n)

WB+Tree [3] 4/3/3 3/2/2 O(log(n))

FPTree [43] 3/1/3 3/1/3 3

RNTree [39] 2/1/2 3/1/3 O(log(n))

BzTree [2] 15/7/10 11/6/7 O(log(n))

FAST&FAIR [20] O(n)/O(n)/1 O(n)/O(n)/1 O(n)

uTree [4] 2/1/1 2/2/1 2

NBTree 1/1/1 1/1/1 1

instructions. With eADR, flushing is no longer required. However,

although the persistence latency of the writes is hidden by CPU

caches, dirty cache lines will eventually be evicted to PM according

to the cache replacement policy. Excessive PM writes still result in

high latency due to the poor PM write bandwidth. Besides, PM also

has higher read latency than DRAM. Thus, the unique features of

eADR require a rethinking of how to reduce PM overhead.

We conclude the following three design goals to reduce PM over-

head. First, reducing the number of PM line writes per operation.

PM line writes indicate the 64-byte aligned PM lines modified in

CPU caches. Reducing PM line writes per operation can produce less

dirty cache lines, saving PM write bandwidth. Second, increasing

the possibility of write combining and write hits in CPU caches. In

this way, multiple write operations can write to the same cache line,

reducing PM writes. ADR-based PM systems do not benefit much

from it because write operations often need to be synchronously

flushed. Third, reducing the number of PM line reads per operation.

The relatively higher read latency of PM is overlooked in the previ-

ous works [3, 39, 56]. However, it is non-negligible, especially in

read-intensive data structures, such as B+-Tree.
Table 1 lists PM costs of state-of-the-art persistent B+-Trees and

NBTree. We notice that the strategies of reducing the number of

flushes sometimes result in fewer PM line writes. However, they are

not equivalent. RNTree [39], for example, applies selective metadata

persistence to reduce the number of flushes but cannot avoid the PM

line writes. We also find that trees that keep the order of leaf nodes

or slot arrays produce non-constant PM line reads per operation,

which incurs non-negligible overhead.

2.3 The Design Challenges of Lock-free
Persistent Data Structures

It’s non-trivial to design lock-free data structures (LFD) in PM

because they not only need to handle subtle race conditions like

volatile indexes, but need to make sure that writes are persisted

before any dependent read [14, 51, 62]. There are the following two

hardware restrictions to keep us away from designing efficient LFDs

in PM. (1) The granularity of atomicity in memory load and store
is oneword, that is 8 bytes. Atomic CPU hardware primitives used in

many LFDs, such as compare-and-swap (CAS), can only atomically

modify a single word. However, a single operation in non-trivial

data structures needs to read and write multiple words. Therefore,

LFDs are likely to expose intermediate states to concurrent threads.

Moreover, when a thread is performing an operation, data structures

might be changed by other threads. Those problems may result in

anomalies such as lost update, stale read, and inconsistent read. (2)

ADR-based PM systems do not support atomic primitives to modify

and persist the data. Updates are first sent to the CPU caches and

then persisted using flush instructions and memory barriers. As

the globally visible data in CPU caches are volatile, other threads

can easily read unpersisted data, resulting in dirty read anomaly.

In the following, we use the persistent B+-Tree as an example to

specify how anomalies mentioned above happen.

Lost Update/Stale Read. Updates may be lost permanently, and

reads might access stale data due to non-atomic state changes. For

example, structural modification operations, such as split, are the

most complex state change in B+-Trees. During the split, B+-Tree
transfers the content of the old node to newly allocated nodes and

then replaces the old node with new nodes. As the split cannot be

completed atomically, a concurrent update may occur in the old

node but bemissed in the newnodes. In this situation, newnodes are

facing the risk of the stale read anomaly since they are stale. Even

worse, if the update is not synchronized to new nodes in a proper

way, it will be lost permanently, incurring the lost update anomaly.

Thus, existing B+-Trees often lock the leaf during the modification.

BzTree [2] uses the PMwCAS [51] to guarantee the atomicity of writes.

However, BzTree performs even worse than lock-based B+-Trees
due to the high software overhead of PMwCAS [35].

Inconsistent Read. Threads might read the inconsistent state

of data structures due to non-atomic state change. For example,

the shift operation to keep nodes in B+-Tree sorted cannot be com-

pleted atomically. During an insertion or deletion, B+-Tree needs
to shift array elements by calling a sequence of load and store
instructions. During shifting, the same entry may appear twice

in different slots, which is an inconsistent state that can result in

the inconsistent read. FAST&FAIR [20] proposes a lock-free search

algorithm, which tolerates such inconsistency. During searching,

the key is ignored if its left and right child pointers have the same

address. However, inconsistent read may occur when the state of

the node changes between two load operations [57].

Dirty Read. Reads might access the uncommitted dirty data

due to non-durable writes. Because of the lack of atomic instruc-

tions with the functionality of persistence, there is a temporal gap

between when an update becomes globally visible and when it be-

comes durable. During the update, we firstly store the data in CPU

caches, then persist it using a flush instruction and a memory bar-

rier. Other concurrent threads may view the new update before it

persists. If a power outage occurs between these two steps, the read

operation will get the unpersisted dirty data. Previous works pro-

pose several approaches to deal with this issue. ROART [40] and P-

ART [32] use the non-temporal store to prevent the unpersisted

data from being globally visible, but this method does not benefit

from CPU caching. Link-and-persist [10] and PMwCAS [51] use

the help mechanism, which allows read threads to flush unpersisted

data proactively. However, it adds additional software overhead

and design complexity. With eADR, the dirty read anomaly is less

likely to happen as the globally visible data is always persistent.

Figure 1: The overall architecture of NBTree.

3 PM-FRIENDLY B+-TREE

NBTree achieves low latency and high scalability by lowering PM

overhead in the following two aspects: (1) Reduce the number of

PM line reads/writes per operation. (2) Leverage the eADR benefits

to increase the write combining and write hits in CPU caches.

In this section, we describe the PM-friendly design of NBTree.

We first present the overall architecture (Section 3.1), and then

describe the base operations of NBTree (Section 3.2).

3.1 NBTree Structure

The overall architecture of NBTree is shown in Figure 1. In NBTree,

the metadata and key-value pairs of the leaf nodes are separated

into two layers. The metadata layer, as well as the inner nodes

of NBTree, is maintained in DRAM. They can be rebuilt from the

persistent key-value layer of leaf nodes in PM during recovery.

The two-layer leaf node design enables NBTree to absorb metadata

operations in DRAM, reducing PM line accesses drastically.

Specifically, for leaf nodes, both the metadata layer and the key-

value layer are linked into a singly linked-list. In the key-value

layer, each key-value block is an unsorted array of key-value en-

tries. Each key-value entry stores a 64-bit key and a 64-bit payload.

The highest 2 bits (copy_bit and sync_bit) of the payload are

reserved for concurrency control. For variable-sized key-value en-

tries, NBTree stores pointers that indicate the actual keys or values.

Each leaf’s metadata consists of the following fields: (1) fps to store
the one-byte fingerprint (hash value) for each key in the leaf, which

speeds up key-search on the unsorted array. (2) num to store the

number of entries occupied by both the committed and in-flight

insertions, which handles concurrent insertions. (3) bitmap to track
the position of the committed insertions in the leaf. (4) data_ptr
to indicate the address of its key-value block. (5) copy_ptr to store

the address of newly allocated leaves when the leaf performs SMO.

(6) flag to track the status of SMO. (7) next to indicate the address
of the sibling leaf. For inner nodes, NBTree adopts the structure of

FAST&FAIR [20], which maintains the sorted array.

3.2 Base operations

NBTree reduces the overhead of base operations (insert, update,

delete, and search) by minimizing PM line accesses and maximizing

the cache utilization. For each base operation, NBTree first locates

the corresponding leaf by searching the inner nodes in DRAM.

Then, it uses log-structured insert, in-place update/delete, and efficient

search to reduce the average number of PM line read/writes on

Figure 2: Procedure of an insertion on an NBTree’s leaf. (The

fingerprints (fps) of the keys are set to 𝑘𝑒𝑦%10 for brevity.)

the persistent leaf node to 1 and increase the write hits and write

combining. During recovery, NBTree retrieves all the key-value

entries with non-zero keys from the persistent leaf nodes.

Log-structured Insert. Insertions perform in a log-structured

manner in NBTree. Figure 2 illustrates the steps of inserting a new

key-value pair in NBTree’s leaf. First, NBTree increases the number
(�) to occupy the next free slot. Then, NBTree writes the value (�)

and the key (�) to the occupied slot. After writing the key, the

new insertion can survive a power failure. Finally, NBTree updates

the fps (�) and bitmap (�) to make insertion visible. We observe

that the only PM overhead in an insertion is storing a key-value

pair. Moreover, with eADR, the log-structured insert manner also

allows the consecutive insertions on the same leaf to combine in

CPU caches, reducing PM writes.

In-place Update/Delete. Conventional log-structured B+-Trees,
such as NVTree [56] and RNTree [39], update or delete key-value

entries by appending new entries. NBTree, on the other hand, per-

forms in-place update/delete. To update a key-value entry, NBTree

modifies its value in-place. To delete an entry, NBTree invalidates

it by resetting its key to 0. Update and delete can survive system

crashes by modifying and persisting the 8-byte key or value with

eADR support. In-place update manner is not favored in ADR-

based PM systems, as repeatable flushes to the same cache line

cause extra latency especially running on skewed workload [5].

With eADR, in-place update manner fully utilizes CPU caches and

minimizes PM line writes.

Efficient Search. The search range is confined to the valid en-

tries indicated by the bitmap. This ensures that the entry found

by the search operation is persistent and committed. NBTree fur-

ther narrows the average number of candidate entries to one by

checking the fingerprints. Finally, NBTree scans the candidate
entries to filter the unmatched keys and the deleted keys. In most

cases, the search operation produces only one PM line read, since

the candidate entry is often unique.

Crash Consistency. NBTree can restore its metadata layer and

inner nodes using the key-value layer after a crash. During recovery,

NBTree scans the list of key-value blocks and labels the slots with

non-zero keys as the valid key-value entries. Then, NBTree rebuilds

the metadata layer and the inner nodes based on those valid entries.

We find that rebuilding NBTree from persistent leaf nodes with

16 million key-value entries takes only 0.32s with a single thread,

which is 32× quicker than recovering from the base data.

NBTree maintains consistency even if a crash occurs in the mid-

dle of a write operation (insertion/update/deletion). As shown in

Figure 2, during an insertion, writing the key (�) happens after

writing the value (�). If the crash happens after writing the key, the

intact key-value pair will survive. Otherwise, the in-flight insertion

will not leave NBTree in an inconsistent state because the key of

the occupied slot is still 0, which is discarded after the recovery.

For updates and deletions, they can be completed atomically.

4 LOCK-FREE DESIGN

In this section, we introduce the lock-free concurrency control of

NBTree, which is based on a precondition guaranteed by the eADR-

enabled platform: globally visible data is persistent. We propose

different concurrency-control protocols for operations on normal

leaf nodes (Section 4.1), leaf nodes during SMO (Section 4.2), and

inner nodes (Section 4.3).

4.1 Leaf Node Operations

We divide the base operations in NBTree into two categories. The

first category is insert, which appends new data to the free slot.

The second category is UDS operations, including update, deletion,

and search. The UDS operations always work on the committed

insertions. In the following, we discuss how NBTree resolves the

insert-insert, UDS-UDS, and insert-UDS conflicts.

Insert-Insert Conflicts. We use atomic primitives to serialize

concurrent insertions. As shown in Figure 2, to begin an insertion,

NBTree uses the fetch_and_add to atomically increase the num,
occupying the next free slot. This ensures that concurrent insertions

are placed in separate slots. At the end of an insertion, NBTree uses

CAS to atomically update the bitmap, which commits the insertion.

In this way, NBTree achieves lock-free insert on the leaf nodes.

Insert-UDS Conflicts. Those conflicts are naturally solved in

NBTree. Firstly, an insertion always writes the data into the unused

space, which does not affect the UDS operations. Secondly, NBTree

commits an insertion by atomically updating the bitmap, which
makes the new insertion visible to UDS operations. Therefore, UDS
operations always operate on the completed insertions.

UDS-UDS Conflicts. UDS-UDS conflicts in NBTree are resolved

in eADR-enabled PM systems without additional overhead. As men-

tioned above, updates and deletions are completed atomically with-

out exposing the intermediate state. With eADR, those modifica-

tions are atomically persisted. Thus, the order of commit and visi-

bility for concurrent updates and deletions are always maintained,

and the search operation always reads the latest committed data.

Moreover, UDS operations are never aborted by other threads, which
dramatically improves NBTree’s scalability under the workloads

with high contentions.

4.2 Structural Modification Operations

Structural modification operations (SMOs) are initiated when a key-

value entry is inserted into a full leaf. The conventional procedure

of SMO is to copy the entries from the full old leaf to the newly

allocated leaves, and then replace the old leaf with the new leaves.

However, since the copy phase cannot be completed atomically,

lock-free concurrent modifications to the old leaf may not be syn-

chronized to the new leaves, resulting in the lost update anomaly.

Table 2: The approaches employed during different phases

of SMO to facilitate lock-free leaf node operations.

SMO

Phase
Copy Sync Link

Update/

Delete

three-phase SMO

(sync phase)
sync-on-write

Search unnecessary sync-on-read unnecessary

Insert cooperative SMO

Moreover, the lock-free search might read dirty or stale data due to

the inconsistency between the old leaf and new leaves.

Table 2 shows the approaches used by NBTree to resolve the

potential anomalies and facilitate lock-free accesses. In NBTree,

SMO is divided into three phases (copy phase, sync phase, and link

phase). During each phase, different approaches are used to handle

concurrent operations on the SMO leaf. For UD (update/delete) op-

erations, NBTree resolves the lost update anomaly with the sync

phase of the SMO and the sync-on-write technique. For search oper-

ations, NBTree uses sync-on-read to prevent the dirty read and stale

read anomaly. We also propose cooperative SMO, which enables

concurrent insertions to complete SMO cooperatively.

Three-phase SMO. Different from the SMO of traditional B+-
Trees that only includes the copy phase and link phase, NBTree

adds a sync phase to avoid the lost update anomaly caused by UD
operations during the copy phase. In the following, we will describe

the procedure of each phase.

In the copy phase, SMO copies the valid entries with non-zero

keys in the full leaf to new leaves. As shown in Figure 3, NBTree

allocates two new leaves if the number of valid entries exceeds a

certain threshold (half of the leaf capacity by default). Otherwise,

only one new leaf is allocated. Then, NBTree distributes key-value

pairs to the new leaves and constructs their metadata layer. Finally,

NBTree sets the copy_ptr in the old leaf to indicate the address of

the first new leaf.

In the sync phase, NBTree synchronizes the lost UD operations to
new leaves. During the copy phase, concurrent UD operations still
write to the old leaf. As the copy phase cannot be completed within

an atomic instruction, those UD operations, such as Update(2,s) in
Figure 3, might not have beenmigrated to new leaves yet. Therefore,

in the sync phase, NBTree employs CAS to synchronize the missed

UD operations to new leaves.

The link phase replaces the old leaf in NBTree with new leaves.

NBTree firstly links new leaves into the singly linked-list of the key-

value layer and the metadata layer by changing the next pointer
of the previous leaf. Then, NBTree installs new leaves to the parent

node (described in Section 4.3).

Sync-on-write. In the post-copy phases of SMO, UD operations
resolve the lost update anomaly by adopting a sync-on-write ap-

proach, which actively synchronizes the modification from the old

leaf to the new leaf. Specifically, for an update, after modifying a

key-value in the old leaf, it re-searches the target key in the new

leaf. If the corresponding value in the new leaf is not up-to-date,

NBTree synchronizes the latest update to the new leaf using CAS.

Figure 3: The procedure of three-phase SMO and sync-on-

write when updates and deletions operate on an SMO leaf.

With the support of eADR, CAS can atomically modify and per-

sist the synchronization. Similar to the update, the deletion also

re-executes in the new leaf if it contains the target key. NBTree

imposes low-overhead on sync-on-write because it only incurs one

additional search on the new leaf and one CAS primitive.

During the post-copy phases of SMO, sync-on-write prevents

lock-free UD operations from suffering the lost update anomaly. As

illustrated in Figure 3, during the copy phase, any UD operation that

happens on the old leaf (e.g. update(2,s)) will be synchronized to

the new leaf in SMO’s sync phase. However, UD operations happen

after the copy phase (e.g. update(8,y), delete(3)) may still be

lost. To avoid the lost update anomaly, UD operations need to actively
synchronize the modification by calling sync-on-write.

Through sync-on-write and three-phase SMO, we ensure that

NBTree always maintains a consistent state that includes all com-

mitted operations after a crash. As we previously mentioned, SMO’s

durability point is when the new leaves replace the old leaf in PM by

linking themselves into the key-value layer during the link phase.

If a crash occurs before the durability point, the old leaf will remain

in the key-value layer. During SMO, any modification must first

operate on the old leaf. Therefore, as illustrated in Table 3, the

old leaf always holds both the latest committed and uncommitted

operations during SMO. The uncommitted operations in the old

leaf won’t cause inconsistency because the in-flight sync-on-write is

unnecessary after discarding new leaves. If a crash occurs after the

durability point, the new leaf will be linked into the key-value layer.

At that time, all UD operations committed in the copy phase have

been synchronized to the new leaf in the sync phase. For UD opera-

tions that happen after the copy phase, they are only committed

when they write to a new leaf. As a result, new leaves hold the latest

committed operations after the durability point. Besides, with the

support of eADR, the new leaf is consistent as the sync-on-write is

atomic. To summarize, the consistent leaf with the latest committed

operations will survive whenever the crash happens.

SMO threads (sync phase) and UD threads (sync-on-write) may

synchronize the same value to the new leaf concurrently. NBTree

can serialize those synchronizations using the highest two bits of

each entry’s value. We will discuss this scenario in Section 5.

Sync-on-read. To deal with the potential inconsistency between

the old leaf and the new leaves, the search operations employ the

sync-on-read approach to synchronize the corresponding key-value

Table 3: The latest and clean leaves in different phases of SMO.

(The latest leaf contains all committed writes. The Clean leaf

does not contain any uncommitted dirty write.)

SMO

Phase

Latest Clean

old leaf new leaf old leaf new leaf

Copy � �
Sync � �
Link � � �

After SMO � �

entries from the old leaf to the new leaf. Specifically, NBTree

searches the target key in both old and new leaves. If the returned

results differ, the search operation updates or deletes the key-value

in the new leaf to match the one in the old leaf. The overhead of

the sync-on-read is as low as the sync-on-write.

Sync-on-read guarantees that a lock-free concurrent search re-

turns the latest and committed version of a key-value entry. During

SMO’s sync phase, reading from either old or new leaves without

performing sync-on-read may lead to the stale read or dirty read

anomaly. As illustrated in Table 3, in the sync phase, the old leaf is

possibly dirty because the UD operations might have not committed

due to an on-going sync-on-write. Meanwhile, the new leaf is likely

stale as the SMO thread may not have finished synchronizing the

latest modification that happened during the copy phase. To address

this problem, the search operation uses sync-on-read to synchronize

the latest key-value from the old leaf to the new leaf. It makes sure

that the target key-value pair in the new leaf is both the latest and

clean before returning the search result.

Search operations on the leaf that is not in the sync phase can

directly read the correct value without calling sync-on-read. Table 3

shows the destination of reads, which is the leaf that holds both the

latest and clean key-value pairs. During the copy phase, incoming

reads go to the old leaf, which is both the latest and clean since

concurrent UD operations directly commit in the copy phase. After

the sync phase, reads go to the new leaf. This is because previous UD
operations that happened in the copy phase have already been syn-

chronized to the new leaf, while later UD operations are committed

once they are visible in the new leaf with the eADR support.

Cooperative SMO. In NBTree, concurrent insertions to the leaf

during SMO employ cooperative SMO. The insertion thread that

encounters a leaf with an in-flight SMO will help complete its SMO

before continuing. NBTree uses atomic primitives, such as CAS,
to coordinate multiple SMO threads, making sure only the fastest

modification can be visible. In this way, instead of waiting for the

completion of SMO, NBTree guarantees that SMO moves forward

at the fastest speed, even when a certain SMO thread is suspended.

Specifically, in the copy phase, multiple SMO threads prepare

new nodes respectively and use CAS primitive to atomically in-

stall the copy_ptr. In the sync phase, the synchronization of each

key-value entry can also be completed cooperatively by using CAS
primitive. In the link phase, NBTree uses CAS to link the new leaf

into the metadata layer and the key-value layer. Then, NBTree uses

HTM (described in Section 4.3) to atomically update the parent

node and set flag.link.

Figure 4: Shift-aware search on the inner node under the read-

write conflict. (XBEGIN means the start of the transaction,

XEND means the end of the transaction.)

4.3 Inner Node Operations

We propose a shift-aware search algorithm and use the HTM-based

update to coordinate concurrent inner node operations.

HTM-based Update. NBTree uses HTM to atomically update in-

ner nodes following FPTree [43]. HTM is an optimistic concurrency

control tool that uses hardware transactions tomakemultiple writes

atomically visible. It is non-blocking since it only aborts when con-

flicts are detected. Wrapping updates in HTM is efficient because

the conflict of inner node modifications rarely happens. Moreover,

updates do not expose intermediate states to other threads, which

avoids the read thread viewing the inconsistent state.

Shift-aware Search. Although the modifications to the inner

nodes are atomic, lock-free inner node search might find the wrong

child pointer due to the read-write conflict. As illustrated in Fig-

ure 4, the search operation performs a linear search (Search(18))
to retrieve the key of 20 (�). However, before it fetches the corre-

sponding pointer 𝑃2, an insertion (Insert(PL,15,PR)) modifies

the node. Therefore, the search operation loads the wrong pointer

𝑃𝐿 (�) instead of 𝑃2 or 𝑃𝑅. As a result, an existing key might be

missed in the search operations.

NBTree proposes a shift-aware search algorithm to ensure the

correctness of lock-free inner node search despite concurrent write

transactions (insertion or deletion) on the same node. As shown

in Figure 4, before proceeding to the next level of the tree through

𝑃𝐿, NBTree checks if the fetched key (20 in �) has been shifted by

concurrent write transactions. If so, NBTree re-searches the node

from the current position (�-�), making sure that the target key

lies within the sub-tree indicated by the returned pointer.

The shift-aware search algorithm always finds the correct pointer

for the following two reasons. First, NBTree keeps searching and

data shifting in the same direction. As shown in Figure 4, dur-

ing the search, the insertion shifts the data from left to right. If

the search proceeds in the same direction, then it never misses

the newly inserted key. Inspired by FAST&FAIR, we maintain a

switch_counter in each node, which is increased when the inser-

tion and deletion on the inner node take turns. Second, we adopt

the concurrency protocol of the B-link tree [33] to handle SMO.

NBTree maintains a high_key (the largest key in the node) and

sibling_ptr in each inner node. NBTree re-searches in the sibling

node if the target key is less than the high_key, which indicates

an SMO has happened on the node.

Shift-aware search is efficient for two reasons: (1) It achieves lock-

free search without using HTM, avoiding transaction abortions and

Algorithm 1: Insert(K key, V val)

1 leaf = findLeaf(key);

2 pos = fetch_and_add(&leaf→num, 1);

3 if pos >= LEAF_NODE_SIZE then

4 leaf→setSMOBit(); // Set the highest bit of bitmap

5 SMO(leaf);

6 goto Line 1;

7 leaf→insert(key, val, pos);

8 if ! leaf→atomicSetBitmap(pos) then

9 goto Line 1;

hardware overheads. (2) Linear search on small arrays is more

efficient than binary search for its better cache locality, which is

illustrated in FAST&FAIR [20].

5 IMPLEMENTATION

In this section, we first describe the implementation of NBTree:

insert (Section 5.1), update/delete (Section 5.2), and search (Section

5.3). Then we present the limitation of our work (Section 5.4).

5.1 Insert

Algorithm 1 describes the insert operation. After locating the target

leaf, NBTree occupies the next free slot using the atomic primitive

(Line 2). If the leaf is full, NBTree initiates SMO by setting the smo
bit, the highest bit of the bitmap (Line 3-5). NBTree commits the

insertion by updating the bitmap using CAS (Line 8).
The procedure of SMO is listed in Algorithm 2. In the copy phase

(Line 2-9), NBTree distributes valid entries with non-zero keys to

newly allocated leaf nodes and constructs the metadata layers for

the new leaves (Line 4-8). For each copied entry, NBTree sets the

highest bit (copy_bit) of the value (Line 5). The copy_bit indicates
that the value is copied from the old leaf in the copy phase.

In the sync phase (Line 11-24), NBTree sequentially obtains

the valid entries in the old leaf (entry, Line 11) and new leaves

(syncEntry, Line 13). If their keys match but values mismatch (Line

14-16), NBTree uses CAS to synchronize the lost update, clear the

copy_bit and set the sync_bit (the second highest bit) of the

target value in the new leaf. The sync_bit indicates the value is

synchronized from the old leaf. CAS will abort if the copy_bit of
the target value has been cleared. This ensures that any key-value

pair is synchronized at most once during the sync phase. If the

key of entry and syncEntry mismatch, NBTree synchronizes the

lost deletion because it usually indicates the key of syncEntry has

been deleted in the old leaf (Line 19-22). However, there are two

exceptions that the key of entry has been deleted in the new leaf.

(1) SMO has been completed by another SMO thread. As a result,

the latest operations directly delete the entry in the new leaf with-

out having to go through the old leaf. In this case, NBTree directly

aborts SMO (Line 17). (2) A concurrent operation deletes the key of

entry on the old leaf after the entry has been read. Meanwhile, the

deletion has been synchronized by other threads before syncEntry
is read. In this case, synchronization is not required (Line 18).

In the link phase (Line 26-36), NBTree uses CAS to link the leaf to
both the key-value layer and the metadata layer (Line 27-28). If the

previous leaf is in SMO, NBTree will join the cooperative SMO to

Algorithm 2: SMO(Leaf leaf)

1 if ! leaf→copy_ptr then // Copy phase
2 splitKey = leaf→findSplitKey();

3 leftLeaf, rightLeaf = allocNewNode();

4 while (entry = leaf→next()).key != 0 do

5 entry.val |= copy_bit; // Set the copy_bit

6 copy(entry, leftLeaf, rightLeaf, splitKey)

7 end

8 setMetadata(leftLeaf, rightLeaf);

9 CAS(&(leaf→copy_ptr), NULL, leftLeaf);

10 if ! leaf→flag.sync then // Sync phase
11 while (entry = (key, val) = leaf→next()).key!=0 do

12 syncLeaf = key < splitKey ? leftLeaf : rightLeaf;

13 (k, v) = syncEntry = syncLeaf→next();

14 if k == key then

15 if (v & ∼(copy_bit | sync_bit)) != (val &= ∼(copy_bit |

sync_bit)) then

16 CAS(&syncEntry.val, v|copy_bit, val|sync_bit);

17 else if leaf→flag.link then return ;

18 else if ! entry.key then syncLeaf→prev() ;

19 else

20 syncEntry.key = 0;

21 mfence();

22 goto Line 13;

23 end

24 leaf→flag.sync = 1;

25 if ! leaf→flag.link then // Link phase
26 pred = findPredLeaf(key);

27 CAS(&(pred→data_ptr→next), leaf→data_ptr,

leftLeaf→data_ptr);

28 CAS(&(pred→next), leaf, leftLeaf);

29 if pred→isSMO() then

30 SMO(pred);

31 goto Line 25;

32 xbegin(); // Start an HTM transaction

33 if ! leaf→flag.link then

34 update_parent(leaf);

35 leaf→flag.link = 1;

36 xend();

avoid the lost update of next pointer (Line 29-31). Finally, NBTree

employs HTM to update the parent node and set the flag.link
atomically (Line 32-36).

NBTree adopts the epoch-based garbage collection [13] to re-

claim the old leaves. Epoch-based garbage collection recycles the

old leaves two epochs after the end of SMO, which ensures that

those leaves have no concurrent references.

5.2 Update/Delete

Algorithm 3 shows the process of the update operation. NBTree

firstly performs an in-place update in the target leaf (Line 1-2). If the

leaf is in the post-copy phases of its SMO and the target key exists

in the new leaf but its value is not the latest, NBTree will perform

sync-on-write via CAS (Line 5-6). Sync-on-write clears the copy_bit,
which prevents the synchronization invoked by SMO threads from

Algorithm 3: Update(K key, V val)

1 leaf = findLeaf(key);

2 entry = leaf→update(key, val);

3 if leaf→isSMO() and leaf→copy_ptr then

4 (nKey, nVal) = nEntry = leaf→copy_ptr→find(key);

5 if nKey and ((v=nVal) & ∼(copy_bit | sync_bit)) !=

(val=entry.val) and v & (copy_bit | sync_bit) then

6 if ! CAS(&nVal, v, val|sync_bit) then

7 goto Line 5;

8 return true;

Algorithm 4: Delete(K key)

1 leaf = findLeaf(key);

2 leaf→delete(key);

3 if leaf→isSMO() and leaf→copy_ptr then

4 nEntry = leaf→copy_ptr→find(key);

5 if nEntry then

6 nEntry.key = 0;

7 mfence();

8 return true;

Algorithm 5: Search(K key)

1 leaf = findLeaf(key);

2 entry = leaf→find(key);

3 val = entry.key ? (entry.val & ∼(copy_bit | sync_bit)) : 0;

4 if leaf→isSMO() and leaf→copy_ptr then

5 if leaf→flag.sync then return leaf→copy_ptr→search(key) ;

6 (nKey, nVal) = nEntry = leaf→copy_ptr→find(key);

7 if ! nKey then return 0 ;

8 if entry.key == 0 then

9 nEntry.key = 0;

10 mfence();

11 else if (nVal & ∼(copy_bit | sync_bit)) != val then

12 CAS(&(nEntry.val), nVal|copy_bit, val|sync_bit);

13 val = nEntry.key ? (nEntry.val & ∼(copy_bit | sync_bit)) : 0;

14 return val;

overwriting the current update. It also sets the sync_bit to dis-

tinguish itself from the update directly operated on the new leaf.

When an update performs sync-on-write, the SMO might have been

completed by other threads. At that time, the latest updates directly

operate on the new leaf without setting sync_bit or copy_bit.
Sync-on-write does not overwrite those new updates to keep the

linearizability. Besides, if the value in the old leaf has been changed

by new updates, NBTree will synchronize the latest one.

Algorithm 4 depicts the delete operation. Similar to the update,

it will synchronize the deletion if necessary.

5.3 Search

The search operation is shown in Algorithm 5. For the inner node

search (Line 1), we directly reuse the code of FAST&FAIR and add

the key-checking procedure before returning the child pointer to

detect if any update happens. For the leaf node search (Line 2-14),

NBTree directly returns the search result on the target leaf if SMO

is not taking place or it is in the copy phase. Otherwise, NBTree

searches the target key in the new leaf (Line 4-13). NBTree performs

sync-on-read if the SMO is in the sync phase and the search results

in two leaves mismatch (Line 8-13).

5.4 Limitation

In the current design, NBTree does not address the NUMA-related

performance issues in PM. Similar to the prior work on persistent

indexes [4, 20, 42], NBTree cannot scale well across multiple NUMA

nodes for the following two reasons. First, due to the multi-socket

cache coherence traffic, accessing PM on a remote NUMA node

has much lower bandwidth than accessing local PM, according

to recent studies [25, 27, 50]. Second, atomic primitives used in

NBTree perform poorly across NUMA nodes. We plan to address

the scalability issues of NBTree in the environment of multiple

NUMA nodes in our future work.

6 EVALUATION

In this section, we evaluate the performance of NBTree against

other state-of-the-art persistent B+-Trees. We first describe our

experiment setup (Section 6.1). Then, we perform single-threaded

evaluation (Section 6.2), multi-threaded evaluation (Section 6.3),

and YCSB evaluation (Section 6.4). After that, we compare the per-

formance of indexes in two persistence modes (Section 6.5). Finally,

we evaluate the performance in real-world systems (Section 6.6).

6.1 Experiment Setup

Testbed. Our testbed machine is a dual-socket Dell R750 server

with two Intel Xeon Gold 6348 CPUs, the third generation Xeon

Scalable processors that support eADR and TSX. Each CPU has

28 cores and a shared 42MB L3 cache, while each CPU core has a

48KB L1D cache, 32KB L1I cache, 1280KB L2 cache. The system is

equipped with 512GB DRAM and 4TB PM (eight 256GB Barlow Pass

DIMM per socket). In our evaluation, threads are pinned to NUMA

node 0, and are only allowed to access the local DRAM and PM to

avoid NUMA effects. We install a PM-aware file system (Ext4-DAX)

in fsdaxmode to manage PM devices. Then, we map large files into

the virtual address using PMDK [23] to serve tree nodes allocation.

We evaluate the performance of two persistence modes, eADR and

ADR. To persist a store, we use clwb and mfence in ADR mode

and solely use mfence in eADR mode.

Compared Systems. We compare NBTree against seven state-

of-the-art persistent B+-Trees, including NVTree,WB+Tree, FPTree,
RNTree, BzTree, FAST&FAIR, and uTree. We directly use the open-

sourced code of uTree [15], FAST&FAIR [29], BzTree [30], and

RNTree [38]. We borrow Liu’s [38] implementations of WB+Tree,
FPTree, and NVTree. We skip the evaluation of the multi-threaded

performance of NVTree and WB+Tree as their implementations

do not support concurrency control. For variable-sized keys, we

only compare NBTree with BzTree as the implementations of other

trees do not support this function.

Default Configuration. We warm up each tree with 16 million

key-value pairs and then run enough time for different workloads.

By default, we use 8-byte keys and values. For variable-sized keys

and values, we store them in the external memory region, and only

Figure 5: The average latency of base operations. (Single

thread, uniform access.)

keep the pointers (48-bit) in indexes to indicate their addresses.

The node size of each tree is configured to 1KB. We run all trees in

eADR mode except in Section 6.5.

6.2 Single Thread Evaluation

In this section, we evaluate the single-thread performance of base

operations (search, insert, update, and delete) in eADR mode. We

run individual operations under random key-access distribution

and then calculate the average latency.

As shown in Figure 5, NBTree achieves the lowest latency in

every base operation. As the persistence overhead of a write is

hidden by CPU caches in eADR mode, we attribute the good per-

formance of NBTree to low PM line reads. In most cases, NBTree

only causes one PM line read in each operation because it places

the metadata of the leaf nodes in DRAM and uses fingerprints to

filter the unmatched keys. The only PM overhead of NBTree comes

from accessing the matched key-value pairs.

In contrast, as illustrated in Table 1, other persistent B+-Trees
produce more PM line reads, resulting in higher latency. We con-

clude the sources of PM line reads in the following: (1) Most of the

B+-Trees need to access the metadata of the leaf node. The metadata

is often stored in different PM lines from the actual key-value pair,

resulting in additional PM line reads. (2) Searching in the leaf node

causes multiple PM line reads. FAST&FAIR and NVTree use linear

search to locate the key-value pair, which needs to traverse half

of the leaf on average. WB+Tree, RNTree, and BzTree perform the

binary search, which has a similar PM overhead to the linear search

when the array size is small. (3) FAST&FAIR and BzTree produce

extra PM line reads when they perform inner node search because

they store inner nodes in PM. (4) uTree invokes additional PM line

reads to access the sibling node in the linked list, which shows poor

locality with the current node. (5) BzTree applies PMwCAS [51] to

atomically persist the modification. Each PMwCAS produces multiple

PM line reads to access the descriptors.

6.3 Multi-threaded Evaluation

We evaluate the multi-threaded performance of base operations

under random key access distribution. As shown in Figure 6, NBTree

achieves the highest throughput in each operation. Compared with

other trees, the throughput of NBTree in 56 threads is 1.6-7.5×
higher on insert, 1.5-5.0× higher on update, 2.0-4.9× higher on

delete, 1.6-5.1× higher on search. This is primarily because NBTree

minimizes both PM line reads and writes. Reducing PM line writes

in eADR-enabled PM systems is important. The reason is that the

modified PM lines in CPU caches are eventually evicted to PM with

Figure 6: The throughput of base operations. (56 threads, uni-

form access. NBTree-SL applies the single-layer leaf nodes.)

Figure 7: The space consumption of DRAM and PM after

initializing the trees with 16M key-value entries (Left) and

inserting 16M more key-value entries to the trees (Right).

low bandwidth. Multi-threaded writes can saturate CPU caches and

WPQ, resulting in high latency. Besides, excessive PM line reads also

degrade the multi-threaded performance due to the high latency.

NBTree scales well in the multi-threaded evaluation as it limits

the PM line read/writes per operation to 1 in most cases. Figure 6

also shows that the two-layered leaf node design speeds up the

insert operations by 2.4× because it absorbs metadata modifications

in DRAM. Furthermore, although the UDS operations do not modify

the metadata due to the optimization of NBTree, the two-layered

leaf node design still improves their throughputs by up to 29% due to

fewer PM line reads. Meanwhile, the additional DRAM consumption

from the metadata layer is tolerable. As shown in Figure 7, the ratio

of DRAM and PM consumption in NBTree is around 1:7, which

is close to the ratio of our testbed configuration (1:8). In practice,

this ratio will be much smaller if the value size is large because the

values only reside in PM.

As shown in Table 1, other persistent indexes have lower scala-

bility for their high PM line read/writes. We have analyzed the cost

of PM reads in detail in Section 6.2. Compared with NBTree, other

trees produce extra PM line writes in the following aspects: (1) They

modify the persistent metadata of the leaf nodes for various usages,

such as correct recovery, traversal acceleration, and concurrency

control. (2) BzTree produces the most PM line writes because it

needs to record a descriptor in each PMwCAS, resulting in the low-

est scalability. (3) FAST&FAIR causes additional PM line writes to

maintain the order of leaf nodes. As a result, its throughputs on

insertions and deletions are low.

6.4 YCSB Evaluation

In this section, we evaluate the performance of persistent B+-Trees
with real-world YCSB [9] workloads. We generate the skewed (zip-

fian key access distribution) and read-write mixture workloads

(a) Throughput (b) 99% tail latency

Figure 8: The throughput and 99% tail latency under YCSB

workload. (Read:write=50:50, skewness=0.99. NBTree-W dis-

ables lock-freewrite schemes. NBTree-WRdisables both lock-

free write and read schemes.)

based on YCSB. By default, the write operations in the workload

are upsert. Upsert will insert a new key if the target key does not

exist. Otherwise, it performs an update.

Overall Evaluation. Figure 8 reports the evaluation results

under YCSB workload (read:write=50:50) in a zipfian key access

distributionwith the default 0.99 skewness.We observe that NBTree

has almost linear scalability on throughput and near-constant 99%

tail latency with the increase of threads, while other trees only

scale up to 14 threads. In 56 threads, NBTree achieves 6.0× higher

throughput and 32× lower 99% tail latency than other trees.

We attribute the high performance of NBTree to our efficient

lock-free design. The skewed workload often introduces a lot of

leaf-level conflicts. The lock-free leaf node operations in NBTree

can scale well under high contentions. When operating on the leaf

that is not performing SMO, NBTree only employs a small number

of atomic primitives to support lock-free access. When operating

on the leaves in SMO, UDS operations fix the potential anomaly by

our proposed techniques, such as three-phase SMO, sync-on-write,

and sync-on-read, which only introduces at most one additional

leaf node search and one CAS primitive. Concurrent insertions also

apply cooperative SMO to achieve lock-free accesses. Besides, as the

writes happen infrequently in inner nodes, our proposed shift-aware

search and HTM-based updates can also scale well.

To better demonstrate the impact of our lock-free design and

illustrate the performance gap between NBTree and other indexes,

we implement two additional versions of NBTree. NBTree-W dis-

ables our lock-free write schemes and applies node-grained write-

locks instead. As shown in Figure 8, NBTree achieves 5.5× higher

throughput than NBTree-W due to our lock-free write design. Mean-

while, FAST&FAIR and uTree achieve similar performance with

NBTree-W as they use similar schemes for concurrency control.

NBTree-WR further disables our lock-free read approaches and

replaces them with HTM-based read, which is used in FPTree and

RNTree. We find that NBTree-W achieves 1.8× higher throughput

than NBTree-WR. Moreover, NBTree-WR is still 1.9× faster than

RNTree and 2.6× faster than FPTree due to our PM-friendly design.

As for BzTree, it achieves lock-free by utilizing PMwCAS, which is an

optimistic approach implemented by a series of CAS and RDCSS [19]

(a) Throughputs-skewness (b) Throughputs-write ratio

(c) 99% tail latency-skewness (d) 99% tail latency-write ratio

Figure 9: The performance varying the write ratio and skew-

ness under YCSB workload.

operations. However, PMwCAS is vulnerable to high contentions and

brings high software overhead [35]. Therefore, BzTree has the worst

performance despite its lock-free design.

Effect of Skewness. Figure 9(a) and Figure 9(c) report the evalua-

tion results whenwe vary the skewness (zipfian coefficient) in YCSB

workload (read:write=50:50). We notice that NBTree has better per-

formance with the increase of skewness. The reason is two-fold:

(1) Our efficient lock-free designs prevent the concurrency control

from becoming the performance bottleneck. (2) Our cache-friendly

designs, including in-place update and log-structured insert, have

larger effects with the increase of the skewness. Those designs

increase the possibility of write combining and write hits in CPU

caches, which saves the PM write bandwidth.

With the increase of skewness, other trees have a slight perfor-

mance improvement when the skewness is less than 0.8, which

benefits from better cache utilization. When the skewness is larger

than 0.8, they have a dramatic performance drop because they

cannot scale well under frequent leaf-level contentions.

Effect of Write Ratio. Figure 9(b) and Figure 9(d) show the eval-

uation results when we vary the write ratio of the YCSB workload

(skewness=0.99). We observe that the performance gap becomes

larger between NBTree and other B+-Trees with the increase of

write ratio. NBTree achieves 11× higher throughput and 43× lower

99% tail latency under the write-only workload. This is because

NBTree applies efficient lock-free algorithms for both reads and

writes. In contrast, previous works focus on the optimization of

concurrent reads but do not support efficient concurrent writes.

Effect of Large Key/Value. Figure 10 reports the evaluation of

indexes when the key-value size is larger than 8 bytes. We observe

that NBTree still achieves significantly higher throughput than

other indexes, especially when the skewness is high. However,

(a) 256-byte value (b) 32-byte key

Figure 10: The YCSB performance of the indexes with large

key/value. (Read:write=50:50, skewness=0.99.)

Figure 11: The PM overhead of the leaf nodes in eADR/ADR

mode. (Single thread, uniform access.)

the performance gap between NBTree and other indexes becomes

smaller. The reason is two-fold: (1) The PM write bandwidth is

dominated by persisting large values, dwarfing the performance

benefits from our optimization on NBTree. (2) NBTree employs the

8-byte pointers to indicate variable-sized keys, which incurs a lot

of pointer dereferences in inner node search. In contrast, Bztree

continuously stores the variable-sized keys in a single node, which

avoids expensive pointer dereferences.

6.5 Comparison of Persistence Modes

In this section, we first compare the performance of persistent

indexes between two persistence modes: ADR and eADR. Then, we

evaluate the performance of NBTree in the pure DRAM setting.

Figure 11 reports the PM overhead of the leaf nodes in two per-

sistence modes. Firstly, we find that the PM overhead of all trees is

reduced in eADR mode, compared with ADR mode. The primary

reason is that the latency on the critical path caused by flush in-

structions is removed. For example, FAST&FAIR has a significant

performance improvement because eADR minimizes the large over-

head of data shifts to keep arrays sorted. The performance of BzTree

also improves a lot because a large number of flush instructions

needed by PMwCAS are removed. However, PMwCAS is still costly

due to excessive PM accesses, resulting in the poor performance of

BzTree. Secondly, we observe that NBTree has the lowest PM over-

head in ADR mode. This is attributed to our PM-friendly designs,

which cost only one flush instruction in each write operation.

Figure 12 shows the performance of two persistencemodes under

YCSB workload (56 threads, read:write=50:50, skewness=0.99). We

Figure 12: The performance in

ADR/eADR mode under YCSB

workloads.

Figure 13: The perfor-

mance of base operations

on the DRAM setting.

have the following four observations. First, NBTree achieves the

most performance improvement with the eADR support. This is

because the cache-friendly designs (e.g. in-place update, and log-

structured insert) of NBTree take effect in eADR mode. Second,

NBTree also performs the best among all trees in ADR mode due to

the lock-free design. However, the dirty read anomaly is likely to

happen in ADR mode because the CPU caches are volatile. Third,

uTree and FAST&FAIR also speed up significantly because of the

better cache utilization in eADR mode. Fourth, RNTree, FPTree,

and BzTree do not benefit from eADR because their concurrency

control is vulnerable to high contentions.

Figure 13 shows the performance of NBTree in a pure DRAM

setting (uniform access). We observe that NBTree achieves 1.7×
higher throughput on search operations and 1.8× higher throughput

on insert operations when running on DRAM. We attribute this

to the limited bandwidth and high latency of PM compared with

DRAM. Meanwhile, NBTree has comparable performance with

state-of-the-art indexes (e.g. ART [34]) designed for DRAM because

NBTree avoids using redundant operations to guarantee durability.

6.6 End-to-End Evaluation

Redis [44] is a popular in-memory key-value store using a hash table

as its index. We use the multi-threaded version of the Redis [48]

and replace its internal index with our evaluated trees. We run 28

threads on the Redis server in our evaluation. NBTree achieves the

throughput of 1719.4 Kops/s, which is 1.13-1.53× higher than other

state-of-the-art persistent B+-Trees under the YCSB-A workload [9].

The evaluation results confirm our previous experiments. Note that

the performance gap among indexes becomes smaller due to the

high software overhead of Redis.

7 RELATEDWORK

Indexes Optimized for PM. In ADR-based PM systems, the

slow write is the performance bottleneck of persistent indexes

because flush instructions introduce high latency on the critical

path. Therefore, previous works have proposed various ways to

optimize the write performance of persistent indexes. Most per-

sistent B+-Trees, such as WB+Tree [3], NVTree [56], FPTree [43],
RNTree [39], and LB+Tree [37], implement the unsorted leaf nodes.

The reason is that inserting or deleting an element of the sorted

leaf node produces lots of PM writes to shift array elements. FPTree

firstly proposes the selective persistence technique to place inner

nodes in DRAM, which speeds up the inner node operations. The

volatile inner nodes can be reconstructed from persistent leaf nodes

after a crash. RNTree and ROART [40] further remove the flush

instructions when modifying reconstructable metadata in the leaf

node to reduce the critical path latency. uTree places the sorted

leaf nodes in DRAM and adds a persistent shadow list-based layer

to ensure crash consistency. In this way, uTree offloads the expen-

sive structural refinement operations (SRO) to DRAM. Persistent

hash indexes, such as level hashing [61], path hashing [60], and

CCEH [42], also make lots of efforts to write-efficient designs.

Concurrency Control for Persistent Indexes. Previous works

propose various concurrency control strategies for persistent in-

dexes to leverage the benefits of multi-core processors. For per-

sistent B+-Trees, FPTree proposes the selective concurrency tech-

nique, which handles the concurrency of inner nodes by HTM and

serializes the accesses of leaf nodes by the node-grained locks. It im-

proves the scalability in the situation with infrequent contentions

but performs poorly in skewed workloads. Based on FPTree, RN-

Tree excludes some slow persistent instructions out of the critical

section to achieve more concurrency in the leaf nodes. FAST&FAIR

designs a lock-free search algorithm inspired by B-link tree [33],

which tolerates the transient inconsistent states caused by write

transactions. It improves search performance but tends to cause

consistency problem [32]. uTree supports lock-free concurrency

control for the list layer but still uses the coarse-grained locks in the

leaf nodes. BzTree [2] develops the first lock-free persistent B+-Tree
with PMwCAS [51], which guarantees both the atomicity and persis-

tence of multi-word writes. However, PMwCAS causes high software

overhead, and it is also vulnerable to high contentions [35]. As for

hash-based persistent indexes, most of them are lock-based, such

as level hashing [61], CCEH [42], and CMAP [22]. P-CLHT [32] is

a persistent version of CLHT [11], which supports lock-free search.

Clevel hashing [6] is the concurrent version of level hashing, which

uses atomic primitives to implement lock-free algorithms. However,

it doesn’t address the dirty read anomaly.

8 CONCLUSION

Existing persistent indexes suffer from low scalability and high

PM overhead. Fortunately, the new platform feature for persistent

memory (PM) called eADR offers opportunities to build lock-free

persistent indexes and unleash the potential of PM. In this paper,

we propose a lock-free PM-friendly B+-Tree, named NBTree, which

leverages the benefits of eADR. To achieve high scalability, NBTree

develops lock-free concurrency control strategies. To reduce PM

overhead, NBTree proposes a two-layer leaf node structure, which

reduces PM line accesses and improves cache utilization. The real-

world YCSB evaluation shows that NBTree achieves up to 11×
higher throughput and 43× lower 99% tail latency than state-of-the-

art persistent B+-Trees.

ACKNOWLEDGMENTS

This work was supported by Natural Science Foundation of Shang-

hai (No. 21ZR1433600, 22ZR1435400), and Shanghai Municipal Sci-

ence and Technology Major Project (No. 2021SHZDZX0102). We

also thank Liangxu Nie and Yanyan Shen for their assistance and

valuable feedback.

REFERENCES
[1] Andrei Alexandrescu. 2004. Generic< Programming>: Lock-Free Data Structures.

In C++ Users Journal. Citeseer.
[2] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.

BzTree: A high-performance latch-free range index for non-volatile memory.
Proceedings of the VLDB Endowment 11, 5 (2018), 553–565.

[3] Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-volatile main memory.
Proceedings of the VLDB Endowment 8, 7 (2015), 786–797.

[4] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020. uTree:
a persistent B+-tree with low tail latency. Proceedings of the VLDB Endowment
13, 12 (2020), 2634–2648.

[5] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, YangWang, and Jiwu Shu. 2020.
FlatStore: An efficient log-structured key-value storage engine for persistent
memory. In Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems. 1077–1091.

[6] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. 2020. Lock-free Concur-
rent Level Hashing for Persistent Memory. In 2020 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 20). 799–812.

[7] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making persistent objects fast
and safe with next-generation, non-volatile memories. ACM SIGARCH Computer
Architecture News 39, 1 (2011), 105–118.

[8] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through byte-
addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd sympo-
sium on Operating systems principles. 133–146.

[9] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[10] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor Zablotchi.
2018. Log-free concurrent data structures. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18). 373–386.

[11] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asynchronized
concurrency: The secret to scaling concurrent search data structures. ACM
SIGARCH Computer Architecture News 43, 1 (2015), 631–644.

[12] Subramanya RDulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj
Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System software for persistent
memory. In Proceedings of the Ninth European Conference on Computer Systems.
1–15.

[13] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University of Cam-
bridge, Computer Laboratory.

[14] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018. A
persistent lock-free queue for non-volatile memory. ACM SIGPLAN Notices 53, 1
(2018), 28–40.

[15] Storage Research Group. 2020. uTree. Tsinghua University. Retrieved Augest 26,
2021 from https://github.com/thustorage/nvm-datastructure

[16] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. 2020. Understanding the
idiosyncrasies of real persistent memory. Proceedings of the VLDB Endowment
14, 4 (2020), 626–639.

[17] Jim Handy. 2015. Understanding the intel/micron 3d xpoint memory. Proc. SDC
(2015).

[18] Timothy LHarris. 2001. A pragmatic implementation of non-blocking linked-lists.
In International Symposium on Distributed Computing. Springer, 300–314.

[19] Timothy L Harris, Keir Fraser, and Ian A Pratt. 2002. A practical multi-word
compare-and-swap operation. In International Symposium on Distributed Com-
puting. Springer, 265–279.

[20] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018.
Endurable transient inconsistency in byte-addressable persistent b+-tree. In 16th
{USENIX} Conference on File and Storage Technologies ({FAST} 18). 187–200.

[21] Intel. 2016. Deprecating the PCOMMIT Instruction. Retrieved Augest 26, 2021
from https://software.intel.com/content/www/us/en/develop/blogs/deprecate-
pcommit-instruction.html

[22] Intel. 2019. Key/Value Datastore for Persistent Memory. Retrieved Augest 26,
2021 from https://pmem.io/pmemkv/index.html

[23] Intel. 2020. Persistent Memory Development Kit. Retrieved Augest 26, 2021 from
http://pmem.io/pmdk

[24] Intel. 2021. eADR: New Opportunities for Persistent Memory Applications.
Retrieved Augest 26, 2021 from https://software.intel.com/content/www/
us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-
applications.html

[25] Intel. 2021. Intel 64 and IA-32 Architectures Optimization Reference Manual.
Retrieved Augest 26, 2021 from https://software.intel.com/sites/default/files/
managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

[26] Tomas Karnagel, Roman Dementiev, Ravi Rajwar, Konrad Lai, Thomas Legler,
Benjamin Schlegel, and Wolfgang Lehner. 2014. Improving in-memory database
index performance with Intel® Transactional Synchronization Extensions. In

2014 IEEE 20th International Symposium on High Performance Computer Architec-
ture (HPCA). IEEE, 476–487.

[27] Wook-Hee Kim, R Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap, and Chang-
woo Min. 2021. PACTree: A High Performance Persistent Range Index Using
PAC Guidelines. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles CD-ROM. 424–439.

[28] RMadhava Krishnan, Wook-Hee Kim, Xinwei Fu, Sumit Kumar Monga, HeeWon
Lee, Minsung Jang, Ajit Mathew, and Changwoo Min. 2021. Tips: Making volatile
index structures persistent with DRAM-NVMM tiering. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21).

[29] Data Intensive Computing Lab. 2020. FAST&FAIR. SKKU/UNIST. Retrieved
Augest 26, 2021 from https://github.com/DICL/FAST_FAIR

[30] Data-Intensive Systems Lab. 2018. BzTree. Simon Fraser University. Retrieved
Augest 26, 2021 from https://github.com/sfu-dis/bztree

[31] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and SamHNoh. 2017.
{WORT}: Write optimal radix tree for persistent memory storage systems. In
15th {USENIX} Conference on File and Storage Technologies ({FAST} 17). 257–270.

[32] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay
Chidambaram. 2019. Recipe: Converting concurrent dram indexes to persistent-
memory indexes. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 462–477.

[33] Philip L Lehman and S Bing Yao. 1981. Efficient locking for concurrent operations
on B-trees. ACM Transactions on Database Systems (TODS) 6, 4 (1981), 650–670.

[34] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree:
ARTful indexing for main-memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, 38–49.

[35] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. 2019. Evaluating persistent memory range indexes. Proceedings of the
VLDB Endowment 13, 4 (2019), 574–587.

[36] Justin J Levandoski, David B Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for new hardware platforms. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE, 302–313.

[37] Jihang Liu, Shimin Chen, and LujunWang. 2020. LB+ Trees: Optimizing persistent
index performance on 3DXPoint memory. Proceedings of the VLDB Endowment
13, 7 (2020), 1078–1090.

[38] Mengxing Liu. 2020. RNTree. Tsinghua University. Retrieved Augest 26, 2021
from https://github.com/liumx10/ICPP-RNTree

[39] Mengxing Liu, Jiankai Xing, Kang Chen, and Yongwei Wu. 2019. Building
Scalable NVM-based B+ tree with HTM. In Proceedings of the 48th International
Conference on Parallel Processing. 1–10.

[40] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu, Hongbo
Kang, and Yongwei Wu. 2021. ROART: Range-query Optimized Persistent ART.
In 19th {USENIX} Conference on File and Storage Technologies ({FAST} 21). 1–16.

[41] Maged M Michael. 2002. High performance dynamic lock-free hash tables and
list-based sets. In Proceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures. 73–82.

[42] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H Noh, and Beomseok
Nam. 2019. Write-optimized dynamic hashing for persistent memory. In 17th
{USENIX} Conference on File and Storage Technologies ({FAST} 19). 31–44.

[43] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree
for storage class memory. In Proceedings of the 2016 International Conference on
Management of Data. 371–386.

[44] Redis. 2009. Redis. Retrieved Augest 26, 2021 from https://redis.io
[45] Andy Rudoff. 2017. Persistent memory programming. Login: The UsenixMagazine

42, 2 (2017), 34–40.
[46] A Rudoff. 2020. Persistent memory programming without all that cache flushing.

SDC (2020).
[47] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, Roy H Camp-

bell, et al. 2011. Consistent and Durable Data Structures for Non-Volatile Byte-
Addressable Memory.. In FAST, Vol. 11. 61–75.

[48] Vipshop. 2017. Redis. Retrieved Augest 26, 2021 from https://github.com/vipshop/
vire

[49] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne: Light-
weight persistent memory. ACM SIGARCH Computer Architecture News 39, 1
(2011), 91–104.

[50] QingWang, Youyou Lu, Junru Li, and Jiwu Shu. 2021. Nap: A black-box approach
to numa-aware persistent memory indexes. In Proceedings of the 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), Virtual.

[51] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy lock-free
indexing in non-volatile memory. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). IEEE, 461–472.

[52] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2020. Characterizing and modeling non-volatile memory systems.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 496–508.

[53] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A hybrid index
key-value store for DRAM-NVM memory systems. In USENIX ATC 17. 349–362.

[54] Jian Xu and Steven Swanson. 2016. {NOVA}: A log-structured file system for
hybrid volatile/non-volatile main memories. In 14th {USENIX} Conference on
File and Storage Technologies ({FAST} 16). 323–338.

[55] Jian Yang, Juno Kim,MortezaHoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
2020. An empirical guide to the behavior and use of scalable persistent memory.
In 18th {USENIX} Conference on File and Storage Technologies ({FAST} 20). 169–
182.

[56] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: Reducing consistency cost for NVM-based single
level systems. In 13th {USENIX} Conference on File and Storage Technologies
({FAST} 15). 167–181.

[57] Bowen Zhang. 2021. The consistency issue in the inner node search of FAST&FAIR.
Retrieved December 13, 2021 from https://github.com/DICL/FAST_FAIR/issues/
16

[58] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019. Ziggurat: a
tiered file system for non-volatile main memories and disks. In 17th {USENIX}
Conference on File and Storage Technologies ({FAST} 19). 207–219.

[59] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree:
differential indexing for persistent memory. Proceedings of the VLDB Endowment
13, 4 (2019), 421–434.

[60] Pengfei Zuo and Yu Hua. 2017. A write-friendly and cache-optimized hashing
scheme for non-volatile memory systems. IEEE Transactions on Parallel and
Distributed Systems 29, 5 (2017), 985–998.

[61] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-optimized and high-performance
hashing index scheme for persistent memory. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18). 461–476.

[62] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank.
2019. Efficient lock-free durable sets. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–26.

TranAD: Deep Transformer Networks for Anomaly Detection in
Multivariate Time Series Data

Shreshth Tuli
Imperial College London

London, UK
s.tuli20@imperial.ac.uk

Giuliano Casale
Imperial College London

London, UK
g.casale@imperial.ac.uk

Nicholas R. Jennings
Loughborough University

London, UK
n.r.jennings@lboro.ac.uk

ABSTRACT

Efficient anomaly detection and diagnosis in multivariate time-
series data is of great importance for modern industrial applications.
However, building a system that is able to quickly and accurately
pinpoint anomalous observations is a challenging problem. This is
due to the lack of anomaly labels, high data volatility and the de-
mands of ultra-low inference times in modern applications. Despite
the recent developments of deep learning approaches for anomaly
detection, only a few of them can address all of these challenges.
In this paper, we propose TranAD, a deep transformer network
based anomaly detection and diagnosis model which uses attention-
based sequence encoders to swiftly perform inference with the
knowledge of the broader temporal trends in the data. TranAD uses
focus score-based self-conditioning to enable robust multi-modal
feature extraction and adversarial training to gain stability. Addi-
tionally, model-agnostic meta learning (MAML) allows us to train
the model using limited data. Extensive empirical studies on six pub-
licly available datasets demonstrate that TranAD can outperform
state-of-the-art baseline methods in detection and diagnosis perfor-
mance with data and time-efficient training. Specifically, TranAD
increases F1 scores by up to 17%, reducing training times by up to
99% compared to the baselines.

PVLDB Reference Format:

Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. TranAD: Deep
Transformer Networks for Anomaly Detection in Multivariate Time Series
Data. PVLDB, 15(6): 1201 - 1214, 2022.

doi:10.14778/3514061.3514067

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/imperial-qore/TranAD.

1 INTRODUCTION

Modern IT operations generate enormous amounts of high dimen-
sional sensor data used for continuous monitoring and proper func-
tioning of large-scale datasets. Traditionally, data mining experts
have studied and highlighted data that do not follow usual trends
to report faults. Such reports have been crucial for system man-
agement models for reactive fault tolerance and robust database
design [47]. However, with the advent of big-data analytics and
deep learning, this problem has become of interest to data mining

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view
a copy of this license. For any use beyond those covered by this license, obtain
permission by emailing info@vldb.org. Copyright is held by the owner/author(s).
Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514067

researchers and to aid experts in handling increasing amounts of
data. One particular use case is in artificial intelligence for Industry-
4.0 databases, with a specific focus on service reliability [38] that
has automated fault detection, recovery and management of mod-
ern systems. Detecting data-faults, or any type of behavior not
conforming to the expected trends, is an active research discipline
referred to as anomaly detection in multivariate time series [11].
Many data-driven industries, including ones related to distributed
computing, Internet of Things (IoT), robotics and urban resource
management [4, 46] are now adopting machine learning based
unsupervised methods for anomaly detection.

Challenges. The problem of anomaly detection is becoming
increasingly challenging in large-scale databases due to the in-
creasing data modality [18, 28, 54]. In particular, the increasing
number of sensors and devices in contemporary IoT platforms with
increasing data volatility creates the requirement for significant
amounts of data for accurate inference. However, due to the rising
federated learning paradigm with geographically distant clusters,
synchronizing databases across devices is expensive, causing lim-
ited data availability for training [48, 57]. Further, next-generation
applications need ultra-fast inference speeds for quick recovery
and optimal Quality of Service (QoS) [6, 50]. Time-series databases
are generated using several engineering artifacts (servers, robots,
etc.) that interact with the environment, humans or other systems.
As a result, the data often displays both stochastic and temporal
trends [45]. It thus becomes crucial to distinguish outliers due to
stochasticity and only pinpoint observations that do not adhere to
the observed temporal trends. Moreover, the lack of labeled data
and anomaly diversity makes the problem challenging as we cannot
use supervised learning models, which have shown to be effective
in other areas of data mining [12]. Finally, it is not only impor-
tant to detect anomalies but also the root causes, i.e., the specific
data sources leading to abnormal behavior [23]. This complicates
the problem further as we need to perform multi-class prediction
(whether there is an anomaly and from which source if so) [60].

Existing solutions. The above discussed challenges have led
to the development of a myriad of unsupervised learning solu-
tions for automated anomaly detection. Researchers have devel-
oped reconstruction-based methods that predominantly aim to
encapsulate the temporal trends and predict the time-series data in
an unsupervised fashion, then use the deviation of the prediction
with the ground-truth data as anomaly scores. Based on various
extreme value analysis methods, such approaches classify times-
tamps with high anomaly scores as abnormal [4, 10, 14, 20, 28, 29,
45, 60, 62]. The way prior works generate a predicted time-series
from a given one varies from one work to another. Traditional ap-
proaches, like SAND [10], use clustering and statistical analysis to

detect anomalies. Contemporary methods like openGauss [30] and
LSTM-NDT [20] use a Long-Short-Term-Memory (LSTM) based
neural networks to forecast the data with an input time-series and
a non-parametric dynamic thresholding approach for detecting
anomalies from prediction errors. However, recurrent models like
LSTMs are known to be slow and computationally expensive [4]. Re-
cent state-of-the-art methods, like MTAD-GAT [62] and GDN [14],
use deep neural networks with a time-series window as an input
for more accurate predictions. However, as the inputs become more
data-intensive, small constant size window inputs limit the detec-
tion performance of such models due to the restricted local context
information given to the model [4]. There is a need for a model that
is fast and can capture high-level trends with minimal overheads.

New insights. As noted above, recurrent models based on prior
methods are not only slow and computationally expensive, but are
also unable to model long-term trends effectively [4, 14, 62]. This is
because, at each timestamp, a recurrent model needs to first perform
inference for all previous timestamps before proceeding further. Re-
cent developments of the transformer models allow single-shot in-
ference with the complete input series using position encoding [51].
Using transformers allows much faster detection compared to re-
current methods by parallelizing inference on GPUs [19]. However,
transformers also provide the benefit of being able to encode large
sequences with accuracy and training/inference times nearly ag-
nostic to the sequence length [51]. Thus, we use transformers to
grow the temporal context information sent to an anomaly detector
without significantly increasing the computational overheads.

Our contributions. This work uses various tools, including
Transformer neural networks and model-agnostic meta learning,
as building blocks. However, each of these different technologies
cannot be directly used and need necessary adaptations to cre-
ate a generalizable model for anomaly detection. Specifically, we
propose a transformer-based anomaly detection model (TranAD),
that uses self-conditioning and an adversarial training process. Its
architecture makes it fast for training and testing while maintain-
ing stability with large input sequences. Simple transformer-based
encoder-decoder networks tend to miss anomalies if the deviation
is too small, i.e., it is relatively close to normal data. One of our
contributions is to show that this can be alleviated by an adversarial
training procedure that can amplify reconstruction errors. Further,
using self-conditioning for robust multi-modal feature extraction
can help gain training stability and allow generalization [32]. This,
with model-agnostic meta learning (MAML) helps keep optimum
detection performance even with limited data [15], as we show later
in the validation that methods with simple transformers underper-
form by over 11% compared to TranAD. We perform extensive
empirical experiments on publicly available datasets to compare
and analyze TranAD against the state-of-the-art methods. Our ex-
periments show that TranAD is able to outperform baselines by
increasing prediction scores by up to 17% while reducing training
time overheads by up to 99%.

The rest of the paper is organized as follows. Section 2 overviews
related work. Section 3 outlines the working of the TranAD model
for multivariate anomaly detection and diagnosis. A performance
evaluation of the proposed method is shown in Section 4. Section 5
presents additional analysis. Finally, Section 6 concludes.

2 RELATEDWORK

Time series anomaly detection is a long-studied problem in the
VLDB community. The prior literature works on two types of time-
series data: univariate and multivariate. For the former, various
methods analyze and detect anomalies in time-series data with a
single data source [34], while for the latter multiple time-series
together [14, 45, 62].

Classical methods. Such methods for anomaly detection typi-
cally model the time-series distribution using various classical tech-
niques like k-Mean clustering, Support Vector Machines (SVMs)
or regression models [10, 28, 43, 52]. Other methods use wavelet
theory or various signal transformation methods like Hilbert trans-
form [25]. Other classes of methods use Principal Component Anal-
ysis (PCA), process regression or hidden Markov chains to model
time-series data [41]. The GraphAn technique [9] converts the
time-series inputs to graphs and uses graph distance metrics to
detect outliers. Another technique, namely isolation forest, uses an
ensemble of several isolation trees that recursively partition the
feature space for outlier detection [5, 31]. Finally, classical meth-
ods use variants of Auto-Regressive Integrated Moving Average
(ARIMA) to model and detect anomalous behaviour [56]. However,
auto-regression based approaches are rarely used for anomaly de-
tection in high-order multivariate time series due to their inability
to efficiently capture volatile time-series [1]. Other methods like
SAND [10], CPOD [47] and Elle [28] utilize clustering and database
read-write history to detect outliers.

Time-series discord discovery is another recently proposedmethod
for fault prediction [16, 37, 58, 59]. Time series discords refer to
the most unusual time series subsequences, i.e., subsequences that
are maximally different from all other subsequences in the same
time series. A sub-class of methods uses matrix profiling or its vari-
ants for anomaly and motif discovery by detecting time series dis-
cords [16, 35, 63]. Many advances have been proposed to make ma-
trix profiling techniques data and time efficient [21]. Other efforts
aim to make matrix profiling applicable to diverse domains [64].
However, matrix profiling has many more uses than just anomaly
detection and is considered to be slower than pure discord dis-
covery algorithms [37]. A recent approach, MERLIN [37], uses a
parameter-free version of time series discord discovery by itera-
tively comparing subsequences of varying length with their imme-
diate neighbors. MERLIN is considered to be the state-of-the-art
discord discovery approach with low overheads; hence, is regarded
as one of the baselines in our experiments.

Deep Learning based methods.Most contemporary state-of-
the-art techniques employ some form of deep neural networks. The
LSTM-NDT [20] method relies on an LSTM based deep neural net-
work model that uses the input sequence as training data and, for
each input timestamp, forecasts data for the next timestamp. LSTMs
are auto-regressive neural networks that learn order dependence
in sequential data, where the prediction at each timestamp uses
feedback from the output of the previous timestamp. This work
also proposes a non-parametric dynamic error thresholding (NDT)
strategy to set a threshold for anomaly labeling using moving aver-
ages of the error sequence. However, being a recurrent model, such
models are slow to train in many cases with long input sequences.

Further, LSTMs are often inefficient in modeling long temporal
patterns, especially when the data is noisy [62].

The DAGMM [65] method uses a deep autoencoding Gaussian
mixture model for dimension reduction in the feature space and
recurrent networks for temporal modeling. This work predicts an
output using a mixture of Gaussians, where the parameters of each
Gaussian are given by a deep neural model. The autoencoder com-
presses an input datapoint into a latent space, that is then used
by a recurrent estimation network to predict the next datapoint.
The decoupled training of both networks allows the model to be
more robust; however, it still is slow and unable to explicitly utilize
inter-modal correlations [14]. The Omnianomaly [45] uses a sto-
chastic recurrent neural network (similar to an LSTM-Variational
Autoencoder [39]) and a planar normalizing flow to generate re-
construction probabilities. It also proposes an adjusted Peak Over
Threshold (POT) method for automated anomaly threshold selec-
tion that outperforms the previously used NDT approach. This
work led to a significant performance leap compared to the prior
art, but at the expense of high training times.

The Multi-Scale Convectional Recursive Encoder-Decoder (MS-
CRED) [60] converts an input sequence window into a normalized
two-dimensional image and then passes it through a ConvLSTM
layer. This method is able to capture more complex inter-modal cor-
relations and temporal information, however is unable to generalize
to settings with insufficient training data. The MAD-GAN [29] uses
an LSTM based GAN model to model the time-series distribution
using generators. This work uses not only the prediction error, but
also the discriminator loss in the anomaly scores. MTAD-GAT [62]
uses a graph-attention network to model both feature and temporal
correlations and pass it through a lightweight Gated-Recurrent-
Unit (GRU) network that aids detection without severe overheads.
Traditionally, attention operations perform input compression us-
ing convex combination where the weights are determined using
neural networks. GRU is a simplified version of LSTMwith a smaller
parameter set and can be trained in limited data settings. The CAE-
M [61] uses a convolutional autoencoding memory network, similar
to MSCRED. It passes the time-series through a CNN with the out-
put being processed by bidirectional LSTMs to capture long-term
temporal trends. Such recurrent neural network-based models have
been shown to have high computation costs and low scalability for
high dimensional datasets [4].

More recent works such as USAD [4], GDN [14] and open-
Gauss [30] do not use resource-hungry recurrent models, but only
attention-based network architectures to improve training speeds.
The USAD method uses an autoencoder with two decoders with
an adversarial game-style training framework. This is one of the
first works that focus on low overheads by using a simple autoen-
coder and can achieve a several-fold reduction in training times
compared to the prior art. The Graph Deviation Network (GDN)
approach learns a graph of relationships between data modes and
uses attention-based forecasting and deviation scoring to output
anomaly scores. The openGauss approach uses a tree-based LSTM
that has lower memory and computational footprint and allows
capturing temporal trends even with noisy data. However, due
to the small window as an input and the use of simple or no re-
current models, the latest models are unable to capture long-term
dependencies effectively.

The recently proposed HitAnomaly [19] method uses vanilla
transformers as encoder-decoder networks, but is only applicable
to natural-language log data and not appropriate for generic con-
tinuous time-series data as inputs. In our experiments, we compare
TranAD against the state-of-the-art methods MERLIN, LSTM-NDT,
DAGMM, OmniAnomaly, MSCRED, MAD-GAN, USAD, MTAD-
GAT, CAE-M and GDN. These methods have shown superiority in
anomaly detection and diagnosis, but complement one another in
terms of performance across different time-series datasets. Out of
these, only USAD aims to reduce training times, but does this to a
limited extent. Just like reconstruction based prior work [4, 29, 45,
60, 61], we develop a TranAD model that learns broad level trends
using training data to find anomalies in test data. We specifically
improve anomaly detection and diagnosis performance with also
reducing the training times in this work.

3 METHODOLOGY

3.1 Problem Formulation

We consider a multivariate time-series, which is a timestamped
sequence of observations/datapoints of size 𝑇

T = {𝑥1, . . . , 𝑥𝑇 },

where each datapoint 𝑥𝑡 is collected at a specific timestamp 𝑡 and
𝑥𝑡 ∈ IR𝑚, ∀𝑡 . Here, the univariate setting is a particular case where
𝑚 = 1. We now define the two problems of anomaly detection and
diagnosis.

Anomaly Detection: Given a training input time-series T , for any
unseen test time-series T̂ of length 𝑇 and same modality as the
training series, we need to predict Y = {𝑦1, . . . ,𝑦𝑇 }, where we use
𝑦𝑡 ∈ {0, 1} to denote whether the datapoint at the 𝑡-th timestamp
of the test set is anomalous (1 denotes an anomalous datapoint).

Anomaly Diagnosis: Given the above training and test time-series,
we need to predict Y = {𝑦1, . . . ,𝑦𝑇 }, where 𝑦𝑡 ∈ {0, 1}𝑚 to denote
which of the modes of the datapoint at the 𝑡-th timestamp are
anomalous.

3.2 Data Preprocessing

To make our model more robust, we normalize the data and con-
vert it to time-series windows, both for training and testing. We
normalize the time-series as:

𝑥𝑡 ←
𝑥𝑡 −min(T)

max(T) −min(T) + 𝜖 ′
, (1)

where min(T) and max(T) are the mode wise minimum and max-
imum vectors in the training time-series. 𝜖 ′ is a small constant
vector to prevent zero-division. Knowing the ranges a-priori, we
normalize the data to get it in the range [0, 1).

To model the dependence of a data point 𝑥𝑡 at a timestamp 𝑡 , we
consider a local contextual window of length 𝐾 as

𝑊𝑡 = {𝑥𝑡−𝐾+1, . . . , 𝑥𝑡 }.

We use replication padding for 𝑡 < 𝐾 and convert an input time
series T to a sequence of sliding windows W = {𝑊1, . . . ,𝑊𝑇 }.
Replication padding, for each 𝑡 < 𝐾 , appends to the window𝑊𝑡 a
constant vector {𝑥𝑡 , . . . , 𝑥𝑡 } of length 𝐾 − 𝑡 to maintain the window
length of 𝐾 for each 𝑡 . Instead of using T as training input, we
use W for model training and Ŵ (corresponding to T̂) as the test

Figure 1: The TranAD Model.

series. This is a common practice in prior work [4, 45] as it allows
us to give a datapoint with its local context instead of a standalone
vector, and hence is used in our model. We also consider the time
slice until the current timestamp 𝑡 of a series T and denote it as𝐶𝑡 .

Now, instead of directly predicting the anomaly label 𝑦𝑡 for each
input window𝑊𝑡 , we shall first predict an anomaly score 𝑠𝑡 for
this window. Using anomaly scores for the past input windows,
we calculate a threshold value 𝐷 , above which we label the input
window as anomalous, thus 𝑦𝑡 = 1(𝑠𝑡 ≥ 𝐷). To calculate the
anomaly score 𝑠𝑡 , we reconstruct the input window as 𝑂𝑡 and use
the deviation between𝑊𝑡 and 𝑂𝑡 . For the sake of simplicity and
without loss of generality, we shall use𝑊 , 𝐶 , 𝑂 and 𝑠 for the rest
of the discussion.

3.3 Transformer Model

Transformers are popular deep learning models that have been
used in various natural language and vision processing tasks [51].
However, we use insightful refactoring of the transformer architec-
ture for the task of anomaly detection in time-series data. Just like
other encoder-decoder models, in a transformer, an input sequence
undergoes several attention-based transformations. Figure 1 shows
the architecture of the neural network used in TranAD. The encoder
encodes the complete sequence until the current timestamp 𝐶 with
a focus score (more details later). The window encoder uses this to
create an encoded representation of the input window𝑊 , which is
then passed to two decoders to create its reconstruction.

We now provide details on the working of TranAD. A multivari-
ate sequence like𝑊 or 𝐶 is transformed first into a matrix form
with modality𝑚. We define scaled-dot product attention [51] of
three matrices 𝑄 (query), 𝐾 (key) and 𝑉 (value):

Attention(𝑄,𝐾,𝑉) = softmax

(
𝑄𝐾𝑇

√
𝑚

)
𝑉 . (2)

Here, the softmax forms the convex combination weights for the
values in 𝑉 , allowing us to compress the matrix 𝑉 into a smaller
representative embedding for simplified inference in the down-
stream neural network operations. Unlike traditional attention op-
eration, the scaled-dot product attention scales the weights by a√
𝑚 term to reduce the variance of the weights, facilitating stable

training [51]. For input matrices 𝑄 , 𝐾 and 𝑉 , we apply Multi-Head
Self Attention [51] by first passing it through ℎ (number of heads)
feed-forward layers to get 𝑄𝑖 , 𝐾𝑖 and𝑉𝑖 for 𝑖 ∈ {1, . . . , ℎ}, and then

applying scaled-dot product attention as

MultiHeadAtt(𝑄,𝐾,𝑉) = Concat(𝐻1, . . . , 𝐻ℎ),
where 𝐻𝑖 = Attention(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖) .

(3)

Multi-Head Attention allows the model to jointly attend to informa-
tion from different representation sub-spaces at different positions.
In addition, we use position encoding of the input matrices as de-
fined in [51].

As GAN models have been shown to perform well in character-
istic tasks of whether an input is anomalous or not, we leverage a
time-efficient GAN style adversarial training method. Our model
consists of two transformer encoders and two decoders (Figure 1).
We consider the model inference in two phases. We first take the𝑊
and 𝐶 pair as an input and a focus score 𝐹 (initially a zero matrix
of the dimension of𝑊 , more details in the next subsection). We
broadcast 𝐹 to match the dimension of𝑊 , with appropriate zero-
padding and concatenate the two. We then apply position encoding
and obtain the input for the first encoder, say 𝐼1. The first encoder
performs the following operations

𝐼11 = LayerNorm(𝐼1 +MultiHeadAtt(𝐼1, 𝐼1, 𝐼1)),

𝐼21 = LayerNorm(𝐼11 + FeedForward(𝐼11)) .
(4)

Here,MultiHeadAtt(𝐼1, 𝐼1, 𝐼1) denotes the multi-head self attention
operation for the input matrix 𝐼1 and + denotes matrix addition. The
above operations generate attention weights using the input time-
series windows and the complete sequence to capture temporal
trends within the input sequences. These operations enable the
model to infer over multiple batches of the time-series windows in
parallel as the neural network, at each timestamp, does not depend
on the output of a previous timestamp, significantly improving the
training time of the proposed method. For the window encoder,
we apply position encoding to the input window𝑊 to get 𝐼2. We
modify the self-attention in the window encoder to mask the data
at subsequent positions. This is done to prevent the decoder from
looking at the datapoints for future timestamp values at the time
of training as all data𝑊 and 𝐶 is given at once to allow parallel
training. The window encoder performs the following operations

𝐼12 = Mask(MultiHeadAtt(𝐼2, 𝐼2, 𝐼2)),

𝐼22 = LayerNorm(𝐼2 + 𝐼12),

𝐼32 = LayerNorm(𝐼22 +MultiHeadAtt(𝐼21 , 𝐼
2
1 , 𝐼

2
2)).

(5)

Algorithm 1 The TranAD training algorithm

Require:

Encoder 𝐸, Decoders 𝐷1 and 𝐷2

Dataset used for training W
Evolutionary hyperparameter 𝜖
Iteration limit 𝑁

1: Initialize weights 𝐸, 𝐷1, 𝐷2

2: 𝑛 ← 0

3: do

4: for(𝑡 = 1 to 𝑇)
5: 𝑂1,𝑂2 ← 𝐷1 (𝐸 (𝑊𝑡 , �0)), 𝐷2 (𝐸 (𝑊𝑡 , �0))
6: 𝑂̂2 ← 𝐷2 (𝐸 (𝑊𝑡 , ‖𝑂1 −𝑊𝑡 ‖2))
7: 𝐿1 = 𝜖−𝑛 ‖𝑂1 −𝑊𝑡 ‖2 + (1 − 𝜖−𝑛)‖𝑂̂2 −𝑊𝑡 ‖2
8: 𝐿2 = 𝜖−𝑛 ‖𝑂2 −𝑊𝑡 ‖2 − (1 − 𝜖−𝑛)‖𝑂̂2 −𝑊𝑡 ‖2
9: Update weights of 𝐸, 𝐷1, 𝐷2 using 𝐿1, 𝐿2
10: 𝑛 ← 𝑛 + 1

11: Meta-Learn weights 𝐸, 𝐷1, 𝐷2 using a random batch
12: while 𝑛 < 𝑁

The encoding of the complete sequence 𝐼21 is used as value and
keys by the window encoder for the attention operation using the
encoded input window as the query matrix. The motivation behind
the operations in (5) is similar to the one for (4); however, here we
apply masking of the window input to hide the window sequences
for future timestamps in the same input batch. As the complete
input sequence up to the 𝑡-th timestamp is given to the model as
an input; it allows the model to encapsulate and leverage a larger
context compared to a bounded, limited one as in prior art [4, 45, 62].
Finally, we use two identical decoders which perform the operation

𝑂𝑖 = Sigmoid(FeedForward(𝐼32)), (6)

where 𝑖 ∈ {1, 2} for the first and second decoder respectively. The
Sigmoid activation is used to generate an output in the range [0, 1],
to match the normalized input window. Thus, the TranAD model
takes the inputs 𝐶 and𝑊 to generate two outputs 𝑂1 and 𝑂2.

3.4 Offline Two-Phase Adversarial Training

We now describe the adversarial training process and the two-
phase inference approach in the TranAD model, summarized in
Algorithm 1.

Phase 1 - Input Reconstruction. The Transformer model en-
ables us to predict the reconstruction of each input time-series win-
dow. It does this by acting as an encoder-decoder network at each
timestamp. However, traditional encoder-decoder models often are
unable to capture short-term trends and tend to miss anomalies
if the deviations are too small [29]. To tackle this challenge, we
develop an auto-regressive inference style that predicts the recon-
structed window in two-phases. In the first phase, the model aims
to generate an approximate reconstruction of the input window.
The deviation from this inference, referred to as the focus score

mentioned previously, facilitates the attention network inside the
Transformer Encoder to extract temporal trends, focusing on the
sub-sequences where the deviations are high. Thus, the output of
the second phase is conditioned on the deviations generated from
the first phase. Thus, in the first stage, the encoders convert the

input window𝑊 ∈ IR𝐾×𝑚 (with focus score 𝐹 = [0]𝐾×𝑚) to a com-
pressed latent representation 𝐼32 using context-based attention as
in a common transformer model. This compressed representation
is then converted to generate outputs 𝑂1 and 𝑂2 via Eq. (6).

Phase 2 - Focused InputReconstruction. In the second phase,
we use the reconstruction loss for the first decoder as a focus score.
Having the focus matrix for the second phase 𝐹 = 𝐿1, we rerun
model inference to obtain the output of the second decoder as 𝑂̂2.

The focus score generated in the first phase indicates the devia-
tions of the reconstructed output from the given input. This acts as a
prior to modify the attention weights in the second phase and gives
higher neural network activation to specific input sub-sequences
to extract short-term temporal trends. We refer to this approach as
“self-conditioning” in the rest of the paper. This two-phase auto-
regressive inference style has a three-fold benefit. First, it amplifies
the deviations, as the reconstruction error acts as an activation in
the attention part of the Encoder in Figure 1, to generate an anomaly
score, simplifying the fault-labeling task (discussed in Section 3.5).
Second, it prevents false positives by capturing short-term temporal
trends in the Window Encoder in Figure 1. Third, the adversarial
style training is known to improve generalizability and make the
model robust to diverse input sequences [4].

Evolving Training Objective. The above-described model is
bound to suffer from similar challenges as in other adversarial
training frameworks. One of the critical challenges is maintaining
training stability. To tackle this, we design an adversarial training
procedure that uses outputs from two separate decoders (Decoders
1 and 2 in Figure 1). Initially, both decoders aim to independently
reconstruct the input time-series window. As in [45] and [39], we
define the reconstruction loss for each decoder using the L2-norm
using the outputs of the first phase:

𝐿1 = ‖𝑂1 −𝑊 ‖2,
𝐿2 = ‖𝑂2 −𝑊 ‖2 .

(7)

We now introduce the adversarial loss that uses outputs of the
second phase. Here, the second decoder aims to distinguish between
the input window and the candidate reconstruction generated by
the first decoder in phase 1 (using the focus scores) by maximizing
the difference | |𝑂̂2 −𝑊 | |2. On the other hand, the first decoder
aims to fool the second decoder by aiming to create a degenerate
focus score (a zero vector) by perfectly reconstructing the input
(i.e., 𝑂1 =𝑊). This pushes the decoder 2, in this phase, to generate
the same output as 𝑂2 which it aims to match the input in phase 1.
This means the training objective is

min
Decoder1

max
Decoder2

‖𝑂̂2 −𝑊 ‖2 . (8)

Thus, the objective of the first decoder is to minimize the reconstruc-
tion error of this self-conditioned output, whereas the objective of
the second one is to maximize the same. We realize this by using
the loss as:

𝐿1 = +‖𝑂̂2 −𝑊 ‖2,

𝐿2 = −‖𝑂̂2 −𝑊 ‖2 .
(9)

Now that we have loss functions for both phases, we need to
determine the cumulative loss for each decoder. We thus use an
evolutionary loss function that combines the reconstruction and

Algorithm 2 The TranAD testing algorithm

Require:

Trained Encoder 𝐸, Decoders 𝐷1 and 𝐷2

Test Dataset Ŵ
1: for(𝑡 = 1 to 𝑇)
2: 𝑂1,𝑂2 ← 𝐷1 (𝐸 (𝑊̂𝑡 , �0)), 𝐷2 (𝐸 (𝑊̂𝑡 , �0))
3: 𝑂̂2 ← 𝐷1 (𝐸 (𝑊̂𝑡 , ‖𝑂1 −𝑊 ‖2)), 𝐷2 (𝐸 (𝑊̂𝑡 , ‖𝑂1 −𝑊 ‖2))
4: 𝑠 = 1

2 ‖𝑂1 − 𝑊̂ ‖2 + 1
2 ‖𝑂̂2 − 𝑊̂ ‖2

5: 𝑦𝑖 = 1(𝑠𝑖 ≥ POT(𝑠𝑖))
6: 𝑦 = ∨

𝑖
𝑦𝑖

adversarial loss functions from the two phases as

𝐿1 = 𝜖−𝑛 ‖𝑂1 −𝑊 ‖2 + (1 − 𝜖−𝑛)‖𝑂̂2 −𝑊 ‖2,

𝐿2 = 𝜖−𝑛 ‖𝑂2 −𝑊 ‖2 − (1 − 𝜖−𝑛)‖𝑂̂2 −𝑊 ‖2,
(10)

where 𝑛 is the training epoch and 𝜖 is a training parameter close
to one (lines 7-8 in Alg. 1). Initially, the weight given to the re-
construction loss is high. This is to ensure stable training when
the outputs of the decoders are poor reconstructions of the input
window. With poor reconstructions, the focus scores used in the
second phase would be unreliable; and hence, cannot be utilized
as a prior to indicating reconstructions that are far from the input
sequence. Thus, the adversarial loss is given a low weight in the
initial part of the process to avoid destabilizing model training. As
reconstructions become closer to the input windows, and focus
scores become more precise, the weight to the adversarial loss is
increased. As loss curves in the neural network training process
typically follow exponential function, we use weights of the form
𝜖−𝑛 in the training process with a small positive constant 𝜖 .

As the training process does not assume that the data is available
sequentially (as in an online process), the complete time-series
can be split into (𝑊 , 𝐶) pairs and the model can be trained using
input batches. Masked multi-head attention allows us to run this in
parallel across several batches and speed up the training process.

Meta Learning. Finally, our training loop uses model-agnostic
meta learning (MAML), a few-shot learning model for fast adap-
tation of neural networks [15]. This helps our TranAD model
learn temporal trends in the input training time-series with limited
data. In each training epoch, a gradient update for neural network
weights (without loss in generality assume 𝜃) can be simply written

𝜃 ′ ← 𝜃 − 𝛼∇𝜃𝐿(𝑓 (𝜃)), (11)

where 𝛼 , 𝑓 (·) and 𝐿(·) are learning rate, abstract representation of
the neural network and loss function respectively. Now, at the end
of each epoch we perform meta-learning step as

𝜃 ← 𝜃 − 𝛽∇𝜃𝐿(𝑓 (𝜃 ′)) . (12)

The meta-optimization is performed with a meta step-size 𝛽 , over
the model weights 𝜃 where the objective is evaluated using the
updated weights 𝜃 ′. Prior work has shown that this allows models
to be trained quickly with limited data [15]. We encapsulate this in
a single line in Algorithm 1 (line 11).

Figure 2: Visualization of anomaly prediction.

3.5 Online Inference, Anomaly Detection and
Diagnosis

We now describe the inference procedure using the trained trans-
former model (summarized in Algorithm 2). For an unseen data (𝑊̂ ,
𝐶), the anomaly score is defined as

𝑠 = 1
2 ‖𝑂1 − 𝑊̂ ‖2 + 1

2 ‖𝑂̂2 − 𝑊̂ ‖2 . (13)

The inference at test time runs again in two phases and hence
we get a single pair of reconstruction (𝑂1, 𝑂̂2) (lines 2 and 3 in
Alg. 2). At test time, we only consider the data until the current
timestamp and hence this operation runs sequentially in an online
fashion. Once we have the anomaly scores for a timestamp for each
dimension 𝑠𝑖 , we label the timestamp anomalous if this score is
greater than a threshold. As is common in prior work [9, 20, 45],
for fair comparison, we use the Peak Over Threshold (POT) [44]
method to choose the threshold automatically and dynamically. In
essence, this is a statistical method that uses “extreme value theory”
to fit the data distribution with a Generalized Pareto Distribution
and identify appropriate value at risk to dynamically determine
threshold values. We also tested with another popular EVT method,
namely annual maximum (AM) [7]; however, we have observed
7.2% higher F1 scores on an average for TranAD with POT than AM.
Anomaly diagnosis label for each dimension 𝑖 (𝑦𝑖) and detection (𝑦)
results is defined as

𝑦𝑖 = 1(𝑠𝑖 ≥ POT(𝑠𝑖)),
𝑦 = ∨

𝑖
𝑦𝑖 .

(14)

Thus, we label the current timestamp anomalous if any of the𝑚
dimensions is anomalous (lines 5-6 in Alg. 2). Figure 2 illustrates
this process for a sample time-series.

Impact of Attention and Focus Scores. Figure 3 visualizes
the attention and focus scores for the TranAD model trained on the
SMD dataset (details in Section 4.1). We show the time-series, the
average attention weights for each window (averaged over multiple
heads) and focus scores for the first six dimensions of the dataset.
It is apparent that the focus scores are highly correlated with the
peaks and noise in the data. There is also a high correlation of focus
scores across dimensions. For timestamps with sudden changes in
the time-series, focus scores are higher. Further, the model gives
higher attention weights to the specific dimensions of the time-
series where the deviations are higher. This allows the model to
specifically detect anomalies in each dimension individually, with
the contextual trend of the complete sequence as a prior.

Figure 3: Visualization of focus and attention scores.

4 EXPERIMENTS

We compare TranAD with state-of-the-art models for mutlivari-
ate time-series anomaly detection, including MERLIN [37], LSTM-
NDT [20] (with autoencoder implementation from openGauss [30]),
DAGMM [65], OmniAnomaly [45], MSCRED [60], MAD-GAN [29],
USAD [4], MTAD-GAT [62], CAE-M [61] and GDN [14] (with graph
embedding implementation from GraphAn [9]) . For more details
refer Section 2.1 We also tested the Isolation Forest method, but
due to its low F1 scores, do not include the corresponding results
in our discussion. Other classical methods have been omitted as
deep-learning based approaches have already been shown to out-
perform them in prior work [4, 14, 62]. We use hyperparameters
of the baseline models as presented in their respective papers. We
train all models using PyTorch-1.7.1 [40] library2.

We use the AdamW [27] optimizer to train our model with an ini-
tial learning rate of 0.01 (meta learning rate 0.02) and step-scheduler
with step size of 0.5 [42]. We use the following hyperparameter
values determined using grid-search.

• Window size = 10.
• Number of layers in transformer encoders = 1
• Number of layers in feed-forward unit of encoders = 2
• Hidden units in encoder layers = 64
• Dropout in encoders = 0.1

1We use publicly available code sources for most of the baselines. LSTM-
NDT https://github.com/khundman/telemanom, openGauss https://gitee.
com/opengauss/openGauss-AI, DAGMM https://github.com/tnakae/DAGMM,
OmniAnomaly https://github.com/NetManAIOps/OmniAnomaly, MSCRED
https://github.com/7fantasysz/MSCRED, MAD-GAN https://github.com/
LiDan456/MAD-GANs. All URLs last accessd on 18 February 2022. Other models were
re-implemented by us (details on the implementation of the MERLIN baseline in [49]).
2Parallel Transformer training was implemented as per [51]. All model training and
experiments were performed on a system with configuration: Intel i7-10700K CPU,
64GB RAM, Nvidia RTX 3080 and Windows 11 OS.

Table 1: Dataset Statistics

Dataset Train Test Dimensions Anomalies (%)

NAB 4033 4033 1 (6) 0.92
UCR 1600 5900 1 (4) 1.88
MBA 100000 100000 2 (8) 0.14
SMAP 135183 427617 25 (55) 13.13
MSL 58317 73729 55 (3) 10.72
SWaT 496800 449919 51 (1) 11.98
WADI 1048571 172801 123 (1) 5.99
SMD 708405 708420 38 (4) 4.16
MSDS 146430 146430 10 (1) 5.37

The effect of window size on anomaly detection performance is an-
alyzed in Section 5. We choose hyperparameters other than the win-
dow size using grid search. For POT parameters, coefficient = 10−4

for all data sets, low quantile is 0.07 for SMAP, 0.01 for MSL, and
0.001 for others. These were selected as per the implementation of
the OmniAnomaly baseline [45]. The only dataset-specific hyperpa-
rameter is the number of heads in multi-head attention, which was
kept to be the same as the dimension size of the dataset. Other as-
signments for this hyperparameter give similar broad-level trends.

To train TranAD, we divide the training time-series into 80%

training data and 20% validation data. To avoid model over-fitting,
we use early-stopping criteria to train TranAD, i.e., we stop the
training process once the validation accuracy starts to decrease.

4.1 Datasets

We use seven publicly available datasets in our experiments. We
summarize their characteristics in Table 1. The values in parenthesis
are the number of sequences in the dataset repository and we report
average scores across all sequences in a dataset. For instance, the
SMAP dataset has 55 traces with 25 dimensions each. While we
share some of the concerns expressed in [55] about the lack of
quality benchmark datasets for time series anomaly detection, we
use these commonly-used benchmark datasets here to enable direct
comparison of our approach to competing methods.

(1) Numenta Anomaly Benchmark (NAB): is a dataset of multiple
real-world data traces, including readings from temperature
sensors, CPU utilization of cloud machines, service request
latencies and taxi demands in New York city [2]. However, this
dataset is known to have sequences with incorrect anomaly
labels [55] such as the nyc-taxi trace [37], which we exclude
in our experiments.

(2) HexagonML (UCR) dataset: is a dataset of multiple univariate
time series (included just for completeness) that was used in
KDD 2021 cup [13, 26]. We include only the datasets obtained
from natural sources (the InternalBleeding and ECG datasets)
and ignore the synthetic sequences.

(3) MIT-BIH Supraventricular Arrhythmia Database (MBA): is a
collection of electrocardiogram recordings from four patients,
containing multiple instances of two different kinds of anom-
alies (either supraventricular contractions or premature heart-
beats) [17, 36]. This is a popular large-scale dataset in the data
management community [8, 10].

(4) Soil Moisture Active Passive (SMAP) dataset: is a dataset of soil
samples and telemetry information using the Mars rover by
NASA [20].

(5) Mars Science Laboratory (MSL) dataset: is a dataset similar to
SMAP but corresponds to the sensor and actuator data for the
Mars rover itself [20]. However, this dataset is known to have
many trivial sequences [55]; hence, we consider only the three
non-trivial ones (A4, C2 and T1) pointed out by [37].

(6) Secure Water Treatment (SWaT) dataset: This dataset is collected
from a real-world water treatment plant with 7 days of normal
and 4 days of abnormal operation [33]. This dataset consists of
sensor values (water level, flow rate, etc.) and actuator opera-
tions (valves and pumps).

(7) Water Distribution (WADI) dataset: This is an extension of the
SWaT system but had more than twice the number of sensors
and actuators than the SWaT model [3]. The dataset is also
collected for a longer duration of 14 and 2 days of normal and
attack scenarios.

(8) Server Machine Dataset (SMD): This is a five-week long dataset
of stacked traces of the resource utilizations of 28 machines
from a compute cluster [45]. Similar to MSL, we use the non-
trivial sequences in this dataset, specifically the traces named
machine-1-1, 2-1, 3-2 and 3-7.

(9) Multi-Source Distributed System (MSDS) Dataset: This is a re-
cent high-quality multi-source data composed of distributed
traces, application logs, and metrics from a complex distributed
system [38]. This dataset is specifically built for AI operations,
including automated anomaly detection, root cause analysis,
and remediation.

We eschew comparisons on the Yahoo [53] dataset that has been
claimed to suffer from mislabeling and run-to-failure bias [55].

4.2 Evaluation Metrics

4.2.1 Anomaly Detection. We use precision, recall, area under the
receiver operating characteristic curve (ROC/AUC) and F1 score to
evaluate the detection performance of all models [14, 62]. We also
measure the AUC and F1 scores by training all models with 20% of
the training data (again using the 80:20 split for validation dataset
and the rest as the test set), and call these AUC* and F1* respectively,
to measure the performance of the models with limited data. We
train on the five sets of 20% training data and report average results
for statistical significance.

4.2.2 Anomaly Diagnosis. We use commonly used metrics to mea-
sure the diagnosis performance of all models [62]. HitRate@P%

is the measure of how many ground truth dimensions have been
included in the top candidates predicted by the model [45]. 𝑃% is
the percentage of the ground truth dimensions for each timestamp,
which we use to consider the top predicted candidates. For instance,
if at timestamp 𝑡 , if 2 dimensions are labeled anomalous in the
ground truth, HitRate@100% would consider top 2 dimensions and
HitRate@150% would consider 3 dimensions (100 and 150 are cho-
sen based on prior work [62]). We also measure the Normalized
Discounted Cumulative Gain (NDCG) [24]. NDCG@P% considers
the same number of top predicted candidates as HitRate@P%.

4.3 Results

Anomaly Detection. Tables 2 and 3 provide the precision, recall,
AUC, F1, AUC* and F1* scores for TranAD and baseline models for
all datasets. On average, the F1 score of the TranAD model is 0.8802
and F1* is 0.8012. TranAD outperforms the baselines (in terms of F1
score) for all datasets except MSL when we consider the complete
dataset for model training. TranAD also outperforms baselines for
all datasets except the WADI dataset with 20% of the dataset used
for training (F1* score). For MSL, the GDN model has the highest
F1 score (0.9591) and for the WADI dataset, OmniAnomaly has the
highest F1* score (0.1017). Similarly, TranAD outperforms baselines
in terms of AUC scores for all datasets except MSDS, where GDN
has the highest AUC (0.9105). All models perform relatively poorly
on WADI due to its large-scale in terms of sequence lengths and
data modality. Specifically, TranAD achieves improvement of up to
17.06% in F1 score, 14.64% in F1* score, 11.69% in AUC and 11.06%
in AUC* scores over the state-of-the-art baseline models.

The MERLIN baseline is a parameter free approach that does
not require any training data; hence, we report F1* and AUC* as
F1 and AUC scores, respectively. MERLIN performs relatively well
only on the univariate datasets, i.e. NAB and UCR, and is unable
to scale effectively to multivariate data in our traces. The baseline
method LSTM-NDT has a good performance on MSL and SMD, but
performs poorly on other datasets. This is due to its sensitivity to
different scenarios and poor efficiency of the NDT thresholding
method [62]. The POT technique used in TranAD and other models
like OmniAnomaly helps set more accurate threshold values by also
considering the localized peak values in the data sequence. DAGMM
model performs very well for short datasets like UCR, NAB, MBA
and SMAP, but its scores drop significantly for other datasets with
longer sequences. This is because it does not map the temporal
information explicitly as it does not use sequence windows but
only a single GRU model. The window encoder in TranAD, with
the encoding of the complete sequence as a self-condition, allows
it to perform better even with long high-dimensional sequences.
The OmniAnomaly, CAE-M and MSCRED models use sequential
observations as input, allowing these methods to retain the tempo-
ral information. Such methods perform reconstruction regardless
of anomalous data, which prevents them from detecting anomalies
close to the normal trends [4]. TranAD tackles this by using adver-
sarial training to amplify errors. Hence, in datasets like SMD, where
anomalous data is not very far from normal data, it can detect even
mild anomalies.

Recent models such as USAD, MTAD-GAT and GDN use atten-
tion mechanisms to focus on specific modes of the data. Moreover,
these models try to capture the long-term trends by adjusting the
weights of their neural network and only use a local window as an
input for reconstruction. GDN has slightly higher scores for MSL
and MSDS datasets than TranAD due to the scalable graph-based
inference over the inter-dimensional data correlations [14]. TranAD
does this using self-attention and performs better than GDN overall
across all datasets. The limitation of seeing only a local contextual
window prevents methods such as USAD and MTAD-GAT from
classifying long-term anomalies (like in SMD or WADI). However,
self-conditioning on an embedding of the complete trace with posi-
tion encoding aids temporal attention, thanks to the transformer

Table 2: Performance comparison of TranAD with baseline methods on the complete dataset. P: Precision, R: Recall, AUC:

Area under the ROC curve, F1: F1 score with complete training data. The best F1 and AUC scores are highlighted in bold.

Method
NAB UCR MBA

P R AUC F1 P R AUC F1 P R AUC F1

MERLIN 0.8013 0.7262 0.8414 0.7619 0.7542 0.8018 0.8984 0.7542 0.9846 0.4913 0.7828 0.6555
LSTM-NDT 0.6400 0.6667 0.8322 0.6531 0.5231 0.8294 0.9781 0.5231 0.9207 0.9718 0.9780 0.9456
DAGMM 0.7622 0.7292 0.8572 0.7453 0.5337 0.9718 0.9916 0.5337 0.9475 0.9900 0.9858 0.9683
OmniAnomaly 0.8421 0.6667 0.8330 0.7442 0.8346 0.9999 0.9981 0.8346 0.8561 1.0000 0.9570 0.9225
MSCRED 0.8522 0.6700 0.8401 0.7502 0.5441 0.9718 0.9920 0.5441 0.9272 1.0000 0.9799 0.9623
MAD-GAN 0.8666 0.7012 0.8478 0.7752 0.8538 0.9891 0.9984 0.8538 0.9396 1.0000 0.9836 0.9689
USAD 0.8421 0.6667 0.8330 0.7442 0.8952 1.0000 0.9989 0.8952 0.8953 0.9989 0.9701 0.9443
MTAD-GAT 0.8421 0.7272 0.8221 0.7804 0.7812 0.9972 0.9978 0.7812 0.9018 1.0000 0.9721 0.9484
CAE-M 0.7918 0.8019 0.8019 0.7968 0.6981 1.0000 0.9957 0.6981 0.8442 0.9997 0.9661 0.9154
GDN 0.8129 0.7872 0.8542 0.7998 0.6894 0.9988 0.9959 0.6894 0.8832 0.9892 0.9528 0.9332
TranAD 0.8889 0.9892 0.9541 0.9364 0.9407 1.0000 0.9994 0.9407 0.9569 1.0000 0.9885 0.9780

Method
SMAP MSL SWaT

P R AUC F1 P R AUC F1 P R AUC F1

MERLIN 0.1577 0.9999 0.7426 0.2725 0.2613 0.4645 0.6281 0.3345 0.6560 0.2547 0.6175 0.3669
LSTM-NDT 0.8523 0.7326 0.8602 0.7879 0.6288 1.0000 0.9532 0.7721 0.7778 0.5109 0.7140 0.6167
DAGMM 0.8069 0.9891 0.9885 0.8888 0.7363 1.0000 0.9716 0.8482 0.9933 0.6879 0.8436 0.8128
OmniAnomaly 0.8130 0.9419 0.9889 0.8728 0.7848 0.9924 0.9782 0.8765 0.9782 0.6957 0.8467 0.8131
MSCRED 0.8175 0.9216 0.9821 0.8664 0.8912 0.9862 0.9807 0.9363 0.9992 0.6770 0.8433 0.8072
MAD-GAN 0.8157 0.9216 0.9891 0.8654 0.8516 0.9930 0.9862 0.9169 0.9593 0.6957 0.8463 0.8065
USAD 0.7480 0.9627 0.9890 0.8419 0.7949 0.9912 0.9795 0.8822 0.9977 0.6879 0.8460 0.8143
MTAD-GAT 0.7991 0.9991 0.9844 0.8880 0.7917 0.9824 0.9899 0.8768 0.9718 0.6957 0.8464 0.8109
CAE-M 0.8193 0.9567 0.9901 0.8827 0.7751 1.0000 0.9903 0.8733 0.9697 0.6957 0.8464 0.8101
GDN 0.7480 0.9891 0.9864 0.8518 0.9308 0.9892 0.9814 0.9591 0.9697 0.6957 0.8462 0.8101
TranAD 0.8043 0.9999 0.9921 0.8915 0.9038 0.9999 0.9916 0.9494 0.9760 0.6997 0.8491 0.8151

Method
WADI SMD MSDS

P R AUC F1 P R AUC F1 P R AUC F1

MERLIN 0.0636 0.7669 0.5912 0.1174 0.2871 0.5804 0.7158 0.3842 0.7254 0.3110 0.5022 0.4353
LSTM-NDT 0.0138 0.7823 0.6721 0.0271 0.9736 0.8440 0.9671 0.9042 0.9999 0.8012 0.8013 0.8896
DAGMM 0.0760 0.9981 0.8563 0.1412 0.9103 0.9914 0.9954 0.9491 0.9891 0.8026 0.9013 0.8861
OmniAnomaly 0.3158 0.6541 0.8198 0.4260 0.8881 0.9985 0.9946 0.9401 1.0000 0.7964 0.8982 0.8867
MSCRED 0.2513 0.7319 0.8412 0.3741 0.7276 0.9974 0.9921 0.8414 1.0000 0.7983 0.8943 0.8878
MAD-GAN 0.2233 0.9124 0.8026 0.3588 0.9991 0.8440 0.9933 0.9150 0.9982 0.6107 0.8054 0.7578
USAD 0.1873 0.8296 0.8723 0.3056 0.9060 0.9974 0.9933 0.9495 0.9912 0.7959 0.8979 0.8829
MTAD-GAT 0.2818 0.8012 0.8821 0.4169 0.8210 0.9215 0.9921 0.8683 0.9919 0.7964 0.8982 0.8835
CAE-M 0.2782 0.7918 0.8728 0.4117 0.9082 0.9671 0.9783 0.9367 0.9908 0.8439 0.9013 0.9115
GDN 0.2912 0.7931 0.8777 0.4260 0.7170 0.9974 0.9924 0.8342 0.9989 0.8026 0.9105 0.8900
TranAD 0.3529 0.8296 0.8968 0.4951 0.9262 0.9974 0.9974 0.9605 0.9999 0.8626 0.9013 0.9262

architecture in TranAD. This allows TranAD to capture long-term
trends more effectively. Further, due to the meta-learning, TranAD
also outperforms baselines with limited training data except for
OmniAnomaly on the WADI dataset, indicating its high efficacy
even with limited data. OmniAnomaly performs best among all
methods on the WADI dataset due to high noise in this dataset and
dedicated stochasticity modeling in OmniAnomaly [45]. TranAD
is slightly behind this method in terms of F1* and AUC*; however,
outperforms it when compared across all datasets and also when
given the complete WADI dataset.

We perform critical difference analysis to assess the significance
of the differences among the performance of the models. Figure 4
depicts the critical difference diagrams for the F1 and AUC scores
based on the Wilcoxon pair-wised signed-rank test (with 𝛼 = 0.05)

after rejecting the null hypothesis using the Friedman test on all
datasets [22]. TranAD achieves the best rank across all models with
a significant statistical difference.

Anomaly Diagnosis. The anomaly diagnosis results in Table 4
where H and N correspond to HitRate and NDCG (with complete
data used for model testing). We only present results on the multi-
variate SMD and MSDS datasets for the sake of brevity (TranAD
yields better scores for others as well). We also ignore models that
do not explicitly output anomaly class outputs for each dimension
individually. Multi-head attention in TranAD allows it to attend
to multiple modes simultaneously, making it more suitable for
more inter-correlated anomalies. This is observed and explained by
datasets like MSDS (distributed systems) where anomalous behav-
ior in one mode can lead to a chain of events causing anomalies

Table 3: Performance comparison of TranAD with baseline

methods with 20% of the training dataset. AUC*: AUC with

20% training data, F1*: F1 score with 20% training data. The

best F1* and AUC* scores are highlighted in bold.

Method
NAB UCR MBA

AUC* F1* AUC* F1* AUC* F1*

MERLIN 0.8029 0.7619 0.8984 0.7773 0.7828 0.6555
LSTM-NDT 0.8013 0.6212 0.8913 0.5198 0.9617 0.9282
DAGMM 0.7827 0.6125 0.9812 0.5718 0.9671 0.9396
OmniAnomaly 0.8129 0.6713 0.9728 0.7918 0.9407 0.9217
MSCRED 0.8299 0.7013 0.9637 0.4929 0.9499 0.9108
MAD-GAN 0.8194 0.7109 0.9959 0.8216 0.9550 0.9192
USAD 0.7267 0.6781 0.9967 0.8538 0.9697 0.9425
MTAD-GAT 0.6956 0.7013 0.9974 0.8671 0.9688 0.9425
CAE-M 0.7312 0.7126 0.9926 0.7525 0.9616 0.9002
GDN 0.8299 0.7013 0.9937 0.8029 0.9671 0.9316
TranAD 0.9217 0.8421 0.9989 0.9399 0.9718 0.9617

Method
SMAP MSL SWaT

AUC* F1* AUC* F1* AUC* F1*

MERLIN 0.7426 0.2725 0.6281 0.3345 0.6175 0.3669
LSTM-NDT 0.7007 0.5418 0.9520 0.7608 0.6690 0.4145
DAGMM 0.9881 0.8369 0.9606 0.8010 0.8421 0.8001
OmniAnomaly 0.9879 0.8131 0.9703 0.8424 0.8319 0.7433
MSCRED 0.9811 0.8050 0.9797 0.8232 0.8385 0.7922
MAD-GAN 0.9877 0.8468 0.9649 0.8190 0.8456 0.8012
USAD 0.9883 0.8379 0.9649 0.8190 0.8438 0.8087
MTAD-GAT 0.9814 0.8225 0.9782 0.8024 0.8459 0.8079
CAE-M 0.9892 0.8312 0.9836 0.7303 0.8458 0.7841
GDN 0.9887 0.8411 0.9414 0.8959 0.8390 0.8072
TranAD 0.9885 0.8889 0.9857 0.9172 0.8438 0.8094

Method
WADI SMD MSDS

AUC* F1* AUC* F1* AUC* F1*

MERLIN 0.5912 0.1174 0.7158 0.3842 0.5022 0.4353
LSTM-NDT 0.6637 0.0000 0.9563 0.6754 0.7813 0.7912
DAGMM 0.6497 0.0630 0.9845 0.8986 0.7763 0.8389
OmniAnomaly 0.7913 0.1017 0.9859 0.9352 0.5613 0.8389
MSCRED 0.6029 0.0413 0.9768 0.8004 0.7716 0.8283
MAD-GAN 0.5383 0.0937 0.8635 0.9318 0.5002 0.7390
USAD 0.7011 0.0733 0.9854 0.9213 0.7613 0.8389
MTAD-GAT 0.6267 0.0520 0.9798 0.6661 0.6122 0.8248
CAE-M 0.6109 0.0781 0.9569 0.9318 0.6001 0.8389
GDN 0.6121 0.0412 0.9811 0.7107 0.6819 0.8389
TranAD 0.7688 0.0649 0.9869 0.9478 0.8113 0.8391

in other modes (see Figure 5). TranAD is able to leverage the com-
plete trace information with the local window to aid in pinpointing
anomalous behavior to specific modes. The table demonstrates that
TranAD is able to detect 46.3% − 75.3% root causes for anomalies.

Compared to the baseline methods, TranAD is able to improve
diagnosis score by up to 6% for SMD and 30% for MSDS. The average
improvement in diagnosis scores is 4.25%.

5 ANALYSES

5.1 Ablation Analysis

To study the relative importance of each component of the model,
we exclude every major one and observe how it affects the perfor-
mance in terms of the F1 scores for each dataset. First, we consider
the TranAD model without the transformer-based encoder-decoder

Figure 4: Critical difference diagrams for F1 and AUC scores

using the Wilkoxon pairwised signed rank test (with 𝛼 =
0.05) on all datasets. Rightmost methods are ranked higher.

Figure 5: Predicted and Ground Truth labels for the MSDS

test set using the TranAD model.

architecture but instead with a feed-forward network. Second, we
consider the model without the self-conditioning, i.e., we fix the
focus score 𝐹 = �0 in phase 2. Third, we study the model without

Table 4: Diagnosis Performance.

Method
SMD MSDS

H@100% H@150% N@100% N@150% H@100% H@150% N@100% N@150%

MERLIN 0.5907 0.6177 0.4150 0.4912 0.3816 0.5626 0.3010 0.3947
LSTM-NDT 0.3808 0.5225 0.3603 0.4451 0.1504 0.2959 0.1124 0.1993
DAGMM 0.4927 0.6091 0.5169 0.5845 0.2617 0.4333 0.3153 0.4154
OmniAnomaly 0.4567 0.5652 0.4545 0.5125 0.2839 0.4365 0.3338 0.4231
MSCRED 0.4272 0.5180 0.4609 0.5164 0.2322 0.3469 0.2297 0.2962
MAD-GAN 0.4630 0.5785 0.4681 0.5522 0.3856 0.5589 0.4277 0.5292
USAD 0.4925 0.6055 0.5179 0.5781 0.3095 0.4769 0.3534 0.4515
MTAD-GAT 0.3493 0.4777 0.3759 0.4530 0.5812 0.5885 0.5926 0.6522
CAE-M 0.4707 0.5878 0.5474 0.6178 0.2530 0.4171 0.2047 0.3010
GDN 0.3143 0.4386 0.2980 0.3724 0.2276 0.3382 0.2921 0.3570
TranAD 0.4981 0.6401 0.4941 0.6178 0.4630 0.7533 0.5981 0.6963

Table 5: Comparison of training times in seconds per epoch.

Method NAB UCR MBA SMAP MSL SWaT WADI SMD MSDS

MERLIN 3.28 4.09 20.19 6.89 5.12 10.12 132.69 72.32 42.22
LSTM-NDT 10.64 8.71 27.80 27.62 26.24 26.43 297.12 373.14 361.12
DAGMM 25.38 20.78 74.62 19.05 16.41 18.51 178.17 204.36 187.54
OmniAnomaly 38.27 27.96 109.86 27.05 21.31 28.39 212.99 276.97 277.10
MSCRED 258.86 262.45 592.13 16.13 33.47 183.67 1349.05 237.66 109.63
MAD-GAN 39.80 25.71 160.29 29.49 26.27 27.79 293.60 314.82 285.25
USAD 31.21 21.10 120.86 23.63 21.22 22.72 242.86 250.97 232.82
MTAD-GAT 145.00 97.12 233.08 1015.03 1287.42 103.92 9812.13 6564.11 1304.09
CAE-M 22.48 19.42 67.44 187.35 575.96 41.25 5525.62 3102.12 552.83
GDN 83.84 58.78 159.01 62.33 96.71 59.40 4063.05 809.94 585.34
TranAD 1.25 0.84 4.08 3.55 5.27 0.87 115.91 43.56 17.15

Table 6: Ablation Study - F1 and F1* scores for TranAD and

its ablated versions.

Method
NAB UCR MBA

F1 F1* F1 F1* F1 F1*

TranAD 0.9364 0.8421 0.9694 0.9399 0.9780 0.9617

w/o transformer 0.8850 0.8019 0.8466 0.5495 0.9749 0.9584
w/o self-condition 0.8887 0.8102 0.9191 0.9028 0.9770 0.9617

w/o adversarial training 0.9012 0.8102 0.9634 0.9289 0.9752 0.9592
w/o MAML 0.9068 0.8210 0.9689 0.9304 0.9756 0.9617

Method
SMAP MSL SWaT

F1 F1* F1 F1* F1 F1*

TranAD 0.8915 0.8889 0.9494 0.9172 0.8151 0.8094

w/o transformer 0.8643 0.8147 0.9137 0.9037 0.8143 0.6360
w/o self-condition 0.8894 0.8153 0.9175 0.8913 0.7953 0.8094
w/o adversarial training 0.8906 0.8476 0.9455 0.9172 0.8028 0.7832
w/o MAML 0.8915 0.8899 0.9466 0.6732 0.8143 0.8079

Method
WADI SMD MSDS

F1 F1* F1 F1* F1 F1*

TranAD 0.4951 0.0649 0.9605 0.9478 0.9262 0.8391

w/o transformer 0.2181 0.0037 0.9071 0.9032 0.8867 0.8389
w/o self-condition 0.3620 0.0631 0.9502 0.8847 0.8748 0.8214
w/o adversarial training 0.3820 0.0621 0.9177 0.8667 0.9181 0.8389
w/o MAML 0.4815 0.0553 0.9433 0.8164 0.8870 0.8389

the adversarial loss, i.e., a single-phase inference and only the re-
construction loss for model training. Finally, we consider the model
without meta-learning. The results are summarized in Table 6 and
provide the following findings:

• Replacing the transformer-based encoder-decoder has the high-
est performance drop of nearly 11% in terms of the F1 score. This
drop is more pronounced for theWADI dataset (56%), demonstrat-
ing the need for the attention-based transformer for large-scale
datasets.

• When we remove the self-conditioning, the average drop in F1
scores is 6%, which shows that the focus score aids prediction
performance.

• Removing the two-phase adversarial training mainly affects SMD
andWADI datasets as these traces have a large proportion of mild
anomalies and the adversarial loss helps amplify the anomaly
scores. The average drop in F1 score, in this case, is 5%.

• Not having the meta-learning in the model has little effect to the
F1 scores (≈1%); however, it leads to a nearly 12% drop in F1*.

5.2 Overhead Analysis

Table 5 shows the average training times for all models on every
dataset in seconds per epoch. For comparison, we report the train-
ing time for MERLIN as the time it takes to discover discords in

20% 40% 60% 80% 100%

Training dataset ratio

0.6

0.7

0.8

0.9

F
1
S
co

re

(a) F1 Score

20% 40% 60% 80% 100%

Training dataset ratio

0.80

0.85

0.90

0.95

R
O
C
/
A
U
C

(b) ROC/AUC Score

20% 40% 60% 80% 100%

Training dataset ratio

102

103

T
ra
in
in
g
T
im

e
(s
ec
o
n
d
s)

(c) Training Time

Figure 6: F1 score, ROC/AUC score and training times with dataset size.

5 10 50 100 500

Window Size

0.70

0.75

0.80

0.85

F
1
S
co

re

(a) F1 Score

5 10 50 100 500

Window Size

0.90

0.92

0.94

0.96

0.98

R
O
C
/
A
U
C

(b) ROC/AUC Score

5 10 50 100 500

Window Size

30

35

40

45

50

T
ra
in
in
g
T
im

e
(s
ec
o
n
d
s)

(c) Training Time

Figure 7: F1 score, ROC/AUC score and training times with window size.

the test data. The training time of TranAD is 75% − 99% lower than
those of the baselines. This demonstrates the advantage of hav-
ing a transformer with positional encoding to push the complete
sequence as an input instead of inferring over sequential windows.

5.3 Sensitivity Analysis

Sensitivity to the training set size. Figure 6 shows the variation
of the F1 and AUC scores of all models averaged for all datasets, and
the training time with the ratio of the training data used for model
training, ranging from 20% to 100%. We do not report sensitivity
results on MERLIN as it does not use training data. Other deep
learning based reconstruction models are given the same randomly
sampled subsequence of 20% to 100% size as that of the training data.
We report 90% confidence bounds in Figure 6. Clearly, as dataset size
increases, the prediction performance improves and the training
time increases. We observe that for every ratio, the TranAD model
has a higher F1 score and a lower training time.

Sensitivity to thewindow size.We also show the performance
of the TranAD model and its variants with different window sizes
in Figure 7. The window size has an impact both on the anomaly
detection scores and training times. TranAD can detect anomalies
faster when we have smaller windows since the inference time is
lower for smaller inputs. If the window is too small, it does not
represent the local contextual information well. However, if the
window is too large, short anomalies may be hidden in a large
number of datapoints in such a window (see the drop in F1 score

for some models). A window size of 10 gives a reasonable balance
between the F1 score and training times and hence is used in our
experiments.

6 CONCLUSIONS

We present a transformer based anomaly detection model (TranAD)
that can detect and diagnose anomalies for multivariate time-series
data. The transformer based encoder-decoder allows quick model
training and high detection performance for a variety of datasets
considered in this work. TranAD leverages self-conditioning and
adversarial training to amplify errors and gain training stability.
Moreover, meta-learning allows it to be able to identify data trends
even with limited data. Specifically, TranAD achieves an improve-
ment of 17% and 11% for F1 score on complete and limited training
data, respectively. It is also able to correctly identify root causes for
up to 75% of the detected anomalies, higher than the state-of-the-art
models. It is able to achieve this with up to 99% lower training times
compared to the baseline methods. This makes TranAD an ideal
choice for modern industrial systems where accurate and quick
anomaly predictions are required.

For the future, we propose to extend the method with other
transformer models like bidirectional neural networks to allow
model generalization to diverse temporal trends in data. We also
wish to explore the direction of applying cost-benefit analysis for
each model component based on the deployment setting to avoid
expensive computation.

REFERENCES
[1] Hossein Abbasimehr, Mostafa Shabani, and Mohsen Yousefi. 2020. An optimized

model using LSTM network for demand forecasting. Computers & industrial
engineering 143 (2020), 106435.

[2] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. 2017. Unsuper-
vised real-time anomaly detection for streaming data. Neurocomputing 262 (2017),
134–147.

[3] Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P Mathur. 2017.
WADI: a water distribution testbed for research in the design of secure cyber
physical systems. In Proceedings of the 3rd International Workshop on Cyber-
Physical Systems for Smart Water Networks. 25–28.

[4] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A
Zuluaga. 2020. USAD: UnSupervised Anomaly Detection on Multivariate Time
Series. In Proceedings of the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. 3395–3404.

[5] Tharindu R Bandaragoda, Kai Ming Ting, David Albrecht, Fei Tony Liu, and
Jonathan R Wells. 2014. Efficient anomaly detection by isolation using near-
est neighbour ensemble. In 2014 IEEE International Conference on Data Mining
Workshop. IEEE, 698–705.

[6] Julian Bellendorf and Zoltán Ádám Mann. 2020. Classification of optimization
problems in fog computing. Future Generation Computer Systems 107 (2020),
158–176.

[7] Nejc Bezak, Mitja Brilly, and Mojca Šraj. 2014. Comparison between the peaks-
over-threshold method and the annual maximum method for flood frequency
analysis. Hydrological Sciences Journal 59, 5 (2014), 959–977.

[8] Paul Boniol, Michele Linardi, Federico Roncallo, and Themis Palpanas. 2020.
Automated anomaly detection in large sequences. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1834–1837.

[9] Paul Boniol, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2020.
Graphan: Graph-based subsequence anomaly detection. Proceedings of the VLDB
Endowment 13, 12 (2020), 2941–2944.

[10] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. 2021.
SAND: Streaming Subsequence Anomaly Detection. Proc. VLDB Endow. 14, 10
(2021), 1717–1729.

[11] Saikiran Bulusu, Bhavya Kailkhura, Bo Li, Pramod K Varshney, and Dawn Song.
2020. Anomalous example detection in deep learning: A survey. IEEE Access 8
(2020), 132330–132347.

[12] Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep learning for anomaly
detection: A survey. arXiv preprint arXiv:1901.03407 (2019).

[13] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan
Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing
Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, and
Hexagon-ML. 2018. The UCR Time Series Classification Archive. https:
//www.cs.ucr.edu/~eamonn/time_series_data_2018/.

[14] Ailin Deng and BryanHooi. 2021. Graph neural network-based anomaly detection
in multivariate time series. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 4027–4035.

[15] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International Conference on
Machine Learning. PMLR, 1126–1135.

[16] Shaghayegh Gharghabi, Shima Imani, Anthony Bagnall, Amirali Darvishzadeh,
and Eamonn Keogh. 2018. Matrix profile XII: MPDIST: a novel time series
distance measure to allow data mining in more challenging scenarios. In 2018
IEEE International Conference on Data Mining (ICDM). IEEE, 965–970.

[17] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch
Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and
H Eugene Stanley. 2000. PhysioBank, PhysioToolkit, and PhysioNet: components
of a new research resource for complex physiologic signals. circulation 101, 23
(2000), e215–e220.

[18] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A Survey of the
State-of-the-Art. Knowledge-Based Systems 212 (2021), 106622.

[19] Shaohan Huang, Yi Liu, Carol Fung, Rong He, Yining Zhao, Hailong Yang, and
Zhongzhi Luan. 2020. HitAnomaly: Hierarchical Transformers for Anomaly
Detection in System Log. IEEE Transactions on Network and Service Management
17, 4 (2020), 2064–2076.

[20] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and
Tom Soderstrom. 2018. Detecting spacecraft anomalies using LSTMs and non-
parametric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD inter-
national conference on knowledge discovery & data mining. 387–395.

[21] Shima Imani, Frank Madrid, Wei Ding, Scott Crouter, and Eamonn Keogh. 2018.
Matrix profile xiii: Time series snippets: a new primitive for time series data
mining. In 2018 IEEE international conference on big knowledge (ICBK). IEEE,
382–389.

[22] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. 2019. Deep learning for time series classification: a
review. Data Mining and Knowledge Discovery 33, 4 (2019), 917–963.

[23] Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, and Nesime
Tatbul. 2020. Exathlon: A Benchmark for Explainable Anomaly Detection over
Time Series. Proceedings of the VLDB Endowment (2020).

[24] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[25] Stratis Kanarachos, Jino Mathew, Alexander Chroneos, and M Fitzpatrick. 2015.
Anomaly detection in time series data using a combination of wavelets, neural net-
works and Hilbert transform. In 2015 6th International Conference on Information,
Intelligence, Systems and Applications (IISA). IEEE, 1–6.

[26] Eamonn Keogh, Dutta Roy Taposh, U Naik, and A Agrawal. 2021. Multi-dataset
Time-Series Anomaly Detection Competition. In ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. https://compete.hexagon-
ml.com/practice/competition/39/.

[27] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[28] Kyle Kingsbury and Peter Alvaro. 2020. Elle: inferring isolation anomalies from
experimental observations. Proceedings of the VLDB Endowment 14, 3 (2020),
268–280.

[29] Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng.
2019. MAD-GAN: Multivariate anomaly detection for time series data with
generative adversarial networks. In International Conference on Artificial Neural
Networks. Springer, 703–716.

[30] Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo Li,
Tianqing Wang, and Shifu Li. 2021. opengauss: An autonomous database system.
Proceedings of the VLDB Endowment 14, 12 (2021), 3028–3042.

[31] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
eighth ieee international conference on data mining. IEEE, 413–422.

[32] Steven Liu, Tongzhou Wang, David Bau, Jun-Yan Zhu, and Antonio Torralba.
2020. Diverse image generation via self-conditioned GANs. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 14286–14295.

[33] Aditya P Mathur and Nils Ole Tippenhauer. 2016. SWaT: a water treatment
testbed for research and training on ICS security. In 2016 international workshop
on cyber-physical systems for smart water networks (CySWater). IEEE, 31–36.

[34] GideonMbiydzenyuy. 2020. Univariate Time Series Anomaly Labelling Algorithm.
In International Conference on Machine Learning, Optimization, and Data Science.
Springer, 586–599.

[35] Steena Monteiro, Forrest Iandola, and Daniel Wong. 2016. STOMP: Statistical
Techniques for Optimizing and Modeling Performance of blocked sparse ma-
trix vector multiplication. In 2016 28th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). IEEE, 93–100.

[36] George BMoody and Roger GMark. 2001. The impact of the MIT-BIH arrhythmia
database. IEEE Engineering in Medicine and Biology Magazine 20, 3 (2001), 45–50.

[37] Takaaki Nakamura, Makoto Imamura, Ryan Mercer, and Eamonn Keogh. 2020.
MERLIN: Parameter-Free Discovery of Arbitrary Length Anomalies in Massive
Time Series Archives. In 2020 IEEE International Conference on Data Mining
(ICDM). IEEE, 1190–1195.

[38] Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, Soeren Becker,
Jorge Cardoso, and Odej Kao. 2020. Multi-source distributed system data for
AI-powered analytics. In European Conference on Service-Oriented and Cloud
Computing. Springer, 161–176.

[39] Daehyung Park, Yuuna Hoshi, and Charles C Kemp. 2018. A multimodal anomaly
detector for robot-assisted feeding using an LSTM-based variational autoencoder.
IEEE Robotics and Automation Letters 3, 3 (2018), 1544–1551.

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
Advances in Neural Information Processing Systems 32 (2019), 8026–8037.

[41] Animesh Patcha and Jung-Min Park. 2007. An overview of anomaly detection
techniques: Existing solutions and latest technological trends. Computer networks
51, 12 (2007), 3448–3470.

[42] Noorhan Saleh and Maggie Mashaly. 2019. A Dynamic Simulation Environment
for Container-based Cloud Data Centers using ContainerCloudSim. In 2019 Ninth
International Conference on Intelligent Computing and Information Systems (ICICIS).
IEEE, 332–336.

[43] Osman Salem, Alexey Guerassimov, Ahmed Mehaoua, Anthony Marcus, and
Borko Furht. 2014. Anomaly detection in medical wireless sensor networks using
SVM and linear regression models. International Journal of E-Health and Medical
Communications (IJEHMC) 5, 1 (2014), 20–45.

[44] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouet.
2017. Anomaly detection in streams with extreme value theory. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1067–1075.

[45] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust
anomaly detection for multivariate time series through stochastic recurrent
neural network. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2828–2837.

[46] Srikanth Thudumu, Philip Branch, Jiong Jin, and Jugdutt Jack Singh. 2020. A
comprehensive survey of anomaly detection techniques for high dimensional
big data. Journal of Big Data 7, 1 (2020), 1–30.

[47] Luan Tran, Min Y Mun, and Cyrus Shahabi. 2020. Real-time distance-based
outlier detection in data streams. Proceedings of the VLDB Endowment 14, 2 (2020),
141–153.

[48] Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. 2022. PreGAN: Preemp-
tive Migration Prediction Network for Proactive Fault-Tolerant Edge Computing.
In IEEE Conference on Computer Communications (INFOCOM). IEEE.

[49] Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. 2022. TranAD: Deep
Transformer Networks for Anomaly Detection in Multivariate Time Series Data.
arXiv preprint arXiv:2201.07284 (2022).

[50] Shreshth Tuli, Shivananda Poojara, Satish Narayana Srirama, Giuliano Casale,
and Nick Jennings. 2021. COSCO: Container Orchestration using Co-Simulation
and Gradient Based Optimization for Fog Computing Environments. IEEE Trans-
actions on Parallel and Distributed Systems (2021).

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems. 6000–6010.

[52] Yiyang Wang, Neda Masoud, and Anahita Khojandi. 2020. Real-time sensor
anomaly detection and recovery in connected automated vehicle sensors. IEEE
Transactions on Intelligent Transportation Systems 22, 3 (2020), 1411–1421.

[53] YWebscope. [n.d.]. S5-A Labeled Anomaly Detection Dataset, Version 1.0. https:
//webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70. Ac-
cessed: 2021-08-31.

[54] Krzysztof Witkowski. 2017. Internet of things, big data, industry 4.0–innovative
solutions in logistics and supply chains management. Procedia engineering 182
(2017), 763–769.

[55] Renjie Wu and Eamonn J Keogh. 2020. Current Time Series Anomaly Detection
Benchmarks are Flawed and are Creating the Illusion of Progress. arXiv preprint
arXiv:2009.13807 (2020).

[56] Asrul H Yaacob, Ian KT Tan, Su Fong Chien, and Hon Khi Tan. 2010. Arima
based network anomaly detection. In 2010 Second International Conference on
Communication Software and Networks. IEEE, 205–209.

[57] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federatedmachine
learning: Concept and applications. ACM Transactions on Intelligent Systems and

Technology (TIST) 10, 2 (2019), 1–19.
[58] Dragomir Yankov, Eamonn Keogh, and Umaa Rebbapragada. 2008. Disk aware dis-

cord discovery: Finding unusual time series in terabyte sized datasets. Knowledge
and Information Systems 17, 2 (2008), 241–262.

[59] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,
Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh. 2016.
Matrix profile I: all pairs similarity joins for time series: a unifying view that
includes motifs, discords and shapelets. In 2016 IEEE 16th international conference
on data mining (ICDM). Ieee, 1317–1322.

[60] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu,
Wei Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V Chawla. 2019.
A deep neural network for unsupervised anomaly detection and diagnosis in
multivariate time series data. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 1409–1416.

[61] Yuxin Zhang, Yiqiang Chen, JindongWang, and Zhiwen Pan. 2021. Unsupervised
Deep Anomaly Detection for Multi-Sensor Time-Series Signals. IEEE Transactions
on Knowledge and Data Engineering (2021).

[62] Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yunhai
Tong, Bixiong Xu, Jing Bai, Jie Tong, and Qi Zhang. 2020. Multivariate time-series
anomaly detection via graph attention network. International Conference on Data
Mining (2020).

[63] Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar, and
Eamonn Keogh. 2018. Matrix profile XI: SCRIMP++: time series motif discovery
at interactive speeds. In 2018 IEEE International Conference on DataMining (ICDM).
IEEE, 837–846.

[64] Zachary Zimmerman, Nader Shakibay Senobari, Gareth Funning, Evangelos
Papalexakis, Samet Oymak, Philip Brisk, and Eamonn Keogh. 2019. Matrix
profile XVIII: time series mining in the face of fast moving streams using a
learned approximate matrix profile. In 2019 IEEE International Conference on Data
Mining (ICDM). IEEE, 936–945.

[65] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki
Cho, and Haifeng Chen. 2018. Deep autoencoding gaussian mixture model
for unsupervised anomaly detection. In International Conference on Learning
Representations.

SpaceSaving±: An Optimal Algorithm for Frequency Estimation
and Frequent Items in the Bounded-DeletionModel

Fuheng Zhao
UC Santa Barbara

fuheng_zhao@ucsb.edu

Divyakant Agrawal
UC Santa Barbara

agrawal@cs.ucsb.edu

Amr El Abbadi
UC Santa Barbara
amr@cs.ucsb.edu

Ahmed Metwally
Uber, Inc.

ametwally@uber.com

ABSTRACT

In this paper, we propose the first deterministic algorithms to
solve the frequency estimation and frequent item problems in the
bounded-deletion model. We establish the space lower bound for
solving the deterministic frequent items problem in the bounded-
deletion model, and propose Lazy SpaceSaving± and SpaceSaving±

algorithms with optimal space bound. We develop an efficient im-
plementation of the SpaceSaving± algorithm that minimizes the
latency of update operations using novel data structures. The ex-
perimental evaluations testify that SpaceSaving± has accurate fre-
quency estimations and achieves very high recall and precision
across different data distributions while using minimal space. Our
experiments clearly demonstrate that, if allowed the same space,
SpaceSaving± is more accurate than the state-of-the-art protocols

with up to
𝑙𝑜𝑔𝑈−1
𝑙𝑜𝑔𝑈 of the items deleted, where𝑈 is the size of the

input universe. Moreover, motivated by prior work, we propose
Dyadic SpaceSaving±, the first deterministic quantile approxima-
tion sketch in the bounded-deletion model.

PVLDB Reference Format:

Fuheng Zhao, Divyakant Agrawal, Amr El Abbadi, and Ahmed Metwally.
SpaceSaving±: An Optimal Algorithm for Frequency Estimation and
Frequent Items in the Bounded-Deletion Model . PVLDB, 15(6): 1215 - 1227,
2022.

doi:10.14778/3514061.3514068

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/ZhaoFuheng/SpaceSavingBoundedDeletionModel.

1 INTRODUCTION

With the development of new technologies and advancements in
digital devices, massive amounts of data are generated each day
and these data contain crucial information that needs to be ana-
lyzed. To make the best use of streaming big data, data sketch1

algorithms are often leveraged to process the data only once and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514068

1The term sketch refers to the algorithms and data structures that can extract valuable
information through one pass on the entire data.

to provide essential analysis and statistical measures with strong
accuracy guarantees while using limited resources. For instance,
with limited space and one pass on the dataset, Hyperloglog [23]
enables cardinality estimation, the Bloom Filter [8] answers set
membership, and KLL [28, 33] provides quantile approximation.

Two fundamental problems in data streams are identifying the
most frequently occurring items, a.k.a. frequent items, heavy hitters,
Top-K, elephants, iceberg queries, and estimating the frequency
of an item, a.k.a the frequency estimation problem. The formal
definition of these two problems are included in Section 2.1. Several
algorithms [12, 17, 36, 38] have been proposed to solve both prob-
lems with tunable accuracy guarantees using small memory foot-
prints. These algorithms can be categorized into counter based and
linear sketch based approaches. The counter based approach [38]
tracks a subset of input items and their estimated frequencies. The
linear sketch based approach [12, 17, 30] tracks attribute informa-
tion from the universe. While linear sketches [12, 17] directly solve
the frequency estimation problem, they require additional struc-
tures such as heaps or need to impose hierarchical structures over
the assumed-bounded universe to solve the frequent items prob-
lem. The frequency estimation and frequent items problems have
important applications, such as click stream analysis [20, 26, 38],
distributed caches [45], database management [14, 22, 40, 43], and
network monitoring [5, 27, 42]. In addition, if inputs are drawn
from a bounded universe, frequency estimation sketches can also
solve the quantile approximation problem [17, 44].

Historically, all sketches assumed the insertion-only model or the
turnstile model. The insertion-only model consists only of insert
operations, whereas the turnstile model consists of both insert
and delete operations such that deletes are always performed on
previously inserted items [44]. Supporting both insert and delete
operations is harder, e.g., sketches in the turnstile model incur larger
space overhead and higher update times compared to sketches
in the insertion-only model. Jayaram et al. [29] observed that in
practice many turnstile models only incur a fraction of deletions
and proposed an intermediate model, the bounded-deletions model,
in which at most (1− 1

𝛼) of prior insertions are deleted where 𝛼 ≥ 1

and (1− 1
𝛼) upper bounds the delete:insert ratio. Setting 𝛼 to 1, the

bounded-deletion model becomes the insertion-only model.
The bounded-deletion model is important in many real-world

applications such as summarizing product sales in electronic com-
merce platforms and rankings in standardized testing. Many compa-
nies use purchase frequency to check if their customers are satisfied
with a product and to identify important groups for advertising

and marketing campaigns. After customers purchase products, a
certain percentage of the purchases may be returned and the fre-
quency estimation should reflect these changes. However, for any
financially viable company, it is highly unlikely that all of these
customers will return their purchases and hence in most cases the
bounded-deletion model can be assumed. In the context of stan-
dardized testing such as SAT, ACT, and GRE, frequency estimations
are often used to compare and contrast performance among differ-
ent demographics2. Students may request regrades of their exams
only once to rectify any machine errors or human errors. Hence,
the bounded-deletion model can be used with 𝛼 = 2. Recently,
the bounded-deletion model has gained in popularity, and several
algorithms have been proposed to discover novel properties of
streaming tasks [10, 29, 32, 48].

In this paper, we present the SpaceSaving± algorithm that solves
both frequency estimation and frequent items problems in the
bounded-deletion model with state-of-the-art performance and
minimal memory footprint. If the administrator of a large data set
knows, a priori, that deletions are not arbitrarily frequent com-
pared to insertions, then SpaceSaving± can efficiently capture these
changes and identify frequent items with small space, fast up-
date time, and high accuracy. In addition, inspired by quantile
summaries [17, 24, 44], we further demonstrate how to leverage
SpaceSaving± to support deterministic quantile approximation in
the bounded-deletion model. In summary, the main contributions of
this paper are: (i) we present Lazy SpaceSaving± and SpaceSaving±,
two space optimal deterministic algorithms in the bounded-deletion
model and establish their space optimality and correctness; (ii) we
propose the Dyadic SpaceSaving± sketch, the first deterministic
quantile approximation sketch in the bounded-deletion model; (iii)
we implement SpaceSaving± using two heaps to minimize the up-
date time; and (iv) we evaluate SpaceSaving± and compare it to
the state-of-the-art approaches [12, 17, 29] and achieve 5 orders of
magnitude better accuracy on a real-world dataset.

The paper is organized as follows, Section 2 discusses the back-
ground of frequency estimation and frequent items problem, and
gives an overview of previous algorithms. Section 3 introduces Lazy
SpaceSaving± and SpaceSaving± in the bounded-deletion model,
demonstrates that these algorithms are space optimal, and presents
an efficient implementation using a min heap and a max heap
data structure to minimize update time. Section 4 shows the ex-
perimental evaluations conducted using synthetic and real world
datasets and compares SpaceSaving± to the state-of-the-art sketches
that support delete operations. Section 5 introduces the Dyadic
SpaceSaving± quantile sketch to solve the deterministic quantile
approximation problem in the bounded-deletion model. Finally,
Section 6 summarizes our contributions and concludes this work.

2 BACKGROUND

2.1 Preliminaries

Given a stream 𝜎 = {𝑖𝑡𝑒𝑚𝑡 }𝑡 ∈{1,2,...,𝑁 } of length 𝑁 and items
drawn from 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 of size 𝑈 , the frequency of an item 𝑥 is
𝑓 (𝑥) =

∑𝑁
𝑡=1 𝜋 (𝑖𝑡𝑒𝑚𝑡 = 𝑥) where 𝜋 returns 1 if 𝑖𝑡𝑒𝑚𝑡 is 𝑥 , and

returns 0 otherwise. The stream 𝜎 implicitly defines a frequency

2https://reports.collegeboard.org/pdf/2020-total-group-sat-suite-assessments-
annual-report.pdf

vector 𝐹 = {𝑓 (𝑎1), ..., 𝑓 (𝑎𝑈)} for items 𝑎1,...,𝑎𝑈 in the 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 .
Some algorithms assume the 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 is bounded, such as in the
IP network monitoring context [42]. Many algorithms assume unit
updates, such as the click stream, while others consider the scenario
of weighted updates such as purchasing multiple units of the same
item at once on an e-commerce platform. In this paper, we focus on
the unit updates model and assume that items cannot be deleted if
they were not previously inserted and hence all entries in frequency
vector 𝐹 are non-negative.

The frequency estimation problem takes an accuracy parameter 𝜖

and estimates the frequency of any item 𝑥 such that |𝑓 (𝑥) − 𝑓 (𝑥) | ≤
𝜖 · |𝐹 |𝑝 , where 𝑝 can be either 1 or 2 corresponding to 𝑙1 or 𝑙2 norm

and respectively provide 𝑙1 or 𝑙2 guarantees, 𝑓 (𝑥) is the estimated
frequency and 𝑓 (𝑥) is the actual frequency. When 𝑝 > 2, providing
𝑙𝑝 guarantee requires 𝑝𝑜𝑙𝑦 (𝑈) space [4]. In this paper, we focus on
the 𝑙1 problem variation. The𝜙 frequent items problem is to identify
a bag of heavy items whose frequency is greater than or equal to the
specified threshold 𝜙 · |𝐹 |1, where 0 < 𝜙 < 1. These heavy items are
also known as the hot items.3 In addition, some algorithms solve
the (𝜖, 𝜙)-approximate frequent items problem, which is to identify
a bag of items 𝐵, given parameter 0 < 𝜖 ≤ 𝜙 < 1, such that 𝐵 does
not contain any element with frequency less then (𝜙 − 𝜖) |𝐹 |1, i.e.,
∀𝑖 ∈ 𝐵, 𝑓 (𝑖) > (𝜙 − 𝜖) |𝐹 |1 and 𝐵 contains all items with frequency
greater than 𝜙 |𝐹 |1 i.e., ∀𝑖 ∉ 𝐵, 𝑓 (𝑖) < 𝜙 |𝐹 |1.

2.2 Deterministic and Randomized Solutions

Reporting the exact frequent items requires Ω(𝑁) space [13]. With
limited memory, solving the exact frequent items problem is infea-
sible for large datasets. An alternative and practical approach in
the context of big data is to use approximation techniques.

Deterministic solutions for the 𝜙 frequent items problem guar-
antee to return all heavy items and potentially some non-heavy
items [21, 34, 38, 39]. Randomized solutions for the (𝜖, 𝜙)-approximate
frequent items problem allow the algorithm to fail with some proba-
bility 𝛿 [12, 17, 29]. In much of the literature, the failure probability
is to set 𝛿 = 𝑂 (𝑈 −𝑐) where 𝑈 is the bounded universe size and 𝑐
is some constant. From the user perspective, deterministic algo-
rithms provide stronger guarantees as all heavy items are identified.
Randomized algorithms, on the other hand, with 1 − 𝛿 probability
report all heavy items and do not report any light weighted items.

2.3 Algorithms in Insertion-Only Model

The insertion-only model consists only of insert operations and
many of the proposed algorithms in the insertion-only model are
counter-based algorithms which maintain a fixed number of 𝑖𝑡𝑒𝑚
and 𝑐𝑜𝑢𝑛𝑡 pairs, and the underlying maintenance algorithm incre-
ments or decrements these counts to capture the frequency of items
that are being tracked.

The first counter-based one pass algorithm to find the most
frequent items in a large dataset dates back to the deterministic
MajorityAlgorithm by Boyer and Moore in 1981 [9]. In 1982, Misra
and Gries [39] generalized the majority problem and proposed the
deterministic MG summary which uses 𝑂 (1𝜖) space to solve the
frequency estimation and frequent items problems. MG summary
is a set of 1

𝜖 counters that correspond to monitored items. When a

3The term “Hot Items” was coined in [18]

Table 1: Comparison between different 𝑙1 frequency estimation algorithm.

Sketch Space Update Time Randomization Model Note

SpaceSaving [38] 𝑂 (1𝜖) 𝑂 (1) Deterministic Insertion-Only see Lemma 1

Count-Min [17] 𝑂 (1𝜖 𝑙𝑜𝑔
1
𝛿) 𝑂 (𝑙𝑜𝑔 1

𝛿) Randomized Turnstile Never Underestimate

Count-Median [12] 𝑂 (1𝜖 𝑙𝑜𝑔
1
𝛿) 𝑂 (𝑙𝑜𝑔 1

𝛿) Randomized Turnstile Unbiased Estimation

CSSampSim [29] 𝑂 (1𝜖 𝑙𝑜𝑔
1
𝛿 𝑙𝑜𝑔

𝛼𝑙𝑜𝑔𝑈
𝜖) bits Θ(

𝛼𝑙𝑜𝑔𝑈
𝜖𝑈 𝑙𝑜𝑔 1

𝛿) Randomized Bounded-Deletion

Lazy-SpaceSaving± 𝑂 (𝛼𝜖) 𝑂 (𝑙𝑜𝑔𝛼
𝜖) Deterministic Bounded-Deletion see Lemma 7

SpaceSaving± 𝑂 (𝛼𝜖) 𝑂 (𝑙𝑜𝑔𝛼
𝜖) Deterministic Bounded-Deletion

Table 2: Frequently used symbols

𝜎 Data stream
𝑁 Data stream length

𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 All data are drawn from 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒
𝑈 Size of the 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒
𝐹 Frequency vector

𝑓 (𝑥) 𝑥 ’s true frequency

𝑓 (𝑥) 𝑥 ’s estimated frequency
𝜖 Accuracy
𝛿 Failure probability
𝐼 Number of insertions
𝐷 Number of deletions
𝛼 In the bounded-deletion model, 𝐷 ≤ (1 − 1

𝛼)𝐼
𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 The minimum count inside a sketch
𝑚𝑖𝑛𝐼𝑡𝑒𝑚 The item with𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡

new item arrives, MG performs the following updates: if the new
item is monitored, then increase its count by 1. Else if the summary
is not full, monitor the new item. Else decrement all counts by
1 and remove any items with a count of zero. As a result of MG
decrementing all counts by 1 when an arriving item is unmonitored,
MG always underestimate item’s frequency, and a hash-table im-
plementation requires worst case𝑂 (1/𝜖) update time. Two decades
later, Manku and Motwani [36] proposed a randomized StickySam-

pling algorithm and a deterministic LossyCounting algorithm
with worst case space 𝑂 (1𝜖 𝑙𝑜𝑔(𝜖𝑁)), which exceeds the memory
cost of MG summary. In 2003, Demaine et al. [21] and Karp et al. [34]
independently generalized the majority algorithm and proposed
the Frequent algorithm, which are both a rediscovery of the MG.

Two years later, in 2005, Metwally, Agrawal, and El Abbadi [38]
proposed the SpaceSaving algorithm that provides highly accurate
frequency estimates for frequent items and also presents a very
efficient method to process insertions. SpaceSaving uses 𝑘 counters
to store an item’s identity, estimated count and estimation error
information, i.e., (𝑖𝑡𝑒𝑚, 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚, 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚), and 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚 is an
upper bound on the difference between the item’s estimated fre-
quency and its true frequency. When 𝑘 = 1

𝜖 , SpaceSaving solves
both frequency estimation and frequent items problem. As shown
in Algorithm 1, insertions proceed as follows, when a new item
(𝑛𝑒𝑤𝐼𝑡𝑒𝑚) arrives: if 𝑛𝑒𝑤𝐼𝑡𝑒𝑚 is monitored, then increment its
count; if 𝑛𝑒𝑤𝐼𝑡𝑒𝑚 is not monitored and sketch size not full, then
monitor 𝑛𝑒𝑤𝐼𝑡𝑒𝑚, and set 𝑐𝑜𝑢𝑛𝑡𝑛𝑒𝑤𝐼𝑡𝑒𝑚 to 1 and 𝑒𝑟𝑟𝑜𝑟𝑛𝑒𝑤𝐼𝑡𝑒𝑚

to 0; otherwise, SpaceSaving replaces the item (𝑚𝑖𝑛𝐼𝑡𝑒𝑚) with

the minimum count (𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡) by 𝑛𝑒𝑤𝐼𝑡𝑒𝑚, sets 𝑒𝑟𝑟𝑜𝑟𝑛𝑒𝑤𝐼𝑡𝑒𝑚

to 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 and increments 𝑐𝑜𝑢𝑛𝑡𝑛𝑒𝑤𝐼𝑡𝑒𝑚 . In SpaceSaving [38],
𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚 is only used to show certain properties of the algorithm,
while in this work we leverage this information for handling dele-
tions. As shown in Algorithm 2, to estimate the frequency of an
item in SpaceSaving, if the item is inside the sketch then report
its count value, otherwise report 0. In [2], Agarwal et al. showed
that both SpaceSaving and MG are mergeable 4, and a SpaceSaving
with 𝑘 counters can be isomorphically transformed into a MG sum-
mary with 𝑘 − 1 counters. Although SpaceSaving and MG share
similarities, they follow different sets of update rules. When a new
inserted item is unmonitored and the sketch is full, SpaceSaving
replaces the min item with the new item and increments the count
by one, whereas the MG decrements all item counts’ by 1. As a
result, SpaceSaving maintains an upper bound on the frequency
of stored items, while MG always underestimates the frequency.
Since SpaceSaving always increments one of the counts by one, the
sum of all counts in SpaceSaving is equal to the |𝐹 |1. Moreover, the
SpaceSaving elegantly handles the case when an unmonitored new
item arrives and the sketch is full, and naturally leads to a min-heap
implementation such that incrementing any count and replacing
the min item have 𝑂 (𝑙𝑜𝑔𝑘) update times, where 𝑘 is the number
of counters. SpaceSaving can also be implemented with a linked
list data structure by keeping items with equal counts in a group,
resulting in an 𝑂 (1) update time [38].

SpaceSaving satisfies the following properties (the first three
properties are proved in [38] while the latter two are proved in [47]):

Lemma 1. Frequency estimations for monitored items are never

underestimated in SpaceSaving.

Lemma 2. SpaceSaving with 𝑘 = 1
𝜖 counters ensures that after

processing 𝐼 insertions, the minimum count of all monitored items is

no more than 𝐼
𝑘 = 𝜖𝐼 , i.e,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 < 𝜖𝐼 .

Lemma 3. All itemswith frequency greater than or equal to𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡
are inside the SpaceSaving.

Lemma 4. The sum of all estimation errors in the sketch is an upper

bound on the sum of the frequencies of all unmonitored items.

Lemma 5. SpaceSaving with 1
𝜖 counters can estimate the frequency

of any item with an additive error less than 𝜖𝐼 .

Lemma 2 and Lemma 3, show that SpaveSaving with 1
𝜖 counters

reports all items whose frequencies are greater than or equal to

4Mergeability is desired for distributed settings and means summaries over datasets
can be merged into a single summary as if the single summary processed all datasets.

𝜖 |𝐹 |1. Empirically, many studies have demonstrated that SpaceSav-
ing outperforms other deterministic algorithms and it is considered
to be the state of the art for finding frequent items [13, 35]. More-
over, due to the superior performance of SpaceSaving, many works
use it as a fundamental building block [5, 42, 43, 45, 46]. Recently,
a new randomized algorithm BPtree was proposed by Braverman
et al. [11] to solve the frequent items problem with 𝑙2 guarantees
in the insertion-only model using 𝑂 (1

𝜖2
𝑙𝑜𝑔 1

𝜖) space.

Algorithm 1: SpaceSaving Insert Algorithm

1 for item from insertions do

2 if item ∈ Sketch then

3 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚 += 1 ;

4 else if Sketch not full then

5 Sketch = Sketch ∪ item ;

6 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚 = 1 ;

7 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚 = 0 ;

8 else

9 // Sketch is full;

10 𝑚𝑖𝑛𝐼𝑡𝑒𝑚 =𝑚𝑖𝑛𝑚𝑖𝑛𝐼𝑡𝑒𝑚∈𝑆𝑘𝑒𝑡𝑐ℎ 𝑐𝑜𝑢𝑛𝑡𝑚𝑖𝑛𝐼𝑡𝑒𝑚 ;

11 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚 = 𝑐𝑜𝑢𝑛𝑡𝑚𝑖𝑛𝐼𝑡𝑒𝑚 ;

12 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚 = 𝑐𝑜𝑢𝑛𝑡𝑚𝑖𝑛𝐼𝑡𝑒𝑚+1 ;

13 Replace (𝑚𝑖𝑛𝐼𝑡𝑒𝑚, 𝑐𝑜𝑢𝑛𝑡𝑚𝑖𝑛𝐼𝑡𝑒𝑚, 𝑒𝑟𝑟𝑜𝑟𝑚𝑖𝑛𝐼𝑡𝑒𝑚) by
(𝑖𝑡𝑒𝑚, 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚, 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚)

14 end

Algorithm 2: SpaceSaving Query(item)

1 if 𝑖𝑡𝑒𝑚 ∈ Sketch then

2 return 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚
3 return 0;

2.4 Algorithms in Turnstile Model

In the turnstile model, the stream consists of both insert and delete
operations such that the deletes are always performed on previously
inserted items. The sketches for solving the frequency estimation
problem in the turnstile model are known as linear sketches [13].
While the counter-based solutions solve both the frequency esti-
mation and frequent items problems, the linear sketch solutions
directly answer the frequency estimation problem but need ad-
ditional information to solve the frequent items problem. When
assuming the inputs are from a bounded 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 , linear sketches
can query all items in the universe to identify the frequent items.

In 1999, Alon et al. [3] proposed the randomized AMS sketch
to approximate the second frequency moment. Charikar et al. [12]
improved upon the AMS sketch and proposed the randomized
Count-Median sketch. The Count-Median sketch provides an un-
biased estimator and uses𝑂 (1𝜖 𝑙𝑜𝑔

1
𝛿) and𝑂 (

1
𝜖2
𝑙𝑜𝑔 1

𝛿) space to solve
the 𝑙1 and 𝑙2 frequency estimation problems respectively. Cormode
and Muthukrishnan [17] proposed the Count-Min sketch that
shares a similar algorithm and data structure as the Count-Median
sketch. Count-Min sketch never underestimates frequencies, and
uses 𝑂 (1𝜖 𝑙𝑜𝑔

1
𝛿) space to solve the 𝑙1 frequency estimation problem.

Although one may exhaustively iterate through the universe to
find frequent items, iterating through the universe can be slow and
inefficient. As a result, Cormode andMuthukrishnan [17] suggested
to imposes a hierarchical structure on the bounded universe, such
that there are 𝑙𝑜𝑔𝑈 layers and one Count-Min or Count-Median
sketch per layer. Then use divide-and-conquer to search for the
frequent items from the largest range to an individual item. The
required space is 𝑂 (1𝜖 𝑙𝑜𝑔

1
𝛿 𝑙𝑜𝑔𝑈) and update time is 𝑂 (𝑙𝑜𝑔 1

𝛿 𝑙𝑜𝑔𝑈).

Dyadic intervals are in the form of [𝑖2𝑗 , (𝑖 + 1)2𝑗 − 1] for 𝑗 ∈ 𝑙𝑜𝑔2𝑈
and any constant 𝑖 , such that any ranges can be decomposed into
at most 𝑙𝑜𝑔2𝑈 disjoint dyadic ranges [15]. Dyadic intervals over
a bounded universe can be integrated with frequency estimation
sketches to solve the quantile approximation problem in the turn-
stile model [17, 24, 44].

2.5 Algorithms in Bounded-Deletion Model

In the bounded-deletion model, the stream consists of both insert
and delete operations and a constant 𝛼 ≥ 1 is given such that at
most (1 − 1

𝛼) of prior insertions are deleted, i.e., 𝐷 ≤ (1 − 1
𝛼)𝐼

where 𝐼 is the number of insertions and 𝐷 is the number of dele-
tions. Jayaram et al. [29] proposed the CSSS (Count-Median Sketch
Sample Simulator) to solve the frequency estimation problem in the
bounded-deletion model. Assuming 𝛿 = 𝑂 (𝑈 −𝑐) for some constant
𝑐 and the maximum entry of 𝐹 is 𝑂 (𝑈), then the Count-Min and
the Count-Median sketches require 𝑂 (1𝜖 𝑙𝑜𝑔

2𝑈) bits and achieves
the optimal space lower bound in the turnstile model [31]. Jayaram
et al. [29] pointed out that in the bounded-deletion model by simu-

lating the Count-Median sketch over𝑂 (
𝛼𝑙𝑜𝑔𝑈

𝜖) uniformly sampled
items from the stream and then scaling the counts at the end, the
𝐶𝑆𝑆𝑆 sketch can accurately approximate the true frequency of an
itemwith high probability. Hence, by carefully tuning the size of the

Count-Median, CSSS requires 𝑂 (1𝜖 𝑙𝑜𝑔
1
𝛿 𝑙𝑜𝑔

𝛼𝑙𝑜𝑔𝑈
𝜖) bits, improving

the overall space compared to sketches in the turnstile model.

2.6 Summary

In Table 1, we compare the differences and similarities among sev-
eral different sketches for 𝑙1 frequency estimation. These sketches
can also solve 𝑙1 heavy hitters, though some sketches may need
additional modifications to the parameters or leverage external
data structures. In Table 2, we listed the important symbols used
in the paper. Counter-based solutions have many advantages over
linear sketches. Counter-based solutions are guaranteed to report
all heavy items; they use 𝑂 (𝑙𝑜𝑔 1

𝜖) update time instead of 𝑂 (𝑙𝑜𝑔𝑈)

update time where 1
𝜖 is often less than the universe size𝑈 ; and they

make no assumptions on the 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 and thus can be useful in
Big Data applications where items are drawn from unbounded do-
mains. In this paper, we present SpaceSaving±, an optimal counter-
based deterministic algorithm with 𝑙1 guarantee to solve both the
frequency estimation and frequent items problem in the bounded-
deletion model using 𝑂 (𝛼𝜖) space.

3 THE SPACESAVING± ALGORITHM

In this section, we first show the space lower bound for solving
the frequent items problem in the bounded-deletion model. Then,
we introduce the Lazy 𝑆𝑝𝑎𝑐𝑒𝑆𝑎𝑣𝑖𝑛𝑔± and 𝑆𝑝𝑎𝑐𝑒𝑆𝑎𝑣𝑖𝑛𝑔± algorithms

with optimal space to solve both the frequency estimation and
frequent items problems in the bounded-deletion model in which
the total number of deletions (𝐷) is less than (1 − 1

𝛼) of the total
insertions (𝐼) where 𝛼 ≥ 1. Given a user specified accuracy on the
parameter 𝜖 , a deterministic algorithm for frequency estimation
and frequent items problems must:

• Approximate the frequency of all items 𝑖 with high accuracy

such that ∀ 𝑖 : |𝑓 (𝑖) − 𝑓 (𝑖) |) ≤ 𝜖 |𝐹 |1; and
• Report all the items with frequency greater than or equal

to 𝜖 |𝐹 |1.

We propose Lazy SpaceSaving± and SpaceSaving ±. The main dif-
ference between the two variants of SpaceSaving± arises in the way
deletions are handled. Since we assume the strict bounded-deletion
model, a delete operation must correspond to a previously inserted
item. If the item is being tracked in the sketch, processing such a
delete operation is straightforward since the count associated with
the item can be decreased by 1. On the other hand, the challenge
arises when the sketch maintenance algorithm encounters a delete
of an item that is not being tracked in the sketch. We develop dif-
ferent ways of handling such a delete in the two algorithms and
the resulting correctness guarantees.

3.1 Space Lower Bound

Wefirst show that there is no counter based algorithm that can solve
the deterministic frequent items problem in the bounded-deletion
model using less than 𝛼

𝜖 counters.

Theorem 1. In the bounded-deletion model, any counter based

algorithm needs at least 𝛼
𝜖 counters to solve the deterministic frequent

items problem i.e, identify all the items with frequency greater than

or equal to 𝜖 |𝐹 |1.

Proof. By Contradiction.
Assume that there exists a counter based deterministic solution

using 𝑘 < 𝛼
𝜖 counters that can report all the items with frequency

greater than or equal to 𝜖 |𝐹 |1. Consider a stream 𝜎 with bounded-
deletions that contains 𝐼 insertions and 𝐷 deletions where all inser-
tions come before any deletions. Let the 𝐼 insertions consist exactly
of 𝛼

𝜖 unique items, each with an exact count of 𝜖
𝛼 𝐼 . After processing

all insertions, the optimal algorithm with 𝑘 < 𝛼
𝜖 counters will mon-

itor at most 𝑘 unique items, and there would be at least one item
from the insertions that is left out. Let the set𝑀𝑖𝑠𝑠𝑖𝑛𝑔 contains all
such unique items that appeared in 𝐼 but are not monitored by the
optimal algorithm. Now let the 𝐷 = (1 − 1

𝛼)𝐼 deletions be applied
arbitrarily on the monitored items. After all 𝐷 deletions, all items
in𝑀𝑖𝑠𝑠𝑖𝑛𝑔 have frequency of 𝜖

𝛼 𝐼 in which 𝜖
𝛼 𝐼 ≥ 𝜖 (𝐼 − 𝐷) ≥ 𝜖 |𝐹 |1,

and these items are frequent and must be monitored by the optimal
algorithm. However, the sketch, with space 𝑘 , after processing all
insertions loses the information regarding𝑀𝑖𝑠𝑠𝑖𝑛𝑔. Therefore, it is
not possible to use less than 𝛼

𝜖 counters to solve the deterministic
frequent items problem in the bounded-deletion model. �

3.2 Lazy SpaceSaving± Approach

Since supporting both insertions and bounded deletions is a much
harder task compared to only allowing for insertions, the overall
space needs to be increased. From the previous section, we can see
that if the goal is to report all the items with frequency more than

𝜖 |𝐹 |1, where |𝐹 |1 = 𝐼 −𝐷 , we need to track more items. Since before
any deletions, the sketch has no knowledge regarding which items
are going to be deleted, then all elements with frequency higher
than 𝜖 (𝐼 − 𝐷) are potential candidates before any deletions. We
need an algorithm that can identify these potential candidate items.

By Lemma 2 and Lemma 3, SpaceSaving [38] with space 𝑘 reports
all the items with frequency greater than or equal to 𝐼

𝑘 . Therefore
by using 𝑘 = 𝛼

𝜖 space to process 𝐼 insertions on the SpaceSaving
algorithm, it will report all item with frequency greater than or

equal to 𝜖
𝛼 𝐼 . Since we know

1
𝛼 ≤

(𝐼−𝐷)
𝐼 , 𝜖

𝛼 𝐼 ≤ 𝜖𝐼 (𝐼−𝐷)𝐼 = 𝜖 (𝐼 − 𝐷).
Hence by using 𝛼

𝜖 counters, all the items with frequency greater
than or equal to 𝜖 (𝐼 − 𝐷) will be identified.

Interestingly, we find that modifying the original SpaceSaving
algorithm with 𝑂 (𝛼𝜖) space leads to an algorithm that solves the
frequency estimation and frequent items problems in the bounded-
deletion model. The Lazy SpaceSaving± algorithm handles inser-
tions exactly in the same manner as in the original Algorithm 1.
For deletions, the Lazy SpaceSaving± decreases the monitored item
counter, if the deleted item is monitored. Otherwise, the deletions
on unmonitored item are ignored, as shown in Algorithm 3. The
frequency is still estimated according to Algorithm 2. The rationale
for this design is that an unmonitored item has estimated frequency
of 0 and deletions of the unmonitored items will not amplify the
difference but in fact narrows the difference. Initially, this may seem
to be counter-intuitive. Another way to think about it is that the
frequency estimations for unmonitored items can only be under-
estimations. Thus, the decrease in an unmonitored item’s exact
frequency reduces the underestimation.

Algorithm 3: Lazy SpaceSaving±: Deletion Handling

1 for item from deletions do

2 if item in Sketch then

3 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚 -= 1 ;

4 else

5 //ignore

6 end

We now formally establish that Algorithm 3 solves the frequency
estimation problem in the bounded-deletion model. Let 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 be
the maximum error of frequency estimations in Lazy SpaceSaving±.
We show by induction that 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 is always less than 𝜖 (𝐼 − 𝐷).
First, we establish an upper bound on𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 in Lemma 6.

Lemma 6. The minimum count,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 , in Lazy SpaceSaving±

with 𝑘 counters is less than or equal to 𝐼
𝑘 .

Proof. Since deletions never increment any counts,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡
is maximized by processing 𝐼 insertions. With 𝐼 insertions and no
deletions, the sum of all counts is equal to 𝐼 .𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 is largest
when all the other counts are𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 . Hence,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 ≤ 𝐼

𝑘 . �

Theorem 2. In the bounded-deletion model where 𝐷 ≤ (1 − 1
𝛼)𝐼 ,

after processing 𝐼 insertions and D 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 , Lazy SpaceSaving±

using 𝑂 (𝛼𝜖) space solves the frequency estimation problem in which

∀𝑖, |𝑓 (𝑖) − 𝑓 (𝑖) | < 𝜖 (𝐼 − 𝐷) where 𝑓 (𝑖) and 𝑓 (𝑖) are the exact and
estimated frequencies of an item 𝑖 .

Proof. By Induction.
Base case: After 𝑖 ′ < 𝐼 insertions and 0 deletions with 𝑂 (𝛼𝜖)

space, we show that 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 is less than 𝜖 (𝐼 − 𝐷) as follows: By
Lemma 5 (of the insertion-only 𝑆𝑝𝑎𝑐𝑒𝑆𝑎𝑣𝑖𝑛𝑔), 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 < 𝑖 ′ 𝜖𝛼 ≤

𝜖 𝑖′ (𝐼−𝐷)
𝐼 < 𝜖 (𝐼 − 𝐷).

Induction hypothesis: After 𝑖 < 𝐼 insertions and 𝑑 < 𝐷 deletions,
the maximum error of frequency estimations based on the sketch
is 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 < 𝜖 (𝐼 − 𝐷).

Induction Step: Consider the case when the (𝑖 + 𝑑 + 1)𝑡ℎ input
item is an insertion. If the newly inserted item 𝑥 is monitored or the
sketch is not full, then no error is introduced. If the newly inserted
item 𝑥 is not monitored and the sketch is full, then 𝑥 replaces the
𝑚𝑖𝑛𝐼𝑡𝑒𝑚 which is the item with minimum count, 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 , in
all monitored items. Based on Lemma 6, by using 𝛼

𝜖 counters in
Lazy SpaceSaving±, 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 ≤ 𝑖 𝜖𝛼 < 𝜖 (𝐼 − 𝐷). The estimated
frequency for 𝑥 is 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡+1 and 𝑥 is at most overestimated
by 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 . The frequency estimation for 𝑚𝑖𝑛𝐼𝑡𝑒𝑚 becomes 0,
and 𝑚𝑖𝑛𝐼𝑡𝑒𝑚’s frequency estimation is off by at most 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 .
Therefore, 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 after processing the newly inserted item is still
less than 𝜖 (𝐼 − 𝐷).

Consider the case when the (𝑖 + 𝑑 + 1)𝑡ℎ input item is a deletion.
If the newly deleted item 𝑥 is monitored, its corresponding counter
will be decremented and no extra error is introduced and 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥

is still less than 𝜖 (𝐼−𝐷). If the newly deleted item 𝑥 is not monitored,
then the algorithm ignores this deletion. The frequency estimation
errors for monitored items do not change and they are still less than

𝜖 (𝐼−𝐷). Moreover, before the arrival of 𝑥 ,∀𝑖 ∉ 𝑆𝑘𝑒𝑡𝑐ℎ, 𝑓 (𝑖)− 𝑓 (𝑖) =
𝑓 (𝑖) − 0 < 𝜖 (𝐼 − 𝐷). By ignoring the deletion of the unmonitored

items, ∀𝑖 ∉ 𝑆𝑘𝑒𝑡𝑐ℎ, (𝑓 (𝑖) − 1) − 𝑓 (𝑖) < 𝑓 (𝑖) − 𝑓 (𝑖) < 𝜖 (𝐼 − 𝐷).
Conclusion: By the principle of induction, Lazy SpaceSaving±

using 𝑂 (𝛼𝜖) space solves the frequency estimation problem with

bounded error, i.e, ∀𝑖, |𝑓 (𝑖) − 𝑓 (𝑖) | < 𝜖 (𝐼 − 𝐷). �

Lazy SpaceSaving± also solves the frequent items problem. To
prove this, we first show Lazy SpaceSaving± never underestimates
the frequency of a monitored item.

Lemma 7. Lazy SpaceSaving± never underestimates the frequency

of monitored items.

Proof. Since the handling of insertions is the same as the Space-
Saving and SpaceSaving never underestimates the frequency of
monitored items by Lemma 1, it is clear that the insertions can
not lead to frequency underestimation for monitored items. When
handling deletions, Lazy SpaceSaving± only decrements the count
when the deleted item is monitored. Since the deletion of a moni-
tored item implies its exact frequency and its estimated frequency
both decrease by one, this procedure has no effect on the difference
between its exact frequency and estimated frequency. Therefore,
Lazy SpaceSaving± never underestimates the frequency of moni-
tored items. �

Since Lazy SpaceSaving± never underestimates, then report all
the items with frequency estimations greater than or equal to 𝜖 (𝐼 −
𝐷), then all frequent items will be reported as shown in Theorem 3.

Theorem 3. In the bounded-deletion model where 𝐷 ≤ (1 − 1
𝛼)𝐼 ,

Lazy SpaceSaving± solves the frequent items problem using 𝑂 (𝛼𝜖)
space.

Proof. By Contradiction.
Assume a frequent item 𝑥 is not reported and by definition of

frequent items, 𝑓 (𝑥) ≥ 𝜖 (𝐼 − 𝐷). Since it is not reported, its fre-

quency estimation, 𝑓 (𝑥), must be less than 𝜖 (𝐼 −𝐷). There are two
cases where 𝑥 will not be reported: (i) 𝑥 is not monitored, or (ii) 𝑥 is

monitored, but its frequency is underestimated, i.e., 𝑓 (𝑥) < 𝜖 (𝐼−𝐷).
In the first case where 𝑥 is not monitored, the estimation fre-

quency of 𝑥 is 0, i.e, 𝑓 (𝑥) = 0. Since 𝑥 is by assumption a frequent

item, the frequency estimation difference for 𝑥 is |𝑓 (𝑥) − 𝑓 (𝑥) | ≥
𝜖 (𝐼 − 𝐷). However, this contradicts Theorem 2 in which, for any
items, the difference between its exact frequency and estimated
frequency is less than 𝜖 (𝐼 − 𝐷).

In the second case, 𝑥 is monitored but not reported which im-

plies 𝑓 (𝑥) is less than 𝜖 (𝐼 − 𝐷). Since 𝑥 is frequent, 𝑓 (𝑥) is an
underestimation. However, by Lemma 7, Lazy SpaceSaving± never
underestimates the frequency of monitored items.

Hence, by contradiction Lazy SpaceSaving± solves the determin-
istic frequent items problem. �

3.3 An illustration of Lazy SpaceSaving±

Figure 1: Input Stream consisting of 6 insertions and 3 dele-

tions. Each tuple represents (𝑖𝑡𝑒𝑚, 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚, 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚).

Consider an instance of Lazy SpaceSaving± with capacity of 2.
The input stream 𝜎 is (𝐴,𝐴,𝐴,𝐶,−𝐴, 𝐵,𝐴,−𝐶,−𝐵) where the minus
sign indicate a deletion. The corresponding true frequency of 𝐴 is 3
while the true frequency of all other items is 0. For the first four in-
sertions and one deletion of the monitored item𝐴, the sketch main-
tains the exact count with no errors. When the sixth item 𝐵 arrives,
𝐵 replaces item 𝐶 , since 𝐶 has the minimum count. The following
insertion is 𝐴 and since 𝐴 is monitored, 𝐴’s count increases. Then
items −𝐶,−𝐵 arrive. Since 𝐶 is not monitored, Lazy SpaceSaving±

ignores the deletion of 𝐶 , and the deletion of monitored item 𝐵
decreases the corresponding count, as shown in Figure 1. After
processing all inputs, the lazy-approach does not underestimate the
frequency of the items in the sketch. It overestimates the frequency

of item 𝐵 in which 𝑓 (𝐵) − 𝑓 (𝐵) = 1 and 𝑓 (𝐴) − 𝑓 (𝐴) = 0.

3.4 SpaceSaving±

While Lazy SpaceSaving± elegantly satisfies all the necessary re-
quirements, the average frequency error and total frequency error

may increase if there are significant deletions of the unmonitored
items. Therefore, we propose SpaceSaving±, a novel algorithm and
data structures that accurately handles deletions of the unmoni-
tored items and item’s frequency is still estimated according to Algo-
rithm 2. Interestingly, we experimentally show that SpaceSaving±

performs better than Lazy SpaceSaving± when they are both allo-
cated the same sketch space, even though we need more space by a
constant factor to establish the correctness of SpaceSaving±.

Both SpaceSaving and our proposed Lazy SpaceSaving± algo-
rithms have the property of never underestimating the frequency
of the monitored items. Since the 𝜖-approximation requirement

is ∀𝑖, |𝑓 (𝑖) − 𝑓 (𝑖) | < 𝜖 (𝐼 − 𝐷), there are opportunities to reduce
the amount of overestimation for the monitored items, as long as
the difference is still within this bound. We observe that an item
with a large estimation error indicates that it is unlikely to be a
heavy item, as heavy items are often never evicted from the sketch
and have small estimation error. In addition, items with large es-
timation errors are often overestimated due to the aggregation of
the frequencies of many less-weighted items. SpaceSaving± lever-
ages this intuition. It handles the insertions of all items, and the
deletions of the monitored items exactly in the same way as the
Lazy SpaceSaving±. For the deletions of the unmonitored items,
SpaceSaving± decrements the count of the item that has the maxi-
mum estimation error inside the sketch, as shown in Algorithm 4.
The estimation error in SpaceSaving± is an upper bound on the
difference between the item’s estimated frequency and its true fre-
quency. With this modification, the estimated frequency of any
item reduces either from being replaced or from a deletion of an
unmonitored item. In the following proofs, SpaceSaving± uses 2𝛼

𝜖
to ensure (i) no item can be severely overestimated, and (ii) no item
can be severely underestimated. To estimate the frequency of an
item, we still use Algorithm 2. Before analyzing the correctness of
the algorithm, we first establish three helpful lemmas.

Lemma 8. The minimum count,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 , in SpaceSaving± with
2𝛼
𝜖 counters is less than or equal to 𝜖

2 (𝐼 − 𝐷).

Proof. Similar to the proof of Lemma 6. Since deletions never
increment any counts, 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 is maximized by processing 𝐼
insertions and hence the sum of all the counts is upper bounded by
𝐼 .𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 is largest when all the other counts are also𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 .

Hence,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 ≤ 𝜖𝐼
2𝛼 ≤

𝜖 (𝐼−𝐷)
2 . �

Lemma 9. Themaximum estimation error, 𝑎𝑟𝑔𝑚𝑎𝑥 𝑗 ∈𝑆𝑘𝑒𝑡𝑐ℎ𝑒𝑟𝑟𝑜𝑟 𝑗 ,

in SpaceSaving± with 2𝛼
𝜖 counters is less than 𝜖

2 (𝐼 − 𝐷).

Proof. The estimation error only increases when𝑚𝑖𝑛𝐼𝑡𝑒𝑚 is
replaced by a newly inserted item and after the replacement, the
estimation error becomes𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 .𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 is maximized when
the input contains 𝐼 insertions and no deletions. Hence by Lemma 2,
SpaceSaving± with 2𝛼

𝜖 counters has 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 < 𝜖
2 (𝐼 − 𝐷). The

estimation error is at most𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 and less than 𝜖
2 (𝐼 − 𝐷) . �

Lemma 10. The sum of all estimation errors in SpaceSaving±, is

an upper bound on the sum of frequencies of all unmonitored items

and the maximum estimation error is greater than or equal to 0.

Proof. The deletion of a monitored item has no effect on the
sum of the estimation errors, and it has no effect on the sum of

the frequencies of the unmonitored items. The deletion of an un-
monitored item decreases both the sum of the frequencies of the
unmonitored items by 1 and the sum of the estimation errors by
1. From this observation and Lemma 4, we can conclude that in
SpaceSaving± with 𝑘 counters, the sum of all estimation errors is
an upper bound on the sum of frequencies of all unmonitored items.
Since the sum of frequencies of all unmonitored items is greater
than or equal to 0 and the sum of all estimation errors is upper
bounded by 𝑘 times the maximum estimation error, the maximum
estimation error is greater than or equal to 0. �

Algorithm 4: SpaceSaving±: Deletion Handling

1 for item from deletions do

2 if item in Sketch then

3 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚 -= 1 ;

4 else

5 j = arg𝑚𝑎𝑥 𝑗 ∈𝑆𝑘𝑒𝑡𝑐ℎ𝑒𝑟𝑟𝑜𝑟 𝑗 ;

6 𝑐𝑜𝑢𝑛𝑡 𝑗 -= 1 ;

7 𝑒𝑟𝑟𝑜𝑟 𝑗 -= 1 ;

8 end

Theorem 4. In the bounded-deletion model where 𝐷 ≤ (1 −
1/𝛼)𝐼 , after processing 𝐼 insertions and D 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 , SpaceSaving±

using 𝑂 (𝛼𝜖) space solves the frequency estimation problem in which

∀𝑖, |𝑓 (𝑖) − 𝑓 (𝑖) | < 𝜖 (𝐼 − 𝐷) where 𝑓 (𝑖) and 𝑓 (𝑖) are the exact and
estimated frequencies of an item 𝑖 .

Proof. Consider an instance of SpaceSaving± with 2𝛼
𝜖 counters

to process 𝐼 insertions and 𝐷 deletions. First, we prove there is no
item 𝑖 such that the frequency estimate of 𝑖 severely overestimate

its true frequency, i.e, �𝑖, 𝑓 (𝑖) − 𝑓 (𝑖) > 𝜖 (𝐼 − 𝐷). In SpaceSaving±,
the handling of deletions can not lead to any overestimation as
counters will only be decremented, and only the replacement of
the𝑚𝑖𝑛𝐼𝑡𝑒𝑚 due to a newly inserted item can lead to frequency
overestimation of the newly inserted item. From Lemma 8, the
𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 in SpaceSaving± with 2𝛼

𝜖 counters is no more than 𝜖
2 (𝐼 −

𝐷). The overestimation of a newly inserted item can be at most
𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 . Therefore, no item can be overestimated by more than
𝜖
2 (𝐼 − 𝐷).
Second, we prove there is no item that can be severely underes-

timated i.e, �𝑖, 𝑓 (𝑖) − 𝑓 (𝑖) < −𝜖 (𝐼 − 𝐷). Two operations may lead
to frequency underestimation: (i) Replacement of𝑚𝑖𝑛𝐼𝑡𝑒𝑚, or (ii)
Deletion of an unmonitored item. For the first case,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 is
always less than 𝜖

2 (𝐼 − 𝐷), and the amount of underestimation is
less than 𝜖

2 (𝐼 − 𝐷) for any item due to the replacement.
We show that the deletion of an unmonitored item can lead to

at most 𝜖
2 (𝐼 − 𝐷) frequency underestimation. Based on Lemma 9

and Lemma 10, the maximum estimation error must be less than
𝜖
2 (𝐼 − 𝐷) and greater than or equal to 0. In Algorithm 4, lines 6
and 7, the deletion of an unmonitored item decreases both the
count and the estimation error of the item with the maximum
estimation error. Call this item 𝑥 . Since 𝑥 ’s counter decreases by
1, the difference between 𝑥 ’s frequency estimation and 𝑥 ’s true

frequency, 𝑓 (𝑥) − 𝑓 (𝑥), also decreases by 1. Once an item becomes

monitored, its estimation error can only decrease. The number of
decrements due to an unmonitored item is at most 𝜖

2 (𝐼 −𝐷). Hence
for any item, its frequency is underestimated by at most 𝜖

2 (𝐼 − 𝐷)
due to the deletion of unmonitored items. As a result, for any item,
its frequency can be underestimated by at most 𝜖 (𝐼−𝐷) by replacing
the𝑚𝑖𝑛𝐼𝑡𝑒𝑚 and the deletions of the unmonitored items. �

In Theorem 4, we proved that SpaceSaving± guarantees that all
items’ estimated frequencies are off by no more than 𝜖 (𝐼 − 𝐷), i.e.,

∀𝑖, |𝑓 (𝑖)− 𝑓 (𝑖) | ≤ 𝜖 (𝐼−𝐷). By reporting all the items with estimated
frequency greater than 0, all frequent items must be reported, which
is established in Theorem 5.

Theorem 5. In the bounded-deletion model, where 𝐷 ≤ (1 − 1
𝛼)𝐼 ,

SpaceSaving± solves the frequent items problem using 𝑂 (𝛼𝜖) space.

Proof. Proof by contradiction:
Assume SpaceSaving± does not report all frequent items. There

must exist a frequent item𝑥 that is not reported. Since SpaceSaving±

reports all the items with estimated frequency greater than 0 as
frequent items (recall unmonitored items have estimated frequency
of 0), 𝑥 ’s estimated frequency must be less than or equal to 0, i.e.,

𝑓 (𝑥) ≤ 0. Moreover, since 𝑥 is a frequent item, then the exact
frequency of 𝑥 must be greater than or equal to 𝜖 (𝐼 −𝐷), i.e., 𝑓 (𝑥) ≥
𝜖 (𝐼 −𝐷). The difference between 𝑥 estimated frequency and 𝑥 exact

frequency is greater than or equal to 𝜖 (𝐼 − 𝐷), i.e., |𝑓 (𝑥) − 𝑓 (𝑥) | ≥
𝜖 (𝐼 −𝐷). This leads to a contradiction since it violates the frequency
approximation guarantee proved in Theorem 4. �

3.5 An illustration of SpaceSaving±

Figure 2: Input Stream consists of 6 insertions and 3 deletions.

Each tuple represents (𝑖𝑡𝑒𝑚, 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚, 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚).

Consider the same stream illustrated in Section 3.3 in which
the stream 𝜎 is (𝐴,𝐴,𝐴,𝐶,−𝐴, 𝐵,𝐴,−𝐶,−𝐵) where the minus sign
indicate a deletion. The corresponding exact frequency of 𝐴 is 3,
while the true frequency of all other items is 0. Consider an instance
of SpaceSaving± with capacity of 2. The SpaceSaving± image after
digesting the first 7 items are exactly the same as in the previous
example. When the deletion of item 𝐶 arrives, SpaceSaving± does
not ignore the deletion of unmonitored item𝐶 , and since item 𝐵 has
the largest estimation error, both 𝐵’s count and 𝐵’s estimation error

are decreased. The final deletion of 𝐴 decreased 𝐴’s corresponding
count. After processing the stream, the estimated frequency for 𝐴
and 𝐵 are 3 and 0 respectively, as shown in Figure 2. The frequency

estimations are exact in which |𝑓 (𝐴) − 𝑓 (𝐴) | = 0 and |𝑓 (𝐵) −
𝑓 (𝐵) | = 0. With the same bounded-deletion stream and sketch
space, Lazy SpaceSaving± overestimated the frequency of item 𝐵
by 1 (Section 3.3), while SpaceSaving± is able to further reduce
the estimation error to 0. By judiciously handling the deletion
of the unmonitored items, SpaceSaving± reduces the impact of
overestimation and achieves better accuracy.

3.6 Min Heap and Max Heap

SpaceSaving algorithm is usually implemented with a standard
min-heap data structure such that the operations that increase the
item counts and that remove the minimum item can be performed
in logarithmic time [6]. To support the deletion of the unmonitored
items, SpaceSaving± further needs to find the item with the maxi-
mum estimation error and modify the estimation errors efficiently.
From these observations, we use two heaps on both the estimated
counts and the estimation errors, as underlying data structures. The
estimated counts are stored in a min heap, the estimation errors
are stored in a max heap, and a dictionary maps each item to the
corresponding nodes in these two heaps. Using two heaps and a dic-
tionary with 𝑂 (𝑘) space, both the minimum count and maximum
estimation error can be found in 𝑂 (1) time; while insertions and
deletions can be done in 𝑂 (𝑙𝑜𝑔𝑘) time. For example, if the sketch
needs to delete an unmonitored item, then the procedure would be
as follows: (1) use the dictionary to ascertain that the deletion is
performed on an unmonitored item; (2) use the max heap to find
the item with maximum estimation error; (3) use the dictionary to
find the location of the item with maximum estimation error in the
min heap; (4) decrease both its count (min heap) and its estimation
error (max heap); (5) percolate it up in min heap and percolate it
down in max heap;

4 EVALUATION

This section evaluates the performance of Lazy SpaceSaving± and
SpaceSaving±. They are the first deterministic frequency estimation
and frequent item algorithms in the bounded-deletion model and
make no assumptions on the universe. The experiments aim to
identify advantages and disadvantages of Lazy SpaceSaving± and
SpaceSaving± compared to other state-of-the-art sketches such as:

• CSSS [29] : The CSSS sketch is the first theoretical algo-
rithm to solve the frequency estimation and frequent item
problems in the bounded-deletion model.

• Count-Min 5 [17]: Count-Min Sketch operates in the turn-
stile model and never underestimate frequencies.

• Count-Median 6 [12]: Count-Median Sketch operates in
the turnstile model and its frequency estimation is unbiased.

4.1 Experimental Setup

We implemented SpaceSaving± using the min and max heap data
structures described in Section 3.6 in Python. The main distinc-
tion from the original SpaceSaving [38] are: (i) support of delete

5See https://github.com/rafacarrascosa/countminsketch for implementation detail
6See [19] for implementation detail

operations using the Algorithm 3 or Algorithm 4; (ii) the use of
a max heap on the estimation errors; and (iii) the overall space
complexity is 𝛼

𝜖 and the update time complexity is 𝑂 (𝑙𝑜𝑔𝛼
𝜖). We

also implemented the CSSS sketch as described in [29]. All the
experimental metrics are averaged over 5 independent runs. In all
experiments, Lazy SpaceSaving± and SpaceSaving± use the same
amount of space, and to align the experiments with the theoretical
literature [7, 29], we set the universe size𝑈 = 216 and 𝛿 = 𝑈 −1.

4.2 Data Sets

The experimental evaluation is conducted using both synthetic and
real world data sets consisting of items that are inserted and deleted.
For the synthetic data, we consider three different distributions:

• ZipfDistribution: The elements are drawn from a bounded
universe and the frequencies of elements follow the Zipf
Law [49], in which the frequency of an element with rank
𝑅: 𝑓 (𝑅, 𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑅𝑠 where 𝑠 indicates skewness. Deletions
are uniformly chosen from the insertions.

• Binomial Distribution: The elements are generated ac-
cording to the binomial distribution with parameters 𝑛 and
𝑝 where 𝑝 is the probability of success in 𝑛 independent
Bernoulli trials.

In addition to the synthetic data sets, we used the following real
world CAIDA Anonymized Internet Trace 2015 Dataset [1].

• 2015CAIDADataset: The CAIDA dataset is collected from
the ‘equinixchicago’ high-speed monitor. In the experiment,
we use 5 disjoint batches of 2 million TCP packets where
insertions are the destination IP addresses and deletions
are randomly chosen from insertions.

We also conducted experiments by exploring two additional
patterns of the data sets:

• Shuffled: The insertions are randomly shuffled and the
deletions are randomly and uniformly chosen from inser-
tions.

• Targeted: The insertions are randomly shuffled and the
deletions delete the item with the least frequency.

The metrics used in the experiments are:

• Mean Squared Error: The mean squared error (MSE) is the
average of the squares of the frequency estimation errors.
MSE is a measurement widely used to judge the accuracy
of an estimation and serves as an empirical estimation of
the variance [16].

• Recall: Recall is defined as 𝑇𝑃
𝑇𝑃+𝐹𝑁 where𝑇𝑃 (true positive)

is the number of items that are estimated to be frequent and
are indeed frequent and 𝐹𝑁 (false negative) is the number of
items that are frequent but not included in the estimations.

• Precision: Precision is defined as 𝑇𝑃
𝑇𝑃+𝐹𝑃 where 𝐹𝑃 (false

positive) is the number of items that are estimated to be
frequent but are not frequent.

The experiments are presented in the following two subsections:
frequency estimation and frequent item experiments.

4.3 Frequency Estimation Evaluation

In this section, we compare Lazy SpaceSaving± and SpaceSaving±

with state-of-the-art frequency estimation sketches. Our proposed

algorithms use𝑂 (𝛼𝜖) space while the Count-Min and Count-Median

use 𝑂 (1𝜖 𝑙𝑜𝑔𝑈) space. When 𝛼 = 𝑙𝑜𝑔𝑈 , they share the same space

and the delete:insert ratio becomes
𝑙𝑜𝑔𝑈−1
𝑙𝑜𝑔𝑈 . In addition, these ex-

periments evaluate the accuracy of each sketch using the mean
square error (MSE). In MSE figures the x-axis denotes the sketch
size while the y-axis depicts the average of the mean square errors.
Since the mean square error is strictly positive, the lower y-axis
values indicate better accuracy. In the following experiments, we
assume all insertions arrive before any deletions into the sketch
which is an adversarial pattern as spatial locality is minimized.

4.3.1 Sketch Size. In this experiment, the input data has I insertions
and D deletions. The delete:insert ratio is 0.5 and 𝑎𝑙𝑝ℎ𝑎 equals to
2. The deletion pattern is either shuffled, randomly chosen from
insertions, or targeted delete of the least frequent items. The Zipf
and Binomial distributions have |𝐹 |1 = 105 and the CAIDA dataset
has |𝐹 |1 = 106. This experiment explores the effect of distribution
skewness and the space size effect of sketches operating in both
the bounded-deletion model and in the turnstile model.

As expected, all sketches share the same pattern: increasing the
sketch size leads to decrease in the MSE, shown in Figure 3. All
experiments show SpaceSaving± has the lowest MSE and best accu-
racy as the sketch size grows. For the skewed Zipf distribution and
CAIDA dataset, SpaceSaving± is the clear winner for all sketch sizes,
as shown in Figure 3. For the lesser skewed binomial distribution,
Count-Median performs competitively compared to SpaceSaving±;
however, SpaceSaving± eventually has better accuracy as the sketch
size increases, as shown in Figure 3(b,e). The CSSS sketch has accu-
racy between Count-Median and Count-Min sketches. The Count-
Min sketch often overestimates an item’s frequency and thus has
higher mean square error across all distribution.

The targeted deletion pattern, when the least frequent items are
targeted for deletions, leads to a slight decrease in MSE across all
distributions for Count-Min. The targeted delete pattern decreases
the cardinality of 𝐹 , increases the overall skewness, and hence
heavy hitter items become more dominant and all sketches are able
to capture the overall change and have less mean square error.
4.3.2 Delete:Insert Ratio and 𝛼 . Sketches in the bounded-deletion
model have space complexity dependent on parameter 𝛼 , which
upper bounds the delete:insert ratio. With higher delete:insert ratio,
these sketches need to increase their sketch space to tolerate the
increase in deletions in order to deliver the same guarantee. In
this experiment, we fixed the sketch space to 103𝑙𝑜𝑔𝑈 bits and
fixed the input stream length to one million. The x-axis represents
different delete:insert ratio, and the y-axis is the mean squared error
averaged over 5 independent runs, as shown in Figure 4.

As expected, the accuracy of Lazy SpaceSaving± and CSSS de-
pends on 𝛼 and their MSE increases as the delete:insert ratio in-
creases. The more interesting result is that SpaceSaving±’s MSE
decreases when the delete:insert ratio is less or equal to 0.9. More-
over, for a universe of size 216, SpaceSaving± providesMSE less than
CSSS, Count-Min, and Count-Median even if the delete:insert ratio

is as high as 0.9375, which is
𝑙𝑜𝑔𝑈−1
𝑙𝑜𝑔𝑈 , while using the same amount

of space, as shown by the right most values in Figure 4. By han-
dling the deletion of unmonitored items judiciously, SpaceSaving±’s
frequency estimation is more robust to the increase in deletions
than other algorithms in the bounded-deletion model. For sketches

(a) (b) (c)

(d) (e) (f)

Figure 3: Trade-off between space and accuracy on various data distributions and different patterns

Figure 4: Varying delete:insert ratio.

that operate in the turnstile model, the MSE of Count-Min and
Count-Median decreases as the delete:insert ratio increases, since
more deletions reduce the number of hash collisions and reduce
the amount of over counting in each bucket. If the universe size
increases, the performance of linear sketches will further decrease,
whereas the data-driven SpaceSaving± has no dependency on the
universe, and can provide accurate estimations even in the extreme
case of unbounded universe.
4.3.3 Update Time. In Figure 5 , the x-axis is the stream length
and the y-axis is the average latency in second per item over 5
independent runs. The input is a shuffled Zipf distribution and the
delete:insert ratio is 0.5. All sketches use 103𝑙𝑜𝑔𝑈 bits. As shown
in Figure 5, Lazy SpaceSaving± has slightly less update time than
SpaceSaving±. The lazy approach ignores deletions of unmonitored

Figure 5: Update times for Sketches

items and achieves better latency. CSSS sketch update time de-
creases as the stream length grows because it performs sampling

to obtain 𝑂 (
𝛼𝑙𝑜𝑔𝑈

𝜖) samples and runs Count-Median sketch on the
samples. As the stream length increases the sample size increases
at a slower pace, and the average update time per item decreases.
Count-Min and Count-Median have update times depend on the
universe size where a larger universe size will further increase
the update time. Since Count-Median performs more hashes than
Count-Min, Count-Median requires more update time than Count-
Min. While randomized CSSS has fast update time, our algorithms
are deterministic and provide very accurate approximations.

(a) (b) (c)

(d) (e) (f)

Figure 6: Recall and Precision Comparison

4.4 Frequent Items Evaluation

In this section, we compare the recall and precision of our proposed
algorithms with state-of-the-art sketches for identifying frequent
items. All experiments in this section have delete:insert ratio of
0.5, 𝛼 = 2, and all insertions arrive before any deletions. The left
y-axis depicts either the average recall or average precision over
5 independent runs: higher y-axis values indicate better recall or
precision. The right y-axis denotes the space used for each sketch
where Lazy SpaceSaving± and SpaceSaving± use 𝛼

𝜖 𝑙𝑜𝑔𝑈 bits; Count-

Min and Count-Median use 1
𝜖 𝑙𝑜𝑔

2𝑈 bits. Each sketch queries all
potential items and then reports items with estimated frequency
greater than or equal to 𝜙 |𝐹 |1 as the frequent items. In addition,
the following experiments do not compare with the CSSS sketch.
Although CSSS can solve the frequent item problem, CSSS is more
of theoretical interest since it reduces the size of each counter from
𝑂 (𝑙𝑜𝑔𝑈) bits to𝑂 (𝑙𝑜𝑔(𝛼)) bits but in practice, it requires a lot more
space to solve the frequent item problem. More specifically, the
sketch size increases by 192 times, which implies the universe is
powered by 192 times. The space increase is more significant than
the space saved by reducing the number of bits per counter.

4.4.1 Recall. In these experiments, we compare the recall among
Lazy SpaceSaveing±, SpaceSaving±, Count-Min and Count-Median.
In Figure 6 (a), (b), and (c), the x-axis represents different frequent
items threshold 𝜙 in which frequent items have frequency greater
than or equal to 𝜙 |𝐹 |1. The right y-axis denotes the space used for
each sketches in which Lazy SpaceSaving± and SpaceSaving± use
𝛼
𝜖 𝑙𝑜𝑔𝑈 bits; Count-Min and Count-Median use 1

𝜖 𝑙𝑜𝑔
2𝑈 bits. The

sketch space increases as 𝜙 decreases. The left y-axis is the recall
ratio. As expected, Lazy SpaceSaving± and Count-Min sketches

have 100% recall across all distributions, since they never under-
estimate the frequent item’s frequency. The Count-Median sketch
may sometimes underestimate the frequency and thus does not
always achieve 100% recall, as shown in Figure 6 (c). In the proof of
Theorem 5, SpaceSaving± needs to report all items with frequency
greater than 0 to identify all frequent items and achieve 100% recall.
In this experiment, SpaceSaving± reports items with frequency
larger than 𝜙 |𝐹 |1. Since it might underestimate an item’s frequency,
the recall rate might not be 100%. However, in these experiments,
SpaceSaving± still achieves 100% recall across all distributions and
thus indicates SpaceSaving± rarely underestimates.

4.4.2 Precision. In this subsection, we compare the precision among
Lazy SpaceSaveing±, SpaceSaving±, Count-Min and Count-Median.
In Figure 6 (d), (e), and (f), the x-axis represents the different fre-
quent items threshold 𝜙 . The right y-axis denotes the space budget
in which Lazy SpaceSaving± and SpaceSaving± use 𝛼

𝜖 𝑙𝑜𝑔𝑈 bits;

Count-Min and Count-Median use 1
𝜖 𝑙𝑜𝑔

2𝑈 bits. The sketch space
increases as 𝜙 decreases. The left y-axis is the precision ratio. Lazy
SpaceSaving±, SpaceSaving± and Count-Median have above 90%
precision for all 𝜙 and distributions. Since Lazy SpaceSaving± some-
times overestimates an item’s frequency, a few items’ frequency are
overestimated and hence they may be falsely classified as frequent
items. SpaceSaving± judiciously handles the deletion and achieves
very high precision across all distributions using minimal space.
Count-Min often overestimates items’ frequencies and many items
are incorrectly classified as frequent.

5 QUANTILE SKETCH

In this section, we demonstrate that SpaceSaving± can be easily
integrated with prior protocols [17, 44] to solve the quantile approx-
imation problem. We propose Dyadic SpaceSaving± (DSS±), the
first deterministic quantile sketch in the bounded-deletion model.
Dyadic SpaceSaving± sketch is a universe-driven algorithm that
accurately approximates quantiles with strong guarantees.

5.1 The Quantiles Problem

The rank of an element 𝑥 is the total number of elements that are
less than or equal to 𝑥 , denoted as 𝑅(𝑥). The quantile of an element
𝑥 is defined as 𝑅(𝑥)/|𝐹 |1 where 𝐹 is the frequency vector. The most
familiar quantile value is 0.5 also known as median. Deterministic 𝜖
approximation quantile algorithms [25, 41] take as input a precision
value 𝜖 and an item such that the approximated rank has at most
𝜖 |𝐹 |1 additive error. The randomized quantile algorithms provide a
weaker guarantee in which the approximated rank of an item has
at most 𝜖 |𝐹 |1 additive error with high probability [28, 33, 37].

Recently, Zhao et al. [48] proposed the first randomized quantile

sketch KLL± using𝑂 (𝛼
1.5

𝜖 𝑙𝑜𝑔2𝑙𝑜𝑔 1
𝜖) space in the bounded deletion

model by generalizing the KLL [33] from the insertion-only model.
The first sketch to summarize quantiles in the turnstile model is
the Random Subset Sums (RSS) proposed by Gilbert et al. [24].
RSS is a universe driven algorithm, which assume input are drawn
from a bounded universe and maintain attributes over the bounded
universe [14]. RSS breaks down the bounded universe into dyadic
intervals and maintains frequency estimations for each interval.
Recall, dyadic intervals are in the form of [𝑖2𝑗 , (𝑖 + 1)2𝑗 − 1] for
𝑗 ∈ 𝑙𝑜𝑔2𝑈 and any constant 𝑖 , such that any ranges can be decom-
posed into at most 𝑙𝑜𝑔2𝑈 disjoint dyadic ranges [15]. Cormode et
al. [17] proposed the Dyadic Count-Min (DCM) which replaces
the frequency estimation sketch for each dyadic interval with a
Count-Min, and hence improves the overall space complexity to

𝑂 (1𝜖 log2𝑈 log (
log𝑈

𝜖))) and update time to 𝑂 (log𝑈 log (
log𝑈

𝜖)).
Then, Wang et al. [44] proposed the Dyadic Count-Median (DCS)
which replaces Count-Min with Count-Median [12] to further im-

prove the space complexity to 𝑂 (1𝜖 log1.5𝑈 log1.5 (
log𝑈

𝜖))), while
using the same update time complexity as DCM.

5.2 DSS±: A Deterministic Quantile Sketch

We propose the Dyadic SpaceSaving± (DSS±) to solve deterministic
quantile approximation in the bounded-deletion model. Inspired by
the previous algorithms, we observe that by replacing the frequency
estimation sketch in each dyadic layer with a SpaceSaving± of
space𝑂 (𝛼𝜖 𝑙𝑜𝑔𝑈) solves the quantile approximation in the bounded-
deletion model. Any range can be decomposed into at most 𝑙𝑜𝑔𝑈
dyadic intervals [15]. Since SpaceSaving± with 𝑂 (𝛼𝜖 𝑙𝑜𝑔𝑈) space

ensures that the frequency estimation has at most 𝜖 (𝐼−𝐷)
𝑙𝑜𝑔𝑈 additive

error and by summing up at most 𝑙𝑜𝑔𝑈 frequencies, the approxi-
mated rank has at most 𝜖 (𝐼−𝐷) additive error and the approximated
quantile has at most 𝜖 error. To update the DSS± quantile sketch
with an item 𝑥 : for each 𝑙𝑜𝑔𝑈 layers, 𝑥 is mapped to an element in
that layer and increments the corresponding element’s frequency,
as shown in Algorithm 5. The rank information of an item can be
calculated by summing 𝑂 (𝑙𝑜𝑔𝑈) number of subset sums, as shown

in Algorithm 6. Therefore, the Dyadic SpaceSaving± sketch requires

𝑂 (𝛼𝜖 𝑙𝑜𝑔
2𝑈) space with update time𝑂 (𝑙𝑜𝑔𝑈𝑙𝑜𝑔

𝛼𝑙𝑜𝑔𝑈
𝜖). The quantile

experiments comparing DSS±, KLL± and DCS are shown in [47].

Algorithm 5: DSS± Update(x,1)

1 for h from 0 to logU do

2 DSS±[h].update(x, 1);

3 x= x/2;

4 end

Algorithm 6: DSS± Query(x)

1 Rank = 0;

2 for h from 0 to logU do

3 if x is odd then

4 Rank = Rank + DSS±[h].query(x);

5 x= x/2;

6 end

7 return Rank;

6 CONCLUSION

Frequency estimation and frequent items are two important prob-
lems in data stream research, and have significant impact for real
world systems. Over the past decades of research, many algorithms
have been proposed for the insertion-only and the turnstile models.
In this work, we propose data-driven deterministic SpaceSaving±

sketches to accurately approximate item frequency and report
heavy hitter items in the bounded-deletion model. To our knowl-
edge, Lazy SpaceSaving± and SpaceSaving± are the first determinis-
tic algorithms to solve these two problems in the bounded-deletion
model and they make no assumption on the universe. The experi-
mental evaluations of SpaceSaving± highlight that it has the best fre-
quency estimation accuracy among other state-of-the-art sketches,
and requires the least space to provide strong guarantees. We also
demonstrate that implementing SpaceSaving± with the min and
max heap approach provides fast update time. Furthermore, the
experiments showcase that SpaceSaving± has very high recall and
precision rates across a range of data distributions. These charac-
teristics of SpaceSaving± make it a practical choice for real world
applications. Finally, by leveraging SpaceSaving± and dyadic in-
tervals over bounded universe, we proposed the first determinis-
tic quantile sketch in the bounded-deletion model. Our analysis
clearly demonstrates that overall, for an unbounded universe or

for practical delete:insert ratios below
𝑙𝑜𝑔𝑈−1
𝑙𝑜𝑔𝑈 (e.g., for a realistic

universe size of U=216, a ratio of .93 and for U=232, a ratio of .96),
SpaceSaving± is the best algorithm to use and solves several major
problems with strong guarantees in a unified algorithm.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback and
also thank Rajesh Jayaram and Dan Qiao for helpful discussions.
This work is funded in part by NSF grants CNS-1703560 and CNS-
1815733.

REFERENCES
[1] [n.d.]. Anonymized Internet Traces 2015. https://catalog.caida.org/details/

dataset/passive_2015_pcap. Accessed: 2021-11-5.
[2] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei

Wei, and Ke Yi. 2012. Mergeable summaries. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI symposium on Principles of Database Systems. 23–34.

[3] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The space complexity of
approximating the frequency moments. Journal of Computer and system sciences
58, 1 (1999), 137–147.

[4] Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. 2004. An
information statistics approach to data stream and communication complexity.
J. Comput. System Sci. 68, 4 (2004), 702–732.

[5] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2020. Design-
ing heavy-hitter detection algorithms for programmable switches. IEEE/ACM
Transactions on Networking 28, 3 (2020), 1172–1185.

[6] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J Strauss. 2010. Space-
optimal heavy hitters with strong error bounds. ACM Transactions on Database
Systems (TODS) 35, 4 (2010), 1–28.

[7] Arnab Bhattacharyya, Palash Dey, and David P Woodruff. 2018. An optimal
algorithm for 1-heavy hitters in insertion streams and related problems. ACM
Transactions on Algorithms (TALG) 15, 1 (2018), 1–27.

[8] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 7 (1970), 422–426.

[9] Robert S Boyer and J StrotherMoore. 1991. MJRTY—a fastmajority vote algorithm.
In Automated Reasoning. Springer, 105–117.

[10] Mark Braverman, Sumegha Garg, and David P Woodruff. 2020. The coin prob-
lem with applications to data streams. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). IEEE, 318–329.

[11] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu
Wang, and David P Woodruff. 2017. BPTree: an 2 heavy hitters algorithm
using constant memory. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. 361–376.

[12] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent
items in data streams. In International Colloquium on Automata, Languages, and
Programming. Springer, 693–703.

[13] Graham Cormode and Marios Hadjieleftheriou. 2008. Finding frequent items in
data streams. Proceedings of the VLDB Endowment 1, 2 (2008), 1530–1541.

[14] Graham Cormode, Theodore Johnson, Flip Korn, Shan Muthukrishnan, Oliver
Spatscheck, and Divesh Srivastava. 2004. Holistic UDAFs at streaming speeds.
In Proceedings of the 2004 ACM SIGMOD international conference on Management
of data. 35–46.

[15] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. 2019. Answering range
queries under local differential privacy. Proceedings of the VLDB Endowment 12,
10 (2019), 1126–1138.

[16] Graham Cormode, Samuel Maddock, and CarstenMaple. 2021. Frequency Estima-
tion under Local Differential Privacy [Experiments, Analysis and Benchmarks].
arXiv preprint arXiv:2103.16640 (2021).

[17] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[18] Graham Cormode and Shan Muthukrishnan. 2005. What’s hot and what’s not:
trackingmost frequent items dynamically. ACMTransactions on Database Systems
(TODS) 30, 1 (2005), 249–278.

[19] Graham Cormode and Ke Yi. 2020. Small Summaries for Big Data. Cambridge
University Press.

[20] Sudipto Das, Shyam Antony, Divyakant Agrawal, and Amr El Abbadi. 2009. Cots:
A scalable framework for parallelizing frequency counting over data streams. In
2009 IEEE 25th International Conference on Data Engineering. IEEE, 1323–1326.

[21] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. 2002. Frequency
estimation of internet packet streams with limited space. In European Symposium
on Algorithms. Springer, 348–360.

[22] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and
Jeffrey D Ullman. 1999. Computing Iceberg Queries Efficiently.. In Internaational
Conference on Very Large Databases (VLDB’98), New York, August 1998. Stanford
InfoLab.

[23] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-
perloglog: the analysis of a near-optimal cardinality estimation algorithm.

[24] Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin J Strauss. 2002.
How to summarize the universe: Dynamic maintenance of quantiles. In VLDB’02:
Proceedings of the 28th International Conference on Very Large Databases. Elsevier,
454–465.

[25] Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online computa-
tion of quantile summaries. ACM SIGMOD Record 30, 2 (2001), 58–66.

[26] Şule Gündüz and M Tamer Özsu. 2003. A web page prediction model based
on click-stream tree representation of user behavior. In Proceedings of the ninth

ACM SIGKDD international conference on Knowledge discovery and data mining.
535–540.

[27] Rob Harrison, Shir Landau Feibish, Arpit Gupta, Ross Teixeira, S Muthukrishnan,
and Jennifer Rexford. 2020. Carpe elephants: Seize the global heavy hitters.
In Proceedings of the Workshop on Secure Programmable Network Infrastructure.
15–21.

[28] Nikita Ivkin, Edo Liberty, Kevin Lang, Zohar Karnin, and Vladimir Braverman.
2019. Streaming Quantiles Algorithms with Small Space and Update Time. arXiv
preprint arXiv:1907.00236 (2019).

[29] Rajesh Jayaram and David P Woodruff. 2018. Data streams with bounded dele-
tions. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems. 341–354.

[30] Cheqing Jin, Weining Qian, Chaofeng Sha, Jeffrey X Yu, and Aoying Zhou. 2003.
Dynamically maintaining frequent items over a data stream. In Proceedings of
the twelfth international conference on Information and knowledge management.
287–294.

[31] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. 2011. Tight bounds for lp
samplers, finding duplicates in streams, and related problems. In Proceedings of
the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 49–58.

[32] John Kallaugher and Eric Price. 2020. Separations and equivalences between
turnstile streaming and linear sketching. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing. 1223–1236.

[33] Zohar Karnin, Kevin Lang, and Edo Liberty. 2016. Optimal quantile approxima-
tion in streams. In 2016 ieee 57th annual symposium on foundations of computer
science (focs). IEEE, 71–78.

[34] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. 2003. A simple
algorithm for finding frequent elements in streams and bags. ACM Transactions
on Database Systems (TODS) 28, 1 (2003), 51–55.

[35] Nishad Manerikar and Themis Palpanas. 2009. Frequent items in streaming
data: An experimental evaluation of the state-of-the-art. Data & Knowledge
Engineering 68, 4 (2009), 415–430.

[36] Gurmeet SinghManku and RajeevMotwani. 2002. Approximate frequency counts
over data streams. In VLDB’02: Proceedings of the 28th International Conference
on Very Large Databases. Elsevier, 346–357.

[37] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. 1998. Ap-
proximate medians and other quantiles in one pass and with limited memory.
ACM SIGMOD Record 27, 2 (1998), 426–435.

[38] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient
computation of frequent and top-k elements in data streams. In International
conference on database theory. Springer, 398–412.

[39] Jayadev Misra and David Gries. 1982. Finding repeated elements. Science of
computer programming 2, 2 (1982), 143–152.

[40] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. 2005. Interpreting
the data: Parallel analysis with Sawzall. Scientific Programming 13, 4 (2005),
277–298.

[41] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash
Suri. 2004. Medians and beyond: new aggregation techniques for sensor networks.
In Proceedings of the 2nd international conference on Embedded networked sensor
systems. 239–249.

[42] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukr-
ishnan, and Jennifer Rexford. 2017. Heavy-hitter detection entirely in the data
plane. In Proceedings of the Symposium on SDN Research. 164–176.

[43] Daniel Ting. 2018. Data sketches for disaggregated subset sum and frequent item
estimation. In Proceedings of the 2018 International Conference on Management of
Data. 1129–1140.

[44] LuWang, Ge Luo, Ke Yi, and GrahamCormode. 2013. Quantiles over data streams:
an experimental study. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data. 737–748.

[45] Victor Zakhary, Lawrence Lim, Divyakant Agrawal, and Amr El Abbadi. 2020.
CoT: Decentralized elastic caches for cloud environments. arXiv preprint
arXiv:2006.08067 (2020).

[46] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng
Liu, Ruwen Zhang, and Junchen Jiang. 2021. CocoSketch: high-performance
sketch-based measurement over arbitrary partial key query. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference. 207–222.

[47] Fuheng Zhao, Divyakant Agrawal, Amr El Abbadi, and Ahmed Metwally. 2021.
SpaceSaving±: An Optimal Algorithm for Frequency Estimation and Frequent
items in the Bounded Deletion Model. arXiv:2112.03462 [cs.DB]

[48] Fuheng Zhao, Sujaya Maiyya, Ryan Wiener, Divyakant Agrawal, and Amr El
Abbadi. 2021. KLL±: Approximate quantile sketches over dynamic datasets.
Proceedings of the VLDB Endowment 14, 7 (2021), 1215–1227.

[49] George Kingsley Zipf. 2016. Human behavior and the principle of least effort: An
introduction to human ecology. Ravenio Books.

ByteGNN: Efficient Graph Neural Network Training at Large Scale

Chenguang Zheng1,2,†, Hongzhi Chen2,∗, Yuxuan Cheng2, Zhezheng Song1, Yifan Wu2,3,†, Changji
Li1,2,†, James Cheng1, Hao Yang2, Shuai Zhang2

1{cgzheng, cjli, jcheng}@cse.cuhk.edu.hk, 1szaizai18@gmail.com, 2{zhengchenguang, chenhongzhi, chengyuxuan.911,
wuyifan.18, lichangji, yanghao.2019, zhangshuai.root}@bytedance.com, 3yifanwu@pku.edu.cn

1The Chinese University of Hong Kong, 2ByteDacne Inc, 3Peking University

ABSTRACT

Graph neural networks (GNNs) have shown excellent performance
in a wide range of applications such as recommendation, risk con-
trol, and drug discovery. With the increase in the volume of graph
data, distributed GNN systems become essential to support efficient
GNN training. However, existing distributed GNN training systems
suffer from various performance issues including high network
communication cost, low CPU utilization, and poor end-to-end
performance. In this paper, we propose ByteGNN, which addresses
the limitations in existing distributed GNN systems with three key
designs: (1) an abstraction of mini-batch graph sampling to support
high parallelism, (2) a two-level scheduling strategy to improve re-
source utilization and to reduce the end-to-end GNN training time,
and (3) a graph partitioning algorithm tailored for GNN workloads.
Our experiments show that ByteGNN outperforms the state-of-
the-art distributed GNN systems with up to 3.5-23.8 times faster
end-to-end execution, 2-6 times higher CPU utilization, and around
half of the network communication cost.

PVLDB Reference Format:

Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan
Wu, Changji Li, James Cheng, Hao Yang, and Shuai Zhang. ByteGNN:
Efficient Graph Neural Network Training at Large Scale. PVLDB, 15(6):
1228 - 1242, 2022.

doi:10.14778/3514061.3514069

1 INTRODUCTION

Existing systems for neural network training, such as TensorFlow [5]
and PyTorch [54], are designed for training euclidean data such as
images, texts and audio data. In recent years, a new type of neural
networks, called graph neural networks (GNNs), become popular
because of the ubiquity of graph data today such as semantic web
graphs, knowledge graphs, social networks, and e-commerce net-
works. GNNs combine the non-euclidean graph structures with tra-
ditional neural networks to extract rich information from graph data

∗ Hongzhi Chen is the Corresponding Author.
† This work was done when the authors were in ByteDance.
The work of Chenguang Zheng, Changji Li and James Cheng was partially supported
by a ByteDance Research Collaboration Project.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514069

for machine learning. Recent research results [16, 31, 43, 64, 71, 75]
have shown that GNNs achieve significant performance improve-
ments over traditional methods on many important tasks such as
node classification, link predication, and graph clustering. GNNs
have been applied in a broad range of applications including rec-
ommendation systems [52, 75], computer vision [50, 58], natural
language processing [55, 73], drug discovery [24], and social net-
works [68].

Although many graph computing systems [8, 9, 18, 22, 27, 42, 49,
51, 67, 72, 79, 81] have been proposed, they are designed for batch
graph analytics workloads such as the computation of PageRank,
shortest paths, label propagation and connected components, and
thus they lack of operators for neural network training. Thus, ded-
icated GNN systems have been developed upon neural network
training systems (e.g., TensorFlow, PyTorch) for GNN training.

Among existing GNN systems, most of them are still single-
machine systems, e.g., DGL [66], PyTorch Geometric (PyG) [21],
NeuGraph [48], FeatGraph [33] and Seastar [70], which are opti-
mized for training GNN models on a relatively small graph but
cannot scale to process large graphs generally available in industry
today. Note that for GNNs, a graph not only contains the graph
topology information (which is typically used for computations
such as PageRank, shortest paths, etc.), but each vertex and edge
in the graph also contain a feature vector. Thus, depending on the
dimensions of the feature vectors (typically around 100 to hun-
dreds), the size of a graph for GNNs can be easily many times larger
than the graph topology processed by existing graph computing
systems. For example, for the Ogbn-Papers [32] graph used in our
experiments, a feature vector has 128 dimensions and the size of
the features is 4 times larger than the size of the graph topology.

For GNN training on large graphs, distributed systems such
as Euler [1], GraphLearn (also called AliGraph) [80], AGL [77]
and DistDGL [78] have been proposed. During the training, these
systems collect and aggregate the feature vectors of the 𝐾-hop
neighbors in order to compute the feature vector of each vertex,
where 𝐾 is the number of layers of the GNN model to be trained.
However, the 𝐾-hop neighbors of a vertex can be many, especially
for a power-law graph, and a large portion of them can be located
in remote machines. Thus, fetching all the 𝐾-hop neighbors to a
local machine for each vertex (referred to as full mini-batch train-

ing) incurs high network communication overheads and memory
consumption.

To address the problem of full mini-batch training, mini-batch

sampling training was proposed [13, 31, 34], which works as
follows. Distributed GNN training is conducted in iterations and
for each iteration, a machine processes a mini-batch of vertices in

2-Sup 2-Unsup 3-Sup 3-Unsup
0

20

40

60

Ti
m
e(
s)

Sampling Training

(a) Reddit

2-Sup 2-Unsup 3-Sup 3-Unsup
0

200

400

600

Ti
m
e(
s)

Sampling Training

(b) Ogbn-Product

Figure 1: Sampling and training time of GraphLearn

its partition in two phases: (1) the sampling phase — for each
vertex 𝑣 in the mini-batch, the sampler samples a limited number of
neighbors of 𝑣 in each hop, fetches the sampled remote neighbors
to the local machine, and constructs the neighborhood subgraph
of 𝑣 from its sampled neighbors locally; (2) the training phase —
the trainer trains the model on the neighborhood subgraphs of the
vertices in the mini-batch locally.

While distributed mini-batch sampling has become the default
method for GNN training on a large graph (for which full-batch
training and full mini-batch training are not practical), existing
distributed GNN training systems suffer from a number of per-
formance problems. One main problem is that sampling can take
significantly longer time to complete than training, due to large
amounts of random data access and remote data fetching involved in
the sampling phase. For example, Figure 1 reports the average sam-
pling time and training time in an epoch of training a 2-layered and
3-layered GraphSAGE model (both supervised and unsupervised)
on four machines by GraphLearn [80] on the Reddit dataset [31]
and Ogbn-Product dataset [32], which shows that the sampling
phase takes an order of magnitude longer time than the training
phase. For example, in the 2-layer supervised GraphSAGE training
on Ogbn-Product, GraphLearn’s training time is only 2.66s while
its sampling time is 24.17s. Under the same setting, the sampling
time of DistDGL [78] is also 4.22x of its training time.

The imbalance between the sampling and training phases also
leads to the under-utilization of computing resources and the prob-
lem is worsen if GPUs are used for training (which further widens
the gap between the sampling and training time) [59]. To address
this imbalanced computing pattern in mini-batch GNN training, ex-
isting systems have attempted to apply neighborhood caching [46]
and fixed size prefetching [78] to shorten the sampling time. How-
ever, it is difficult to set the right hyper-parameters (i.e., cache ratio
and prefetching number) for training different GNN models on
different graphs. Nextdoor [36] proposed to sample neighborhood
using GPUs, but the GPU memory capacity limits the size of the
graph it can handle. Graph partitioning has also been applied to
reduce the cost of remote data fetching [80]. However, existing
graph partitioning algorithms are designed for traditional graph
workloads (e.g., distributed PageRank) and they do not consider the
data access pattern and load balancing in GNN training.

In this paper, we propose ByteGNN, a distributed GNN training
framework to support fast end-to-end GNN training in large graphs.
To improve the efficiency of sampling, we abstract the sampling
phase of a mini-batch as a directed acyclic graph (DAG) of small
tasks, so that we can run DAGs and tasks within each DAG in
parallel. The fine-grained task abstraction in DAG modeling also
leads to the design of a two-level scheduling. First, coarse-grained
scheduling determines howmuch resources should be used for mini-
batch sampling, in order to dynamically adjust the computation
loads between the sampling and training phases to avoid resource
contention and maximize CPU utilization. Then, fine-grained sched-
uling decides the execution order of tasks in the DAGs in order
to pipeline the sampling outputs to be consumed by the training
phase at the right pace. The two scheduling strategies work together
to minimize the end-to-end GNN training time. We also propose
an effective graph partitioning algorithm tailored for mini-batch
graph sampling, which maintains the data locality according to
the data access pattern of mini-batch sampling and balances the
computation loads in the training, validation and testing stages.

We implemented ByteGNN based on GraphLearn [4]. Our per-
formance evaluation shows that ByteGNN achieves significantly
higher training throughput and is more scalable than the state-of-
the-art distributed GNN systems. Experimental results show that
ByteGNN achieves up to 23.8x speedup over GraphLearn and 3.5x
over DistDGL. The results verify that our system designs lead to
efficient GNN training.

2 BACKGROUND AND MOTIVATION

We first introduce the necessary background of GNN and briefly
discuss sampling-based GNN training. Then, we motivate our work
by presenting the limitations of existing systems for large-scale
GNN training.

2.1 Graph Neural Networks

GNN models are designed to capture the information contained in
both the relationship among vertices in a graph and the vertex/edge
attributes. The core idea of GNNs is recursively aggregating the
neighbor information, including the features of the neighbors and
the features of the connecting edges, and then applying feature
transformation functions.

Take the GraphSAGE model [31] as an example. The training
process for one layer of the model can be expressed as follows:

ℎ𝑘N(𝑣) ← 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑘 ({ℎ𝑘−1𝑢 , ∀𝑢 ∈ N(𝑣) }), (1)

ℎ𝑘𝑣 ← 𝜎 (𝑊 𝑘 ·𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑘−1𝑣 , ℎ𝑘N(𝑣))), (2)

where N(𝑣) is the set of neighbors of vertex 𝑣 . In this 𝑘-th con-
volution layer, each vertex 𝑣 first uses the AGGREGATE function
to collect the feature vectors of 𝑣 ’s neighbors from the (𝑘 − 1)-th
layer. The aggregation result is then concatenated with 𝑣 ’s feature
vector from the (𝑘−1)-th layer, followed by a dot-product operation
with a learnable weight matrixW. The dot-product result is further
transformed by a nonlinearity activation function 𝜎 such as the
sigmoid function, which gives the feature vector of 𝑣 for the 𝑘-th
layer.

As the number of layers increases, the vertices are required to
gather and aggregate more and more information from neighbors

that are farther away (i.e., expanding from the 𝑖-hop neighbors to
the 𝑗-hop neighbors for 𝑗 > 𝑖). When the training for all the 𝐾
layers completes (for a user-specified 𝐾), the final feature vector
ℎ𝐾𝑣 for each vertex 𝑣 is fed into a mapping function for a specific
downstream task (e.g., node classification, link prediction).

2.2 Distributed Mini-Batch Graph Sampling

Existing distributed GNN systems adopt data parallelism and sam-
pling is commonly applied in order to train a GNN model on a large
graph efficiently. However, the sampling process in distributed GNN
training is quite different from that in training DNN models for
computer vision and natural language processing, for which each
sample is independent and small. For GNNs, the distributed training
may access the entire neighborhood of a sampled vertex, including
both vertices and edges along with their feature vectors. Due to the
structural connection among vertices in different partitions, the
data access pattern usually leads to high network communication
cost.

In a 𝐾-layered GNN model, for each sampled seed vertex 𝑣 , we
need to obtain the 𝐾-hop neighborhood of 𝑣 to construct a neigh-
borhood subgraph to update 𝑣 ’s feature vector. As most real-world
graphs have a power-law degree distribution, the size of the 𝐾-hop
neighborhood subgraph of a vertex grows exponentially as the
number of hops increases. To address this problem, mini-batch

neighborhood sampling [46, 78, 80] has been used to sample a
limited number of neighbors for each sampled seed vertex. Figure 2
illustrates how mini-batch graph sampling is applied in the training
of a 2-layered GNN model. We show the sampled 2-hop neighbor-
hood subgraphs of two seed vertices, 𝑣1 and 𝑣2, where we set the
sampling configuration 𝐷1 = 2 and 𝐷2 = 2, meaning that a vertex 𝑣
first samples at most 𝐷1 of its 1-hop neighbors, and then each 𝑢 of
𝑣 ’s sampled 1-hop neighbors further samples 𝐷2 of 𝑢’s neighbors.
Remote sampling requests are sent to remote devices to access the
𝑖-hop neighbors that are stored there. After the sampling finishes,
the sampled neighbors, along with their attributes (which are used
to construct the initial feature vectors), are fetched to the local
device of 𝑣1 (and 𝑣2) to construct its sampled 2-hop neighborhood
subgraph, which is then fed into the GNN model to calculate the
gradients and update the model parameters.

Although the tradeoff is a potential loss in the model accuracy,
mini-batch graph neighborhood sampling still converges to the
required model accuracy. Take the mean aggregator in Graph-
SAGE [31] as an example, using the Monte Carlo estimation, for
the layer 𝑘 , we obtain:

E[ℎ𝑘N𝑠 (𝑣)] = E[
1

|N𝑠 (𝑣) |

∑
𝑢∈N𝑠 (𝑣)

ℎ𝑘−1𝑢] =
1

|N (𝑣) |

∑
𝑢∈N(𝑣)

ℎ𝑘−1𝑢 = ℎ𝑘N(𝑣) ,

whereN𝑠 (𝑣) is the set of random sampled neighbors of vertex 𝑣 and
|N𝑠 (𝑣) | = 𝐷𝑘 , which is the fanout of layer 𝑘 . Unfortunately, though
ℎ𝑘N𝑠 (𝑣) is an unbiased estimator of ℎ𝑘N(𝑣) , ℎ

𝑘
𝑣𝑠 is not an unbiased

estimator of ℎ𝑘𝑣 due to the non-linearity of 𝜎 (·) in Equation (2)
[14]. Thus, the gradient is biased and the convergence of SGD
is not guaranteed, unless the fanout 𝐷𝑘 goes to infinity. But in
practice, GraphSAGE sets𝐷1 = 25 and𝐷2 = 10 to provide statistically
significant gains over existing approaches [43, 56]. In addition,
AGL [77] also reported that with a suitable sample size, the sample
can well approximate the ground truth.

Figure 2: 2-hop mini-batch graph sampling

0 100 200 300 400 500

20

40

60

Running Time(s)

CP
U

U
til

(%
)

DistDGL Euler GraphLearn

Figure 3: The CPU utilization of different systems

2.3 Limitations of Existing GNN Systems

Existing systems for distributed GNN training suffer from the fol-
lowing major limitations.

(1) The overhead of network communication is large. As
the sampling procedure shows in Section 2.2, for every sampled seed
vertex 𝑣 in each iteration, we need to construct 𝑣 ’s 𝐾-hop neighbor-
hood subgraph together with the feature vectors of the vertices and
edges in the subgraph. For example, in a 3-hop neighborhood sub-
graph where the sampling configuration is set at 𝑘1 = 15, 𝑘2 = 10
and 𝑘3 = 5 in the Reddit dataset [31], there are 915 vertices each
with a 602-dimension feature vector, which are what we need to
prepare for one sampled seed vertex. As many of the neighbors
and their features may be stored in remote machines, the 𝐾-hop
neighborhood subgraph construction incurs a high network com-
munication overhead. Figure 13(a) shows that the number of remote
vertices is about six times that of local vertices with the widely used
Hash partitioning. In fact, existing graph partitioning algorithms
only consider to reduce the inter-partition edges, but do not con-
sider the data access pattern and load balancing of graph sampling
in GNN training. This calls for a new design of a more effective
graph partitioning strategy tailored for GNN training.

(2) CPU utilization is low. Our performance profiling shows
that existing distributed GNN systems had poor CPU utilization as
shown in Figure 3. By analyzing their system designs, we list the
main causes to their low CPU utilization below.

The sampling phase of GraphLearn [80] is handled using the
Gremlin semantics [2, 3] to express each sampling step. For each
step, the Gremlin statement is translated by a parser and converted
into several execution operations. An operation is a minimum ex-
ecution unit in GraphLearn. GraphLearn has low CPU utilization
since all the graph sampling operations within each device do not
overlap with each other. DistDGL [78] takes a similar approach but
also has many optimizations such as replicating the neighbors of
its local vertices.

Euler [1], on the other hand, wraps each graph operator into one
TensorFlow dataflow operator. This design is convenient for users
to build the whole computation graph in TensorFlow. However, as
all the sampling operators and the training operators are contained
in one big computation dataflow graph, existing deep learning
systems (including TensorFlow) cannot process it efficiently. It
is difficult to have the optimal execution order for the dataflow
graph with the newly defined graph sampling operators, which is
totally different from the normal tensor computation. Besides, due
to the convergence requirement, TensorFlow only runs one dataflow
graph at a time. Each iteration always starts graph sampling after
the previous training process finishes. This design also eliminates
the opportunities to apply the data prefetching mechanism to the
independent sampling stages.

(3) GPU does not bring enough benefit for GNN training in

large graphs. As mentioned in Section 1, distributed GNN training
on large graphs consists of the sampling phase and training phase.
Due to limited GPU memory capacity, graph data are stored in
the host memory of the machines and thus the sampling phase is
conducted by CPUs. When GPUs are used to conduct the training
phase, the sampling results are loaded into GPU memory from
CPU host memory via PCIe links. As shown in [46, 59], even in
the case of single-machine GNN training using GPU (i.e., data are
not fetched through network), the sampling and data loading time
still take a significant portion of the end-to-end training time. The
training phase can indeed be accelerated using GPUs (compared
with using CPUs), but this only reduces the model updating time
while the sampling phase still dominates the overall processing cost.
This is because most GNN models are considerably small (unlike
DNN models) and the training phase only needs to conduct model
computation on densely packed vectors, while sampling a large
graph involves large amounts of random data access and remote
data fetching in order to construct the neighborhood subgraph for
each sampled seed vertex.

We evaluated the performance of DistDGL [78] on a GPU server
(40 cores Intel(R) Xeon(R) Silver 4114 CPU@ 2.20GHz, 256 GBMem-
ory, and one Nvidia RTX 2080Ti graphics card). We tested DistDGL
with different fanout and hidden sizes to show the influence from
the workloads of sampling and training. As Figure 4 shows, the
largest difference in epoch time is only 10% between using GPU
and using CPU. The average GPU utilization for GNN training is
only around 20%, which is consistent with the GPU utilization of
DGL reported in [46]. In fact, even if we purely use CPUs for the
training phase, the sampling phase still dominates the overall cost
as we have shown in Figure 1. In addition, we also need to consider
the operational costs. GPU servers are expensive and GPU quota
is more restricted to training DNNs even in big companies like
ByteDance. In the cloud environment, Dorylus [61] also shows that

25-10 10-5-3 15-10-5
0

50

100

150

Fanout

Ep
oc
h
Ti
m
e(
s)

CPU GPU

(a) hidden size 32

25-10 10-5-3 15-10-5
0

50

100

150

Fanout

Ep
oc
h
Ti
m
e(
s)

CPU GPU

(b) hidden size 256

Figure 4: The epoch time of DistDGL with different hidden

sizes and fanout on the Ogbn-product dataset

Figure 5: System architecture of ByteGNN

GPU-based training is only cost-effective for small, dense graphs.
All the above concerns therefore divert our focus to designing a
CPU-based framework for large-scale GNN training.

Motivation summary. The analysis above motivates us to
design (1) a computation paradigm that uses only CPUs and aims
to maximize CPU utilization by adaptively allocating computing
resources to the sampling and training phases according to their
needs, and (2) a new graph partitioning algorithm in order to reduce
massive network communication caused by graph sampling in GNN
training.

3 SYSTEM DESIGN

Figure 5 shows the architecture of ByteGNN, which consists of
four main components in each machine where ByteGNN is de-
ployed. Graph Store stores a partition of the input graph data
and the Graph Stores of all machines form a distributed Graph
Store. PS is a parameter server that stores the model parameters.
Sampling Worker (S-Worker), handles the sampling phase and
constructs sampled neighborhood subgraphs for sampled seed ver-
tices. Training Worker (T-Worker), handles the training phase,
which computes model gradients on the sampled neighborhood
subgraphs constructed by the S-Worker in the same machine and
synchronizes the gradients with PS to update the model parameters.

In Sections 3.1-3.3 we focus on three key designs in ByteGNN,
which address the limitations of existing GNN systems discussed
in Section 2.3.

Figure 6: The DAG of the sampling workflow

3.1 Abstraction of Mini-Batch Graph Sampling

The sampling process in existing GNN systems [21, 78, 80] is not
well-organized as the tasks in each sampling phase are executed
without overlapping, which often leads to CPU under-utilization.
In addition, sampling is conducted for one iteration (i.e., one mini-
batch) after another, even though different mini-batches are in-
dependent of each other. To support parallel sampling within a
mini-batch and among mini-batches, so as to maximize CPU uti-
lization, we model the sampling process as a DAG of tasks. Then,
we can execute the DAGs of sampling multiple mini-batches in
parallel. We also introduce a scheduler in Section 3.2 to effectively
utilize the computing resources for both intra-DAG and inter-DAG
parallelization, while balancing the loads between sampling and
training so that one is not waiting for the other to finish in order
to continue.

To construct this DAG for a general GNN model, we analyzed
the sampling phase of a broad range of existing GNN models, i.e.,
those that follow a similar neighborhood aggregation as described
in Section 2.1, which cover most of the widely-adopted models such
as GCN [43], GAT [64], GraphSAGE [31], PinSAGE [75], and Graph-
SAINT [76]. We provide a common abstraction for the sampling
phase of these GNN models with a set of five operators: (1) Seed
Sampler: sampling a set of vertices as seeds from the local graph
store; (2) Positive Sampler: sampling vertices from the direct
neighbors of each seed; (3) Negative Sampler: sampling vertices
from those that are not the direct neighbors of each seed; (4)Neigh-
borhood Subgraph Construction (NSC): sampling vertices from
the multi-hop neighborhood of a given vertex and constructing the
sampled neighborhood subgraph; (5) Feature Fetching: fetching
the attributes of a given vertex/edge to construct its feature vector.

With the above five operators, we can present the workflow of
the sampling phase as a DAG, as shown in Figure 6. The DAG on the
left of Figure 6 models supervised training, which consists of three
tasks: Seed Sampling, NSC, and Feature Fetching. For unsupervised
training, we also need to construct the neighborhood subgraphs of
each positively and negatively sampled vertices of the seed vertices,
as shown in the DAG on the right of Figure 6. The three branches
in the DAG for unsupervised training can be executed in parallel,
and the results are then collected in the “End” node to be fed into a
T-Worker for training.

To enable higher parallelism for both supervised and unsuper-
vised training, we create an instance of the two dominating oper-
ations (i.e., NSC and Feature Fetching, as they access multi-hop
neighbors and their attributes) for each sampled vertex and execute
these instances in parallel. In addition, as NSC (along with Feature
Fetching) is executed repeatedly for each hop of neighborhood ex-
pansion, we can break the multi-hop operations into many smaller
tasks of one-hop operations. As shown in Figure 6, each small task
of Feature Fetching can start immediately when the corresponding
small NSC task finishes. The more fine-grained task abstraction
results in higher parallelism and better resource utilization (e.g., less
head-of-line blocking and stragglers, less fragmentation in resource
utilization).

To construct a DAG, users only need to specify the customized
sampling functions in Seed Sampler, Positive Sampler, Negative
Sampler, and also in NSC (e.g., how and how many neighbors in
each hop should be sampled). This design also leaves space for
researchers and engineers to explore new, high-quality sampling
strategies using the framework. Note that the logical DAG is created
only once and physical instances are generated and executed for
each mini-batch by the S-Workers.

3.2 Two-Level Scheduling

ByteGNN adopts a two-level scheduling strategy to improve CPU
utilization and reduce the end-to-end GNN training time. Although
many scheduling strategies have been proposed, they are mostly for
job scheduling at the cluster level [17, 19, 20, 25, 28–30, 35, 40, 47,
57, 60, 63, 74] or heterogeneous jobs/tasks in dataflow systems [39],
which are over-complicated and incur extra overheads for schedul-
ing the simple tasks in our system (note that for the training of a
GNN model, we only need to schedule instances of the same DAG
instead of many different DAGs).

Coarse-grained scheduling. The S-Worker in each machine
executes multiple DAGs in parallel to increase throughput and
reduce the end-to-end GNN training time. The first question we
need to answer is how many DAGs should be launched in a ma-
chine. If we launch too many DAGs, which means more resource is
needed by sampling, then resource contention becomes a problem.
Resource contention does not just occur among the DAGs, but also
between sampling (i.e., DAG execution) and training (i.e., model
computation). The training time increases significantly when too
many DAGs are launched. On the other hand, if too few DAGs are
running, the resource is under-utilized. The training phase finishes
quickly and the next iteration’s training waits for the neighborhood
subgraphs to be produced by the DAGs.

To control the resource utilization, we need to decide when to
launch a DAG. We can model this problem as a variation of the
classical Job-Shop Scheduling Problem (JSP) [7]. Each DAG can
be regarded as a job, where a set of operations (tasks) in each
job need to be processed in a specific order, and we have a set of
jobs that are to be processed on a given set of workers. Knowing
the best timing for DAG launching is equivalent to getting the
earliest starting time of each job in the solution to this special
Job-Shop Scheduling Problem. The Job-Shop Scheduling Problem
has been well studied and to find a schedule that minimizes the
makespan or minimizes the sum of the job completion time was

Algorithm 1: The Coarse-Grained Scheduling Strategy

Variable:𝐶util ,𝑄size ,𝑇𝑔𝑎𝑝
Given: 𝜎=launch-score
while more_dag do

//more_dag=1 when more DAGs can be launched

𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =
𝑇avg_sample

𝑇avg_train∗Qsize
;

𝑓 (𝐶util) = (101 − 𝑒𝐶𝑢𝑡𝑖𝑙 /𝑐) , where 𝑐 = 100
ln101

;

launch-score =𝑇𝑔𝑎𝑝 * 𝑓 (𝐶util) * 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ;
if launch-score ≥ 𝜎 then

more_dag = Launch_DAG();
// launches a new DAG; returns 0 when no more DAG to
launch
𝑇𝑙𝑎𝑠𝑡_𝑙𝑎𝑢𝑛𝑐ℎ =𝑇𝑖𝑚𝑒 () // used to calculate𝑇𝑔𝑎𝑝

else
sleep(5ms);

end

end

proved to be strongly NP-hard [11]. Some new research also shows
that the currently best approximation algorithms have worse than
logarithmic performance guarantee [26].

We propose a heuristic strategy to decide when to launch a DAG
based on three runtime measures: 𝐶util , 𝑄size , and 𝑇gap .

𝐶util is the CPU utilization rate. If 𝐶util is low, we may launch a
new DAG; otherwise, we may wait until 𝐶util drops to a suitable
level. Note that high 𝐶util does not necessarily result in better per-
formance because there could be much contention and switching
among DAGs and between sampling and training.

In addition to CPU utilization, We also need to consider the mem-
ory footprint. The neighborhood subgraph constructed from each
DAG execution is kept in the DAG output queue in the S-Worker
and𝑄size is the size of this queue. The neighborhood subgraphs are
then consumed by the T-Worker for training. Thus, 𝑄size is essen-
tially an indicator of the speed of production (by the S-Worker) and
the speed of consumption (by the T-Worker) of the neighborhood
subgraphs. If 𝑄size is small, we may launch new DAGs; otherwise,
we pause the launching. If 𝑄size is large, it implies an over-supply
of neighborhood subgraphs and we may shift more computing re-
source from sampling to accelerate training. Thus, 𝑄size not only
controls the memory usage, but also balances the overall resource
usage between sampling and training.

We also found that the real-time measure for𝐶util is not sensitive
enough since newly launched DAGs may not change the CPU
utilization in a short time period and many DAGs may be launched
during the period. Later, when the tasks in these DAGs start to
run in parallel and use up the computing resource, the system
suffers from severe resource contention. To avoid such delayed
performance punishments, we introduce 𝑇gap , which is the time
gap elapsed since the previous DAG launch. If 𝑇gap is too small, we
may want to wait for a bit longer before we launch a new DAG.

It would be undesirable if users need to set the thresholds for the
three measures, as it is hard to determine what values of𝐶util ,𝑄size ,
and 𝑇gap are good and how to relate them to each other. To this
end, we integrate them into one single score, launch-score, to decide
whether we should launch a new DAG. The idea is to maintain the
balance between the production speed and the consumption speed

of neighborhood subgraphs, while keeping CPU utilization high.
Ideally, we hope that the output of each DAG will be consumed
immediately by the training phase, which means that 𝑄size should
be close to 0 all the time. However, in most of the cases a very low
𝑄size happens with a very low𝐶util . Thus, we need to consider𝑄size

together with 𝐶util .
Algorithm 1 shows the algorithm for coarse-grained scheduling.

First, we want to maintain 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =
𝑇avg_sample

𝑇avg_train∗𝑄size
= 1, where

𝑇avg_sample and 𝑇avg_train are the average time for sampling and
training a mini-batch. If balance > 1, it means that it would take
less time to consume the current 𝑄size sampling results than to
produce a new sampling result, which is an indicator that a new
DAG should be launched. Next, we first attempt to use (100−𝐶util)
to give a higher weight to balance if𝐶util is low and penalize balance
(i.e., delay new DAG launching) when𝐶util is high. However, simply
using (100−𝐶util) does not work well as it is a linear scale. Instead,
we want to quickly increase CPU utilization when 𝐶util is low and
prevent contention promptly when𝐶util is already very high. Thus,
we use an exponential function, 𝑓 (𝐶util) = 101 − 𝑒𝐶util/𝑐 , where
𝑐 = 100

𝑙𝑛101 is a constant used to align the range of 𝑓 (𝐶util) with that
of𝐶util , i.e., 𝑓 (0) = 100, 𝑓 (100) = 0, and 0 ≤ 𝑓 (𝐶util) ≤ 100. Finally,
we also put 𝑇gap as a weight to reflect the delay in the real-time
measurement of 𝐶util , which leads to the definition of launch-score
in Algorithm 1.

We monitor launch-score in real time and launch a new DAG
when launch-score ≥ 𝜎 , where 𝜎 is a threshold set as follows. As
shown in Algorithm 1 and explained above, launch-score connects
𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , 𝑓 (𝐶util) and 𝑇𝑔𝑎𝑝 together to determine whether a new
DAG job should be launched. In practice, there exist reasonable
values of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , 𝑓 (𝐶util) and 𝑇𝑔𝑎𝑝 for which a new DAG should
be launched; Note that there are always trade-offs between 𝑏𝑎𝑙𝑎𝑛𝑐𝑒
and 𝑓 (𝐶util), e.g., a higher 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 and a lower 𝑓 (𝐶util), to achieve
a high launch-score. Such tradeoffs in runtime allows the system to
automatically adjust the resource allocation to balance the sampling
and training progress.

Fine-grained scheduling. After new DAGs are launched, the S-
Worker executes the tasks in the DAGs, in parallel with the tasks in
other DAGs. These tasks are put in a queue when their dependency
is cleared (i.e., their parent tasks in the DAG are completed) and
are handled by a pool of processing threads. If we execute the tasks
in an FIFO order, some tasks of newly launched DAGs could be
in front of the tasks in those almost-finished DAGs. For example,
when the 𝐷𝐴𝐺1 pushes the “END” node in the task queue and
there are already “NSC” tasks from 𝐷𝐴𝐺2 and 𝐷𝐴𝐺3 in the queue,
the “NSC” tasks will be executed first and the “END” task will be
processed later even although the “END” task is the last task in
𝐷𝐴𝐺1, completing which will immediately return the sampled data
to the T-Worker for training. Meanwhile, one task may unlock a
lot of downstream tasks in the same DAG, and heavy tasks may
block many light tasks. Thus, the average completion time of the
DAG jobs and hence the end-to-end GNN training time can be
significantly increased.

We schedule tasks according to the following orders: (1) tasks in
a DAG with a smaller ID will be executed first; (2) tasks in the same
DAG will be executed in ascending order of their costs. We assign a
smaller ID to a DAG launched earlier to prioritize earlier DAGs to be

Algorithm 2: Block Assignment

Input: List of Blocks B = 𝐵1, 𝐵2,, 𝐵𝑛

Output: Graph partitions 𝑃1, 𝑃2, 𝑃3,, 𝑃𝑘
for each block 𝐵𝑖 in B do

for j← 1 to 𝑘 do
CE[j] = |Cross_Edge(𝑃 𝑗 , 𝐵𝑖)| / |𝑃 𝑗 |

BS[j] = (1-𝛼 ∗ |𝑃 𝑗 (train) |
𝐶 (train) -𝛽 ∗ |𝑃 𝑗 (val) |

𝐶 (val) -𝛾 ∗ |𝑃 𝑗 (test) |
𝐶 (test))

end

𝑥 = argmax
1≤𝑡 ≤𝑘

{CE[t] * BS[t]}

𝑃𝑥 = 𝑃𝑥 ∪ 𝐵𝑖
end

return 𝑃1, 𝑃2, 𝑃3,, 𝑃𝑘

completed first. We calculate the cost of a task by the data it needs
to handle. For example, for sampling tasks in each hop of NSC, the
cost is equal to the total number of neighbors of the input vertices;
for Feature Fetching, the cost is the number of vertices/edges to be
fetched multiplied by the vertex/edge feature dimension. As tasks
may require data from remote machines, the S-Worker sends data
fetching requests to the local Graph Store, which communicates
with remote Graph Stores to fetch the data. The remote requests
are also scheduled in a similar way and the network operations are
processed concurrently with the CPU operations.

3.3 GNN-based Graph Partitioning

Existing graph partitioning algorithms [37, 41, 46] are mainly de-
signed to reduce inter-partition edges and balance the workload.
They have been widely adopted in distributed graph processing sys-
tems [27, 53, 81] to reduce inter-machine communication. However,
sample-based GNN training focuses on the 𝐾-hop neighborhood
of only the vertices in the training, validation and test sets (instead
of all vertices). For example, in Figure 7, traditional partitioning
strategies cut the graph into two parts by the left dotted line since
it not only balances the vertices but also has the least cut edge. But
for a 2-layer GNN training, since vertex 𝐴 and vertex 𝐵 are the
labeled vertices, partitioning by the right dotted line is actually a
better choice. Even if this results in two cut edges, it would not
cause any data movement in the training process as only the 2-hop
neighbors of the labeled vertices are required.

In addition, the ratio of the sizes of the training, validation, and
test sets of different real-world graphs may differ significantly. For
example, in the Ogbn-Product dataset, the test set size is 11 times
the training set size and 56 times the validation set size; while in the
Ogbn-Papers dataset, the test set size is only 0.18 times the training
set size and 1.7 times the validation set size. Thus, the partitioning
algorithm should consider both the special data access pattern of
𝑘-layer GNN training and the balanced distribution of the training,
validation, and test sets.

It is known that the traditional graph partitioning problem is
proved to be APX-hard [6]. Thus, our graph partitioning problem is
also APX-hard as it can be reduced to the traditional graph partition-
ing problem. We propose a heuristic two-step graph partitioning
strategy tailored for GNN sampling workloads. The main idea is
to group vertices into multi-hop neighborhood-based blocks and

Figure 7: Traditional partitioning vs. GNN partitioning

then assign these blocks to partitions by balancing the numbers of
training, validation and test vertices in the partitions.

Step (1) neighborhood block construction. To better pre-
serve the locality of graph data for GNN sampling workloads, we
construct a neighborhood block for each vertex in the training, vali-
dation and test sets. We start a𝐾-hop breadth-first search from each
vertex 𝑣 (𝑣 is called the block center) and broadcast the unique
block ID of 𝑣 to its 𝐾-hop neighbors being visited. Every vertex
only keeps the first block ID it receives, except for block centers
which keep their own block ID. A block is then formed of all the
vertices that keep the same block ID. Figure 7 demonstrates how to
construct the blocks.

Step (2) block assignment. Just as existing graph partitioning
algorithms aim to balance the number of vertices in the partitions,
our objective is to also balance the number of training, validation
and test vertices in the partitions so that the work of training, vali-
dation and test is also balanced among the machines. Algorithm 2
shows how to assign the blocks. For each block 𝐵𝑖 , it is assigned
to the partition with the highest score. 𝑃 𝑗 is the set of vertices that
have already been assigned to partition 𝑗 . 𝐶𝐸 [𝑗] is the number
of cross-edges between 𝐵𝑖 and 𝑃 𝑗 , which will be eliminated if 𝐵𝑖
is assigned to 𝑃 𝑗 . Thus, the larger 𝐶𝐸 [𝑗] is, the more likely 𝐵𝑖 is
assigned to 𝑃 𝑗 . As the size of different partitions may vary during
the assignment, we normalize𝐶𝐸 [𝑗] by |𝑃 𝑗 |. 𝐵𝑆 [𝑗] is the balancing
score that controls the number of training/validation/test vertices
in partition 𝑗 to be close to the average value. For example, the
expected number of training vertices in each partition is 𝐶 (train)
= |𝑉 (train) |/𝑁 , where 𝑉 (train) is the set of all training vertices
and 𝑁 is the total number of partitions. Let 𝑃 𝑗 (train) be the set of
training vertices currently in partition 𝑗 . Thus, a smaller

|𝑃 𝑗 (train) |
𝐶 (train)

means that more training vertices can be assigned to partition 𝑗 .
The above applies to the validation and test vertices as well. In
addition, we also use a weight to put more attention on a specific
type of vertices according to the scale of that type in order to obtain
a better overall performance. For example, if the number of training
vertices is significantly more, we may set a larger 𝛼 to favor the
training process, which can improve the end-to-end processing
time.

Before the block assignment, we sort the blocks in descending or-
der ofmax{|𝑉 (train) |, |𝑉 (val) |, |𝑉 (test) |}. Then, we start the block
assignment according to this order. In this way, larger blocks are
assigned to different partitions first, so that smaller blocks may

be used later to fill the partitions more easily when the partitions
begin to fill up.

4 SYSTEM IMPLEMENTATION

We implemented ByteGNN based on GraphLearn [4], using Tensor-
Flow [5] as the backend deep learning framework for the training
phase. We used the data loader and distributed graph storage in
GraphLearn, where the graph topology data is stored in adjacency
list format and the features are stored separately and indexed by
their vertex/edge ID. Our implementation focuses on efficient DAG
construction and execution, graph partitioning, and gradient syn-
chronization.

DAG construction and execution. We adopt the Gremlin syn-
tax to help us construct the DAG.We redesigned the parsingmethod
to encode necessary metadata from a Gremlin query for generat-
ing DAG nodes. Since one Gremlin statement may become several
nodes in the final DAG, we implemented the parsing phase to care-
fully handle the complex dependency among the task nodes. We
also changed all the communication methods from synchronous in
GraphLearn to asynchronous in ByteGNN.

Graph partitioning.We implemented our graph partitioning
strategy on the streaming graph partitioning framework in [12,
46]. The random start seed vertices in [12] were replaced with
labeled vertices/edges. The framework first does the multi-source
distributed BFS to build the 𝐾-hop neighborhood blocks, and then
applies our block assignment strategy in Section 3.3 to assign blocks
to the partitions. The partitions are written into HDFS and then
loaded by the system for sampling and training.

Gradient synchronization. To address the potential conver-
gence issue, we implemented the bulk synchronous parallel (BSP)
and stale synchronous parallel (SSP) models based on the Tensor-
Flow API, so that users may also choose to use BSP or SSP to obtain
faster model convergence and reduce the training time.

5 SYSTEM EVALUATION

We evaluate the performance of ByteGNN by comparing with
Graph-Learn [4], Euler [1] and Distributed DGL (DistDGL) [78]. We
also examine the effects of our system designs on the performance.

Testbed.We ran our experiments on a cluster of machines where
each machine is equipped with 1T DDR4 main memory and two
2.40GHz Intel(R) Xeon(R) Platinum 8260 CPU (each CPU has 24
cores or 48 virtual cores by hyper-threading). All the machines are
connected by a 25Gbps network and the OS is the Debian 9.13 with
Linux kernel 4.19.117.

Datasets. We used three datasets in the evaluation, as shown
in Table 1. 𝑂𝑔𝑏𝑛-𝑃𝑟𝑜𝑑𝑢𝑐𝑡 and 𝑂𝑏𝑔𝑛-𝑃𝑎𝑝𝑒𝑟𝑠 are the largest two
graphs in the Open Graph Benchmark (OGB). 𝑂𝑔𝑏𝑛-𝑃𝑟𝑜𝑑𝑢𝑐𝑡 is an
undirected and unweighted graph modeling an Amazon product co-
purchasing network [32]. 𝑂𝑏𝑔𝑛-𝑃𝑎𝑝𝑒𝑟𝑠 is a directed citation graph
of 111 million papers indexed by MAG [65]. The 𝑆𝑜𝑐𝑖𝑎𝑙 dataset is a
directed graph in industry from the social network scenario.

Models.We used three representative GNN models, Graph Con-
volutional Network (GCN) [43], GraphSAGE [31] and Graph Atten-
tion network(GAT) [64], in our evaluation. In order to demonstrate
the expressiveness and efficiency of ByteGNN, we also tested the un-
supervised variants of these three models. Although unsupervised

Table 1: Graph datasets

Dataset Ogbn-Product Ogbn-Papers Social
(Product) (Papers)

Vertices 2,449,029 111,059,956 66,351,656
Edges 123,718,280 1,615,685,872 1,751,915,191
Feature 100 128 150
Classes 47 172 2
Training set 196,615 1,207,179 6,631,989
Validation set 39,323 125,265 19,908,461
Test set 2,213,091 214,338 39,811,206

learning shares most of the GNN architectures with supervised
learning, it involves the negative sampling operator in the sam-
pling phase and is also widely used in important tasks such as
link prediction. Since many works are proposed to improve the
sampling of GNN models, we used GraphSAINT [76] as a typical
example to show how our sampling abstraction can be applied.

As shown by prior works [16, 32, 37], deeper and larger GNN
architectures can achieve better model accuracy. We used three
network layers for the models and set the sampling configuration
to 𝑘1 = 10, 𝑘2 = 5 and 𝑘3 = 3 for the neighborhood sampling
models. The mini-batch size was set to 512 in all the experiments.

Systems.We compared with three distributed GNN training sys-
tems, GraphLearn, Euler (v1.0) andDistDGL (DGL v0.5.3). GraphLearn
is a distributed framework designed for the development and ap-
plication of GNNs on large scale graphs within Alibaba. Euler is
also developed by Alibaba but it has been used in many companies
for large scale GNN training. Both GraphLearn and Euler use Ten-
sorFlow as the backend system. DistDGL is a popular GNN system
and its latest version (v0.5.3) supports distributed GNN training.
The computational patterns of DistDGL are highly optimized by
dedicated sparse tensor operations, which are currently lacking in
ByteGNN as this work focuses on improving the sampling perfor-
mance. Unless otherwise stated, we used the default configuration
of these systems in our experiments. ByteGNN used the BSP model
to obtain better test accuracy. All the systems adopt the random
neighborhood sampling method as the default sampling method
and use the same hop number and fanout.

5.1 Overall Performance

Wefirst compared the overall performance of the systems.We report
the throughput of each system, i.e., the number of samples being
processed per second, which is a metric commonly used to measure
the performance of model training of a system. The throughput is
calculated as the total number of seed vertices processed divided by
the end-to-end GNN training time. Thus, the larger the throughput
of a system, the shorter is the end-to-end GNN training time of the
system. The hidden size is set to 32 in GCN and GraphSAGE. For
GAT, we used 4 attention heads with hidden size 16. Since Euler
failed to run unsupervised GAT training, we ignore this result.

Figure 8 reports the results. ByteGNN achieves 7.5 to 16.2 times
speedup compared with GraphLearn on supervised training and up
to 23 times on unsupervised training. As ByteGNN is implemented
on GraphLearn and the key differences from GraphLearn are the
three system designs presented in Sections 3.1-3.3, the results show

Product Papers Social
0 K

10 K

20 K

30 K

40 K

50 K

60 K

70 K

T
h
ro
u
gh
p
u
t(
S
am

p
le
/s
)

GraphLearn Euler DistDGL ByteGNN

(a) GCN

Product Papers Social
0 K

10 K

20 K

30 K

T
h
ro
u
gh
p
u
t(
S
am

p
le
/s
)

GraphLearn Euler DistDGL ByteGNN

(b) Unsupervised GCN

Product Papers Social
0 K

10 K

20 K

30 K

40 K

50 K

60 K

70 K

T
h
ro
u
gh
p
u
t(
S
am

p
le
/s
)

GraphLearn Euler DistDGL ByteGNN

(c) GraphSAGE

Product Papers Social
0 K

10 K

20 K

30 K

T
h
ro
u
gh
p
u
t(
S
am

p
le
/s
)

GraphLearn Euler DistDGL ByteGNN

(d) Unsupervised GraphSAGE

Product Papers Social
0 K

10 K

20 K

30 K

T
h
ro
u
gh
p
u
t(
S
am

p
le
/s
)

GraphLearn Euler DistDGL ByteGNN

(e) GAT

Product Papers Social
0 K

10 K

T
h
ro
u
gh
p
u
t(
S
am

p
le
/s
)

GraphLearn Euler DistDGL ByteGNN

(f) Unsupervised GAT

Figure 8: The throughput of GraphLearn, Euler, DistDGL, and

ByteGNN for training different models on 4 machines

that our designs are effective. In particular, the performance im-
provement obtained by ByteGNN is more significant for unsuper-
vised training that has more parallel sampling tasks, which is as a
result of the high parallelism enabled for tasks within a DAG and
among DAGs.

Compared with Euler, although Euler also adopts the data-flow
graph by TensorFlow for sampling the mini-batch neighborhood
and training, ByteGNN can still achieve up to 4.7 times performance
speedup. Euler cannot run two TensorFlow’s computation graphs at
the same time as otherwise it would lead to a convergence problem.
In contrast, the separation of sampling phase and training phase
in ByteGNN enables concurrent execution of multiple DAGs to
maximize CPU utilization.

0 100 200 300 400 500
50

60

70

80

90

100

Running Time(s)

CP
U

U
til

(%
)

GraphSAGE Unsup_GraphSAGE GCN Unsup_GCN

Figure 9: Average CPU utilization of ByteGNN

Compared with DistDGL, ByteGNN achieves 2.1 ~ 3.5 times
speedup for training the dense graph 𝑂𝑔𝑏𝑛-𝑃𝑟𝑜𝑑𝑢𝑐𝑡 in both su-
pervised and unsupervised training. For the sparse graphs 𝑂𝑔𝑏𝑛-
𝑃𝑎𝑝𝑒𝑟𝑠 and 𝑆𝑜𝑐𝑖𝑎𝑙 , ByteGNN still has better performance. In the
supervised training, ByteGNN is 1.5x and 1.3x faster than Dist-
DGL in GCN and GraphSAGE. But the speedup is less significant
compared with that on the dense graph, especially for GAT. This
is because sparse tensor operations in the training phase of Dist-
DGL have been highly optimized, while currently there is no such
optimization in ByteGNN. For unsupervised training that has heav-
ier sampling workloads, Figures 8(b)&(d)&(f) show that ByteGNN
achieves considerably better performance as ByteGNN’s design
enables higher parallelism in sampling execution. (e.g., 2.4x for
unsupervised GraphSAGE and 1.6x for unsupervised GAT).

We also report the average CPU utilization of ByteGNN for
training all the models in Figure 9. The result is reported for 𝑂𝑔𝑏𝑛-
𝑃𝑎𝑝𝑒𝑟𝑠 , while ByteGNN’s CPU utilization for the other two datasets
is similar. Comparedwith the average CPUutilization of GraphLearn,
Euler and DistDGL as shown in Figure 3, ByteGNN achieves 3 - 6
times higher CPU utilization. ByteGNN has lower CPU utilization
for supervised GCN and GraphSAGE because the number of neigh-
borhood subgraphs in the DAG output queue is sufficient, S-Worker
dynamically frees up some resource to T-Worker and the training
workload for GCN is not heavy.

5.2 Scalability

Figure 10 reports the throughput scalability of the systems for the
𝑂𝑔𝑏𝑛-𝑃𝑎𝑝𝑒𝑟𝑠 dataset, where we increase the number of machines
from 4 to 64. ByteGNN achieves better scalability than all the other
three systems. We omit the results for the other two datasets due
to the page limitation, but the patterns are similar and ByteGNN’s
performance on the dense graph 𝑂𝑔𝑏𝑛-𝑃𝑟𝑜𝑑𝑢𝑐𝑡 is even better. The
hidden size is set to 256 here to demonstrate the performance of
our system in different configuration.

In general, the throughput performance in distributed GNN
training has sub-linear scalability due to the synchronization over-
head (when the BSP model is used to achieve high accuracy) and
heavy network I/O among the machines. GraphLearn and Euler
scale poorly and their throughputs are relatively low. Although
GraphLearn and Euler are built on top of TensorFlow, the default
asynchronous gradient update in distributed TensorFlow does not

4 8 16 32 64
0 K

100 K

200 K

300 K

400 K

Number of Machines

Th
ro
ug

hp
ut
(S
am

pl
e/
s) GraphLearn Euler DistDGL ByteGNN

(a) GraphSAGE

4 8 16 32 64
0 K

100 K

200 K

300 K

400 K

Number of Machines

Th
ro
ug

hp
ut
(S
am

pl
e/
s) GraphLearn Euler DistDGL ByteGNN

(b) GCN

Figure 10: Scalability comparison

cause much synchronization overhead (though with potential ac-
curacy loss). However, without an effective graph partitioning al-
gorithm to preserve the locality of neighborhood access, remote
data fetching results in high network communication overhead. In
contrast, DistDGL’s main issue in scalability is due to the synchro-
nization overhead for gradient update. If the sampling output of a
mini-batch cannot return on time, the trainer will get the forward
loss later and all the other machines will wait for this loss to begin
the back propagation. Even with the fixed prefetching mechanism,
the possibility of the back propagation waiting increases as the
number of machines increases. In comparison, ByteGNN’s sched-
uling allows the sampling outputs to be pipelined to the trainers
while other sampling processes continue, which results in better
resource utilization. ByteGNN’s GNN-tailored graph partitioning
algorithm also leads to lower network communication overhead as
the number of machines increases. As a result, ByteGNN achieves
better scalability than the other systems.

5.3 Model Accuracy

We also report the correctness of ByteGNN by evaluating the test
accuracy of the GraphSAGE model on the 𝑂𝑔𝑏𝑛-𝑃𝑟𝑜𝑑𝑢𝑐𝑡 dataset,
comparing with GraphLearn and DistDGL. Euler has similar ac-
curacy as GraphLearn. In Figure 11, we report the test accuracy
of different systems at every epoch until the training converges.
The result shows that the systems achieve similar or the same ac-
curacy eventually, but ByteGNN converges the fastest, in both the
single-machine setting (1M) and distributed 4-machine setting (4M).
We also note that as the mini-batch training can update the model
many times in one epoch, the accuracy increases quickly in the first
several epochs. The single-machine accuracy of GraphLearn can
also be seen as the baseline to demonstrate that our code changes
to GraphLearn do not affect the semantics of the GNN models. And
as ByteGNN uses BSP to ensure model convergence in distributed
training, it achieves approximately the same accuracy as DistDGL
but uses less time.

0 500 1,000 1,500 2,000 2,500 3,000

78

Running Time(s)

Te
st
A
cc
ur
ac
y(

%
)

GraphLearn 1M DistDGL 1M ByteGNN 1M
GraphLearn 4M DistDGL 4M ByteGNN 4M

Figure 11: Accuracy comparison

5.4 Evaluation on System Designs

We further evaluate the effectiveness of each individual system
design in ByteGNN.

5.4.1 Sampling Abstraction. We used the GraphSAINT model to
demonstrate how to build a DAG using our sampling abstraction.
Different from sampling neighbors across the layers, GraphSAINT
constructs mini-batches by sampling the whole input graph once
and then building a full GCN on the sampled subgraph. It provides
three light-weight and efficient samplers, NodeSampler, EdgeSam-
pler, and RandomWalkSampler. Due to space constraints, we only
show the implementation of the Seed Sampler function in our sam-
pling abstraction for GraphSAINT’s NodeSampler and EdgeSampler.
Note that the training part is the same for different samplers.

1 / / NodeSampler
2 de f s eed_samp le r (s e l f) :
3 r e t u r n s e l f . g . V (node_type= " t r a i n ")
4 . ba t ch (b a t c h _ s i z e = n)
5 . by (" I nD e g r e e ")
6
7 / / EdgeSampler
8 de f s eed_samp le r (s e l f) :
9 r e t u r n s e l f . g . E (edge_ type= " t r a i n ")
10 . ba t ch (b a t c h _ s i z e = m)
11 . by (" EdgeWeight ") . bothV ()

For GraphSAINT’s NodeSampler, we sample 𝑛 vertices from all
the training vertices according to a vertex probability distribution
𝑃 (𝑢) ∝ ||𝐴̃:,𝑢 | |2. We call this “InDegree” sampling as it is associated
with the in-degree of each vertex. For EdgeSampler, the edge prob-
ability distribution follows 𝑝𝑒 (𝑣,𝑢) ∝ 1

𝑑𝑒𝑔 (𝑢) +
1

𝑑𝑒𝑔 (𝑣) . Normally, it

can be pre-calculated dependent on the graph topology only and
become the weight of edges. The code above shows the Seed Sam-
pler function of these two samplers using our sampling abstraction.
Using Gremlin, users can easily write the sampling logic. Then, the
sampling stage can be completed by the NSC and Feature Fetching
functions as discussed in Section 3.1.

We also implemented the GraphSAINT model in GraphLearn to
compare the end-to-end training performance. Table 2 reports the
speedup ratio of ByteGNN over GraphLearn for training Graph-
SAINT on different graphs using four machines, using the same
sampling setting from [76]. Even though GraphSAINT has a light
sampling workload, ByteGNN can still achieve significant speedup
compared with GraphLearn. Note that ByteGNN has better perfor-
mance with EdgeSampler because EdgeSampler needs to obtain the
two end-vertices of the sampled edge and has a higher workload
than NodeSampler.

Table 2: Speedup ratio of ByteGNN over GraphLearn

Type Ogbn-Product Ogbn-Papers Social

NodeSampler 3.40 2.80 4.05
EdgeSampler 4.72 3.25 5.89

Table 3: The execution time (sec) of one epoch for different

sampling settings, running on𝑂𝑔𝑏𝑛-𝑃𝑎𝑝𝑒𝑟𝑠 using 8 machines

(a) The execution time of light sampling workload

Sequential Fixed DAGs Coarse-Grained

512 79.04 19.56 18.62
1024 75.29 19.21 17.52
2048 74.52 19.90 17.75

(b) The execution time of heavy sampling workload

Sequential Fixed DAGs Coarse-Grained

512 314.04 63.41 56.70
1024 312.14 68.72 57.20
2048 310.43 78.10 62.46

5.4.2 Coarse-Grained Scheduling. We first evaluate the perfor-
mance of the coarse-grained scheduling strategy. We used three
different batch sizes: 512, 1024 and 2048. We created a light sam-
pling workload by setting the sampling configuration to 𝑘1 = 10,
𝑘2 = 5 and 𝑘3 = 3. We also created a heavy sampling workload by
setting the sampling configuration to 𝑘1 = 15, 𝑘2 = 10 and 𝑘3 = 5.

We used two baselines. The first baseline is sequential DAG
execution, which runs DAGs one after another. The second baseline
is running a fixed number of DAGs at any time. The DAG size is
set to 16 which is the same as the default in DistDGL prefetching.

Table 3 shows that coarse-grained scheduling achieves the best
performance in all cases. For sequential DAG execution, the execu-
tion of a single DAG at a time results in resource under-utilization
and thus has poor performance. For the light sampling workload,
the fixed number of DAGs has performance close to that of coarse-
grained scheduling. This is because the sampling workload is light
and can be finished quickly so that DAGs can already produce
the sampling results fast enough for the trainer to consume. How-
ever, the lower sampling rate leads to more biased results and the
light workload also results in resource under-utilization. When
the sampling workload is heavier, the higher random data access
overhead and higher network I/O cost to retrieve remote neighbors
become the performance bottleneck. In this case, our coarse-grained
scheduling strategy becomes effective as it dynamically adjusts the
resource allocation to sampling and training in order to maximize
resource utilization.

5.4.3 Fine-Grained Scheduling. We further show the impact of the
fine-grained scheduling strategy on the DAG completion time. We
ran ByteGNN for 10 epochs and measured the completion time of
each DAG of mini-batch sampling under two settings: using the
priority-based scheduling in the fine-grained scheduling strategy

FIFO Priority

360

380

400

420

440

460

480

T
im

e
(m

s)

(a) Supervised Training

FIFO Priority

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

T
im

e
(m

s)

(b) Unsupervised Training

Figure 12: Distribution of DAG completion time

and using FIFO-based scheduling. We use the box plot to report the
distribution of the DAG completion time. Figure 12 shows that the
priority-based scheduling can significantly reduce the completion
time of the DAGs, and the DAG completion time is also more stable,
which avoids the short time period of under-supply or over-supply
of the sampling outputs. In supervised training, when the number
of DAGs is in the suitable range, there are not too many small tasks
in the DAGs so that the FIFO scheduling can handle it. However,
unsupervised training launches more sampling tasks during the
DAG execution. The median DAG completion time of the FIFO
scheduling is almost two times greater than the median of the
priority-based scheduling.

5.4.4 Graph Partitioning. To validate the effectiveness of our GNN-
tailored graph partitioning (GNN-P) algorithm, we compared GNN-
P with three well-known graph partitioning methods: hash par-
titioning, Fennel partitioning [62] and METIS partitioning [41].
Both hash and METIS partitioning have been widely adopted in
distributed graph computing systems. Fennel is the representative
of one-pass streaming partitioning algorithms.

Figure 13 reports the distribution of the requests for remote and
local neighborhood data in one training epoch by each machine
(the distributions of the requests for validation and test show a
similar pattern). First, Figure 13(a) shows that hash partitioning
achieves the best balanced distribution because hash partitioning
assigns each type of vertices to different partitions with the same
possibility. However, it does not consider the locality of neighbor-
hood data access and thus incurs much higher remote data requests,
which result in high network communication overhead. The num-
ber of remote requests is about 6.32 times the local data requests.
Although METIS keeps the total number of vertices similar in each
partition, the number of training vertices varies significantly among
the partitions (also true for validation and test vertices). Half of
the training vertices are assigned to one partition in Machine 1,
which indeed reduces remote data requests; however, the imbal-
anced distribution results in Machine 1 being a severe straggler,
which processes around 80% of the data requests in each training
epoch. Fennel roughly balances the total load in each partition.
Fennel considers data locality but it is only limited to direct neigh-
bors, and thus remote data requests still take a major portion of
the total number of data requests in each partition. In contrast, the
multi-hop block construction of GNN-P significantly improves the
data locality of each partition. The ratio of remote data requests and
local data requests in the partitions of GNN-P is also considerably

1 2 3 4 5 6 7 8
0

5

10

#Machine ID

#
R
e
q
e
u
st

N
u
m
b
e
r
(x

1
06
)

Local Remote

(a) Hash

1 2 3 4 5 6 7 8
0

20

40

60

80

#Machine ID
#
R
e
q
e
u
st

N
u
m
b
e
r
(x

1
06
)

Local Remote

(b) Metis

1 2 3 4 5 6 7 8
0

5

10

15

#Machine ID

#
R
e
q
e
u
st

N
u
m
b
e
r
(x

1
06
)

Local Remote

(c) Fennel

1 2 3 4 5 6 7 8
0

5

10

15

#Machine ID

#
R
e
q
e
u
st

N
u
m
b
e
r
(x

1
06
)

Local Remote

(d) GNN-P

Figure 13: The distribution of remote/local data requests

smaller than that of the hash and Fennel partitions. In addition,
with the balance-aware assignment algorithm, GNN-P achieves a
much more balanced distribution of the total workload.

6 RELATEDWORK

Single-machine GNN systems. PyG [21] integrates with Py-
Torch [54] to provide a message-passing API for GNN training.
Incorporated with the Apache TVM compiler [15], FeatGraph [33]
generates optimized kernels for both CPU and GPU. But to im-
plement new GNN operators, users need to have the background
of TVM primitives. NeuGraph [48] proposes Scatter-ApplyEdge-
Gather-ApplyVertex programming model to express GNN models
and supports full-batch training in a single machine with multiple
GPUs. It divides a graph into 2-D chunks and introduces a streaming
scheduler to handle the CPU-GPU data transfer when GNN compu-
tation for a graph cannot fit in the GPU memory. Seastar [69, 70]
proposes a vertex-centric programming model to express GNN
models using native Python syntax and identifies a common seastar
computation pattern in GNN training to generate high-performance
fused kernels. There are also works [36, 46] that focus on addressing
the bottleneck of mini-batch sampling. PaGraph [46] is a sampling-
based training framework on multi-GPUs that addresses the ex-
pensive subgraph data loading issue by a GNN computation-aware
cache policy. NextDoor [36] enables users to express the sampling
tasks in GPUs by a high-level API and also proposes a novel transit
parallelism approach to parallelize graph sampling. However, these
single-machine systems have the limitation of processing large
industrial graphs due to limited GPU memory.

Distributed GNN systems. For training GNNs on large graphs
in a distributed manner, AliGraph [80] provides sampling-based
distributed GNN training and reduces network communication by
caching vertices on local machines. DistDGL [78] uses a distributed
in-memory key-value store to support efficient access to graph
topology and feature data in distributed GNN training. DGCL [10]
proposes an efficient communication library for distributed full-
batch GNN training on multi-GPUs using NVLink. DGCL needs to
load all the graph data into GPUs first and is not suitable for training
large graphs. Based on FlexFlow [38], a distributed DNN training
framework, Roc [37] also adopts full-batch training in multi-GPUs
using dynamic programming to minimize data swapping between
host DRAM and GPU memory. P3 [23] reduces communication by
model parallelism for the first layer, while it uses data parallelism for
the remaining layers. However, if the hidden size is larger than the
input dimension, it still incurs a high cost for the synchronization of
the output of the first layer. AGL [77] uses MapReduce to preprocess
a graph, which samples multiple neighborhood subgraphs for each
vertex and stores them in a distributed file system. During training,
AGL loads the required samples of neighborhood subgraphs of the
vertices directly from the disk. However, the preprocessing cost
is high and the storage overhead can also be large. Dorylus [61]
designs a computation separation mechanism and pipelines the
different computation patterns in the Amazon EC2 machine and
serverless Lambdas in the cloud environment.

Graph partitioning in GNN. METIS [41] is commonly used
for graph partitioning in GNN algorithms [16, 44, 45] and sys-
tems [10, 48, 78]. Cluster-GCN [16] adopts METIS to build small
clusters and then uses the partitions to perform an SGD update.
DistDGL [78] adjusts the METIS algorithm to balance the training
vertices in each partition. NeuGraph [48] uses the Kernighan-Lin
algorithm to make the chunks in the diagonal have as many edges
as possible. Roc [37] uses an linear-regression based algorithm to
achieve balanced partitioning for both GNN training and inference;
but it still treats all the vertices equally, which makes the computa-
tion load unbalanced. PaGraph [46] partitions a graph based on the
neighborhood of a training vertex. However, with the multi-hop
feature cache to avoid feature communication between different
trainers, the memory overhead is too high.

7 CONCLUSIONS

Wepresented ByteGNN, a distributed GNN training system for GNN
training in large graphs. ByteGNN abstracts the sampling phase of
a mini-batch as a DAG of small tasks to support high parallelism.
Leveraging the DAG abstraction, ByteGNN designs a two-level
scheduling to improve resource utilization and reduce the end-to-
end GNN training time. ByteGNN also tailors graph partitioning for
GNN workloads to reduce network I/O and balance the workload.
Experimental results show that ByteGNN can significantly shorten
the end-to-end training time compared with existing distributed
GNN systems.

ACKNOWLEDGMENTS

We thank the anonymous VLDB reviewers, for their constructive
comments and suggestions that have helped greatly improve the
quality of the paper.

REFERENCES
[1] 2019. Euler. https://github.com/alibaba/euler.
[2] 2019. Gremlin. http://tinkerpop.apache.org/gremlin.html.
[3] 2019. TinkerPop. http://tinkerpop.apache.org/.
[4] 2020. GraphLearn. https://github.com/alibaba/graph-learn.
[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. USENIX
Association, 265–283. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/abadi

[6] Konstantin Andreev and Harald Räcke. 2004. Balanced graph partitioning. In
SPAA 2004: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, June 27-30, 2004, Barcelona, Spain. ACM, 120–124.
https://doi.org/10.1145/1007912.1007931

[7] David L. Applegate and William J. Cook. 1991. A Computational Study of
the Job-Shop Scheduling Problem. INFORMS J. Comput. 3, 2 (1991), 149–156.
https://doi.org/10.1287/ijoc.3.2.149

[8] Ching Avery. 2011. Giraph: Large-scale graph processing infrastructure on
hadoop. Proceedings of the Hadoop Summit. Santa Clara 11 (2011).

[9] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. The Journal of
Mathematical Sociology 25, 2 (2001), 163–177. https://doi.org/10.1080/0022250X.
2001.9990249 arXiv:https://doi.org/10.1080/0022250X.2001.9990249

[10] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. 2021.
DGCL: an efficient communication library for distributed GNN training. In
EuroSys ’21: Sixteenth European Conference on Computer Systems, Online Event,
United Kingdom, April 26-28, 2021. ACM, 130–144. https://doi.org/10.1145/
3447786.3456233

[11] Bo Chen, Chris Potts, and Gerhard Woeginger. 1998. A Review of Machine
Scheduling: Complexity, Algorithms and Approximability. 21–169. https://doi.
org/10.1007/978-1-4613-0303-9_25

[12] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James Cheng.
2018. G-Miner: an efficient task-oriented graph mining system. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018.
ACM, 32:1–32:12. https://doi.org/10.1145/3190508.3190545

[13] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with
Graph Convolutional Networks via Importance Sampling. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. https:
//openreview.net/forum?id=rytstxWAW

[14] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Convolu-
tional Networks with Variance Reduction. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10-15, 2018 (Proceedings of Machine Learning Research), Vol. 80. PMLR,
941–949. http://proceedings.mlr.press/v80/chen18p.html

[15] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018. USENIX Association, 578–594. https://www.usenix.org/conference/osdi18/
presentation/chen

[16] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK,
USA, August 4-8, 2019. ACM, 257–266. https://doi.org/10.1145/3292500.3330925

[17] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource central: Understanding and predicting
workloads for improved resource management in large cloud platforms. In Pro-
ceedings of the 26th ACM Symposium on Operating Systems Principles. ACM,
153–167.

[18] Andrew A. Davidson, Sean Baxter, Michael Garland, and John D. Owens. 2014.
Work-Efficient Parallel GPU Methods for Single-Source Shortest Paths. In 2014
IEEE 28th International Parallel and Distributed Processing Symposium, Phoenix,
AZ, USA, May 19-23, 2014. IEEE Computer Society, 349–359. https://doi.org/10.
1109/IPDPS.2014.45

[19] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware sched-
uling for heterogeneous datacenters. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and Operating
Systems, Vol. 48. ACM, 77–88.

[20] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-efficient
and QoS-aware cluster management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating

Systems, Vol. 42. ACM, 127–144.
[21] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning

with PyTorch Geometric. CoRR abs/1903.02428. arXiv:1903.02428 http://arxiv.
org/abs/1903.02428

[22] Zhisong Fu, Bryan B. Thompson, and Michael Personick. 2014. MapGraph: A
High Level API for Fast Development of High Performance Graph Analytics on
GPUs. In Second International Workshop on Graph Data Management Experiences
and Systems, GRADES 2014, co-loated with SIGMOD/PODS 2014, Snowbird, Utah,
USA, June 22, 2014. CWI/ACM, 2:1–2:6. https://doi.org/10.1145/2621934.2621936

[23] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed Deep Graph
Learning at Scale. In 15th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2021, July 14-16, 2021. USENIX Association, 551–568.
https://www.usenix.org/conference/osdi21/presentation/gandhi

[24] Thomas Gaudelet, Ben Day, Arian R. Jamasb, Jyothish Soman, Cristian Regep,
Gertrude Liu, Jeremy B. R. Hayter, Richard Vickers, Charles Roberts, Jian Tang,
David Roblin, Tom L. Blundell, Michael M. Bronstein, and Jake P. Taylor-King.
2020. Utilising Graph Machine Learning within Drug Discovery and Develop-
ment. CoRR abs/2012.05716 (2020). arXiv:2012.05716 https://arxiv.org/abs/2012.
05716

[25] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NMWatson, and Steven
Hand. 2016. Firmament: Fast, centralized cluster scheduling at scale. In Proceed-
ings of the 12th USENIX Symposium on Operating Systems Design and Implemen-
tation. 99–115.

[26] Leslie Ann Goldberg, Mike Paterson, Aravind Srinivasan, and Elizabeth Sweedyk.
1997. Better Approximation Guarantees for Job-shop Scheduling. In Proceedings
of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 5-7 January
1997, New Orleans, Louisiana, USA. ACM/SIAM, 599–608. http://dl.acm.org/
citation.cfm?id=314161.314395

[27] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In 10th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012, Hollywood, CA, USA, October 8-10, 2012. USENIX Association, 17–
30. https://www.usenix.org/conference/osdi12/technical-sessions/presentation/
gonzalez

[28] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and
Aditya Akella. 2015. Multi-resource packing for cluster schedulers. In Proceedings
of the ACM SIGCOMM Computer Communication Review, Vol. 44. ACM, 455–466.

[29] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh Anantha-
narayanan. 2016. Altruistic scheduling in multi-resource clusters. In Proceedings
of the 12th USENIX Symposium on Operating Systems Design and Implementation.
65–80.

[30] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan
Kulkarni. 2016. GRAPHENE: Packing and Dependency-Aware Scheduling for
Data-Parallel Clusters. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation. 81–97.

[31] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA. 1024–1034. https://proceedings.neurips.
cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html

[32] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual. https://proceedings.neurips.cc/paper/
2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html

[33] Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru
Zhang, and Yida Wang. 2020. FeatGraph: A Flexible and Efficient Backend for
Graph Neural Network Systems. CoRR abs/2008.11359 (2020). arXiv:2008.11359
https://arxiv.org/abs/2008.11359

[34] Wen-bing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adap-
tive Sampling Towards Fast Graph Representation Learning. In Advances in
Neural Information Processing Systems 31: Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Mon-
tréal, Canada. 4563–4572. https://proceedings.neurips.cc/paper/2018/hash/
01eee509ee2f68dc6014898c309e86bf-Abstract.html

[35] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and
Andrew Goldberg. 2009. Quincy: fair scheduling for distributed computing clus-
ters. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles.
ACM, 261–276.

[36] Abhinav Jangda, Sandeep Polisetty, Arjun Guha, and Marco Serafini. 2021. Accel-
erating graph sampling for graph machine learning using GPUs. In EuroSys ’21:
Sixteenth European Conference on Computer Systems, Online Event, United King-
dom, April 26-28, 2021. ACM, 311–326. https://doi.org/10.1145/3447786.3456244

[37] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improv-
ing the Accuracy, Scalability, and Performance of Graph Neural Networks with
Roc. In Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX,
USA, March 2-4, 2020. mlsys.org. https://proceedings.mlsys.org/book/300.pdf

[38] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model
Parallelism for Deep Neural Networks. In Proceedings of Machine Learning and
Systems 2019, MLSys 2019, Stanford, CA, USA, March 31 - April 2, 2019. mlsys.org.
https://proceedings.mlsys.org/book/265.pdf

[39] Tatiana Jin, Zhenkun Cai, Boyang Li, Chengguang Zheng, Guanxian Jiang, and
James Cheng. 2020. Improving resource utilization by timely fine-grained sched-
uling. In EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April
27-30, 2020. ACM, 20:1–20:16. https://doi.org/10.1145/3342195.3387551

[40] Prajakta Kalmegh and Shivnath Babu. 2019. MIFO: A Query-Semantic Aware Re-
source Allocation Policy. In Proceedings of the 2019 ACM International Conference
on Management of Data. ACM, 1678–1695.

[41] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (1998),
359–392. https://doi.org/10.1137/S1064827595287997

[42] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014. CuSha:
vertex-centric graph processing on GPUs. In The 23rd International Symposium
on High-Performance Parallel and Distributed Computing, HPDC’14, Vancouver,
BC, Canada - June 23 - 27, 2014. ACM, 239–252. https://doi.org/10.1145/2600212.
2600227

[43] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[44] Ming Li, Zheng Ma, Yu Guang Wang, and Xiaosheng Zhuang. 2020. Fast Haar
Transforms for Graph Neural Networks. Neural Networks 128 (2020), 188–198.
https://doi.org/10.1016/j.neunet.2020.04.028

[45] Zhiheng Li, Geemi P. Wellawatte, Maghesree Chakraborty, Heta A. Gandhi,
Chenliang Xu, and Andrew D.White. 2020. Graph Neural Network Based Coarse-
Grained Mapping Prediction. CoRR abs/2007.04921 (2020). arXiv:2007.04921
https://arxiv.org/abs/2007.04921

[46] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020. PaGraph:
Scaling GNN training on large graphs via computation-aware caching. In SoCC
’20: ACM Symposium on Cloud Computing, Virtual Event, USA, October 19-21, 2020.
ACM, 401–415. https://doi.org/10.1145/3419111.3421281

[47] Libin Liu and Hong Xu. 2018. Elasecutor: Elastic Executor Scheduling in Data
Analytics Systems. In Proceedings of the ACM Symposium on Cloud Computing.
ACM, 107–120.

[48] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou,
and Yafei Dai. 2019. NeuGraph: Parallel Deep Neural Network Computation
on Large Graphs. In 2019 USENIX Annual Technical Conference, USENIX ATC
2019, Renton, WA, USA, July 10-12, 2019. USENIX Association, 443–458. https:
//www.usenix.org/conference/atc19/presentation/ma

[49] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In SIGMOD. 135–146. https://doi.org/10.1145/1807167.
1807184

[50] Kenneth Marino, Ruslan Salakhutdinov, and Abhinav Gupta. 2017. The More You
Know: Using Knowledge Graphs for Image Classification. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017. IEEE Computer Society, 20–28. https://doi.org/10.1109/CVPR.2017.10

[51] Duane Merrill, Michael Garland, and Andrew S. Grimshaw. 2012. Scalable GPU
graph traversal. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP 2012, New Orleans, LA, USA, February
25-29, 2012. ACM, 117–128. https://doi.org/10.1145/2145816.2145832

[52] Federico Monti, Michael M. Bronstein, and Xavier Bresson. 2017. Geometric
Matrix Completion with Recurrent Multi-Graph Neural Networks. In Advances
in Neural Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA.
3697–3707. http://papers.nips.cc/paper/6960-geometric-matrix-completion-
with-recurrent-multi-graph-neural-networks

[53] Anil Pacaci, Alice Zhou, Jimmy Lin, and M. Tamer Özsu. 2017. Do We Need
Specialized Graph Databases? Benchmarking Real-Time Social Networking Ap-
plications. In Proceedings of the Fifth International Workshop on Graph Data-
management Experiences & Systems, GRADES@SIGMOD/PODS 2017, Chicago, IL,
USA, May 14 - 19, 2017. ACM, 12:1–12:7. https://doi.org/10.1145/3078447.3078459

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada. 8024–8035. https://proceedings.
neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[55] Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong Wang, Yangqiu
Song, and Qiang Yang. 2018. Large-Scale Hierarchical Text Classification with
Recursively Regularized Deep Graph-CNN. In Proceedings of the 2018 World Wide
Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018.

ACM, 1063–1072. https://doi.org/10.1145/3178876.3186005
[56] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning

of social representations. In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 -
27, 2014. ACM, 701–710. https://doi.org/10.1145/2623330.2623732

[57] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Przemys-
law Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, and John Wilkes. 2020. Autopilot: workload autoscaling at Google.
In EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30,
2020. ACM, 16:1–16:16. https://doi.org/10.1145/3342195.3387524

[58] Victor Garcia Satorras and Joan Bruna Estrach. 2018. Few-Shot Learning with
Graph Neural Networks. In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=BJj6qGbRW

[59] Marco Serafini. 2021. Scalable Graph Neural Network Training: The Case for
Sampling. ACM SIGOPS Oper. Syst. Rev. 55, 1 (2021), 68–76. https://doi.org/10.
1145/3469379.3469387

[60] Xiaoyang Sun, Chunming Hu, Renyu Yang, Peter Garraghan, Tianyu Wo, Jie
Xu, Jianyong Zhu, and Chao Li. 2018. ROSE: Cluster Resource Scheduling via
Speculative Over-Subscription. In 2018 IEEE 38th International Conference on
Distributed Computing Systems. IEEE, 949–960.

[61] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, and Guoqing Harry
Xu. 2021. Dorylus: Affordable, Scalable, and Accurate GNN Training with Dis-
tributed CPU Servers and Serverless Threads. In 15th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI 2021, July 14-16, 2021. USENIX
Association, 495–514. https://www.usenix.org/conference/osdi21/presentation/
thorpe

[62] Charalampos E. Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan
Vojnovic. 2014. FENNEL: streaming graph partitioning for massive scale graphs.
In Seventh ACM International Conference on Web Search and Data Mining, WSDM
2014, New York, NY, USA, February 24-28, 2014. ACM, 333–342. https://doi.org/
10.1145/2556195.2556213

[63] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch, Mor Harchol-
Balter, and Gregory R Ganger. 2016. TetriSched: global rescheduling with adap-
tive plan-ahead in dynamic heterogeneous clusters. In Proceedings of the 11th
European Conference on Computer Systems. ACM, 35.

[64] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. https:
//openreview.net/forum?id=rJXMpikCZ

[65] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft Academic Graph: When experts are not
enough. Quant. Sci. Stud. 1, 1 (2020), 396–413. https://doi.org/10.1162/qss_a_
00021

[66] MinjieWang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing
Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin,
Junbo Zhao, Jinyang Li, Alexander J. Smola, and Zheng Zhang. 2019. Deep
Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. CoRR
abs/1909.01315 (2019). arXiv:1909.01315 http://arxiv.org/abs/1909.01315

[67] Yangzihao Wang, Andrew A. Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel,
and John D. Owens. 2016. Gunrock: a high-performance graph processing library
on the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain, March 12-16,
2016. ACM, 11:1–11:12. https://doi.org/10.1145/2851141.2851145

[68] Zhouxia Wang, Tianshui Chen, Jimmy S. J. Ren, Weihao Yu, Hui Cheng, and
Liang Lin. 2018. Deep Reasoning with Knowledge Graph for Social Relationship
Understanding. In Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden.
ijcai.org, 1021–1028. https://doi.org/10.24963/ijcai.2018/142

[69] Yidi Wu, Yuntao Gui, Tatiana Jin, James Cheng, Xiao Yan, Peiqi Yin, Yufei Cai, Bo
Tang, and Fan Yu. 2021. Vertex-Centric Visual Programming for Graph Neural
Networks. In SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos,
and Divesh Srivastava (Eds.). ACM, 2803–2807. https://doi.org/10.1145/3448016.
3452770

[70] Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chengguang Zheng,
James Cheng, and Fan Yu. 2021. Seastar: vertex-centric programming for graph
neural networks. In EuroSys ’21: Sixteenth European Conference on Computer
Systems, Online Event, United Kingdom, April 26-28, 2021. ACM, 359–375. https:
//doi.org/10.1145/3447786.3456247

[71] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
https://openreview.net/forum?id=ryGs6iA5Km

[72] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A Block-Centric
Framework for Distributed Computation on Real-World Graphs. Proc. VLDB

Endow. 7, 14 (2014), 1981–1992. https://doi.org/10.14778/2733085.2733103
[73] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph Convolutional Net-

works for Text Classification. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019. AAAI Press, 7370–7377. https://doi.org/10.1609/aaai.v33i01.33017370

[74] Yi Yao, Han Gao, Jiayin Wang, Ningfang Mi, and Bo Sheng. 2016. OpERA:
opportunistic and efficient resource allocation in Hadoop YARN by harnessing
idle resources. In Proceedings of the 25th International Conference on Computer
Communication and Networks. IEEE, 1–9.

[75] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & DataMining, KDD 2018, London, UK, August
19-23, 2018. ACM, 974–983. https://doi.org/10.1145/3219819.3219890

[76] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and
Viktor K. Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive
Learning Method. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https:
//openreview.net/forum?id=BJe8pkHFwS

[77] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng Song,
Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi. 2020. AGL: A Scalable
System for Industrial-purpose Graph Machine Learning. Proc. VLDB Endow. 13,
12 (2020), 3125–3137. https://doi.org/10.14778/3415478.3415539

[78] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. DistDGL: Distributed Graph
Neural Network Training for Billion-Scale Graphs. CoRR abs/2010.05337 (2020).
arXiv:2010.05337 https://arxiv.org/abs/2010.05337

[79] Jianlong Zhong and Bingsheng He. 2014. Medusa: Simplified Graph Processing
on GPUs. IEEE Trans. Parallel Distributed Syst. 25, 6 (2014), 1543–1552. https:
//doi.org/10.1109/TPDS.2013.111

[80] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,
and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network
Platform. Proc. VLDB Endow. 12, 12 (2019), 2094–2105. https://doi.org/10.14778/
3352063.3352127

[81] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A Computation-Centric Distributed Graph Processing System. In 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2016, Sa-
vannah, GA, USA, November 2-4, 2016. USENIX Association, 301–316. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu

Query Driven-Graph Neural Networks for Community Search:
From Non-Attributed, Attributed, to Interactive Attributed

Yuli Jiang∗1, Yu Rong†2, Hong Cheng∗3, Xin Huang‡4, Kangfei Zhao†5, Junzhou Huang†6 ∗

∗The Chinese University of Hong Kong, †Tencent AI Lab, ‡Hong Kong Baptist University, China
{1yljiang,3hcheng,5kfzhao}@se.cuhk.edu.hk, 2yu.rong@hotmail.com, 4xinhuang@comp.hkbu.edu.hk, 5zkf1105@gmail.com, 6jzhuang@uta.edu

ABSTRACT

Given one or more query vertices, Community Search (CS) aims
to find densely intra-connected and loosely inter-connected struc-
tures containing query vertices. Attributed Community Search
(ACS), a related problem, is more challenging since it finds com-
munities with both cohesive structures and homogeneous vertex
attributes. However, most methods for the CS task rely on inflexible
pre-defined structures and studies for ACS treat each attribute inde-
pendently. Moreover, the most popular ACS strategies decompose
ACS into two separate sub-problems, i.e., the CS task and subse-
quent attribute filtering task. However, in real-world graphs, the
community structure and the vertex attributes are closely corre-
lated to each other. This correlation is vital for the ACS problem. In
this vein, we argue that the separation strategy cannot fully capture
the correlation between structure and attributes simultaneously
and it would compromise the final performance.

In this paper, we propose Graph Neural Network (GNN) models
for both CS and ACS problems, i.e., Query Driven-GNN (QD-GNN)
and Attributed Query Driven-GNN (AQD-GNN). In QD-GNN, we
combine the local query-dependent structure and global graph
embedding. In order to extend QD-GNN to handle attributes, we
model vertex attributes as a bipartite graph and capture the relation
between attributes by constructing GNNs on this bipartite graph.
With a Feature Fusion operator, AQD-GNN processes the structure
and attribute simultaneously and predicts communities according
to each attributed query. Experiments on real-world graphs with
ground-truth communities demonstrate that the proposed mod-
els outperform existing CS and ACS algorithms in terms of both
efficiency and effectiveness. More recently, an interactive setting
for CS is proposed that allows users to adjust the predicted com-
munities. We further verify our approaches under the interactive
setting and extend to the attributed context. Our method achieves
2.37% and 6.29% improvements in F1-score than the state-of-the-art
model without attributes and with attributes respectively.

PVLDB Reference Format:

Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, Junzhou
Huang. Query Driven-Graph Neural Networks for Community Search:
From Non-Attributed, Attributed, to Interactive Attributed. PVLDB, 15(6):
1243 - 1255, 2022.

doi:10.14778/3514061.3514070
∗This work is done during Yuli’s internship at Tencent AI Lab. Yu Rong and Hong
Cheng are the corresponding authors.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514070

1 INTRODUCTION

Graph is an essential data structure to represent entities and their
relationships, e.g., social networks, protein-protein interaction net-
works, web graphs, and knowledge graphs, to name a few. Com-
munity, a subgraph of densely intra-connected and loosely inter-
connected structure, naturally exists as a functional module in real-
world graphs. Community Search (CS) [7, 11, 19, 21, 25, 37] is a vital
application in graph analytics. Concretely, given any query vertices,
CS aims to find a vertex set with cohesive structure according to the
query, i.e., query-dependent communities. Attributed Community
Search (ACS), a related but more challenging problem, has attracted
a lot of attention recently [10, 11, 22, 23, 25]. Given any query vertex
and attribute set, ACS aims at finding query-dependent commu-
nities with homogeneous attributes, which means the community
members share similar attributes with the query attributes.

For the CS and the ACS problems, existing studies suffer from
two serious limitations, that is, structure inflexibility and at-

tribute irrelevance. Structure inflexibility refers to the problem
that most community search models are based on a pre-defined
subgraph pattern, such as 𝑘-core [8, 10, 37], 𝑘-truss [1, 21, 22], 𝑘-
clique [7, 44], and 𝑘-edge connected component (ECC) [6, 19]. The
pre-defined subgraph pattern imposes a very rigid requirement on
the topological structure of communities, which may not perfectly
hold in real-world communities. Attribute irrelevance means exist-
ing models treat each attribute independently [10, 22]. However, in
the real graphs, vertex attributes are not independent of each other.
Ignoring such implicit relations would harm the quality of queried
communities.

Figure 1 depicts a toy example illustrating the limitation of exist-
ing algorithms. The faculty hierarchy is a tree-like structure from
the faculty dean, department chairman to the professors in each
department. Using existing methods based on pre-defined subgraph
patterns, we can only find a 1-core community of vertex 6 in 𝐻1

and a 2-truss community in 𝐻2, which are the entire graph. These
𝑘-core [37] and 𝑘-truss [21] patterns cannot discover the tree-like
department communities owing to the structure inflexibility. For
attributed community search, when querying the community of
vertex 6 and attribute “ML”, current methods [10, 22] find the com-
munity 𝐻3 since they ignore the implicit relations between “ML”,
“DL” and “CV”. Thus, existing studies suffer from these two inade-
quacies on structure and attribute respectively.

Moreover, for the ACS problem, existing studies [10, 22] usually
adopt a two-stage strategy which first finds the candidate com-
munity by considering the topological structure only, and then
performs a filtering on the candidate community by considering
the attribute similarity. The two-stage strategy treats the structure

Figure 1: An attributed graph depicting a faculty hierarchy

with two departments: Dept.CS and Dept.IE. Attributes repre-

sent research topics. For vertex 6, there is a ground-truth

Dept.IE community (shown in blue) as vertices 6 − 8 are

close and work on similar topics. On the right, in response

to queries on each arrow, there are three result communities

found by existing algorithms, which are quite different from

the ground-truth community.

cohesiveness and attribute homogeneity separately. But there is usu-
ally a correlation between structure and attribute, for instance, in
protein-protein interaction networks, proteins with similar func-
tions (i.e., attributes) are more likely to interact with each other
[39]. Independently dealing with the structure and attribute would
harm the quality of queried communities.

Inspired by the success of Graph Neural Network (GNN) [27]
on combining attribute and structure in many graph problems,
Gao et al. [14] proposed a GNN-based framework, ICS-GNN, to
solve the community search problem in an interactive fashion (i.e.,
users can adjust predicted communities during the query process).
Specifically, it enhances the non-attributed queries by the GNN
model [27] which exploits the information from the existing vertex
attributes in graphs. However, for every query, ICS-GNN re-trains
the whole model. This re-training process is time-consuming and
hinders its applications in real-world scenarios, especially for the
online query case. On the other hand, even though ICS-GNN makes
use of the attributes to enhance the community search performance,
its model architecture cannot accept the query attributes as input.
Therefore, ICS-GNN cannot be extended to support interactive
attributed community search easily.

To address the above limitations, in this paper, we propose GNN-
based models for both CS and ACS problems. For the CS problem,
to address the structure inflexibility issue, we design a two-branch
model: Query Driven-GNN (QD-GNN) to encode the information
from both the query and graph. Concretely, QD-GNN contains
two encoders, Query Encoder and Graph Encoder. Query Encoder

encodes the structural information from query vertices and focuses
on modeling the local topology around the queries. Graph Encoder

combines the global structure and attributes to learn the query-
independent node embeddings. As a learning-based model, QD-
GNN can search communities without imposing any restriction on
the community structure. Furthermore, we design an additional
Attribute Encoder to extendQD-GNN to support the attributed com-
munity search. Attribute Encoder exploits a node-attribute bipartite
graph to model the attribute relations and can encode more mean-
ingful information from the attribute space. To process structure
and attribute simultaneously, we employ a Feature Fusion compo-
nent to fuse the information from different encoders and make the
final output. Furthermore, we design a new query framework which

detaches the model training from the online query stage. There-
fore, our framework does not need the time-consuming re-training
phase for online query applications.

To summarize, we make the following contributions.

• We propose a Query Driven-GNN model (QD-GNN) for commu-
nity search, which combines the local query-dependent structure
and global node embeddings. Given any query, QD-GNN only
needs a model inference step and avoids the time-consuming
re-training.

• To the best of our knowledge, this is the first work that proposes a
GNN model for the attributed community search problem, called
Attributed Query Driven-GNN (AQD-GNN). Our novel learning
framework extends GNN into ACS through a node-attribute
bipartite graph, and learns the community information from
both the local structure and similar attributes of queries.

• We conduct extensive experiments on real-world data sets with
ground-truth communities for performance evaluation. Exper-
iments demonstrate that our model significantly outperforms
state-of-the-art methods in terms of community quality with
only 4.31 milliseconds average response time.

• We apply AQD-GNN to the interactive community search prob-
lem and extend it into the attributed context. Experiments show
that our models can improve the performance of ICS-GNN [14]
in both non-attributed and attributed manner with 2.37% and
6.29% improvements in F1-score respectively.

Roadmap. The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 gives some preliminaries. Section
4 presents the common framework of the proposed models. Section
5 introduces the QD-GNN model for community search problem,
and Section 6 describes the AQD-GNN model for attributed com-
munity search. We present the experimental results in Section 7
and conclude the paper in Section 8.

2 RELATEDWORK
Our study is closely related to community search (CS) and graph
neural network (GNN).
Community Search. The problem of CS [37] is to find densely
connected communities containing the query vertices. A compre-
hensive survey of CS models and existing approaches can be found
in [11, 25]. Various communitymodels have been proposed based on
different cohesive graph patterns, including 𝑘-core [8, 37], 𝑘-truss
[1, 21, 24], 𝑘-clique [7, 44], and 𝑘-edge connected component (ECC)
[6, 19]. These pre-defined cohesive metrics are inflexible and can
be too loose (e.g., 𝑘-core) or too tight (e.g., 𝑘-clique) to capture the
topology structure of communities. If the real-world communities
do not follow any of the above graph patterns, these models would
fail to discover the true communities. A learning-based model ICS-
GNN [14] has recently been proposed for interactive community
search. ICS-GNN first finds a candidate subgraph starting from
query vertices, then learns the node embeddings through applying
GNN model on subgraph, and finally employs a BFS based algo-
rithm to select the 𝑘-sized community with maximum GNN scores.
ICS-GNN does not support attributed community search as the
query only involves vertices but no attributes. It also needs to re-
train the entire model for each query, which is costly for this online
query problem.

For attributed community search, ACQ [10] and ATC [22] have
been proposed, which aim to discover communities that contain
query vertices and have similar attributes to the query attributes.
ACQ is based on 𝑘-core and finds communities with the maximum
number of common query attributes shared by community mem-
bers.ATC finds𝑘-truss communities with themaximum pre-defined
attribute score. Both adopt a two-stage process. They first impose
a pre-defined structural constraint to find candidate communities,
then optimize functions of attribute score to select the most related
communities. However, the attribute score functions ignore the
similarities between attributes, and these two-stage methods fail to
capture the correlation between structure and attribute. In this pa-
per, we propose QD-GNN, which considers the cohesive structure
and homogeneous attributes in an integrated way.
Graph Neural Network. Inspired by the huge success of neu-
ral networks in natural language processing and computer vision,
many graph analytic problems have been solved via graph neural
networks [27], such as node classification[4, 18, 35], graph clas-
sification [20, 29], drug discovery [31, 34, 43], adversarial attacks
[2, 3, 5, 47] and graph algorithmic tasks [45, 46]. To build good mod-
els, the advanced techniques of pooling [13, 28, 32] and attention
[12, 28, 40] have been developed. However, most learning models
are designed for specific tasks based on graph embedding [30, 42] or
end-to-end solutions [15, 36]. Existing GNN models cannot extend
to attributed community search straightforwardly. To the best of
our knowledge, we are the first to propose a GNN-based model for
attributed community search and extend ICS-GNN to the attributed
context as well.

3 PRELIMINARIES
In this section, we first introduce the notations and define the
problems of CS and ACS formally, and then describe a general GNN
as the foundation of our proposed models.

3.1 Definitions
Let𝐺 (V, E) be a graphwith a setV of vertices and a set E ⊆ V×V
of edges. Let 𝑛 = |V| and𝑚 = |E | be the number of vertices and
edges respectively. We denote N(v) = {u | (u, v) ∈ E} as the
neighborhood set of vertex v. Moreover, let N+(v) = {v} ∪ N (v)
be the vertex set containing v’s neighbors and v itself.

Community Search (CS). For a graph 𝐺 (V, E), given a vertex
query set V𝑞 ⊆ V , the problem of Community Search (CS) is to
find the query-dependent community C𝑞 ⊆ V . Vertices in commu-
nity C𝑞 need to be densely intra-connected, i.e., having cohesive
structure.

Let 𝐺 (V, E, F) be an attributed graph where F = {F1, . . . , F𝑛}
is the set of vertex attributes and F𝑖 is the attribute set of vertex
v𝑖 . Define F̂ as the union of all the vertex attribute sets, i.e., F̂ =
F1 ∪ ...∪F𝑛 . Let 𝑑 be the number of unique attributes 𝑑 = |F̂ |. The
attribute set of each vertex, e.g., F𝑖 , is encoded to a 𝑑-dimensional
vector 𝒇𝑖 . For a keyword attribute f𝑘 , if vertex v𝑖 has this keyword,
i.e., f𝑘 ∈ F𝑖 , then 𝒇𝑖𝑘 = 1; otherwise, 𝒇𝑖𝑘 = 0. For a numerical
attribute f𝑗 , 𝒇𝑖 𝑗 is the value of vertex v𝑖 on this attribute. Then the
set of vertex attributes F = {F1, . . . , F𝑛} is encoded to an attribute
matrix 𝑭 = [𝒇1, . . . ,𝒇𝑛]𝑇 ∈ R𝑛×𝑑 .
Attributed Community Search (ACS). For an attributed graph
𝐺 (V, E, F), given a query 〈V𝑞, F𝑞〉 where V𝑞 ⊆ V is a set of

query vertices, and F𝑞 ⊆ F̂ is a set of query attributes, the prob-
lem of Attributed Community Search (ACS) is to find the query-
dependent community C𝑞 ⊆ V . Vertices in community C𝑞 need
to be both structure cohesive and attribute homogeneous, i.e., ver-
tices in a community are densely intra-connected in structure and
attributes of these vertices are similar.

In this paper, we formulate the above two problems as a binary
classification task. Given a query 𝑞 = 〈V𝑞〉 or 𝑞 = 〈V𝑞, F𝑞〉, we
classify the graph vertices into two classes (belonging to a commu-
nity C𝑞 of query 𝑞 or not). We use the one-hot vector 𝒄𝑞 ∈ {0, 1}𝑛
to represent the output community C𝑞 by a model M. If the out-
put value 𝒄𝑞𝑘 = 1, vertex v𝑘 belongs to the result community C𝑞

predicted byM.

3.2 A General GNN Model
We introduce a general framework of Graph Neural Network (GNN)
as the cornerstone of our models.

A GNN layer is known as a message passing procedure from
neighborhoods. After the linear transformation of neighbors’ hid-
den features, there aremany alternative techniques within one layer,
e.g., batch normalization technique [26]. We list one of the possible
intra-layer processes in the layer-wise propagation function as:

𝒉(𝑙+1)𝑣 = Dr
{
𝜙
(
BN[AGG(𝒉(𝑙)𝑢 𝑾 (𝑙+1) + 𝒃 (𝑙+1) , u ∈ N+(v))]

)}
,

(1)
where 𝒉(𝑙+1)𝑣 ∈ R𝑑 (𝑙+1)

is the learned new features of vertex v in the

(𝑙 + 1)-th layer, 𝒉(𝑙)𝑢 ∈ R𝑑 (𝑙)
is the hidden features of vertex u from

the 𝑙-th layer, and the input feature 𝒉(0)𝑣 ∈ R𝑑 is the normalized

form of attribute vector 𝒇𝑣 . 𝑾 (𝑙+1) ∈ R𝑑 (𝑙) ×𝑑 (𝑙+1)
and 𝒃 (𝑙+1) ∈

R
𝑑 (𝑙+1)

are trainable weights. AGG(·) is an aggregation function
such as SUM, MAX, or MIN. BN(·) is batch normalization [26] that
reduces internal covariate shift. 𝜙 (·) is the non-linear activation
function, such as ReLU(·). Last, Dr(·) is the dropout method [38]
to dilute the data and reduce the overfitting in neural networks.

For example, one of the most classical GNN models, Vanilla
Graph Convolutional Network (Vanilla GCN) [27], is defined as:

𝒉(𝑙+1)𝑣 = Dr

{
ReLU

(
SUM({

𝒉(𝑙)𝑢√
𝑑 ′u𝑑

′
v

𝑾 (𝑙+1) : u ∈ N+(v)})

)}
, (2)

which applies SUM as the aggregation operation, and ReLU(·) as
the activation function 𝜙 (·) with the dropout method. In this GNN
model, batch normalization is not adopted and Laplacian smoothing
is employed where 𝑑 ′u = 𝑑u + 1 and 𝑑u is the degree of vertex u.

In the following, we will focus on the way of aggregation in
our proposed GNN models. The dropout, activation function, batch
normalization and the trainable bias 𝒃 described above are adopted
in our models, and will be omitted in our following presentation.

4 THE QUERY FRAMEWORK

Before describing the detailed design of the proposed models, we
introduce the common framework of our models for both CS and
ACS problems. As Figure 2a shows, the proposed models consist
of two main stages: the model training stage and the online query

stage. Firstly, we train the embedding model M offline with the
loss function in the model training stage as shown in Figure 2a
(left). After that, in the online query stage, whenever the query
comes, we apply the model from the training stage to predict the

(a) Framework of our proposed models. (b) Intermediate design of model M with four components.

Figure 2: The architecture of proposed models.

community without re-training, as Figure 2a (right) presents. This
framework is highly flexible. In the following, we first introduce
how to construct the inputs from the graph and queries in both
stages. Then, we describe the two main stages respectively.

4.1 Input Construction
Since the GNN modelM needs vectorized inputs, we introduce the
vectorization scheme for the vertex set and attribute set.
Construct query vertices. We encode each query vertex set
V𝑞 ⊆ V to a one-hot vector 𝒗𝑞 ∈ {0, 1}𝑛 . For a query V𝑞 , if vertex
v𝑖 ⊆ V𝑞 , 𝒗𝑞𝑖 = 1; otherwise, 𝒗𝑞𝑖 = 0. For example, when querying
the community of vertex v6 in Figure 1, the encoded vector is
𝒗𝑞 = [0, 0, 0, 0, 0, 1, 0, 0]𝑇 .
Construct query attributes. Similar to query vertices, we encode

each query attribute set F𝑞 ⊆ F̂ to a one-hot vector 𝒇𝑞 ∈ {0, 1}𝑑 ,
where 𝑑 = |F̂ | is the number of unique attributes.

The encoded query vertex set and query attribute set are then
submitted to our proposed GNN models as input features.

4.2 Model Training Stage
In the model training stage, with a set of training queries as input,
we iteratively train the embedding model M offline through the
Binary Cross Entropy (BCE) loss function and obtain a trained
model for the online query stage.

Given a set of training queries Qtrain = {𝑞1,𝑞2, ...} and corre-
sponding ground-truth communities Ctrain = {C𝐺𝑇 1, C𝐺𝑇 2, ...},
we train a GNN modelM to minimize the loss function to fit the
training data. Given a validation query set Qval and corresponding
ground-truth communities Cval, we select the parameters of model
M and threshold 𝛾 ∈ [0, 1] which achieve the best performance in
the validation set. The queries in Qtrain and Qval can be attributed
𝑞 = {V𝑞, F𝑞} for ACS or non-attributed 𝑞 = {V𝑞} for CS.

First, we construct all query inputs as one-hot vectors. Then we
repeatedly input queries into the model M, i.e., Simple QD-GNN,
QD-GNN or AQD-GNN, which will be introduced in Section 5
and Section 6. With the model M’s output 𝒉𝑞 for each query 𝑞
in an iteration, we compute BCE loss function and gradients of
the model parameters. The gradients are propagated backward to
updateM at the end of this iteration. With the updated parameters,
M moves to the next iteration, outputs 𝒉𝑞 , calculates loss and back
propagates gradients until convergence. The loss function of the
three proposed models is the same and we describe it formally in
the following.
Loss Function. We formulate community search as a binary classi-
fication problem. Assume that 𝒉𝑞 ∈ R𝑛 is the output ofM for query

Algorithm 1 Constrained BFS for Community Identification

Input: Graph:𝐺 = (V, E) , a query vertex set: V𝑞 ,
a model output vector: 𝒉𝑞 , a threshold: 𝛾 .

Output: a vertex set of community : C𝑞 .
1: Initialize set Q = V𝑞 , C𝑞 = V𝑞

2: while Q is not empty do
3: select a vertex v from Q
4: for u ∈ N(v) and 𝒉𝑞𝑢 ≥ 𝛾 do

5: Q ← Q ∪ {u}
6: C𝑞 ← C𝑞 ∪ {u}
7: return C𝑞 ;

𝑞 after the Sigmoid function 𝜎 (𝑥) = 1
1+𝑒−𝑥 , where 𝒉𝑞𝑣 ∈ [0, 1] rep-

resents the output for vertex v. 𝒚𝑞 ∈ {0, 1}𝑛 represents the ground-
truth vector for query 𝑞. 𝒚𝑞𝑣 = 1 if and only if vertex v ∈ C𝐺𝑇 𝑞 ;
otherwise, 𝒚𝑞𝑣 = 0. Then we utilize Binary Cross Entropy (BCE)
function as the loss function to minimize the BCE between the
model output 𝒉𝑞 and the ground-truth label 𝒚𝑞 for 𝑞. The optimiza-
tion loss function can be formulated as:

minL =
∑

𝑞∈Qtrain

1

𝑛

𝑛∑
𝑖=1

−(𝒚𝑞𝑖 log(𝒉𝑞𝑖) + (1 −𝒚𝑞𝑖) log(1 − 𝒉𝑞𝑖)).

(3)
4.3 Online Query Stage
In the online query stage, we utilize the well-trained modelM and
threshold 𝛾 from the model training stage to process the online
query𝑞 and produce the communityC𝑞 without re-training.We first
construct query inputs as one-hot vectors. Then the constructed
vectors are fed into modelM, which only runs once and outputs
the vector 𝒉𝑞 . To ensure the connectivity between query vertices
and community members, we employ a constrained Breadth-First
Search (BFS) starting from the query vertices in Algorithm 1. When
visiting vertex u, if 𝒉𝑞𝑢 ≥ 𝛾 (line 4), we add vertex u to the output
community C𝑞 (line 6).

Please note that the connectivity of the output community also
depends on the user-specified query vertices. If the induced sub-
graph of the query vertices is connected, then our models are guar-
anteed to find a connected community. If the induced subgraph
of the query vertices is not connected, our models may still find a
connected community through some bridging vertices. But there
is possibility that the discovered community is not connected as
one component, especially when the query vertices are distant or
disconnected in the graph. In this case, our models can still find
some connected components, each of which contains part of the
query vertices, as the answer community.

Figure 3: Query propagation paths in Query Encoder.

5 QD-GNN MODEL FOR CS
In this section, we introduce the construction of the embedding
modelM in the proposed framework for community search. We
first propose a Simple task-oriented Query Driven-Graph Neural
Network (Simple QD-GNN) and then design useful functional en-
coders to improve it as QD-GNN model. As Figure 2a shows, with
query vectors as input, the Simple QD-GNN orQD-GNNmodelM
outputs 𝒉𝑞 into the BCE loss function during the training process.
In the online query stage, the model output 𝒉𝑞 is translated into
community members as described in Section 4.

5.1 Simple QD-GNN
The Simple QD-GNNmodel is designed based on the general GNN
introduced in Section 3.2 and uses query vector 𝒗𝑞 as the input
features of the model. This model input enables query-centered
structural propagation, i.e., propagating from the query vertices
to its neighborhood, to better capture the local query structure
information.

We name this query driven propagation as Graph Encoder. In
order to fully make use of vertex features in each layer, Query
Encoder is designed to equip with a self feature modeling [12]. The
inter-layer propagation function for vertex v is formally defined as:

𝒉(𝑙+1)𝑄𝑣
= 𝒉(𝑙)𝑄𝑣

𝑾 (𝑙+1)
𝑄self

+ SUM({𝒉(𝑙)𝑄𝑢
𝑾 (𝑙+1)

𝑄 : u ∈ N+(v)}), (4)

where the first component emphasizes the self features (hidden
features of the vertex v) with learnable weight parameter matrices

𝑊
(𝑙+1)
𝑄self

∈ R𝑑 (𝑙) ×𝑑 (𝑙+1)
. The second component is similar to Eq. (1)

with a subscript 𝑄 , and chooses SUM as the aggregation function

as Vanilla GCN [27] does. Similarly, 𝑾 (𝑙+1)
𝑄 ∈ R𝑑 (𝑙) ×𝑑 (𝑙+1)

is the

trainable weight matrix ,𝒉(𝑙+1)𝑄𝑣
∈ R𝑑 (𝑙+1)

is the learned new features

of vertex v in the (𝑙 + 1)-th layer of Query Encoder. Different from

Eq. (1), the input feature of the first layer 𝒉(0)𝑄𝑣
is the one-hot query

vector 𝒗𝑞𝑣 .

Example. We follow the example in Figure 1 and show the propa-

gation paths in Figure 3. For queryV𝑞 = {v8} highlighted in Figure 3a,
the query vector 𝒗𝑞 is [0, 0, 0, 0, 0, 0, 0, 1]𝑇 . According to Eq. (4), in
the first layer, the query information propagates to the neighbor of

v8, i.e., v6 as depicted in Figure 3b. Then, the 2-hop neighbors of the

query vertex, v1 and v7, acquire the knowledge from v6 in the second

layer as depicted in Figure 3c.

5.2 QD-GNN
Recent studies [9, 14, 41] have found that attributes on graph ver-
tices can be leveraged for structural learning problems, for example,
link prediction [9] and community search [14]. Inspired by their
findings, we design an improved QD-GNN model based on Simple

QD-GNN and Vanilla GCN [27]. Similar to ICS-GNN [14],QD-GNN
combines the network structure and vertex attributes to solve the
community search problem.

5.2.1 Overview. Figure 2b presents the architecture overview of
QD-GNNmodel, which consists of two convolution branches (Graph
Encoder and Query Encoder) and a Feature Fusion operator. Graph
Encoder provides the query-independent information with both
graph structure and vertex attributes as input, i.e., the edge set
E and vertex attribute set F . Query Encoder (the same as that in
Simple QD-GNN) provides the interface for query vertices and
learns the query-specific local topology features. It takes the input
of graph structure and query vertices, i.e., the edge set E and query
vertices V𝑞 . The Feature Fusion operator combines the above en-
coder embedding results and obtains the final query-specific output
vectors. This fusion makes use of both global graph knowledge and
local query information which can achieve a good balance, and
finally obtains the model output 𝒉𝑞 for each query 𝑞.

5.2.2 Graph Encoder. Graph Encoder focuses on global graph struc-
ture and vertex attributes, both of which are independent of queries.
We apply the layer-wise forward propagation of the general GNN to
construct Graph Encoder, which has been introduced in Section 3.2.
Similar to Simple QD-GNN, the forward layer of Graph Encoder is
defined with a self feature modeling [12] as:

𝒉(𝑙+1)𝐺𝑣
= 𝒉(𝑙)𝐺𝑣

𝑾 (𝑙+1)
𝐺self

+ SUM({𝒉(𝑙)𝐺𝑢
𝑾 (𝑙+1)

𝐺 : u ∈ N+(v)}), (5)

where the notations are the same as Eq. (1) with a subscript 𝐺 , and

𝑊
(𝑙+1)
𝐺self

∈ R𝑑 (𝑙) ×𝑑 (𝑙+1)
are the weight parameter matrices. The input

feature of vertex v in the first layer 𝒉(0)𝐺𝑣
∈ R𝑑 is the normalized

attribute vector 𝒇𝑣 encoded in Section 3.1. Graph Encoder propa-
gates the attribute information through graph structure and learns
query-independent knowledge.

Example. We follow the example in Figure 1 to illustrate how

Graph Encoder works. For vertex v8, in the first layer, its attributes

(“DL” and “CV”) are propagated to its neighbor, vertex v6, with a

learnable weight. At the same time, the attribute of vertex v6 (“ML”)

is also propagated to vertex v8. In the next layer, those attributes are

propagated to their neighbors respectively as well. By this propagation,

the attributes of vertices v6, v7 and v8 become more similar. This

information is used by the Feature Fusion operator to identify the

community members more accurately.

5.2.3 Query Encoder. Query Encoder is the same as that of Simple

QD-GNN and provides an interface for query vertices and obtains
the local structure knowledge. Inputs of the Query Encoder are
based on the graph topology (graph edges E) and structural query
(query vertices V𝑞). The inter-layer propagation function of Query
Encoder is the same as that in Eq. (4).
5.2.4 Feature Fusion. The Feature Fusion operator combines out-
put features learned by the above two encoders, and balances the
global and local information to get the final output of QD-GNN.
The inputs of Feature Fusion are based on the output of the two
encoders, i.e., 𝒉𝐺 and 𝒉𝑄 . It fuses them and transmits the fusion
result to Query Encoder as shown in Figure 2b.

Based on the output of the two encoders, the forward layer of
Feature Fusion is formulated as:

𝒉(𝑙+1)𝐹𝐹 𝑣
= AGG(𝒉(𝑙+1)𝐺𝑣

,𝒉(𝑙+1)𝑄𝑣
), (6)

where 𝒉(𝑙+1)𝐹𝐹 𝑣
is the output of Feature Fusion for vertex v and also

the final output of the entire QD-GNNmodel in the (𝑙 + 1)-th layer,
AGG(·) is the aggregation function (e.g., Concatenation, SUM, etc.),

Algorithm 2 The 𝑘-Layer QD-GNN Propagation

Input: Graph:𝐺 = (V, E, F) ,
a set of queries: Q = {V𝑞1,V𝑞2, . . . },
QD-GNN model: M = {𝒉𝑄 ,𝒉𝐺 ,𝒉𝐹𝐹 }.

Output: a set of output vectors: H = {𝒉𝑞1,𝒉𝑞2, . . . }.
1: Construct attribute matrix 𝑭 for F
2: H ← ∅
3: for each V𝑞 ∈ Q do

4: Construct one-hot vector 𝒗𝑞 for V𝑞 , initialize 𝒉
(0)
𝑄 with 𝒗𝑞

5: Initialize 𝒉 (0)
𝐺 with 𝑭

6: 𝒉 (1)
𝑄 ← Propg(𝒉 (0)

𝑄 , E) in Eq. (4)

7: 𝒉 (1)
𝐺 ← Propg(𝒉 (0)

𝐺 , E) in Eq. (5)

8: 𝒉 (1)
𝐹𝐹 ← AGG(𝒉 (1)

𝐺 ,𝒉 (1)
𝑄) in Eq. (6)

9: 𝑙 ← 1
10: while(𝑙 < 𝑘) do

11: 𝒉 (𝑙+1)
𝑄 ← Propg(𝒉 (𝑙)

𝐹𝐹 , E) in Eq. (8)

12: 𝒉 (𝑙+1)
𝐺 ← Propg(𝒉 (𝑙)

𝐺 , E) in Eq. (5)

13: 𝒉 (𝑙+1)
𝐹𝐹 ← AGG(𝒉 (𝑙+1)

𝐺 ,𝒉 (𝑙+1)
𝑄) in Eq. (6)

14: 𝑙 ← 𝑙 + 1
15: H ← H ∪ 𝒉 (𝑘)

𝐹𝐹
16: return H;

and 𝒉(𝑙+1)𝐺𝑣
, 𝒉(𝑙+1)𝑄𝑣

are the outputs of each encoder for vertex v in

the (𝑙 + 1)-th layer respectively.
For Graph Encoder, we do not use the fusion result and just

use the output of Graph Encoder itself in the 𝑙-th layer 𝒉(𝑙)𝐺 as
the input of the (𝑙 + 1)-th layer. Thus, we keep Graph Encoder
independent of query information in the intermediate layer. This
query-independent features provide stable “prior” knowledge about
the graph and supply additional information for community search
problem, which makes QD-GNN a stronger model.

For Query Encoder, we replace the feature propagation between
neighbors as the fusion features in the intermediate layers. This
fusion operation transmits the vertex attributes and global structure
features into Query Encoder and delivers these features around
query vertices. We define 𝒉𝑄 as the input feature of each layer
which can be formally written as:

𝒉̂(𝑙)𝑄𝑖
=

{
𝒗𝑞𝑖 , if 𝑙 = 0;

𝒉(𝑙)𝐹𝐹 𝑖
, otherwise.

(7)

The propagation function of Query Encoder can be rewritten as:

𝒉(𝑙+1)𝑄𝑣
= 𝒉(𝑙)𝑄𝑣

𝑾 (𝑙+1)
𝑄self

+ SUM({𝒉̂(𝑙)𝑄𝑢
𝑾 (𝑙+1)

𝑄 : u ∈ N+(v)}). (8)

5.2.5 Algorithm. The QD-GNN model for the community search
problem is presented in Algorithm 2. For easy description, we sim-
plify the propagation function in each encoder as Propg(𝒉, E),
which means propagating feature 𝒉 through edges in E. At the
beginning, we construct the feature matrix for the graph (line 1)
and set the output as empty (line 2). For each query, we also con-
struct the query vector and initialize Query Encoder and Graph
Encoder (line 4-5). In the first layer (line 6-9), Query Encoder and
Graph Encoder propagate their input features through the graph
edges (line 6-7), and Feature Fusion fuses the output of them (line 8).
In the intermediate layers (line 10-14), Query Encoder utilizes the
fused feature from Feature Fusion (line 11), while Graph Encoder
takes its own output 𝒉𝐺 as the input feature to remain independent
of the query (line 12). The final output of QD-GNN is the fused
feature 𝒉𝐹𝐹 and we add it into the output setH (line 15).

6 AQD-GNN MODEL FOR ACS

In this section, we extend QD-GNN by incorporating the query
attributes and propose the GNN model for attributed community
search, named Attributed Query Driven-Graph Neural Network
(AQD-GNN). We first identify the challenges of attributed com-
munity search when using GNN models. Then, we describe the
components of AQD-GNN one by one in detail.

6.1 Challenges
Different from community search [1, 8, 14, 21, 37], the attributed
community search task [10, 22] needs to integrate the query at-
tributes into models. However, the meaning of query attributes 𝐹𝑞
and the dimension of query attributes vector 𝑓𝑞 are different from
those of query vertices. It is not feasible to input query attribute
information as we handle query vertices in Section 5.

The ICS-GNN model [14] utilizes the query vertex information
as the labels of vertices, and aligns the output embedding and
the labels through a loss function. Since previous studies always
focus on tasks at the level of vertices and edges, such as node
classification and link prediction, but not at the attribute level for
attributed queries, the design of their loss functions also centers on
the vertices. The BCE loss function in Eq. (3) is an example, which
focuses on the class of each vertex. Therefore, ICS-GNN cannot
incorporate the query attributes in the loss function directly and
thus is not able to extend to the ACS problem.

The similar phenomenon can be observed from the QD-GNN
model, which considers query vertices as the input features and
propagates the query information via edges to find local structures
surrounding the query vertices. But the query attributes cannot be
easily incorporated as model input due to the different dimensional-
ity. Even if we have a mechanism to take query attributes as input
features, this attribute information can only propagate to adjacent
vertices via graph topology by QD-GNN, but cannot reach vertices
having similar attributes to the query attributes, as ACS aims to do.

The above discussions reveal that incorporating query attributes

into the learning model and identifying the vertices with similar

attributes automatically are two key issues to be addressed in ap-
plying GNN models into the ACS problem. In AQD-GNN, we de-
sign a bipartite graph to represent the relations between vertices
and attributes. Leveraging this bipartite graph, AQD-GNN can ac-
cept an input of query attributes and translate this query attribute
knowledge into vertex knowledge. Finally, AQD-GNN can find the
vertices which have similar attributes with the query attributes.

6.2 Overview
AQD-GNN takes an attributed graph 𝐺 = (V, E, F) and a group
of attributed queries 𝑞 = 〈𝒗𝑞, 𝒇𝑞〉 vectorized as inputs, and pre-
dicts the community vector 𝒉𝑞 as outputs for each query 𝑞. Figure
2b illustrates the inter-layer design of AQD-GNN, which consists
of a Feature Fusion operator and three GNN components: Graph
Encoder, Query Encoder and Attribute Encoder. Note that Graph
Encoder and Query Encoder are the same as those of QD-GNN
in Section 5.2. Attribute Encoder is a new component specifically
designed for ACS. Accordingly, Feature Fusion needs to be revised
due to the new Attribute Encoder. In the following, we describe
Attribute Encoder and the revised Feature Fusion operator.

Attribute Encoder. Attribute Encoder serves as the interface
of query attributes and provides attribute information related to

Figure 4: An example of node-attribute bipartite graph.

queries. It views each attribute as an individual vertex and models
vertex attributes as a bipartite graph between vertex set V and

attribute set F̂ . With this bipartite graph, query attributes can be
inputted into the attribute side directly and propagated between
the vertex side and attribute side. Through this propagation, At-
tribute Encoder learns query-specific attribute node embeddings
and identifies the vertices with attributes similar to queries.

Feature Fusion. The Feature Fusion component combines all the
above embeddings and obtains the final query-specific output of the
ACS problem. It takes the outputs of the three encoders as inputs,
mixes global graph features and local query features, fuses structure
and attribute information, and balances them to get an accurate
community. Note that the final output of the entire model is the
fused result in the last layer.

In the following sections, we will illustrate the detailed working
mechanism of Attribute Encoder and Feature Fusion.

6.3 Attribute Encoder
The Attribute Encoder provides the interface for query attributes F𝑞

and produces the vertex embeddings based on the related attributes
of queries. Attribute Encoder aims to figure out the underlying
relationship among different attributes and find the related attribute
of queries. In addition, as analyzed in Section 6.1, Attribute Encoder
needs to represent such attribute information in the form of vertices
since the final output community is represented by a set of vertices.

To achieve the above goals, we model a bipartite graph called

node-attribute bipartite graph 𝐵𝐺 (V, F̂ , E𝐵). For clarity, we call
the vertices in the structure graph as nodes here. This bipartite
graph is formed by two vertex sets: graph nodes V and graph

attributes F̂ . An edge between node v𝑖 and attribute f𝑗 is added to
the edge set E𝐵 , if and only if node v𝑖 has attribute f𝑗 , i.e., f𝑗 ∈ F𝑖 .

Example. Figure 4 illustrates the node-attribute bipartite graph
for the example in Figure 1. Based on the structure graph with node

attributes on the left, we construct a node-attribute bipartite graph

shown in Figure 4 (right), where the node setV = {1, . . . , 8} is on the

top and the attribute set F̂ = {𝐴, . . . , 𝐹 } is at the bottom. Since node

4 has two attributes “DM” and “GM” in the structure graph, node 4 is
adjacent to attribute 𝐵 (“DM”) and attribute 𝐶 (“GM”) as connected

by red lines in Figure 4 (right).

We apply Bipartite Graph Neural Network (BGNN) [17] on the
constructed bipartite graph. BGNN consists of propagations in two
directions between two vertex sets. In our node-attribute bipartite
graph, the propagations are from the attribute side to the node side
(denoted as A→N), and also from the node side to the attribute side
(denoted as N→A).

Propagation A→N. We encode each query attribute set F𝑞 ⊆ F̂
to a one-hot vector 𝒇𝑞 ∈ {0, 1}𝑑 as described in Section 4.1, where

𝑑 = |F̂ |. Benefiting from the node-attribute bipartite graph, we are
able to take the query attribute vector 𝒇𝑞 as input features in the

attribute side, and propagate this attribute information from the
attribute side to the node side.

Example. When the attribute query is F𝑞 = {“DL”}, the one-
hot vector is 𝒇𝑞 = [0, 0, 0, 0, 1, 0]𝑇 according to the order of attribute

vertices A to F in Figure 4. The query attribute information of “DL”

will propagate to node 7 and node 8, the neighbors of “DL” vertex,
through the blue edges in the bipartite graph of Figure 4.

This propagation from the attribute side to the node side (A→N)
collects attribute features for each node and translates the attribute
features to node features. The layer-wise propagation function of
A→N in BGNN is formally defined as:

𝒉(𝑙+1)𝑁𝑢
= SUM({𝒉(𝑙)𝐴f

𝑾 (𝑙+1)
𝐴→𝑁 , f ∈ N𝐵 (u)}), (9)

where node 𝑢 ∈ V , attribute f ∈ F̂ , and N𝐵 (u) is the neighbor
set of node u in the bipartite graph. 𝒉(𝑙+1)𝑁𝑢

∈ R𝑑 (𝑙+1)
is the hidden

feature of node 𝑢 in the (𝑙 + 1)-th layer, 𝒉(𝑙)𝐴f
∈ R𝑑 (𝑙)

is the input

feature of attribute f in the 𝑙-th layer, and𝑾 (𝑙+1)
𝐴→𝑁 ∈ R𝑑 (𝑙) ×𝑑 (𝑙+1)

is
a learnable parameter matrix in propagation from the attribute side
to the node side. The input feature of attribute f in the first layer
is equal to the value of attribute f in the one-hot query attribute

vector, i.e., 𝒉(0)𝐴f
= 𝒇𝑞 f .

Propagation N→A. After the propagation from the attribute side
to the node side in the (𝑙 + 1)-th layer, the learned features also
need to be transmitted back to form an iterative propagation in
the bipartite graph. Here, we also emphasize the attribute in the
last layer and add a self feature modeling [12]. Similarly, the layer-
wise propagation function from the node side to the attribute side
(N→A) in BGNN is defined as:

𝒉(𝑙+1)𝐴f
= 𝒉(𝑙)𝐴f

𝑾 (𝑙+1)
self

+ SUM({𝒉(𝑙+1)𝑁𝑢
𝑾 (𝑙+1)

𝑁→𝐴 : u ∈ N𝐵 (𝑓)}), (10)

where the notations are the same as Eq. (9). 𝒉(𝑙+1)𝑁𝑢
is the input fea-

tures of node 𝑢 in propagation N→A, which is learned in Eq. (9).
N𝐵 (f) is the neighbor set of attribute f in the bipartite graph.

𝑾 (𝑙+1)
𝑁→𝐴 ∈ R𝑑 (𝑙) ×𝑑 (𝑙+1)

is a learnable parameter matrix in the prop-

agation from the node side to the attribute side, and 𝑾 (𝑙+1)
self

∈
R
𝑑 (𝑙) ×𝑑 (𝑙+1)

is the self feature parameter matrix in the (𝑙 + 1)-th
layer.

With these two propagations, Attribute Encoder can employ
the query attribute as input features and transmit this attribute
information through the node-attribute bipartite graph. Propaga-
tion A→N transforms the attribute features 𝒉𝐴 into node features
𝒉𝑁 . Propagation N→A translates the node features 𝒉𝑁 back to at-
tribute features 𝒉𝐴 and provides the input of propagation A→N in
the next layer. With these bidirectional propagations, the features
can spread in the bipartite graph and BGNN can be superimposed
to multiple layers. Note that the node features 𝒉𝑁 are the output of
Attribute Encoder to Feature Fusion, since the community search
problem focuses on the node and other encoders also provide node
embeddings rather than attribute embeddings.

6.4 Feature Fusion
The Feature Fusion operator combines the output features of the
three encoders, balances the global graph and local query knowl-
edge, and mixes the structure and attribute information to obtain
the final output of the AQD-GNN model.

The forward layer of Feature Fusion is formulated as:

𝒉(𝑙+1)𝐹𝐹 𝑣
= AGG(𝒉(𝑙+1)𝐺𝑣

,𝒉(𝑙+1)𝑄𝑣
,𝒉(𝑙+1)𝑁𝑣

), (11)

where 𝒉(𝑙+1)𝐹𝐹 𝑣
is the fused feature of node 𝑣 and also the final output

of the AQD-GNNmodel in the (𝑙 + 1)-th layer, AGG(·) is the aggre-
gation function (e.g., Concatenation, SUM, etc.), and 𝒉(𝑙+1)𝐺𝑣

, 𝒉(𝑙+1)𝑄𝑣
,

𝒉(𝑙+1)𝑁𝑣
are the outputs of the three encoders in the (𝑙 + 1)-th layer

respectively. Note that 𝒉(𝑙+1)𝑁𝑣
is the hidden features of the node side

in Attribute Encoder.
In Eq. (11), we aggregate the three encoders to fuse all types

of node embeddings. In order to consider the correlation between
structure and attribute and process these two types of information
simultaneously, we replace the input node features in the inter-
mediate layers with the fused feature 𝒉𝐹𝐹 in Query Encoder and
Attribute Encoder as shown in Figure 2b. Graph Encoder just uses

the output of itself in the 𝑙-th layer 𝒉(𝑙)𝐺 as the input of the (𝑙 + 1)-th
layer to capture the global query-independent node embeddings, as
Feature Fusion does in QD-GNN. For Query Encoder, this fusion
operation transmits the query-specific attribute features and global
graph features into Query Encoder and delivers these features be-
tween vertices. Similar to Feature Fusion in QD-GNN, we employ
𝒉̂𝑄 in Eq. (7) as the input features for Query Encoder, and rewrite
the propagation function in Eq. (8). For Attribute Encoder, Feature
Fusion enriches the features passed on the bipartite graph with
local query structure and global graph features. Similar to Query
Encoder, we replace the input node features in Eq. (10) with fused
features when propagating from the node side to the attribute side.
We define 𝒉̂𝑁 as the input node features:

𝒉̂(𝑙)𝑁𝑢
= 𝒉(𝑙)𝐹𝐹𝑢

. (12)

In this way, the structure features and attribute features learned
by AQD-GNN can influence each other and these two encoders
are correlated. Thus AQD-GNN is able to learn local structure and
related attribute information of queries simultaneously. AQD-GNN
provides an end-to-end attributed community search model, which
takes queries as input and produces community vectors as answers.

6.5 Algorithm
Algorithm 3 describes the 𝑘-layer propagation of AQD-GNN. AQD-
GNN first constructs the attribute matrix from F , and builds an
empty output set H (line 1-2). For each query, AQD-GNN con-
structs the one-hot vectors for both query vertex set and query
attribute set, and initializes three encoders with them (line 3-6). In
the first layer (line 7-11), Query Encoder propagates query vertices
in the structure graph (line 7), Graph Encoder propagates vertex
attributes in the graph (line 8), and Attribute Encoder propagates
the query attributes from the attribute side to the node side in the
bipartite graph (line 9). Feature Fusion fuses the output features of
the three encoders (line 10). In the intermediate layers (line 12-18),
Query Encoder propagates the fused features in graph (line 13),
Graph Encoder still propagates the query-independent features
from itself 𝒉𝑮 (line 14), and Attribute Encoder utilizes the fused
features 𝒉𝐹𝐹 as node side features and transmits node features back
to attribute features (line 15). Then, Attribute Encoder is able to
acquire the node hidden features in the next layer through prop-
agating attribute features to the node side in the bipartite graph
(line 16). Feature Fusion fuses the three encoders (line 17). The final

Algorithm 3 The 𝑘-Layer AQD-GNN Propagation

Input: Graph:𝐺 = (V, E, F) ,
a set of attributed queries: Q = {{V𝑞1, F𝑞1 }, {V𝑞2, F𝑞2 }, . . . , },
AQD-GNN model: M = {𝒉𝑄 ,𝒉𝐺 , {𝒉𝑁 ,𝒉𝐴 },𝒉𝐹𝐹 }.

Output: a set of output vectors: H = {𝒉𝑞1,𝒉𝑞2 . . . , }.
1: Construct attribute matrix 𝑭 for F
2: H ← ∅
3: for each {V𝑞 , F𝑞 } ∈ Q do

4: Construct one-hot vector 𝒗𝑞 for V𝑞 , initialize 𝒉
(0)
𝑄 with 𝒗𝑞

5: Initialize 𝒉 (0)
𝐺 with 𝑭

6: Construct one-hot vector 𝒇𝑞 for F𝑞 , Initialize 𝒉 (0)
𝐴 with 𝒇𝑞

7: 𝒉 (1)
𝑄 ← Propg(𝒉 (0)

𝑄 , E) in Eq. (4)

8: 𝒉 (1)
𝐺 ← Propg(𝒉 (0)

𝐺 , E) in Eq. (5)

9: 𝒉 (1)
𝑁 ← Propg(𝒉 (0)

𝐴 , E𝐵) in Eq. (9)

10: 𝒉 (1)
𝐹𝐹 ← AGG(𝒉 (1)

𝐺 ,𝒉 (1)
𝑄 ,𝒉 (1)

𝑁) in Eq. (11)

11: 𝑙 ← 1
12: while(𝑙 < 𝑘) do

13: 𝒉 (𝑙+1)
𝑄 ← Propg(𝒉 (𝑙)

𝐹𝐹 , E) in Eq. (8)

14: 𝒉 (𝑙+1)
𝐺 ← Propg(𝒉 (𝑙)

𝐺 , E) in Eq. (5)

15: 𝒉 (𝑙)
𝐴 ← Propg(𝒉 (𝑙)

𝐹𝐹 , E𝐵) in Eq. (10)

16: 𝒉 (𝑙+1)
𝑁 ← Propg(𝒉 (𝑙)

𝐴 , E𝐵) in Eq. (9)

17: 𝒉 (𝑙+1)
𝐹𝐹 ← AGG(𝒉 (𝑙+1)

𝐺 ,𝒉 (𝑙+1)
𝑄 ,𝒉 (𝑙+1)

𝑁) in Eq. (11)

18: 𝑙 ← 𝑙 + 1
19: H ← H ∪ 𝒉 (𝑘)

𝐹𝐹
20: return H;

Figure 5: An example of fusion graph.

output of AQD-GNN is the fused result in the last layer, which is
added into the output setH (line 19).

As described in Section 4, in the training stage, the output set
H is used in the loss function to optimize the model learning. In
the online query stage, the output is translated to the predicted
communities through the Community Identification process as
described below.

6.6 Community Identification
For the attributed community search problem, we need to find ver-
tices having both dense structure and similar attributes to the query.
Thus on top of the online query stage described in Section 4.3 which
ensures connectivity with the query vertices, we also enhance the
connectivity between graph vertices sharing identical attributes by
a fusion graph 𝐺𝐹 = {V, E𝐹 } which combines the information of

structure graph 𝐺 = {V, E} and bipartite graph 𝐺𝐵 = {V, F̂ , E𝐵}.
To build the fusion graph, we link vertices with the same at-

tributes in the structure graph. The connectivity in the fusion graph
represents both the structure connectivity and attribute similarity.
Then the fusion graph 𝐺𝐹 is fed to Algorithm 1 for a constrained
BFS with the model output 𝒉𝑞 for community identification.

Example. Figure 5 shows the fusion graph for our running exam-

ple. We add a dashed blue edge between two vertices in the structure

graph if they have the same attribute, e.g., vertices 7 and 8 are con-

nected by a dashed blue edge because they both have attribute “DL”.

6.7 Complexity Analysis
In order to analyze the time complexity of QD-GNN and AQD-
GNN, we first present the complexity of general GNN in Eq.(1).
This GNN aggregates neighbors’ features for every vertex with the
cost of

∑𝑛
𝑖=u 𝑑u, where 𝑑u is the degree of vertex u and 𝑛 is number

of vertices. Thus the complexity of general GNN is 𝑂 (|E |).
ForQD-GNN, Query Encoder and Graph Encoder have the same

time complexity of𝑂 (|E |) as general GNN. ForAQD-GNN, the time
cost of Attribute Encoder is also dependent on the sum of vertices’
degree in the bipartite graph with the complexity of 𝑂 (|E𝐵 |). The
aggregation operation in Feature Fusion, e.g., MAX, Concatena-
tion, etc., is implemented in parallel and the complexity is just
𝑂 (1). Suppose QD-GNN or AQD-GNN is a 𝑘-layer model with 𝑡
iterations, where 𝑘 = 3 and 𝑡 = 300 are typical settings. The com-
plexity of QD-GNN is 𝑂 (𝑘 × 𝑡 × |E|) in the model training stage
and 𝑂 (𝑘 × |E|) in the online query stage. Similarly, the complexity
of AQD-GNN is𝑂 (𝑘 × 𝑡 × (|E| + |E𝐵 |)) in the model training stage
and 𝑂 (𝑘 × (|E| + |E𝐵 |)) in the online query stage.

7 EXPERIMENTS
In this section, we present our experimental studies to validate the
performance of our framework with the three proposed models in
different scenarios. We first introduce the setup of our experiment
in Section 7.1. Then we evaluate the performance in both attributed
and non-attributed community search problem in Section 7.2. To
further verify the effectiveness of our models, we compare our
models with the interactive community search model ICS-GNN in
Section 7.3. Moreover, we evaluate the performance of our model
for ACS on large graphs in Section 7.4. Finally, we conduct the
ablation study in Section 7.5 to demonstrate the effectiveness of
Feature Fusion, the sensitivity test of the parameter 𝛾 , and the data
split ratio.

7.1 Experimental Setup

7.1.1 Data Sets. To thoroughly evaluate the performance of our
framework, we conduct experimental studies on 15 attributed graphs.
Table 1 reports the dataset statistics. The first six networks, Cornell,
Texas, Washington (Washt), Wisconsin (Wiscs), Cora and Citeseer,
are publication citation networks. Each attribute describes the ab-
sence/presence of one word in a publication. All these graphs can
be found at LINQS website1. Reddit [16] is an online discussion
website where each vertex is a post and an edge links two posts if
they have comments from the same user. Facebook [33] is a social
network where vertices are users and edges are friend relationships.
It contains 8 ego-networks with different attributes as shown in
Table 1. We consider each ego-network as an independent data set.
All data sets contain ground-truth communities.

7.1.2 Baseline Models. We compare our models with five state-
of-the-art approaches, including two non-attributed community
search algorithms: CTC [24] and 𝑘-ECC [6], two attributed commu-
nity search algorithms: ACQ [10] and ATC [22], and a GNN-based
interactive community search model ICS-GNN [14].
1https://linqs.soe.ucsc.edu/data

Table 1: Dataset Statistics. |V| and |E | are the number of

vertices and edges. |F̂ | is the number of distinct attributes, 𝐾
is the number of communities and 𝐴𝑆 is the average size of

communities. Here, M= 106.

Data set |V | |E | | F̂ | |E𝐵 | 𝐾 𝐴𝑆
Cornell 195 283 1703 18496 5 39
Texas 187 280 1703 15437 5 37.4

Citation Washt 230 366 1703 19953 5 46
Networks Wiscs 265 459 1703 25479 5 53

Cora 2708 5278 1433 49216 7 386.86
Citeseer 3312 4536 3703 105165 6 552
Reddit 232965 114M 602 140M 50 4659.3
FB-0 348 2852 224 3348 24 13.54
FB-107 1046 27783 576 11827 9 55.67

Social FB-1684 793 14810 319 6131 17 45.71
Networks FB-1912 756 30772 480 8066 46 23.15

FB-3437 548 5347 262 4263 32 6
FB-348 228 3416 161 2398 14 40.5
FB-414 160 1843 105 1566 7 25.43
FB-686 171 1824 63 999 14 34.64

7.1.3 Query Setting. For each data set, we generate 𝑛𝑞 = 350 pairs

of input query set Q = {< V𝑞, F𝑞 >}𝑛𝑞

𝑞=1 and the corresponding

ground-truth community Y𝑞 . To generate the query vertex set V𝑞 ,
vertex sets containing 1-3 vertices are randomly selected from the
ground-truth community. To generate the query attribute set F𝑞 , we
design three different types as described below for fair comparison
with different existing CS and ACS methods. The query vertex set
and corresponding ground-truth communities are shared across
the three types of input queries.

• Empty attribute query (EmA). To compare with methods for
non-attributed community search, we set the attribute query set
empty (F𝑞 = ∅) and generate the EmA set QEmA = {< V𝑞, ∅ >}.

• Attribute from community (AFC). As suggested by [10, 22], to
construct the query attribute set (F𝑞 = F c

𝑞), we use 5 most com-
mon attributes in ground-truth communities. Therefore, we have
QAFC = {< V𝑞, F c

𝑞 >}. AFC is used to validate the contribution
of the attributes in the community search.

• Attribute from node (AFN). We simulate real queries provided
by users and select 5 most common attributes from attributes of
query vertices as the query attribute set, i.e, F𝑞 = F n

𝑞 . In other
words, F n

𝑞 may be unrelated to the ground-truth communities.
We construct the AFN set QAFN = {< V𝑞, F n

𝑞 >}. Obviously,
AFN is a more challenging setting and closer to the real scenarios.

7.1.4 Data Splitting. For each data set, we split 350 query-community
pairs into training data, validation data and test data with the ratio
of 150:100:100 by default. We use training data to train our models,
validation data to select the best weights during the training pro-
cess, and test data to measure the performance of all methods. In
the ablation study, we vary the data splitting ratio to evaluate its
influence on the performance.

7.1.5 Evaluation Metrics. Let 𝐷test = {Q, Ĉ,Y} be the test data
set, where Q is the query set, Ĉ is the predicted community set by
a method and Y is the ground-truth community set. To measure
the quality of communities found by different methods, we employ
F1-score to evaluate the quality of the predicted set Ĉ. F1-score is
defined as:

𝐹1(Ĉ,Y) =
2 · 𝑝𝑟𝑒 (Ĉ,Y) · 𝑟𝑒𝑐 (Ĉ,Y)
𝑝𝑟𝑒 (Ĉ,Y) + 𝑟𝑒𝑐 (Ĉ,Y)

Figure 6: Non-attributed community search performance

comparison.

where 𝑝𝑟𝑒 (Ĉ,Y) is the precision of predicted community set Ĉ on
the ground-truth community set Y, 𝑟𝑒𝑐 (Ĉ,Y) is the recall of the
predicted communities:

𝑝𝑟𝑒 (Ĉ,Y) =

∑
𝒄𝑞 ∈Ĉ 𝒄𝑞&𝒚𝑞∑
𝒄𝑞 ∈Ĉ

∑𝑛
𝑖=0 𝒄𝑞𝑖

, 𝑟𝑒𝑐 (Ĉ,Y) =

∑
𝒄𝑞 ∈Ĉ 𝒄𝑞&𝒚𝑞∑

𝒚𝑞 ∈Y
∑𝑛
𝑖=0𝒚𝑞𝑖

.

Here, 𝒄𝑞 ∈ {0, 1}𝑛×1 and 𝑦𝑞 ∈ {0, 1}𝑛×1 are the predicted and
ground-truth community vectors for query 𝑞 respectively.

7.1.6 Implementation Details. In our models, we build three layers
with 128 neurons in the hidden layer. We train 300 iterations with a
learning rate of 0.001. In the Feature Fusion component, we choose
concatenate as the aggregation function in Eq. (6) and Eq. (11). In
each layer except the output layer, we employ ReLU as activation
function, batch normalization with batch size 4 and dropout rate
0.5 [38] for each branch.

7.2 Community Search Performance
We present comprehensive experiments to validate the query per-
formance of the three proposed models under two settings: non-
attributed community search, and attributed community search.

7.2.1 Non-attributed community search. In order to compare to
non-attributed community search algorithms, we generate the
multi-vertex queries set without query attributes QEmA, and com-
pare our three models Simple QD-GNN, QD-GNN, AQD-GNN
with CTC and 𝑘-ECC. Figure 6 shows the F1-score. We can ob-
serve that:
• CTC performs reasonably well in Facebook ego networks but

poorly in citation networks, since CTC searches communities
using the𝑘-truss subgraph pattern, whichmay fit the dense social
networks well, but does not fit the sparser citation networks.

• By capturing the local query structure only, Simple QD-GNN
can outperform ECC and CTC in citation networks and achieve
comparable performance in Facebook ego networks. It demon-
strates the learning-based models can apply to different types
of networks and discover communities with different structural
properties.

• QD-GNN can substantially outperform Simple QD-GNN by im-
proving the F1-score by 0.14 on average. It validates the effec-
tiveness of the query-independent graph features learned from
Graph Encoder.

• We also apply AQD-GNN to non-attributed community search,
where we set the query attribute set to empty, F𝑞 = ∅. Interest-
ingly, AQD-GNN can achieve the best performance in almost all
data sets in Figure 6. This is owing to the Feature Fusion operator
and Attribute Encoder design in AQD-GNN. Specifically, Fea-
ture Fusion can transmit graph information and query vertices

information to Attribute Encoder before the second layer. Then
Attribute Encoder can utilize the information from the second
layer and learn hidden relations between attributes.

7.2.2 Attributed community search. We compare AQD-GNN with
two attributed community search algorithms: ACQ and ATC. ACQ
can only handle one query vertex while ATC and our model AQD-
GNN can handle multiple query vertices. Thus we compare ACQ
and AQD-GNN for one-vertex queries in Figure 7a, and compare
ATC and AQD-GNN for multi-vertex queries in Figure 7b. We can
observe that:
• For Cora and Citeseer with large ground-truth communities

(hundreds of vertices in a community), the performances of ATC
and ACQ are quite poor (around 0.1 in F1-score). It is because
their pre-defined community patterns (i.e., 𝑘-core and 𝑘-truss)
are too strict to find large communities in the real-world graphs.

• AQD-GNN consistently performs the best on all data sets. As
a data-driven approach, AQD-GNN is capable of learning com-
munities with varied sizes and shapes. It performs stably on all
graphs benefiting from learning adaptive weight matrices for
different data sets.

• Compared to AFC, all methods suffer from performance degra-
dation under the AFN setting in most data sets, since AFC is a
more favorable setting where the query attribute set is directly ex-
tracted from themost common attributes of the ground-truth. For
example, in the Washington data set in Figure 7b, ATC achieves
0.275 F1-score under AFC, but only 0.033 under AFN.

• Under the more realistic but challenging AFN setting, we can
observe AQD-GNN achieves a significant performance improve-
ment over the baselines, with 0.46 and 0.53 improvements on
F1-score for one-vertex queries and multi-vertex queries respec-
tively. This is because AQD-GNN exploits the node-attribute
bipartite graph to find similar attributes, while the baselines sim-
ply require vertices in a community have identical attributes
with query attributes.

7.2.3 Query Efficiency. We evaluate the query efficiency of AQD-
GNN in the test set. Table 2 shows the average query time (in
milliseconds) of 100 test queries by AQD-GNN and baselines. The
last column reports the average query time among all data sets.

Overall, the query time AQD-GNN is much faster than that of all
baselines except ACQ . ACQ is a simple baseline which only allows
one query vertex and considers vertices’ degrees and common
attributes. Its query performance in terms of F1-score is very poor
as shown in Figure 7. It is worth noting that AQD-GNN achieves a
stable query time of around 5 milliseconds on all data sets, while the
query time of CTC, ECC and ATC increases significantly when the
graph is large. In particular,CTC takes almost 5, 000milliseconds for
a query on FB-1912, while AQD-GNN only costs 4.96 milliseconds.
This experiment shows that AQD-GNN is more suitable for online
search in real-world applications.

7.3 Interactive Community Search
ICS-GNN [14] is a recent GNN-based model for interactive commu-
nity search. Given a query, ICS-GNN returns an answer community.
If the user is not satisfied with the answer, he/she can give a feed-
back (e.g., adding some additional vertices), and then ICS-GNN will
respond with a revised answer. This interaction continues until

(a) Compared with methods supporting one-vertex queries. (b) Compared with methods supporting multi-vertex queries.

Figure 7: Attributed community search performance compared with other approaches.

Table 2: Average query time (in milliseconds) of different community search methods.

Methods FB-414 FB-686 FB-348 FB-0 FB-3437 FB-1912 FB-1684 FB-107 Cornell Texas Washt Wiscs Cora Citeseer Average

Non- CTC 34.78 41.41 120.92 49.25 131.67 4903.38 604.67 2498.82 0.45 0.40 0.42 0.63 1.96 1.28 599.00
Attributed ECC 3.52 2.29 5.20 2.57 6.60 154.23 26.85 93.62 0.24 0.28 0.23 0.33 2.67 1.76 21.50

ACQ <0.01 <0.01 1.45 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.10
Attributed ATC 4.40 5.10 7.70 5.90 10.30 43.60 22.70 40.10 7.90 14.02 2.11 18.60 11.49 3.68 9.80

AQD-GNN 3.31 3.32 3.41 3.63 4.32 4.96 4.56 5.46 4.15 4.10 4.16 4.41 5.54 5.32 4.31

Table 3: F1-score (in %) and time cost (in seconds) of interactive community search methods on different networks.

Method FB-414 FB-686 FB-348 FB-0 FB-3437 FB-1912 FB-1684 FB-107 Cora Citeseer Reddit Average
F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time

ICS-GNN 56.63 0.14 43.53 0.15 33.88 0.26 24.94 0.26 26.49 0.51 20.23 2.36 20.76 1.28 36.46 2.40 30.52 0.14 30.29 0.14 19.41 1.84 31.19 0.86
QD-GNN 62.02 0.14 44.28 0.14 34.74 0.26 31.07 0.27 27.38 0.52 21.10 2.45 24.79 1.31 38.39 2.49 32.56 0.12 31.53 0.12 21.29 1.68 33.56+2.37 0.87+0.01
AQD (AFN) 61.25 0.14 43.05 0.14 35.80 0.25 31.27 0.26 29.03 0.50 20.44 2.29 36.51 1.23 41.07 2.41 31.81 0.14 33.09 0.12 20.71 1.85 34.91+3.72 0.85−0.01
AQD (AFC) 57.34 0.14 38.87 0.14 35.35 0.25 35.63 0.26 30.22 0.50 37.52 2.29 37.91 1.23 49.67 2.41 33.19 0.14 31.77 0.12 24.86 1.85 37.48+6.29 0.85−0.01

the user is satisfied. In each interaction, ICS-GNN first finds a can-
didate subgraph, learns the vertex embedding through a Vanilla
GCN model [27] and finally employs a BFS based algorithm to
select 𝑘-sized community with the maximum GNN scores. Note
that ICS-GNN does not use any training queries with ground-truth
communities to train the model; for each user query, it re-trains the
GNNmodel to obtain the vertices’ embeddings only from the knowl-
edge of the given query. ICS-GNN only supports non-attributed
community search.

In this experiment, we replace the Vanilla GCN model [27] in the
ICS-GNN [14] with our community search models QD-GNN and
AQD-GNN to compare the performance of interactive community
search problem.

7.3.1 Performance in Effectiveness. We first use QD-GNN to re-
place the GNN model in ICS-GNN framework for non-attributed
community search. As shown in Table 3, QD-GNN outperforms
the original ICS-GNN in all data sets with 2.37% improvement in
F1-score. We also use AQD-GNN to replace the GNN model in ICS-
GNN so it supports interactive attributed community search. As
shown in Table 3, AQD-GNN further improves the F1-score of the
original ICS-GNN for all data sets by 3.72% (AFN) and 6.29% (AFC)
on average. This experiment proves that our QD-GNN and AQD-
GNN models are more effective than Vanilla GCN in the ICS-GNN
framework.

7.3.2 Performance in Efficiency. We report the average time of
community search per interaction by ICS-GNN,QD-GNN andAQD-
GNN in Table 3. The running time of the threemodels are very close.
Without increasing the time cost, we improve the performance of
ICS-GNN and extend it to support attributed interactive community
search problem.

Table 4: The performances of ACSmethods on large data sets.

Reddit Enlarged_Reddit
Methods Index/Train Query F1- Index/Train Query F1-

Time Time score Time Time score
ACQ 42.4 s 32.2 ms 0.53 852.7 s 5726.6 ms* 0.38
ATC # - - - - - -

AQD-GNN 4993.6 s 6.7 ms 0.91 3898.5 s 5.3 ms 0.91
* 25 out of 100 queries are out of memory when processing. The query time
are the average of the rest 75 queries.

ATC did not finish building its index in 7 days on both two data sets.

7.4 ACS on Large Graphs
In this experiment, we evaluate the performance of our model for
ACS on large graphs. We design a subgraph training mechanism
to train our models on large graphs. We first select neighbors of
query vertices as the candidate subgraph for each query. According
to the number of neighbors, we select 1 or 2-hop neighbors in the
fusion graph described in Section 6.6. Then we train our model on
these small subgraphs and predict communities.

We compare AQD-GNN with ACQ and ATC for attributed com-
munity search on Reddit and an enlarged version of Reddit, denoted
as Enlarged_Reddit. To enlarge Reddit and preserve the ground-
truth communities at the same time, we add some new vertices for
edges within a community. A new vertex is linked to the two ends
of an edge, and the attributes of the new vertex are the average
attribute values of the two ends. The Enlarged_Reddit has 3.12M
vertices and 126M edges.

Table 4 reports the index/training time, query time and F1-score
of the discovered communities. ACQ takes only 42.4 seconds and
852.7 seconds to build index on Reddit and Enlarge_Reddit. But
in terms of the query time, it costs 32.2 milliseconds and 5726.6
milliseconds, while AQD-GNN only costs 6.7 milliseconds and 5.3

(a) F1-score w/wo Feature Fusion.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
1
-s

c
o

r
e

Threshold Value

FB-107 Cora Citeseer FB-1912

(b) F1-score by varying 𝛾 .

Figure 8: Ablation studies for Feature Fusion and 𝛾 .

milliseconds respectively. It is worth noting that ACQ runs out
of memory for 25 out of 100 queries on a 300GB memory server.
This is because ACQ finds a 𝑘-core community with the largest 𝑘
containing the query vertices. The 𝑘-core community can be quite
large, for example, for a query vertex, ACQ first finds a 2-core
community with more than 800 thousand candidate vertices. The
average F1-score of ACQ is much lower than that of our method
in both data sets. ATC did not finish building its index in 7 days
and we treat it as timed out. From this experiment, we can see
that AQD-GNN achieves a good balance between training time and
query time in large graphs, and its F1-score is the best.

7.5 Ablation Study
In this section, we report the ablation studies of our models, includ-
ing the effectiveness of Feature Fusion, the sensitivity test of the
parameter 𝛾 , and the data split ratio in the attributed community
search task.

7.5.1 Ablation Study for Feature Fusion. In our model, we use the
aggregation result 𝒉𝐹𝐹 in Eq. (6) in QD-GNN and Eq. (11) in AQD-
GNN to fuse all information, and assign fused features to Query
Encoder and Attribute Encoder in Eq. (7) and Eq. (12). To verify the
effectiveness of Feature Fusion, we compare the originalAQD-GNN
and QD-GNN models with AQD-GNN-noFu and QD-GNN-noFu
where the encoders do not aggregate in the hidden layer. They only
aggregate after the last layer to output the final results.

The comparison results are shown in Figure 8a. For the non-
attributed community search problem, the effect of Feature Fusion
is more significant in citation networks than that in Facebook ego
networks. InQD-GNN, Feature Fusion aims to mix the global graph
information and local query knowledge. The Facebook ego net-
works themselves are local graphs. Therefore, Feature Fusion in
QD-GNN can only improve the model slightly on Facebook ego
networks. For ACS problem, AQD-GNN outperforms AQD-GNN-
noFu substantially in both Facebook ego networks and citation
networks. This is because Feature Fusion in AQD-GNN not only
fuses the global graph feature, local query structure and similar
attribute information at the same time, but also processes query
vertices and query attributes simultaneously through the updating
of Query Encoder and Attribute Encoder by fused features. This
fusion and updating operations significantly improve the results.

7.5.2 Ablation Study for the threshold 𝛾 . When translating the
model output vector ℎ𝑞 from R𝑛 to the community vertex set Ĉ𝑞

in Section 4.3, we use a threshold 𝛾 ∈ [0, 1] in the constrained
BFS in Algorithm 1: if ℎ𝑞𝑖 ≥ 𝛾 , then vertex v𝑖 ∈ Ĉ, otherwise
v𝑖 ∉ Ĉ. In above experiments, we choose 𝛾 which achieves the
best performance in the validation set. To analyze the impact of
the threshold, we vary 𝛾 from 0.05 to 0.95 and report the F1-score
in Figure 8b. When 𝛾 is between 0.3 and 0.7, there is very little

0.85

0.90

0.95

1.00

0 100 200 300 400

F
1
-s

c
o

r
e

Train

Cora FB-107 FB-414 Reddit

(a) Vary training set size.

0.85

0.90

0.95

1.00

0 100 200 300 400

F
1
-s

c
o

r
e

Validation

Cora FB-107 FB-414 Reddit

(b) Vary validation set size.

Figure 9: Ablation study for data split ratio.

fluctuation in the performance. Therefore, AQD-GNN is not very
sensitive to the selecting of this threshold 𝛾 .
7.5.3 Ablation Study for the data split ratio. In all the experiments
above, we fix the training/validation/test size ratio as 150:100:100.
To test the sensitiveness of data split ratio, we vary the training set
size from 50 to 350, and fix both the validation and test set size as
100. The results are plotted in Figure 9a. We also vary the validation
set size and fix the training set size as 150 and the test set size as
100. The results are plotted in Figure 9b.

When the training set size increases from 50 to 100, the F1-score
of all data sets has a notable increase, but when the training set
size further increases from 100 to 350, the F1-score remains quite
stable. When varying the validation set size, for Cora and FB-107
the F1-score remains stable; for FB-414 and Reddit, the F1-score
increases when the validation set size increases from 50 to 100, and
then remains stable afterwards.

This experiment shows that when the training/validation set is
very small, increasing the size can improve the performance; but
when the size is above 100, the performance remains stable.

8 CONCLUSIONS
In this paper, we propose the QD-GNN and AQD-GNN for non-
attributed community search and attributed community search
respectively. In QD-GNN, we first propose a query-driven compo-
nent to acquire queries directly and avoid the re-training process in
the existing GNN-based community search model ICS-GNN. Then
we combine the local query-dependent structure and global query-
independent vertex embedding. For attributed community search,
we model vertex attributes as a bipartite graph and further propose
the AQD-GNN model. To the best of our knowledge, AQD-GNN is
the first GNNmodel for attributed community search. Moreover, we
apply QD-GNN and AQD-GNN in the framework of ICS-GNN for
interactive attributed community search. Experiments demonstrate
that the proposed models outperform previous approaches signifi-
cantly. The proposed models are trained through historical queries
(training queries), then applied for online query. In the future, more
research on training query selection can be carried out to train the
model with limited training queries for large graphs. In addition,
as time goes by, more historical queries can be collected and the
model can be updated with them as training queries to improve its
performance. The model update mechanism is worth further study.

ACKNOWLEDGMENTS
The work was supported by grants from NSFC Grant No. U1936205,
the Research Grant Council of the Hong Kong Special Administra-
tive Region, China [Project No.: CUHK 14205618], Tencent AI Lab
RhinoBird Focused Research Program GF202101, and CUHK Direct
Grant No. 4055159. Additional funding was provided by the HK
RGC Grant Nos. 22200320 and 12200021.

REFERENCES
[1] Esra Akbas and Peixiang Zhao. 2017. Truss-based community search: a truss-

equivalence based indexing approach. PVLDB 10, 11 (2017), 1298–1309.
[2] Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial Attacks on

Node Embeddings via Graph Poisoning. In ICML. 695–704.
[3] Heng Chang, Yu Rong, Tingyang Xu, Yatao Bian, Shiji Zhou, Xin Wang, Junzhou

Huang, and Wenwu Zhu. 2021. Not All Low-Pass Filters are Robust in Graph
Convolutional Networks. NeurIPS 34 (2021).

[4] Heng Chang, Yu Rong, Tingyang Xu,WenbingHuang, Somayeh Sojoudi, Junzhou
Huang, and Wenwu Zhu. 2021. Spectral graph attention network with fast eigen-
approximation. In CIKM. 2905–2909.

[5] Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng
Cui, Wenwu Zhu, and Junzhou Huang. 2020. A restricted black-box adversarial
framework towards attacking graph embedding models. In AAAI, Vol. 34. 3389–
3396.

[6] Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. 2015. Index-
based optimal algorithms for computing Steiner components with maximum
connectivity. In SIGMOD. 459–474.

[7] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online
search of overlapping communities. In SIGMOD. 277–288.

[8] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search
of communities in large graphs. In SIGMOD. 991–1002.

[9] Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng.
2020. GraphZoom: A multi-level spectral approach for accurate and scalable
graph embedding. ICLR (2020).

[10] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective
community search for large attributed graphs. PVLDB 9, 12 (2016), 1233–1244.

[11] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,
and Xuemin Lin. 2020. A survey of community search over big graphs. VLDBJ
29, 1 (2020), 353–392.

[12] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface
prediction using graph convolutional networks. In NeurIPS. 6530–6539.

[13] Hongyang Gao and Shuiwang Ji. 2019. Graph U-Nets. In ICML. 2083–2092.
[14] Jun Gao, Jiazun Chen, Zhao Li, and Ji Zhang. 2021. ICS-GNN: lightweight

interactive community search via graph neural network. PVLDB 14, 6 (2021),
1006–1018.

[15] Arushi Goel, Keng Teck Ma, and Cheston Tan. 2019. An End-to-End Network
for Generating Social Relationship Graphs. In CVPR. 11186–11195.

[16] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1025–1035.

[17] Chaoyang He, Tian Xie, Yu Rong, Wenbing Huang, Junzhou Huang, Xiang Ren,
and Cyrus Shahabi. 2019. Cascade-bgnn: Toward efficient self-supervised repre-
sentation learning on large-scale bipartite graphs. arXiv preprint arXiv:1906.11994
(2019).

[18] Chaoyang He, Tian Xie, Yu Rong, Wenbing Huang, Yanfang Li, Junzhou Huang,
Xiang Ren, and Cyrus Shahabi. [n.d.]. Bipartite graph neural networks for
efficient node representation learning. arXiv preprint arXiv:1906.11994 ([n. d.]).

[19] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. 2016.
Querying minimal steiner maximum-connected subgraphs in large graphs. In
CIKM. 1241–1250.

[20] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive
Sampling Towards Fast Graph Representation Learning. In NeurIPS. 4558–4567.

[21] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying
k-truss community in large and dynamic graphs. In SIGMOD. 1311–1322.

[22] Xin Huang and Laks VS Lakshmanan. 2017. Attribute-driven community search.
PVLDB 10, 9 (2017), 949–960.

[23] Xin Huang, Laks VS Lakshmanan, and Jianliang Xu. 2017. Community search
over big graphs: Models, algorithms, and opportunities. In ICDE. 1451–1454.

[24] Xin Huang, Laks VS Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Ap-
proximate closest community search in networks. PVLDB 9, 4 (2015), 276–287.

[25] Xin Huang, Laks V. S. Lakshmanan, and Jianliang Xu. 2019. Community Search
over Big Graphs. Morgan & Claypool Publishers.

[26] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML. PMLR, 448–456.

[27] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[28] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-Attention Graph Pooling.
In ICML. 3734–3743.

[29] Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wen-bing Huang, and Junzhou Huang.
2019. Semi-Supervised Graph Classification: A Hierarchical Graph Perspective.
InWWW. 972–982.

[30] Ye Li, Chaofeng Sha, Xin Huang, and Yanchun Zhang. 2018. Community Detec-
tion in Attributed Graphs: An Embedding Approach. In AAAI. 338–345.

[31] Hehuan Ma, Yatao Bian, Yu Rong, Wenbing Huang, Tingyang Xu, Weiyang Xie,
Geyan Ye, and Junzhou Huang. 2022. Cross-Dependent Graph Neural Networks
for Molecular Property Prediction. Bioinformatics (2022).

[32] Yao Ma, Suhang Wang, Charu C. Aggarwal, and Jiliang Tang. 2019. Graph
Convolutional Networks with EigenPooling. In KDD. 723–731.

[33] Julian J. McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles
in Ego Networks. In NeurIPS. 548–556.

[34] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,
and Junzhou Huang. 2020. Self-supervised graph transformer on large-scale
molecular data. NeurIPS 33 (2020), 12559–12571.

[35] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification. In ICLR.

[36] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.
2019. End-to-End Structure-Aware Convolutional Networks for Knowledge Base
Completion. In AAAI. 3060–3067.

[37] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and
how to plan a successful cocktail party. In KDD. 939–948.

[38] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. JMLR 15, 1 (2014), 1929–1958.

[39] Damian Szklarczyk, Andrea Franceschini, Stefan Wyder, Kristoffer Forslund,
Davide Heller, Jaime Huerta-Cepas, Milan Simonovic, Alexander Roth, Alberto
Santos, Kalliopi P Tsafou, et al. 2015. STRING v10: protein–protein interaction
networks, integrated over the tree of life. Nucleic acids research 43, D1 (2015),
D447–D452.

[40] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019.
KGAT: Knowledge Graph Attention Network for Recommendation. In KDD.
950–958.

[41] Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. 2020. AM-
GCN: Adaptive Multi-channel Graph Convolutional Networks. In SIGKDD. 1243–
1253.

[42] Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and Mingzhong Wang. 2019. A Vec-
torized Relational Graph Convolutional Network for Multi-Relational Network
Alignment. In IJCAI. 4135–4141.

[43] Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. 2021.
Graph Information Bottleneck for Subgraph Recognition. In ICLR.

[44] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. 2017. Index-
based densest clique percolation community search in networks. TKDE 30, 5
(2017), 922–935.

[45] Kangfei Zhao, Jeffrey Xu Yu, Hao Zhang, Qiyan Li, and Yu Rong. 2021. A Learned
Sketch for Subgraph Counting. In SIGMOD. 2142–2155.

[46] Kangfei Zhao, Zhiwei Zhang, Yu Rong, Jeffrey Xu Yu, and Junzhou Huang. 2021.
Finding critical users in social communities via graph convolutions. TKDE (2021).

[47] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust Graph
Convolutional Networks Against Adversarial Attacks. In KDD. 1399–1407.

Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale

Yang Li†‡, Yu Shen†‡, Huaijun Jiang†‡, Wentao Zhang†, Jixiang Li‡, Ji Liu‡, Ce Zhang§, Bin Cui†∇
†Key Laboratory of High Confidence Software Technologies (MOE), School of CS, Peking University

§Department of Computer Science, ETH Zürich ‡AI Platform, Kuaishou Technology
∇Institute of Computational Social Science, Peking University (Qingdao)
†{liyang.cs, shenyu, jianghuaijun, wentao.zhang, bin.cui}@pku.edu.cn
‡lijixiang@kuaishou.com ‡jiliu@kwai.com §ce.zhang@inf.ethz.ch

ABSTRACT

The ever-growing demand and complexity of machine learning

are putting pressure on hyper-parameter tuning systems: while

the evaluation cost of models continues to increase, the scalability of

state-of-the-arts starts to become a crucial bottleneck. In this paper,

inspired by our experience when deploying hyper-parameter tun-

ing in a real-world application in production and the limitations

of existing systems, we propose Hyper-Tune, an efficient and ro-

bust distributed hyper-parameter tuning framework. Compared

with existing systems, Hyper-Tune highlights multiple system

optimizations, including (1) automatic resource allocation, (2) asyn-

chronous scheduling, and (3) multi-fidelity optimizer. We conduct

extensive evaluations on benchmark datasets and a large-scale real-

world dataset in production. Empirically, with the aid of these opti-

mizations, Hyper-Tune outperforms competitive hyper-parameter

tuning systems on a wide range of scenarios, including XGBoost,

CNN, RNN, and some architectural hyper-parameters for neural

networks. Compared with the state-of-the-art BOHB and A-BOHB,

Hyper-Tune achieves up to 11.2× and 5.1× speedups, respectively.

PVLDB Reference Format:

Yang Li, Yu Shen, Huaijun Jiang, Wentao Zhang, Jixiang Li, Ji Liu, Ce

Zhang, and Bin Cui. Hyper-Tune: Towards Efficient Hyper-parameter

Tuning at Scale. PVLDB, 15(6): 1256 - 1265, 2022.

doi:10.14778/3514061.3514071

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/PKU-DAIR/HyperTune.

1 INTRODUCTION

Recently, researchers in the database community have been work-

ing on integrating machine learning functionality into data manage-

ment systems, e.g., SystemML [18], SystemDS [8], Snorkel [54], Ze-

roER [71], TFX [5, 9], “Query 2.0” [72], Krypton [50], Cerebro [51],

ModelDB [66], MLFlow [75], HoloClean [56], NorthStar [37] and

EaseML [49]. AutoML systems [25, 52, 74], an emerging type of

data system, significantly raise the level of abstractions of building

ML applications [11, 45]. While hyper-parameters drive both the

efficiency and quality of machine learning applications, automatic

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514071

1

2

3

4

5

8

9

10

7

6

11

12

Figure 1: Synchronous mechanism in hyper-parameter tun-

ing, where each row represents a worker. The deep-blue areas

correspond to the evaluation process of configurations; the

striped areas refer to idle time.

hyper-parameter tuning attracts intensive interests from both prac-

titioners and researchers [16, 27, 38, 40, 47, 55, 76, 77], and becomes

an indispensable component in many data systems [44, 59, 67].

An efficient tuning system, which usually involves sampling

and evaluating configurations iteratively, needs to support a di-

verse range of hyper-parameters, from learning rate, regularization,

to those closely related to neural network architectures such as

operation types, # hidden units, etc. Automatic tuning methods

(e.g., Hyperband [39] and BOHB [16]) have been studied to tune

a wide range of models, including XGBoost [12], recurrent neu-

ral networks [22], convolutional neural networks [21], etc. In this

paper, we focus on building efficient and scalable tuning systems.

Current Landscape. Existing automatic hyper-parameter tun-

ing methods include: Bayesian optimization [7, 24, 62], rule-based

search, genetic algorithm [27, 52], random search [6, 15], etc. Many

of them have two flavors – complete evaluation based search and

partial evaluation based search. To obtain the performance for each

configuration, the complete evaluation based approaches [6, 7, 24]

require complete evaluations that are usually computationally ex-

pensive. Instead, partial evaluation basedmethods [16, 34, 36, 39, 42]

assign each configuration with incomplete training resources to

obtain the evaluation result, thus saving the evaluation resources.

An Emerging Challenge in Scalability. This paper is inspired by

our efforts applying these latest methods to applications running at

a large Internet company. One critical challenge arises from the gap

between the scalability of existing automatic tuningmethods

and the ever-growing complexity of industrial-scale models.

In recent years, we have witnessed that evaluating ML models are

getting increasingly expensive as the size of datasets and models

grows larger. For example, it takes days to train NASNet [78] to

convergence on ImageNet, not to mention models like GPT-3 [10]

with hundreds of billions of parameters. Unfortunately, it is diffi-

cult for existing tuning methods to scale well to such tasks with

ever-increasing evaluation costs, thus leading to a sub-optimal con-

figuration for deployment. When deploying existing approaches in

1

large-scale applications, we realize some limitations in the following

three aspects:

(1) Design of Partial Evaluations. Since the complete eval-

uation of a configuration is usually expensive (e.g., training deep

learning models or training ML models on large-scale datasets),

recent studies propose to evaluate configurations using partial re-

sources (e.g., training models using a few epochs or a subset of

the training set) [28, 39, 53]. However, how many training resources

should be allocated to each partial evaluation? This question is non-

trivial: (1) evaluations with small training resources could decrease

evaluation cost, however, may be inaccurate to guide the search

process; whereas (2) over-allocating resources could have the risk

of high evaluation costs but diminishing returns from precision

improvements. How can we automatically decide on the right level

of resource allocation to balance the “precision vs. cost” trade-off in

partial evaluations? This question remains open in state-of-the-

arts [16, 42, 64].

(2) Utilization of Parallel Resources. Along with the rapid

increase of evaluation cost, it comes with the rise of computa-

tion resources made available by industrial-scale clusters. However,

state-of-the-arts, such as BOHB [16] and MFES-HB [42], often use

a synchronous architecture, which often cannot fully utilize all com-

putation resources due to the synchronization barrier and are often

sensitive to stragglers (See Figure 1). ASHA [40] is able to remove

these issues associated with synchronous promotions by incur-

ring a number of inaccurate promotions, while this asynchronous

promotion could hamper the sample efficiency when utilizing the

parallel and distributed resources. Thus, we need to explore an effi-

cient asynchronous mechanism which pursues both sample efficiency

and high utilization of parallel resources simultaneously.

(3) Support of Advanced Multi-fidelity Optimizers.While

there are recent advancements in the design of Bayesian optimiza-

tion methods, most, if not all, distributed tuning systems [16, 19, 40]

have not fully utilized these advanced algorithms. For example,

while there are algorithms that can more effectively exploit the

low-fidelity measurements generated by partial evaluations [42],

many existing systems [16, 17] still depend on vanilla Bayesian

optimization methods that only use the high-fidelity measurements

from the complete evaluations. Can we design a flexible system

architecture to conveniently support drop-in replacement of differ-

ent optimizers under the async/synchronous parallel settings? This

question is especially important from a system perspective.

Contributions. Inspired by our experience and observations de-

ploying these state-of-the-art methods in our scenarios, in this

paper, (C.1) we propose Hyper-Tune, an efficient distributed

automatic hyper-parameter tuning framework. Hyper-Tune has

three core components: resource allocator, evaluation scheduler, and

generic optimizer, each of which corresponds to one aforementioned

question: (1) To accommodate the first issue, we design a simple

yet novel resource allocation method that could search for a good

allocation via trial-and-error, and this method can automatically bal-

ance the trade-off between the precision and cost of evaluations. (2)

To mitigate the second issue, we propose an efficient asynchronous

mechanism – D-ASHA, a novel variant of ASHA [40]. D-ASHA pur-

sues the following two aspects simultaneously: (i) synchronization

efficiency: the overhead of synchronization in wall-clock time, and

(ii) sample efficiency: the number of runs that the algorithm needs

to converge. (3) To tackle the third issue, we provide a modular

design that allows us to plug in different hyper-parameter tuning

optimizers. This flexible design allows us to plug in MFES-HB [42],

a recently proposed multi-fidelity optimizer. In addition, we also

adopt an algorithm-agnostic sampling framework, which enables

each optimizer algorithm to adapt to the sync/asynchronous parallel

scenarios easily. (C.2) We conduct extensive empirical evaluations

on both publicly available benchmark datasets and a large-scale

real-world dataset in production. Hyper-Tune achieves strong any-

time and converged performance and outperforms state-of-the-art

methods/systems on a wide range of hyper-parameter tuning sce-

narios: (1) XGBoost with nine hyper-parameters, (2) ResNet with

six hyper-parameters, (3) LSTM with nine hyper-parameters, and

(4) neural architectures with six hyper-parameters. Compared with

the state-of-the-art BOHB [16] and A-BOHB [64], Hyper-Tune

achieves up to 11.2× and 5.1× speedups, respectively. In addition,

it improves the AUC by 0.87% in an industrial recommendation

application with a billion instances.

2 RELATEDWORK

Bayesian optimization (BO) has been successfully applied to hyper-

parameter tuning [7, 24, 26, 62, 74]. Instead of using complete eval-

uations, Hyperband [39] (HB) dynamically allocates resources to

a set of random configurations, and uses the successive halving

algorithm [28] to stop badly-performing configurations in advance.

BOHB [16] improves HB by replacing random sampling with BO.

Two methods [14, 36] propose to guide early-stopping via learning

curve extrapolation. Vizier [19], Ray Tune [46] and OpenBox [43]

also include a median stopping rule to stop the evaluations early.

In addition, multi-fidelity methods [4, 13, 23, 34, 42, 64] also exploit

the low-fidelity measurements from partial evaluations to guide

the search for the optimum of objective function 𝑓 . MFES-HB [42]

combines HB with multi-fidelity surrogate based BO.

Many methods [3, 20, 31] can evaluate several configurations in

parallel instead of sequentially. However, most of them [20], includ-

ing BOHB [16], focus on designing batches of configurations to eval-

uate at once, and few support asynchronous scheduling. ASHA [40]

introduces an asynchronous evaluation paradigm based on succes-

sive halving algorithm [28]. In addition, Many approaches [1, 32]

with asynchronous parallelization cannot exploit multiple fidelities

of the objective; A-BOHB [64] supports asynchronous multi-fidelity

hyper-parameter tuning. Searching architecture hyper-parameters

for neural networks is a popular tuning application. Recent em-

pirical studies [15, 61] show that sequential Bayesian optimization

methods [33, 48, 57, 69] achieve competitive performance among

a number of NAS methods [2, 47, 55, 60, 73, 78], which highlights

the essence of parallelizing these BO related methods.

A-BOHB [64] is the most related method compared with Hyper-

Tune, while it suffers from the first issue. BOHB [16] lacks design

to tackle the aforementioned three problems, and MFES-HB [42]

also faces these first and second issues. Instead, Hyper-Tune is

designed to accommodate the three issues simultaneously.

3 PRELIMINARY

We define the hyper-parameter tuning as a black-box optimiza-

tion problem, where the objective value 𝑓 (𝒙) (e.g., validation error)

20 40 60 80

0.1

0.2

200

Training resource (epochs)

V
a
li
d
a
ti
o
n
e
rr
o
r

Figure 2: One iteration of successive halving algorithm (SHA)

when tuning a CNN on MNIST, where 𝑛1 = 27, 𝑟1 = 1, 𝑅 = 27,

𝜂 = 3, and one unit of resource corresponds to 8 epochs. First,

27 configurations are evaluated with 1 unit of resource, i.e.,

8 epochs (𝑛1 = 27 and 𝑟1 = 1). Then the top 𝜂−1 configurations
continue their evaluations with 𝜂 times units of resources

(i.e., 𝑛2 = 27 ∗ 𝜂−1 = 9 and 𝑟2 = 𝑟1 ∗ 𝜂 = 3). Finally, only one

configuration is evaluated with the maximum resource 𝑅.

reflects the performance of an ML algorithm with given hyper-

parameter configuration 𝒙 ∈ X. The goal is to find the opti-

mal configuration that minimizes the objective function 𝒙∗ =
argmin𝒙∈X 𝑓 (𝒙), and the only mode of interaction with 𝑓 is to

evaluate the given configuration 𝒙 . In the following, we introduce

existing methods for solving this black-box optimization problem,

and these methods are the basic ingredients in Hyper-Tune.

3.1 Bayesian Optimization

The main idea of Bayesian optimization (BO) is as follows. Since

evaluating the objective function 𝑓 for configuration 𝒙 is very ex-

pensive, it approximates 𝑓 using a probabilistic surrogate model

𝑀 : 𝑝 (𝑓 |𝐷) that is much cheaper to evaluate. In the 𝑛𝑡ℎ itera-

tion, BO methods iterate the following three steps: (1) use the

surrogate model 𝑀 to select a configuration that maximizes the

acquisition function 𝒙𝑛 = argmax𝒙∈X 𝑎(𝒙;𝑀), where the acqui-
sition function is used to balance the exploration and exploita-

tion; (2) evaluate the configuration 𝒙𝑛 to get its performance 𝑦𝑛 ;
(3) add this measurement (𝒙𝑛,𝑦𝑛) to the observed measurements

𝐷 = {(𝒙1,𝑦1), ..., (𝒙𝑛−1,𝑦𝑛−1)}, and refit the surrogate 𝑀 on the

augmented 𝐷 . Popular acquisition functions include EI [29], PI [62],

UCB [63], etc. Due to the ever-increasing evaluation cost, several

researches [16, 68] reveal that vanilla BO methods with complete

evaluations fail to converge to the optimal configuration quickly.

3.2 Hyperband

To address the issue in vanilla BO methods, Hyperband (HB) [39]

proposes to speed up configuration evaluations by early stopping

the badly-performing configurations. It has the following two loops:

(1) Inner loop: successive halving. HB extends the original succes-

sive halving algorithm (SHA) [28], which serves as a subroutine in

HB, and here we also refer to it as SHA. SHA is designed to identify

and terminate poor-performing hyper-parameter configurations

early, instead of evaluating each configuration with complete train-

ing resources, thus accelerating configuration evaluation. Given a

kind of training resource (e.g., the number of iterations, the size

of training subset, etc.), SHA first evaluates 𝑛1 hyper-parameter

configurations with the initial 𝑟1 units of resources each, and ranks
them by the evaluation performance. Then it promotes the top 1/𝜂
configurations to continue its training with 𝜂 times larger resources

Table 1: The values of 𝑛𝑖 and 𝑟𝑖 in the HB evaluations, where

𝑅 = 27 and 𝜂 = 3. Each column shows an inner loop (SHA

process). The pair (𝑛𝑖 , 𝑟𝑖) in each cell indicates 𝑛𝑖 configura-

tion evaluations with 𝑟𝑖 units of training resources. Taking

the first column “Bracket-1” as an example, the evaluation

process corresponds to the iteration of SHA in Figure 2.

Bracket-1 Bracket-2 Bracket-3 Bracket-4

𝑖 𝑛𝑖 𝑟𝑖 𝑛𝑖 𝑟𝑖 𝑛𝑖 𝑟𝑖 𝑛𝑖 𝑟𝑖
1 27 1 12 3 6 9 4 27

2 9 3 4 9 2 27

3 3 9 1 27

4 1 27

(usually 𝜂 = 3), that’s, 𝑛2 = 𝑛1 ∗ 𝜂
−1 and 𝑟2 = 𝑟1 ∗ 𝜂, and stops the

evaluations of the other configurations in advance. This process

repeats until the maximum training resource 𝑅 is reached. Figure 2

gives a concrete example of SHA.

(2) Outer loop: the choice of 𝑟1 and 𝑛1. Given some finite budget

𝐵 for each bracket, the values of 𝑟1 and 𝑛1 = 𝐵
𝑟1

should be carefully

chosen because a small initial training resource 𝑟1 with a large 𝑛1
may lead to the elimination of good configurations in SHA iterations

bymistake. There is no prior whether we should use a smaller initial

training resource 𝑟1 with a larger 𝑛1, or a larger 𝑟1 with a smaller 𝑛1.
HB addresses this problem by enumerating several feasible values

of 𝑟1 in the outer loop, where the inner loop corresponds to the

execution of SHA. Table 1 shows a concrete example about the

number of evaluations and their corresponding training resources

in an iteration of HB, where each column corresponds to the results

of inner loop (i.e., one iteration of SHA with different 𝑟1s). For
example, the first column “Bracket-1” of Table 1 corresponds to the

execution process of SHA in Figure 2. Note that, the HB iteration

will be called multiple times until the tuning budget exhausts.

Definitions. We refer to SHA with different initial training

resources – 𝑟1s as brackets (See Table 1), and the evaluations with

certain units of training resources as resource level.

Partial Evaluation Design Issue in HB. Since HB-style meth-

ods [16, 39, 42] own excellent features, such as flexibility, scalability,

and ease of parallelization, we build our framework based on HB.

HB consists of multiple brackets (i.e., SHA procedures), and each

of them requires an 𝑟1 as input. HB enumerates several feasible

values of 𝑟1, and executes each corresponding bracket sequentially

and repeatedly. Bracket-𝑖 is equipped with 𝑟1 = 𝜂𝑖−1 units of ini-
tial training resources, so each bracket corresponds to a kind of

partial evaluation design. When digging deeper into the HB frame-

work, we observe the “precision vs. cost” tradeoff caused by the

selection of bracket (i.e., each kind of partial evaluation design)

as follows: (1) The partial evaluation with a small 𝑟1 implies that

few training resources are allocated, and this may incur a larger

number of inaccurate promotions in SHA, i.e., poor configurations

are promoted to the next resource level, and good configurations

are terminated by mistake due to the low fidelity. (2) As 𝑟1 becomes

large, the partial evaluation design has the risk of high evaluation

cost but diminishing returns from precision improvements. While

HB tries each bracket sequentially and repeatedly, it is inevitable

that it wastes evaluation cost when applying a large number of

inappropriate brackets during optimization. To develop an efficient

tuning system, we need to revisit the HB pipeline and answer the

following question: Can we automatically learn the right level of re-

source allocation (i.e., proper partial evaluation design) that balances

the “precision vs. cost” tradeoff well? In Section 4.1 we describe our

bracket selection based solution to this problem.

4 PROPOSED FRAMEWORK

In this section, we first give the overview of the proposed frame-

work, and then describe three core components that are designed

to accommodate the aforementioned three issues in Section 1.

Framework Overview. The proposed framework – Hyper-Tune

takes the tuning task and time budget as inputs, and outputs the best

configuration found in the search process. Hyper-Tune has three

components: resource allocator (Section 4.1), evaluation scheduler

(Section 4.2), and multi-fidelity optimizer (Section 4.3). It is an iter-

ative framework that will repeat until the given budget exhausts.

Figure 3 illustrates an iteration of Hyper-Tune, with four concrete

steps. The resource allocator selects the initial training resources 𝑟1
when evaluating configurations (Step 1), which directly determines

partial evaluation design. Then the multi-fidelity optimizer will

sample a configuration from the search space for each idle worker

(Step 2). The evaluation scheduler then evaluates these configura-

tions with the corresponding training resources in parallel (Step

3). Finally, based on the multi-fidelity results from parallel evalu-

ations, Hyper-Tune updates the parameters in resource allocator

and multi-fidelity optimizer (Step 4), respectively.

Basic Setting: Measurements and Base Surrogates.Due to the flex-

ibility and scalability of HyperBand (HB) [16, 39, 40, 64], we build

our framework on HB. Then we collect the results from evaluations

with different resource levels, and we refer to them as “measure-

ments”. According to the number of training resources used by the

evaluations, we can categorize the measurements into 𝐾 groups:

𝐷1, ..., 𝐷𝐾 , where 𝐾 = �log𝜂 (𝑅)� + 1, 𝜂 is the discard proportion

in HB, 𝑅 is the maximum training resources for evaluation, and

typically 𝐾 is less than 7. The measurement (𝒙 , 𝑦) in each group

𝐷𝑖 with 𝑖 ∈ [1 : 𝐾] is obtained by evaluating configuration 𝒙
with 𝑟𝑖 = 𝜂𝑖−1 units of training resources. Thus 𝐷𝐾 denotes the

high-fidelity measurements from the complete evaluations with the

maximum training resources 𝑟𝐾 = 𝑅, and 𝐷1:𝐾−1 denote the low-

fidelity measurements from the partial evaluations. InHyper-Tune,

we build 𝐾 base surrogates: 𝑀1:𝐾 , where surrogate 𝑀𝑖 is trained

on the group of measurements 𝐷𝑖 . In the following sections, we

introduce the design of each component.

4.1 Resource Allocation with Bracket Selection

The resource allocator aims to design the proper partial evaluations

automatically. As stated in Section 3.2, the optimal bracket (i.e.,

the optimal initial training resources that balance the “precision vs.

cost” trade-off well) minimizes the evaluation cost while keeping

a high precision of partial evaluations. We need to automatically

deal with this trade-off. The resource allocator needs to identify the

optimal bracket in HB, where each bracket corresponds to a type

of initial resource design for partial evaluation.

Solution Overview. We adopt the “trial-and-error” paradigm to

identify the optimal bracket in an iterative manner. In each iteration,

it iterates the following three steps: (1) we first select a bracket (i.e.,

partial evaluation design involving 𝑛1 configurations with 𝑟1 initial

Resource Allocator

design initial training resource: �!

Multi-fidelity Optimizer

D
!

multi-fidelity measurements

D
"

D
#

D
$

sample

Evaluation Scheduler with D-ASHA

workers:

update �

update �

1

2

3 generate 4

4

Figure 3: The framework of Hyper-Tune.

training resources) based on parameters𝒘 ; (2) once the 𝑖𝑡ℎ bracket

is chosen, we execute this bracket; (3) based on the measurements

from these evaluations, we could update the parameters𝒘 . For Step 1,
in the beginning, we select brackets by round-robin with three times (as

initialization); then we sample a bracket using parameters𝒘 , where
each 𝑤𝑖 with 𝑖 ∈ [1 : 𝐾] indicates the probability of this bracket

being the optimal one. For Step 3, we propose a two-stage technique

to calculate𝒘 that balances the above trade-off. In the first stage, we

learn a parameter 𝜃𝑖 for each bracket, where 𝜃𝑖 is proportional to the
precision of evaluations with the training resources 𝑟𝑖 . In the second
stage, we multiply each 𝜃𝑖 with a coefficient 𝑐𝑖 to obtain the final𝑤𝑖 .

This coefficient is inversely proportional to the training resources

in the partial evaluation; in this way, the strategy tends to choose

the bracket with small training resources. By the multiplication

between 𝑐𝑖 and 𝜃𝑖 (𝑤𝑖 = 𝑐𝑖 · 𝜃𝑖), we could balance the “precision vs.

cost” trade-off in partial evaluations.

To measure precision, we focus on the partial orderings of mea-

surements among different resource levels. If configuration 𝒙1 per-
forms better than 𝒙2 when the training resource is 𝑟 , given the

complete training resource 𝒙1 still outperforms 𝒙2, indicating that

the partial evaluations with 𝑟 units of training resources are accu-
rate, so we can utilize this to measure the precision of evaluations.

To implement this, we utilize the predictions of base surrogate𝑀𝑖

built on 𝐷𝑖 , and compare the predictive rankings of configurations

with the rankings in 𝐷𝐾 . For base surrogates𝑀1:𝐾−1, we define the

ranking loss as the number of miss-ranked pairs as follows:

L(𝑀𝑖) =

𝑁𝐾∑
𝑗=1

𝑁𝐾∑
𝑘=1

1((𝑀𝑖 (𝒙 𝑗) < 𝑀𝑖 (𝒙𝑘) ⊗ (𝑦 𝑗 < 𝑦𝑘)), (1)

where ⊗ is the exclusive-or operator, 𝑁𝐾 = |𝐷𝐾 |, and (𝒙 𝒊,𝑦𝑖) is
the measurement in 𝐷𝐾 . For the base surrogate𝑀𝐾 trained on 𝐷𝐾

directly, we adopt 5-fold cross-validation to calculate its L(𝑀𝐾).

Further we define each 𝜃𝑖 as the probability that base surrogate𝑀𝑖

has the least ranking loss. Concretely, we use Markov chain Monte

Carlo (MCMC) to learn 𝜽 by drawing 𝑆 samples: 𝑙𝑖,𝑠 ∼ L(𝑀𝑖) for

𝑠 = 1, ..., 𝑆 and each surrogate 𝑖 = 1, ..., 𝐾 , and calculating

𝜃𝑖 =
1

𝑆

𝑆∑
𝑠=1

1

(
𝑖 = argmin

𝑖′
𝑙𝑖′,𝑠

)
. (2)

To obtain 𝒄 , in Hyper-Tune we simply apply the inverse of the cor-

responding training resources, i.e., 𝑐𝑖 = 1/𝑟𝑖 . Finally, we normalize

the raw𝒘 = 𝒄 ◦ 𝜽 to obtain the final𝒘 , where
∑

𝑖 𝑤𝑖 = 1.

SHA

ASHA

D-ASHA

1

2

3

4

5

6

8

7

9

9’’

9’

7’

6’

1

2

3

4

5

6

7

4’

5’

6’

7’

8

9

6’’

7’’

9’

1

2

3

4

5

6

7

4’

6’

9

8

9’

9’’

…

…

…

…

…

…

…

…

…

…

…

…9’’

Figure 4: Three scheduling mechanisms on a real-world case,

where each row corresponds to a worker, and the ranking of

configurations are 𝒙3, 𝒙8, 𝒙2, 𝒙1, 𝒙4, 𝒙5, 𝒙6, 𝒙7, 𝒙9 (latter is the
better). 𝑖’ refers to promoted evaluation of configuration 𝒙𝑖 .
Each deep-blue block with 𝑖 corresponds to the evaluation

process of 𝒙𝑖 ; the light-blue blocks represent the evaluations
for other iterations of SHA procedures; the striped areas in

SHA refer to no evaluations for workers.

4.2 Asynchronous Evaluation Scheduling

In this section, we introduce the distributed scheduling mechanism

in the evaluation scheduler. SHA [28] promotes the top 1/𝜂 config-

urations to the next resource level until all configurations in the

current level have been evaluated (synchronization barrier). Due to

the synchronous design, which often leads to the straggler issue,

the ineffective use of computing resources in SHA is inevitable.

ASHA [40] is able to remove these issues associated with synchro-

nous promotions by incurring a number of inaccurate promotions

(See Figure 4), i.e., configurations that fall into the top 1/𝜂 early

but are not in the actual top 1/𝜂 of all configurations. However,

this frequent and inaccurate promotion could hamper the sample

efficiency when utilizing the parallel and distributed resources, i.e.,

ASHA may spend lots of training resources on evaluating the less

promising configurations. Therefore, we need an efficient schedul-

ing method which pursues high sample efficiency while keeping the

advantage of asynchronous mechanism.

Delayed ASHA. To alleviate this issue, we propose a variant

of ASHA — delayed ASHA (abbr. D-ASHA), which uses a delay

strategy to decrease inaccurate promotions and still preserves the

asynchronous scheduling mechanism. Instead of promoting each

configuration that is in the top 1/𝜂 of all previously-evaluated con-

figurations, D-ASHA promotes configurations to the next level if

(1) the configuration is in the top 1/𝜂 of configurations, and (2) the

number of collected measurements |𝐷𝑘 | with current resource level

should be 𝜂 times larger than the number of the next level’s |𝐷𝑘+1 |

if promoted (Lines 9-10 in Algorithm 1). The inaccurate promotions

(in Cond.1) arise from a small number of observed measurements in

𝐷𝑘 with current resource level. The condition 2 ensures that |𝐷𝑘 |

should be larger than a threshold 𝜂 |𝐷𝑘+1 |, i.e., |𝐷𝑘 |/(|𝐷𝑘+1 |+1) ≥ 𝜂.
In this way, the delay strategy could prevent the frequent promo-

tion issue in ASHA, and further improve the sample efficiency.

Figure 4 gives a concrete real-world example to explain this design.

Algorithm 1 provides the formulated description about D-ASHA.

Additionally, if no promotions are possible, D-ASHA requests a

new configuration from the multi-fidelity optimizer (provided in

Algorithm 1: Pseudo Code for D-ASHA.

Input: initial training resource 𝑟1, maximum resource 𝑅, discard
proportion 𝜂.

1 Function D-ASHA() :

2 𝒙, 𝑟𝑥 = get_job() ;

3 Assign a job with configuration 𝒙 and resource 𝑟𝑥 to a free

worker.

4 Function get_job() :

5 // Check if we need to promote configurations.

6 for 𝑘 = �𝑙𝑜𝑔𝜂 (𝑅) �, ..., 2, 1, do
7 // 𝐷𝑘 refers to measurements of resource level 𝑘 .

8 Configuration candidates C = {𝒙 for 𝒙 ∈ top 1/𝜂
configurations in 𝐷𝑘 if 𝒙 has not been promoted}

9 if |𝐷𝑘 |/(|𝐷𝑘+1 | + 1) ≥ 𝜂 and |C | > 0, then

10 return C [0], 𝜂𝑘

11 end if

12 end for

13 Sample a configuration 𝒙 based on the multi-fidelity optimizer.

14 return 𝒙, 𝑟1

Algorithm 2) and adds it to the base level (Lines 13-14), so that more

configurations can be promoted to the upper levels.

4.3 Multi-fidelity Configuration Sampling

There are various advancements in the design of Bayesian optimiza-

tion (BO) methods. While those algorithms differ in the execution

process, a flexible tuning system should contain an optimizer module

that allows us to plug in different hyper-parameter tuning optimizers

easily. In addition, since most BO based methods are intrinsically

sequential, it is impractical to modify each possible algorithm to

support parallel scenarios case by case. Thus, we need an algorithm-

agnostic framework to extend different sequential optimizers to

support parallel evaluations in both sync/asynchronous settings.

Optimizer Design. To tackle the first challenge, we provide a

generic optimizer abstraction for configuration sampling in Hyper-

Tune. It includes 1) the data structure to store multi-fidelity mea-

surements: 𝐷1, ..., 𝐷𝐾 , and 2) the fit and predict APIs for surro-

gate model. This abstraction enables convenient support/implemen-

tation of different configuration sampling algorithms (e.g., random

search, Bayesian optimization, multi-fidelity optimization, etc.). For

the second challenge, we further propose an algorithm-agnostic

sampling framework to support asynchronous and synchronous

parallel evaluations conveniently without any ad-hoc modifications.

(Multi-fidelity Optimizer.) Multi-fidelity methods [23, 30, 35, 41, 53,

58, 70] have achieved success in hyper-parameter tuning. Mean-

while, it produces multi-fidelity measurements which can help

determine the optimal bracket for evaluation. In Hyper-Tune, we

implement a multi-fidelity optimizer by default based on MFES-

HB [41] to utilize multi-fidelity measurements, and build a multi-

fidelity ensemble surrogate by combining all base surrogates:

𝑀MF = agg({𝑀1, ..., 𝑀𝐾 };𝜽);

The surrogate𝑀MF is used to guide the configuration search, instead

of the high-fidelity surrogate 𝑀𝐾 only, in the framework of BO.

Concretely, we combine the base surrogates with weighted bagging,

and the weights 𝜽 are exactly the parameters obtained in Section 4.1.

Each 𝜃𝑖 also reflects the reliability when applying the corresponding

Algorithm 2: Sampling procedure.

Input: the hyper-parameter space X, measurements 𝐷1 , 𝐷2 , ..., 𝐷𝐾 , pending
configurations𝐶pending being evaluated on workers, the multi-fidelity surrogate

𝑀𝑀𝐹 , and acquisition function 𝛼 (·) .
1 calculate 𝑦̂, the median of {𝑦𝑖 }

𝑛
𝑖=1 in 𝐷𝐾 ;

2 impute new measurements 𝐷new = {(𝒙pending, 𝑦̂) : 𝒙pending ∈ 𝐶pending };

3 refit the surrogate 𝑀𝐾 in 𝑀𝑀𝐹 on 𝐷aug, where 𝐷aug = 𝐷𝐾 ∪𝐷new, and build the

acquisition function 𝛼 (𝒙, 𝑀) using 𝑀𝑀𝐹 ;

4 return the configuration 𝒙∗ = argmax𝒙∈X 𝛼 (𝒙, 𝑀𝑀𝐹) .

low-fidelity information from partial evaluations with 𝑟𝑖 units of
training resources to the target problem. Finally, the predictive

mean and variance of𝑀𝑀𝐹 at configuration 𝒙 are given by:

𝜇𝑀𝐹 (𝒙) =
∑
𝑖

𝜃𝑖 𝜇𝑖 (𝒙), 𝜎2
𝑀𝐹 (𝒙) =

∑
𝑖

𝜃2𝑖 𝜎
2
𝑖 (𝒙), (3)

where 𝜇𝑖 (𝒙) and 𝜎2𝑖 (𝒙) are the mean and variance predicted by the

base surrogate 𝑀𝑖 at configuration 𝒙 . Based on the multi-fidelity

measurements, this multi-fidelity surrogate could learn the objec-

tive function well, and can be used to speed up the search process.

Algorithm-agnostic Sampling. As mentioned previously, we

need an algorithm-agnostic framework to extend the sequential

method to the sync/asynchronous parallel settings seamlessly. To

this end, we adopt an algorithm-agnostic sampling framework,

which leverages the local penalization-based strategy [20, 43],

where each pending evaluation is imputed with the median of

performance in 𝐷𝐾 . This framework enables that each algorithm

could adapt to the parallel scenarios easily. Algorithm 2 gives the

algorithm-agnostic sampling procedure of optimizers.

5 EXPERIMENTS AND RESULTS

We now present empirical evaluations of Hyper-Tune. We first

focus on the end-to-end efficiency between Hyper-Tune and other

state-of-the-art systems. We then study two more specific aspects:

scalability and robustness.

5.1 Experimental Settings

Compared Methods. We compare Hyper-Tune with the man-

ual setting given by our enterprise partner and the following ten

baselines. (1) A-Random: Asynchronous Random Search [6] that

selects random configurations to evaluate asynchronously, (2) BO:

Batch-BO [20] that samples a batch of configurations to evaluate

synchronously, (3) A-BO: Async Batch-BO [43] that samples a batch

of configurations to evaluate asynchronously, (4) SHA: Successive

Halving Algorithm [28] that adaptively allocates training resources

to configurations with multi-stage early-stopping, (5) ASHA [40]

that improves SHA asynchronously via configuration promotion, (6)

Hyperband [39] that applies a bandit strategy to allocate resources

dynamically based on SHA, (7) A-Hyperband [40] that extends

Hyperband to asynchronous settings via ASHA, (8) BOHB [16]

that combines the benefits of both Hyperband and Bayesian op-

timization, (9) A-BOHB [64] that improves BOHB with asynchro-

nous multi-fidelity optimizations, (10) MFES-HB [42] that combines

Hyperband and multi-fidelity Bayesian optimization. Note that

Batch-BO, SHA, Hyperband, BOHB, and MFES-HB are synchro-

nous methods, and the others are asynchronous ones.

Tasks. We run experiments on the following tuning tasks:

(1) Neural Architecture Search. We use the NAS-Bench-201 [15]

which includes offline evaluations of neural network architectures.

The search space consists of 6 hyper-parameters. The minimum and

maximum number of epochs in NAS-Bench-201 are 1 and 200. HB-

based methods use 4 brackets, and the default number of workers

is 8. We evaluate Hyper-Tune on three built-in datasets – CIFAR-

10-Valid, CIFAR-100, and ImageNet16-120, where the total budgets

are 24, 48, and 120 hours, respectively. We finish each method once

the simulated training time reaches the given budget.

(2) Tabular Classification. We tune XGBoost [12] on four large

datasets from OpenML [65] – Pokerhand, Covertype, Hepmass, and

Higgs. The hyper-parameter space of XGBoost includes 9 hyperpa-

rameters. For partial evaluations, we use the subset of the training

set instead of using the entire set. The minimum and maximum

size of subset are 1/27 and 1. HB-based methods use 4 brackets, and

the default number of workers is 8. The time budgets for the above

four datasets are 2, 3, 6, and 6 hours, respectively. Each worker is

equipped with 8 CPU cores during evaluation.

(3) Image Classification.We tune ResNet [21] on the image classifica-

tion dataset – CIFAR-10. The search space includes batch size, SGD

learning rate, SGD momentum, learning rate decay, and weight de-

cay. Cropping and horizontal flips are used as default augmentation

operations. The minimum and maximum number of epochs are 1

and 200. HB-based methods use 4 brackets, and the default number

of workers is 4. The time budget is 48 hours. Each worker has 8

CPU cores and 1 GPU during evaluation.

(4) Language Modelling.We tune a 3-layer LSTM [22] on the dataset

Penn Treebank. The search space includes batch size, hidden size,

learning rate, weight decay and five hyper-parameters related to

dropout. The embedding size is 400. The minimum and maximum

number of epochs are 1 and 200. HB-based methods use 4 brackets,

and the time budget is 48 hours; the default number of workers is

4, and each worker uses 8 CPU cores and 1 GPU during evaluation.

Implementation Details. Two metrics are used in our experi-

ments, including (1) the classification error for XGBoost tuning,

ResNet tuning, and neural architecture search, and (2) the perplex-

ity when tuning LSTM. We use the validation and test performance

stored in NAS-Bench-201 directly for neural architecture search. In

the XGBoost tuning experiment, we randomly divide 60% of the

total dataset as the training set, 20% as the validation set, and the

left as the test set. In the other experiments, we split 20% of the

training dataset as the validation set. Then, we track the wall clock

time (including optimization overhead and evaluation cost), and

store the lowest validation performance after each evaluation. The

best configurations are then applied to the test dataset to report the

test performance. All methods are repeated ten times with different

random seeds, and the mean validation performance across runs

is plotted. We include more experimental setups and reproduction

details about Hyper-Tune in the supplementary material.

5.2 Architecture Search on NAS-Bench-201

Figure 5 shows the results on NAS-Bench-201 datasets. Due to

the utilization of parallel resources issue in Hyperband, asynchro-

nous random search (A-Random) outperforms synchronous Hyper-

band. Hyper-Tune obtains the best anytime and converged per-

formance among all methods. Concretely, it achieves 8.2×, 11.2×

and 6.3× speedups against BOHB, and obtains 3.3×, 2.9×, and 2.0×

speedups compared with A-BOHB on CIFAR-10-valid, CIFAR-100,

10800 21600 32400 43200 54000 64800 75600 86400

Wall Clock Time (s)

8.4

8.6

8.8

9.0

9.2
A
v
e
ra
g
e
V
a
li
d
E
rr
o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-REA

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(a) CIFAR-10-valid

21600 43200 64800 86400 108000 129600 151200 172800

Wall Clock Time (s)

26.5

27.0

27.5

28.0

28.5

29.0

A
v
e
ra
g
e
V
a
li
d
E
rr
o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-REA

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(b) CIFAR-100

54000 108000 162000 216000 270000 324000 378000 432000

Wall Clock Time (s)

53.0

53.5

54.0

54.5

55.0

A
v
e
ra
g
e
V
a
li
d
E
rr
o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-REA

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(c) ImageNet16-120

Figure 5: Validation error (%) of tuning architectures on three datasets based on NAS-Bench-201.

900 1800 2700 3600 4500 5400 6300 7200

Wall Clock Time (s)

0

1

2

3

4

A
v
e
ra
g
e
V
a
li
d
E
rr
o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(a) Pokerhand

1350 2700 4050 5400 6750 8100 9450 10800

Wall Clock Time (s)

6

7

8

9

10

11

12

A
v
e
ra
g
e
V
a
li
d
E
rr
o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(b) Covertype

2700 5400 8100 10800 13500 16200 18900 21600

Wall Clock Time (s)

12.45

12.50

12.55

12.60

12.65

12.70

12.75

A
v
e
ra
g
e
V
a
li
d
E
rr
o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(c) Hepmass

2700 5400 8100 10800 13500 16200 18900 21600

Wall Clock Time (s)

24.6

24.8

25.0

A
v
e
ra
g
e
V
a
li
d
E
rr
o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(d) Higgs

Figure 6: Validation error (%) of tuning XGBoost on four large datasets.

21600 43200 64800 86400 108000 129600 151200 172800

Wall Clock Time (s)

66

68

70

72

74

76

A
v
e
ra
g
e
V
a
li
d
P
e
rp
le
x
it
y

SHA

Hyperband

BOHB

MFES-HB

ASHA

A-Hyperband

A-BOHB

OURS

(a) LSTM on Penn Treebank

21600 43200 64800 86400 108000 129600 151200 172800

Wall Clock Time (s)

6.6

6.8

7.0

7.2

7.4

A
v
e
ra
g
e
V
a
li
d
E
rr
o
r SHA

Hyperband

BOHB

MFES-HB

ASHA

A-Hyperband

A-BOHB

OURS

(b) ResNet on CIFAR-10

Figure 7: Results of tuning LSTM and ResNet.

and ImageNet16-120 respectively, which indicates its superior effi-

ciency over the state-of-the-art methods. In addition, Hyper-Tune

also gets the best test accuracy (See the results in Appendix A.5).

As reported in NAS-Bench-201 [15], the best method is regular-

ized evolutionary algorithm (REA) [55]. For fair comparison, we

also extend REA to an asynchronous version – A-REA. From Fig-

ure 5, we have that Hyper-Tune shows consistent superiority over

A-REA. Remarkably, Hyper-Tune reaches the global optimum on

CIFAR-100 and ImageNet-16-120 across all the ten runs, which also

indicates the efficiency of Hyper-Tune.

5.3 Tuning XGBoost on Large Datasets

In Figure 6, we compare Hyper-Tune with the manual setting and

ten competitive baselines by tuning XGBoost on four large datasets.

The configurations from tuning algorithms outperform the man-

ual settings on test results, which shows the necessity of tuning

hyper-parameters for machine learning models. Different from the

other experiments, the resource type here is the subset of dataset,

i.e., we use different sizes of datasets subset to perform partial eval-

uation if necessary. As BO and A-BO evaluate each configuration

completely, it takes them a long time to converge to a satisfactory

performance due to expensive evaluation cost (15 minutes per trial

on Covertype). In addition, Hyper-Tune and MFES-HB perform

better than HyperBand, BOHB and most asynchronous methods,

which indicates the advantage of leveraging low-fidelity measure-

ments. Among the considered methods, Hyper-Tune achieves very

competitive anytime performance, and obtains the best converged

performance on all of the four datasets.

5.4 Tuning LSTM and ResNet

Figure 7(a) show the results of tuning LSTM on Penn Treebank.

A-BOHB shows the worst converged performance among baselines,

which we attribute to its failure of exploiting multi-fidelity measure-

ments. A-Hyperband, MFES-HB, and Hyper-Tune show similar

results in the early stage (19 hours), but after that, the perplexity of

A-Hyperband stops decreasing as random sampling fails to exploit

history observations efficiently. After 150k secs (about 41 hours),

Hyper-Tune outperforms all baselines.

In Figure 7(b), we display the average error of tuning ResNet

on CIFAR-10. As SHA and ASHA always start evaluating each

configuration from the least resources, they cannot distinguish

noisy low-fidelity results, which may explain their overall worst

performance. Though Hyper-Tune and MFES-HB obtain a similar

result (93.4%), Hyper-Tune shows a better anytime performance

due to its asynchronous scheduling.

5.5 Scalability Analysis

Figure 9 demonstrates the optimization curve with different number

of parallel workers on two tuning tasks. We evaluate Hyper-Tune

by tuning the counting-ones function [16] and XGBoost on Cover-

type. The details about the counting-ones function are provided in

Appendix A.4. To demonstrate the scalablility of Hyper-Tune, we

set the maximum number of workers to 256 and 64. On both tasks,

the anytime performance is better when Hyper-Tune uses more

10800 21600 32400 43200 54000 64800 75600 86400

Wall Clock Time (s)

8.4

8.6

8.8

9.0

9.2

A
v
e
ra
g
e
V
a
li
d
E
rr
o
r A-HB

A-HB + BS

A-BOHB∗

A-BOHB∗ + BS

OURS

OURS + BS

(a) NAS-Bench-201 on CIFAR-10-valid

54000 108000 162000 216000 270000 324000 378000 432000

Wall Clock Time (s)

53.0

53.5

54.0

54.5

55.0

A
v
e
ra
g
e
V
a
li
d
E
rr
o
r A-HB

A-HB + BS

A-BOHB∗

A-BOHB∗ + BS

OURS

OURS + BS

(b) NAS-Bench-201 on ImageNet16-120

1350 2700 4050 5400 6750 8100 9450 10800

Wall Clock Time (s)

6

7

8

9

10

11

12

A
v
e
ra
g
e
V
a
li
d
E
rr
o
r ASHA

D-ASHA

HB + ASHA

HB + D-ASHA

BOHB* + ASHA

BOHB* + D-ASHA

OURS + ASHA

OURS + D-ASHA

(c) XGBoost on Covertype

900 1800 2700 3600 4500 5400 6300 7200

Wall Clock Time (s)

0

1

2

3

4

A
v
e
ra
g
e
V
a
li
d
E
rr
o
r ASHA

D-ASHA

HB + ASHA

HB + D-ASHA

BOHB* + ASHA

BOHB* + D-ASHA

OURS + ASHA

OURS + D-ASHA

(d) XGBoost on Pokerhand

Figure 8: Ablation studies for different components in Hyper-Tune.

102 103 104 105

Wall Clock Time (s)

0

5

10

15

20

25

30

A
v
e
ra
g
e
O
b
je
c
ti
v
e
V
a
lu
e

n=1

n=2

n=4

n=8

n=16

n=32

n=64

n=128

n=256

(a) Counting-ones Benchmark

1350 2700 4050 5400 6750 8100 9450 10800

Wall Clock Time (s)

6

7

8

9

10

11

12

A
v
e
ra
g
e
V
a
li
d
E
rr
o
r n=1

n=2

n=4

n=8

n=16

n=32

n=64

(b) XGBoost on Covertype

Figure 9: Scalability on the number of workers.

workers, which indicates that Hyper-Tune scales to the number of

workers well. Notably, Hyper-Tune with the maximum number of

workers achieves 145.7x and 18.0x speedups compared with sequen-

tial Hyper-Tune on Counting-ones Benchmark and Covertype.

5.6 Industrial-Scale Tuning Application

In addition, we also evaluate Hyper-Tune on an industrial-scale

tuning task for recommendation, which aims at identifying active

users. The dataset provided by our enterprise partner includes more

than one billion instances, and we train the model using the data of

seven days and evaluate it using the data of the following day. The

number of workers is 10 and the time budget is 48 hours. We evalu-

ate ASHA, BOHB, A-BOHB and Hyper-Tune, and they improve

the manual setting by -0.05%, 0.19%, 0.35% and 0.87%, respectively.

Moreover, we conduct an ablation study onHyper-Tune by keeping

out one of the component in Table 2. We observe performance gain

by introducing each component into Hyper-Tune while Bracket

Selection leads to the largest gain. While at least one component is

absent in competitive baselines, Hyper-Tune improves the AUC of

the second-best baseline A-BOHB by 0.54%, which is a wide margin

considering the potential commercial values.

5.7 Ablation Study

Bracket Selection. Figures 8(a) and 8(b) illustrate the effectiveness

of the proposed bracket selection method. We also add bracket

selection (BS) to the asynchronous variant of Hyperband and

BOHB. Note that the asynchronous BOHB here is parallelized via

ASHA, but not A-BOHB mentioned in the experimental setups. We

have that adding bracket selection helps asynchronous Hyperband,

BOHB, andHyper-Tune converge better. In addition, in Figure 8(b),

though the converged performance of Hyper-Tune remains almost

the same when bracket selection is employed, the anytime perfor-

mance improves before 324k secs (90 hours). We owe this gain to

the resource allocation strategy learned during optimization rather

than attempting all the choices via round robin.

Table 2: Ablation study on Hyper-Tune. The improvement

indicates the performance gain upon manual settings.

Methods Improvement (%) Δ (%)

w/o BS 0.54 -0.33

w/o D-ASHA 0.75 -0.12

w/o MFES 0.56 -0.31

Hyper-Tune 0.87 -

D-ASHA. Figures 8(c) and 8(d) show the results of applying D-

ASHA. For ASHA, Hyperband and BOHB, we observe a slight im-

provement on both anytime and converged performance when

applying D-ASHA. For Hyper-Tune, the validation error decreases

by a large margin (0.5%) on Covertype with the aid of D-ASHA.

The delay strategy could prevent the frequent promotion issue in

ASHA, and further improve the sample efficiency. Therefore, D-

ASHA could achieve a higher sample efficiency while keeping the

advantage of asynchronous mechanism.

Multi-fidelity Optimizer. We compare different optimizer for con-

figuration sampling, including random sampling (A-Hyperband

+ BS), high-fidelity optimizer (A-BOHB + BS), and multi-fidelity

optimizer (OURS + BS). As shown in Figure 8(a) and 8(b), we have

that surrogate-based methods outperform random sampling, while

multi-fidelity optimizer outperforms high-fidelity optimizer. The

reason is that it takes the low-fidelity measurements into consid-

eration when selecting the next configuration to evaluate. It also

indicates that when performing hyper-parameter tuning, the low-

fidelity measurements could provide useful information about the

objective function, and can be used to speed up the search process.

6 CONCLUSION

In this paper, we presented Hyper-Tune, an efficient and robust

distributed hyper-parameter tuning framework at scale. Hyper-

Tune introduces three core components targeting at addressing the

challenge in the large-scale hyper-parameter tuning tasks, including

(1) automatic resource allocation, (2) asynchronous scheduling,

and (3) multi-fidelity optimizer. The empirical results demonstrate

that Hyper-Tune shows strong robustness and scalability, and

outperforms state-of-the-art methods, e.g., BOHB and A-BOHB, on

a wide range of tuning tasks.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Founda-

tion of China (No.61832001), Beijing Academy of Artificial Intelli-

gence (BAAI), Kuaishou-PKU joint program, and PKU-Baidu Fund

2019BD006. Bin Cui is the corresponding author.

REFERENCES
[1] Ahsan Alvi, Binxin Ru, Jan-Peter Calliess, Stephen Roberts, and Michael A

Osborne. 2019. Asynchronous Batch Bayesian Optimisation with Improved
Local Penalisation. In International Conference on Machine Learning. PMLR, 253–
262.

[2] Noor Awad, Neeratyoy Mallik, and Frank Hutter. 2020. Differential Evolution
for Neural Architecture Search. arXiv preprint arXiv:2012.06400 (2020).

[3] Javad Azimi, Alan Fern, and Xiaoli Z Fern. 2010. Batch bayesian optimization
via simulation matching. In Advances in Neural Information Processing Systems.
109–117.

[4] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. 2017. Practi-
cal neural network performance prediction for early stopping. arXiv preprint
arXiv:1705.10823 2, 3 (2017), 6.

[5] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. 2017. Tfx: A
tensorflow-based production-scale machine learning platform. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1387–1395.

[6] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.

[7] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Al-
gorithms for hyper-parameter optimization. In Advances in neural information
processing systems. 2546–2554.

[8] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter,
Robert Erich Ginthoer, Kevin Innerebner, Florijan Klezin, Stefanie Lindstaedt,
Arnab Phani, Benjamin Rath, et al. 2020. SystemDS: A Declarative Machine
Learning System for the End-to-End Data Science Lifecycle. In Conference on
Innovative Data Systems Research.

[9] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin
Zinkevich. 2019. Data Validation for Machine Learning. In 3rd Conference on
Machine Learning and Systems (MLSys).

[10] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[11] Wenming CAO, Canta ZHENG, Zhiyue YAN, and Weixin XIE. 2022. Geometric
deep learning: progress, applications and challenges. Information Sciences 65,
126101 (2022), 1–126101.

[12] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 785–794.

[13] Zhongxiang Dai, Haibin Yu, Bryan Kian Hsiang Low, and Patrick Jaillet. 2019.
Bayesian Optimization Meets Bayesian Optimal Stopping. (2019), 1496–1506.

[14] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding Up
Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapo-
lation of Learning Curves.. In IJCAI, Vol. 15. 3460–8.

[15] Xuanyi Dong and Yi Yang. 2019. NAS-Bench-201: Extending the Scope of Re-
producible Neural Architecture Search. In International Conference on Learning
Representations.

[16] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and efficient
hyperparameter optimization at scale. In International Conference on Machine
Learning. PMLR, 1437–1446.

[17] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and robust automated machine
learning. In Advances in neural information processing systems. 2962–2970.

[18] Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold Rein-
wald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivakumar
Vaithyanathan. 2011. SystemML: Declarative machine learning on MapReduce.
In 2011 IEEE 27th International Conference on Data Engineering. IEEE, 231–242.

[19] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D Sculley. 2017. Google vizier: A service for black-box optimization.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 1487–1495.

[20] Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. 2016. Batch
bayesian optimization via local penalization. InArtificial Intelligence and Statistics.
648–657.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[22] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[23] Yi-Qi Hu, Yang Yu, Wei-Wei Tu, Qiang Yang, Yuqiang Chen, and Wenyuan
Dai. 2019. Multi-fidelity automatic hyper-parameter tuning via transfer series
expansion. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
3846–3853.

[24] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In International Confer-
ence on Learning and Intelligent Optimization. Springer, 507–523.

[25] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2018. Automated
Machine Learning: Methods, Systems, Challenges. Springer. In press, available at
http://automl.org/book.

[26] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated machine
learning: methods, systems, challenges. Springer Nature.

[27] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki,
Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Si-
monyan, et al. 2017. Population based training of neural networks. arXiv preprint
arXiv:1711.09846 (2017).

[28] Kevin Jamieson and Ameet Talwalkar. 2016. Non-stochastic best arm identifi-
cation and hyperparameter optimization. In Artificial Intelligence and Statistics.
240–248.

[29] Donald R Jones, Matthias Schonlau, and William J Welch. 1998. Efficient global
optimization of expensive black-box functions. Journal of Global optimization
13, 4 (1998), 455–492.

[30] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabas Poczos.
2017. Multi-fidelity bayesian optimisation with continuous approximations.
arXiv preprint arXiv:1703.06240 (2017).

[31] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás
Póczos. 2017. Asynchronous Parallel Bayesian Optimisation via Thompson
Sampling. stat 1050 (2017), 25.

[32] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás
Póczos. 2018. Parallelised Bayesian Optimisation via Thompson Sampling. In
International Conference on Artificial Intelligence and Statistics. 133–142.

[33] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos,
and Eric P Xing. 2018. Neural Architecture Search with Bayesian Optimisation
and Optimal Transport. Advances in Neural Information Processing Systems 31
(2018).

[34] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.
2017. Fast bayesian optimization of machine learning hyperparameters on large
datasets. In Artificial Intelligence and Statistics. PMLR, 528–536.

[35] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.
2017. Fast Bayesian Optimization of Machine Learning Hyperparameters on
Large Datasets. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics. 528–536.

[36] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. 2017.
Learning curve prediction with Bayesian neural networks. Proceedings of the
International Conference on Learning Representations (2017).

[37] Tim Kraska. 2018. Northstar: An Interactive Data Science System. Proceedings of
the VLDB Endowment 11, 12 (2018).

[38] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. Qtune: A query-aware
database tuning system with deep reinforcement learning. Proceedings of the
VLDB Endowment 12, 12 (2019), 2118–2130.

[39] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. 2018. Hyperband: A novel bandit-based approach to hyperparameter
optimization. Proceedings of the International Conference on Learning Representa-
tions (2018), 1–48.

[40] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan
Ben-tzur, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. 2020. A System
for Massively Parallel Hyperparameter Tuning. Proceedings of Machine Learning
and Systems 2 (2020), 230–246.

[41] Yang Li, Jiawei Jiang, Jinyang Gao, Yingxia Shao, Ce Zhang, and Bin Cui. 2020. Ef-
ficient Automatic CASH via Rising Bandits. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 34. 4763–4771.

[42] Yang Li, Yu Shen, Jiawei Jiang, Jinyang Gao, Ce Zhang, and Bin Cui. 2021. MFES-
HB: Efficient Hyperband with Multi-Fidelity Quality Measurements. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 35. 8491–8500.

[43] Yang Li, Yu Shen, Wentao Zhang, Yuanwei Chen, Huaijun Jiang, Mingchao Liu,
Jiawei Jiang, Jinyang Gao, Wentao Wu, Zhi Yang, Ce Zhang, and Bin Cui. 2021.
OpenBox: A Generalized Black-box Optimization Service. Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining (2021).

[44] Yang Li, Yu Shen, Wentao Zhang, Jiawei Jiang, Bolin Ding, Yaliang Li, Jingren
Zhou, Zhi Yang, Wentao Wu, Ce Zhang, and Bin Cui. 2021. VolcanoML: Speeding
up End-to-End AutoML via Scalable Search Space Decomposition. Proceedings
of VLDB Endowment 14 (2021), 2167–2176.

[45] Zechao Li and Jinhui Tang. 2021. Semi-supervised local feature selection for
data classification. Science China Information Sciences 64, 9 (2021), 1–12.

[46] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,
and Ion Stoica. 2018. Tune: A Research Platform for Distributed Model Selection
and Training. arXiv preprint arXiv:1807.05118 (2018).

[47] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable
Architecture Search. In International Conference on Learning Representations.

[48] Lizheng Ma, Jiaxu Cui, and Bo Yang. 2019. Deep neural architecture search
with deep graph bayesian optimization. In 2019 IEEE/WIC/ACM International
Conference on Web Intelligence (WI). IEEE, 500–507.

[49] Leonel Aguilar Melgar, David Dao, Shaoduo Gan, Nezihe Merve Gürel, Nora
Hollenstein, Jiawei Jiang, Bojan Karlas, Thomas Lemmin, Tian Li, Yang Li, Xi Rao,

Johannes Rausch, Cédric Renggli, Luka Rimanic, Maurice Weber, Shuai Zhang,
Zhikuan Zhao, Kevin Schawinski, Wentao Wu, and Ce Zhang. 2021. Ease.ML: A
Lifecycle Management System for Machine Learning. In CIDR.

[50] Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou. 2019. Incremental
and approximate inference for faster occlusion-based deep cnn explanations. In
Proceedings of the 2019 International Conference on Management of Data. 1589–
1606.

[51] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A data system
for optimized deep learning model selection. Proceedings of the VLDB Endowment
13, 12 (2020), 2159–2173.

[52] Randal S Olson and Jason H Moore. 2019. TPOT: A tree-based pipeline opti-
mization tool for automating machine learning. In Automated Machine Learning.
Springer, 151–160.

[53] Matthias Poloczek, Jialei Wang, and Peter Frazier. 2017. Multi-information source
optimization. In Advances in Neural Information Processing Systems. 4288–4298.

[54] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu,
and Christopher Ré. 2020. Snorkel: Rapid training data creation with weak
supervision. The VLDB Journal 29, 2 (2020), 709–730.

[55] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 33. 4780–4789.

[56] Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. 2017. HoloClean:
Holistic Data Repairs with Probabilistic Inference. Proceedings of the VLDB
Endowment 10, 11 (2017).

[57] Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. 2020. Neural
architecture search using bayesian optimisation with weisfeiler-lehman kernel.
arXiv preprint arXiv:2006.07556 3 (2020).

[58] Rajat Sen, Kirthevasan Kandasamy, and Sanjay Shakkottai. 2018. Noisy Blackbox
Optimization with Multi-Fidelity Queries: A Tree Search Approach. arXiv:
Machine Learning (2018).

[59] Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann,
Philipp Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal, and Tim Kraska.
2019. Democratizing data science through interactive curation of ml pipelines.
In Proceedings of the 2019 International Conference on Management of Data. 1171–
1188.

[60] Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng Yao, Jixiang Li, Sen Yang, Ji
Liu, and Cui Bin. 2021. ProxyBO: Accelerating Neural Architecture Search via
Bayesian Optimization with Zero-cost Proxies. arXiv preprint arXiv:2110.10423
(2021).

[61] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and
Frank Hutter. 2020. NAS-Bench-301 and the case for surrogate benchmarks for
neural architecture search. arXiv preprint arXiv:2008.09777 (2020).

[62] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems.

[63] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. 2010.
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental
Design. In Proceedings of the 27th International Conference on Machine Learning.
Omnipress.

[64] Louis C. Tiao, Aaron Klein, C. Archambeau, and Matthias W. Seeger. 2020.
Model-based Asynchronous Hyperparameter Optimization. arXiv preprint

arXiv:2003.10865 (2020).
[65] Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. 2014. OpenML:

networked science in machine learning. ACM SIGKDD Explorations Newsletter
15, 2 (2014), 49–60.

[66] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. ModelDB: a system
for machine learning model management. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics. 1–3.

[67] Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen, Teck Khim
Ng, Beng Chin Ooi, Jie Shao, and Moaz Reyad. 2018. Rafiki: machine learning as
an analytics service system. Proceedings of the VLDB Endowment 12, 2 (2018),
128–140.

[68] ZiyuWang, Masrour Zoghi, Frank Hutter, DavidMatheson, and Nando De Freitas.
2013. Bayesian optimization in high dimensions via random embeddings. In
Twenty-Third International Joint Conference on Artificial Intelligence.

[69] Colin White, Willie Neiswanger, and Yash Savani. 2019. Bananas: Bayesian
optimization with neural architectures for neural architecture search. arXiv
preprint arXiv:1910.11858 (2019).

[70] Jian Wu, Saul Toscanopalmerin, Peter I Frazier, and Andrew Gordon Wilson.
2019. Practical multi-fidelity Bayesian optimization for hyperparameter tuning.
(2019), 284.

[71] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-
ruganathan. 2020. Zeroer: Entity resolution using zero labeled examples. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1149–1164.

[72] Weiyuan Wu, Lampros Flokas, Eugene Wu, and Jiannan Wang. 2020. Complaint-
driven training data debugging for query 2.0. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 1317–1334.

[73] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. 2019. PC-DARTS: Partial Channel Connections for Memory-
Efficient Architecture Search. In International Conference on Learning Represen-
tations.

[74] Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng Li,
Wei-Wei Tu, Qiang Yang, and Yang Yu. 2018. Taking human out of learning appli-
cations: A survey on automatedmachine learning. arXiv preprint arXiv:1810.13306
(2018).

[75] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy
Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
et al. 2018. Accelerating the machine learning lifecycle with MLflow. IEEE Data
Eng. Bull. 41, 4 (2018), 39–45.

[76] Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin
Cui. 2021. Facilitating Database Tuning with Hyper-Parameter Optimization: A
Comprehensive Experimental Evaluation. arXiv preprint arXiv:2110.12654 (2021).

[77] Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. 2021. ResTune: Resource Oriented Tuning Boosted by Meta-
Learning for Cloud Databases. In Proceedings of the 2021 International Conference
on Management of Data. 2102–2114.

[78] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition. 8697–8710.

Multivariate Correlations Discovery in Static and Streaming Data

Koen Minartz
Eindhoven University of Technology

k.minartz@tue.nl

Jens E. d’Hondt
Eindhoven University of Technology

j.e.d.hondt@tue.nl

Odysseas Papapetrou
Eindhoven University of Technology

o.papapetrou@tue.nl

ABSTRACT

Correlation analysis is an invaluable tool in many domains, for bet-
ter understanding data and extracting salient insights. Most works
to date focus on detecting high pairwise correlations. A generaliza-
tion of this problemwith known applications but no known efficient
solutions involves the discovery of strong multivariate correlations,
i.e., finding vectors (typically in the order of 3 to 5 vectors) that
exhibit a strong dependence when considered altogether. In this
work we propose algorithms for detecting multivariate correlations
in static and streaming data. Our algorithms, which rely on novel
theoretical results, support two different correlation measures, and
allow for additional constraints. Our extensive experimental eval-
uation examines the properties of our solution and demonstrates
that our algorithms outperform the state-of-the-art, typically by an
order of magnitude.

PVLDB Reference Format:

Koen Minartz, Jens E. d’Hondt, and Odysseas Papapetrou. Multivariate
Correlations Discovery in Static and Streaming Data. PVLDB, 15(6):
1266-1278, 2022.

doi:10.14778/3514061.3514072

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/CorrelationDetective/public.

1 INTRODUCTION

Correlation analysis is one of the key tools in the arsenal of data
analysts for exploring data and extracting insights. For example, in
neuroscience, a strong correlation between activity levels in two
regions of the brain indicates that these regions are strongly inter-
connected [11]. In finance, correlation plays a crucial role in finding
portfolios of assets that are on the Pareto-optimal frontier of risk
and expected returns [16], and in genetics, correlations help scien-
tists detect cause factors for hereditary syndromes.1 Correlations –
as a generalization of functional dependencies – also found use for
optimizing access paths in databases [29].

Multivariate correlations, or high-order correlations, are a gener-
alization of pairwise correlations that can capture relations among
arbitrarily-sized sets of variables, represented as high-dimensional

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514072

1A prime example is the Spark project for discovering gene properties related to the
manifestation of the autism spectrum disorder [9], which led to a list of genes and
their correlated symptoms [10].

MCP QAN RDF Sum

MCP 1 0.46 0.53 0.96
QAN 0.46 1 -0.47 0.52
RDF 0.53 -0.47 1 0.52
Sum 0.96 0.52 0.52 1

Figure 1: (a) Normalized daily closing prices for stocks traded at the

Australian Securities Exchange, (b) Correlation matrix of the prices.

vectors or as time series.2 Multivariate correlations have found ex-
tensive use in diverse domains: detection of ternary correlations in
fMRI time series improved the understanding of how different brain
regions work in cohort for executing tasks [1, 2], and in climatology,
a ternary correlation led to the characterization of a new weather
phenomenon and to improved climate models [15]. Furthermore, a
more thorough look at multivariate correlations may open doors
in the fields of genomics [23, 30] and medicine [14, 19].

Accordingly, several measures and algorithms for discovering
multivariate correlations have been proposed, such as tripoles [1],
multipoles [2], Canonical Correlation Analysis [13] and Total Corre-
lation (TC) [28] and its variants [21, 22, 30]. However, the proposed
algorithms do not sufficiently address the fundamental impediment
on the discovery of strong multivariate correlations, which is the
vast search space. Unfortunately, apriori-like pruning techniques
do not apply for the general case of multivariate correlations. For
example, consider the three time series presented in Fig. 1, which
represent closing prices of three stocks from the Australian secu-
rities exchange. In this case, the pairwise correlations between all
pairs of the three time series are comparatively low, whereas the
time series created by summing QAN and RDF is strongly correlated
to MCP. Therefore, a correlation value of any pair of vectors does
not provide sufficient information as of whether these vectors may
participate together in a ternary (or higher-order) correlation. Si-
multaneously, an exhaustive algorithm that iterates over all possible
combinations implies combinatorial complexity, and cannot scale
to reasonably large datasets. Indicatively, in a small data set of 100
vectors, detection of all ternary high correlations requires iterating
over 1 million candidates, whereas finding quaternary high corre-
lations among 1000 vectors involves 1 trillion combinations. The
mere generation and enumeration of these combinations already
becomes challenging. Therefore, smart algorithms are needed that
can prune the search space to reduce computational complexity.

Existing algorithms (see Section 2.3) follow at least one of the
following approaches: (a) they consider constraining definitions
of multivariate correlations that enable apriori-like filtering [2, 21,
30], (b) they rely on hand-crafted additional assumptions of the

2In the remainder of this paper we will generally refer to the more general case of
vectors, but often the data consists of time series that may come with live updates.

user query, which may be too constraining for other application
scenarios [1, 2, 30], or, (c) they offer approximate results, with no
guarantees [1, 2]. Even though these algorithms are relevant for
their particular use cases, they are not generally applicable.

In this work, we follow a more general direction. First, we also
consider correlation measures that are unsuitable for apriori-like
pruning. Although their usefulness has already been validated in
multiple use cases, e.g., [1, 2, 15], algorithms for detecting them
do not scale. Second, we consider different algorithmic variants:
an exact threshold variant that returns all correlations higher than
a threshold 𝜏 , and an exact top-𝜅 variant that returns the top-𝜅
highest correlations. We also discuss the case of progressively find-
ing results. Finally, we extend the proposed methods to a dynamic
context by efficiently handling streaming data, enabling use-cases
where continuous updates of query answers are required, such as
flash-trading models in finance [25], weather and server monitor-
ing [27], and neurofeedback training [12, 17, 32].

We evaluate our algorithms on 3 datasets and compare them
to the state-of-the-art. Our evaluation demonstrates that we out-
perform the existing methods by typically an order of magnitude,
and the exhaustive-search baseline by several orders of magnitude.
Finally, we show that the progressive version of the algorithm
produces around 80% of the answers in 10% of the time.

The remainder of the paper is structured as follows. In the next
section we formalize the problem, and discuss the preliminaries
and related work. We then propose the algorithmic variants for
the case of static data (Section 3), and the streaming extension of
the algorithm (Section 4). Section 5 summarizes the experimental
results. We conclude the paper in Section 6.

2 PRELIMINARIES

We start with a discussion of the multivariate correlation measures
that will be considered in this work. We then formalize the problem,
and discuss prior work.

2.1 Correlation measures

Our work focuses on two multivariate correlation measures: the
two-sided multiple correlation, and the one-sided multipole.

Multiple correlation. Given two sets of vectors 𝑋 and 𝑌 , mul-
tiple correlation is defined as follows:

mc(𝑋,𝑌) = 𝜌

(∑
x∈𝑋 x̂

|𝑋 |
,

∑
y∈𝑌 ŷ

|𝑌 |

)
(1)

where 𝜌 denotes the Pearson correlation coefficient and x̂ denotes
x after z-normalization, i.e., x̂𝑖 =

x𝑖−𝜇x
𝜎x

. Both the definition and
this work can be easily extended to weighted linear aggregates,
instead of averaging. Tripoles [1] is a special case of the multiple
correlation measure, where |𝑋 | = 2 and |𝑌 | = 1. In this work, we
allow both 𝑋 and 𝑌 to contain more vectors.

Multipole. The multipole correlation mp(𝑋) measures the lin-
ear dependence of an input set of vectors 𝑋 [2]. Specifically, let
x̂1, . . . , x̂𝑛 denote 𝑛 z-normalized input (column) vectors, and X =

[x̂1, . . . , x̂𝑛] the matrix formed by concatenating the vectors. Then:

mp(𝑋) = 1 − min
| |v | |2=1

var(X · v) (2)

The value of mp(𝑋) lies between 0 and 1. The measure takes its
maximum value when there exists perfect linear dependence, i.e.,
there exists a vector v with norm 1, such that var(X · v) = 0.

Notice that multipoles is not equivalent to, nor a generalization
of, multiple correlation. By definition,mp assumes optimal weights
(vector v is such that the variance is minimized), whereas for mc,
the linear aggregation function for the vectors is determined at the
definition of the measure. Furthermore,mp(·) expresses the degree
of linear dependence within a single set of vectors, whereas for
mc(·, ·), two distinct, non-overlapping vector sets are considered.

2.2 Problem definition

Consider a set V = {v1, v2, . . . v𝑛} of 𝑑-dimensional vectors, and a
multivariate correlation measure 𝐶𝑜𝑟𝑟 , both provided by the data
analyst. Function 𝐶𝑜𝑟𝑟 accepts either one or two vector sets (sub-
sets of V) as input parameters, and returns a scalar. Hereafter, we
will be denoting the correlation function as 𝐶𝑜𝑟𝑟 (𝑋,𝑌), with the
understanding that for the definitions of𝐶𝑜𝑟𝑟 that expect one input,
𝑌 will be empty. We consider two query types:

Query 1: Threshold query: For a user-chosen correlation func-
tion 𝐶𝑜𝑟𝑟 , correlation threshold 𝜏 , and parameters 𝑙max, 𝑟max ∈ N,
find all pairs of sets (𝑋 ⊂ V, 𝑌 ⊂ V), for which 𝐶𝑜𝑟𝑟 (𝑋,𝑌) ≥ 𝜏 ,
𝑋 ∩ 𝑌 = ∅, |𝑋 | ≤ 𝑙max and |𝑌 | ≤ 𝑟max.

Query 2: Top-𝜅 query: For a user-chosen correlation function
𝐶𝑜𝑟𝑟 , integer parameter 𝜅, and parameters 𝑙max, 𝑟max ∈ N, find
the 𝜅 pairs of sets (𝑋 ⊂ V, 𝑌 ⊂ V) that have the highest values
𝐶𝑜𝑟𝑟 (𝑋,𝑌), such that 𝑋 ∩ 𝑌 = ∅, |𝑋 | ≤ 𝑙max, and |𝑌 | ≤ 𝑟max.

The combination of 𝑙max and 𝑟max controls the desired complex-
ity of the answers. Smaller 𝑙max + 𝑟max values yield results that are
easier to interpret, and arguably more useful to the data analyst.
Complementary to the two query types, users may also want to
specify additional constraints, relating to the targeted diversity
and significance of the answers. We consider two different con-
straints, but other constraints (e.g., the weak-correlated feature
subset constraint of [30]) can easily be integrated in the algorithm:

Irreducibility constraint: For each (𝑋,𝑌) in the result set,
there exists no (𝑋 ′, 𝑌 ′) in the result set such that 𝑋 ′ ⊆ 𝑋 , 𝑌 ′ ⊆

𝑌 , and (𝑋 ′, 𝑌 ′) ≠ (𝑋,𝑌). Intuitively, if 𝐶𝑜𝑟𝑟 (𝑋 ′, 𝑌 ′) ≥ 𝜏 , then
no supersets of 𝑋 ′ and 𝑌 ′ should be considered together. This
constraint prioritizes simpler and more interpretable answers.

Minimum jump constraint: For each (𝑋,𝑌) in the result set,
there exists no (𝑋 ′, 𝑌 ′) such that𝑋 ′ ⊆ 𝑋 ,𝑌 ′ ⊆ 𝑌 , (𝑋 ′, 𝑌 ′) ≠ (𝑋,𝑌),
and 𝐶𝑜𝑟𝑟 (𝑋,𝑌) − 𝐶𝑜𝑟𝑟 (𝑋 ′, 𝑌 ′) < 𝛿 . This constraint, which was
first proposed in [1], discards solutions where a vector in 𝑋 ∪ 𝑌

contributes less than 𝛿 to the increase of the correlation.
The minimum jump constraint applies to both query types,

whereas the irreducibility constraint is only useful for threshold
queries. For top-𝜅 queries, irreducibility is ill-defined: assume
𝐶𝑜𝑟𝑟 (𝑋,𝑌) = 0.9, and 𝐶𝑜𝑟𝑟 (𝑋 ′, 𝑌 ′) = 0.8, where 𝑋 ′ ⊂ 𝑋 and
𝑌 ′ ⊂ 𝑌 . In this case, the definition of top-𝜅 does not dictate which
of (𝑋,𝑌) or (𝑋 ′, 𝑌 ′) should be in the answer set.

For conciseness, we will denote the combination of the cor-
relation measure, 𝑙max and 𝑟max as mc(𝑙max, 𝑟max) (for mc) and
mp(𝑙max) (for mp). We will call this a correlation pattern. For ex-
ample, mc(2, 1) will identify the combinations of sets of vectors of
size 2 and 1 with high mc correlation. Pattern mp(4) will identify

Table 1: Properties of themost relevant related work formultivariate

correlations, and the proposed method.
Complete Require constraints Correlation Measures Query types

[1] Yes Yes mc(1, 2) Threshold
[2] No Yes mp(·) Threshold
[21] No No 𝑇𝐶 (·) Threshold
[30] Yes Yes 𝑇𝐶 (·) (only binary data) Threshold
Ours Yes No mc(·, ·) ,mp(·) Threshold, top-𝜅

the combinations of vectors of size at most 4 with high multipoles
correlation. Finally, we will denote a particular combination of vec-
tors – a materialization of the correlation pattern – by displaying
the vectors, grouped by parentheses. For example, (v1, (v2, v3))
denotes a combination for the multiple correlation measure, where
vectors v2 and v3 are aggregated together.

2.3 Related work

Several algorithms exist for efficiently finding highly correlated
pairs in large sets of high-dimensional vectors, e.g., time series.
For example, StatStream [31] and Mueen et al. [20] map pairwise
correlations to Euclidean distances, and exploit Discrete Fourier
Transforms, grid-based indexing, and dynamic programming to
reduce the search space. Other works proposing indices for high
dimensional Euclidean data [7, 26] are applicable as well due to the
one-to-one mapping of Pearson correlation to Euclidean distance.
However, these works are not applicable for multivariate correla-
tions, since two vectors may have a low pairwise correlation with
a third vector, whereas their aggregate may have a high correlation
(see, e.g., example of Fig. 1).

Agrawal et al. [1] investigate the problem of finding highly-
correlated tripoles – a special case ofmc that contains exactly three
vectors. Their algorithm relies on the minimum jump constraint for
effective pruning. Compared to tripoles, our work handles the more
general definition of multiple correlation, allowing more vectors at
the left and right hand side. Moreover, our work does not require
the use of the minimum jump constraint to prune comparisons.

Algorithms for discovering high correlations according to the
multipole measure (Eqn. 2) were proposed in [2]. Both CoMEt and
CoMEtExtended are approximate algorithms relying on clique enu-
meration and the minimum jump constraint to efficiently explore
the search space. Their efficiency depends on a parameter 𝜌CE that
trades off completeness of the result set for performance. Both algo-
rithms yield more complete result sets compared to methods based
on 𝑙1-regularization and structure learning. Still, they do not offer
completeness guarantees. In contrast, our work is exact – it always
retrieves all answers – and outperforms both algorithms.

Total correlation is an non-linear information-theoretic met-
ric that expresses how much information is shared between vari-
ables [28]. Nguyen et al. [21] proposed a closely related correlation
measure, and an algorithm for finding strongly correlated groups
of columns in a database. The key idea of their method is to first
evaluate all pairwise correlations, and use those to calculate a lower
bound on the total correlation of a group. Their algorithm subse-
quently finds quasi-cliques in which most pairwise correlations are
high, implying a high total correlation value. However, groups with
low pairwise correlations can still be strongly correlated as a whole,
and these are arguably the most interesting cases. As such, the
method is effectively an approximation algorithm. In another work,

Zhang et al. also developed an algorithm that discovers sets with a
high total correlation value [30]. However, the method is limited to
data with binary features, and relies on a limiting weak-correlated
subset constraint.

In the supervised learning context, subset regression appears
similar to multivariate correlation mining. The goal of this feature
selection problem is to select the best 𝑝 predictors out of 𝑛 fea-
tures [6]. Our problem differs from the above in that we aim to find
interesting patterns in the data, instead of finding the best predic-
tors for a given dependent variable. Further, instead of finding only
the single highest correlated set of vectors, our goal is to find a
diverse set of results, enabling the domain expert to assess a variety
of results on qualitative aspects and to gain more insights.

Table 1 summarizes the properties of the most closely related
work.

3 DETECTION OF MULTIVARIATE
CORRELATIONS IN STATIC DATA

The main challenge in detecting strongly correlated vector sets
stems from the combinatorial explosion of the number of combi-
nations that need to be examined. In a dataset of 𝑛 vectors, there

exist at least𝑂
(∑𝑙max+𝑟max

𝑝=2

(𝑛
𝑝

))
possible combinations. Even if each

possible combination can be checked in constant time, their enu-
meration still requires significant computational effort.

Our algorithm – Correlation Detective, abbreviated as CD – ex-
ploits the insight that vectors often exhibit (possibly weak) corre-
lations between each other. For example, securities that relate to
the same conglomeration (e.g., Fig. 2(a), GOOGL and GOOG) or are
exposed to similar risks and opportunities (e.g., STMicroelectronics
and ASML) typically exhibit a high correlation between their stock
prices. CD exploits such correlations, even if they are weak, to
drastically reduce the search space.

CD works as follows: rather than iterating over all possible vec-
tor combinations that correspond to the correlation pattern, CD
clusters vectors, and enumerates the combinations of only the clus-
ter centroids. For each of these combinations, it computes an upper
and lower bound on the correlations of all vector combinations in
the Cartesian product of the clusters. Based on these bounds, CD
decides whether or not the combination of clusters (i.e., all com-
binations of vectors derived from these clusters) should be added
to the result set, can safely be discarded, or, finally, if the clusters
should be split into smaller subclusters for deriving tighter bounds.
This approach effectively reduces the number of combinations that
need to be considered.

In the remainder of this section, we will present the algorithm
and explain how the two types of queries presented in Section 2 are
handled. We will start with a brief description of the initialization
and clustering phase. In Sections 3.2 and 3.3 we will describe how
CD answers threshold and top-𝜅 queries respectively.

3.1 Initialization and clustering

First, all vectors are z-normalized, i.e., shifted and scaled such that
they have zero mean and unit standard deviation. From here on,
the algorithm operates only on z-normalized vectors.

Next, we hierarchically cluster all vectors. The clustering algo-
rithm operates in top-down fashion. A root cluster containing all

(a) (b) (c)
Figure 2: (a) Two groups of closely related stocks: ASML and STMicroelectronics are exposed to similar risks, while GOOG and GOOGL

participate in the same conglomeration; (b) Running example (schematic): the centroids of each cluster are depicted with darker background.

All clusters are labeled for easy reference; (c) Illustration of pessimistic pairwise bounds of Lemma 3.1.

vectors is first created, to initialize the hierarchy. The algorithm
then consists of three steps. First, 𝐾 vectors are picked from the
root cluster and used as the initial top-level centroids in the hi-
erarchy. These vectors are picked using the seeding strategy of
𝐾-means++ [3]. The use of 𝐾-means++ (as opposed to sampling
𝐾 random vectors) ensures that these initial centroids are well-
distributed over the Euclidean space. In the second step, we run
standard 𝐾-means for at most 𝑟1 iterations, or until convergence,
using the average function to recompute the cluster centroids after
each iteration. The clustering is evaluated using the Within-Cluster
Sum of Squares (WCSS) (the sum of the variances within all clus-
ters). In the third step, steps one and two are repeated 𝑟2 times (i.e.,
with different initial centroids), and the clustering with the lowest
WCSS is kept as the final clustering assignment for the first level of
the hierarchy. These three steps are executed recursively on each
individual cluster with non-zero radius, to construct the second,
third, etc. levels of the hierarchy, until all leaf nodes contain only
one vector.

There is a clear tradeoff between the cost of the clustering al-
gorithm and the clustering quality. Increasing the values of 𝑟1 and
𝑟2 results in a higher clustering quality (lower WCSS), but takes
longer to compute. However, clustering quality does not affect the
correctness of CD: regardless of the clustering algorithm, config-
uration, or final solution, CD always returns the correct results.
Poor clustering can only affect the computational efficiency of CD.
Still, our experiments show that as long as the clustering is reason-
able, a suboptimal clustering is not detrimental to CD’s efficiency.
More precisely, we found that the value of 𝑟1 (max. iterations of
𝐾-means, after the initial centroids were chosen) had no observable
effect on CD’s efficiency. Therefore, we simply set 𝑟1 = 1. The same
generally holds for 𝑟2, although to prevent ruinous effects due to
coincidentally poorly chosen initial centroids, we set 𝑟2 = 50. Still,
clustering takes at most a few seconds in our experiments, which
is negligible compared to the total execution time of the algorithm.

3.2 Threshold queries

CD receives as input the cluster tree produced by the hierarchical
clustering algorithm, a correlation pattern, a correlation function
𝐶𝑜𝑟𝑟 , and a correlation threshold 𝜏 . It then forms all possible com-
binations of the correlation pattern with the child clusters of the
root. In the example of Fig. 2(b), for a desired correlation pattern of
mc(2, 1), the following combinations of clusters are examined in the

Algorithm 1: ThresholdQuery(S𝑙 , S𝑟 , 𝐶𝑜𝑟𝑟 , 𝜏)
Input: Sets of clusters S𝑙 and S𝑟 that adhere to the

user-defined correlation pattern, correlation
measure 𝐶𝑜𝑟𝑟 , correlation threshold 𝜏 .

1 (𝐿𝐵,𝑈𝐵) ← CalcBounds(S𝑙 ,S𝑟 ,𝐶𝑜𝑟𝑟)

2 if 𝐿𝐵 ≥ 𝜏 then

3 Add (S𝑙 ,S𝑟) to the result set

4 else if 𝑈𝐵 < 𝜏 then

5 Discard (S𝑙 ,S𝑟)

6 else

// Replace largest cluster with subclusters and recurse

7 𝐶𝑚𝑎𝑥 ← argmax
𝐶∈S𝑙∪S𝑟

{𝐶.𝑟𝑎𝑑𝑖𝑢𝑠}

8 Set 𝑆𝐶 ← 𝐶𝑚𝑎𝑥 .𝑠𝑢𝑏𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

9 for 𝑆 ∈ 𝑆𝐶 do

10

(
S′
𝑙
,S′

𝑟

)
← (S𝑙 ,S𝑟) with 𝐶𝑚𝑎𝑥 replaced by 𝑆

11 ThresholdQuery
((
S′
𝑙
,S′

𝑟

)
,𝐶𝑜𝑟𝑟, 𝜏

)

order of increasing pattern length:
∀𝐶𝑥 ,𝐶𝑦 ∈{𝐶1,𝐶2,𝐶3 } (𝐶𝑥 ,𝐶𝑦) ∪ ∀𝐶𝑥 ,𝐶𝑦 ,𝐶𝑧 ∈{𝐶1,𝐶2,𝐶3 } ((𝐶𝑥 ,𝐶𝑦),𝐶𝑧)

A combination of clusters compactly represents the combina-
tions created by the Cartesian product of the vectors inside the
clusters. For each such combination, the algorithm computes lower
and upper bounds on the correlation of these clusters, denoted with
𝐿𝐵 and𝑈𝐵 respectively (Alg. 1, line 1). These bounds, derived later
in this section, guarantee that any possible materialization of the
cluster combination, i.e., replacing each cluster with any one of the
vectors in that cluster, will always have a correlation between 𝐿𝐵

and𝑈𝐵.
The next step is to compare the bounds with the user-chosen

threshold 𝜏 (lines 2, 4, 6). If 𝐿𝐵 ≥ 𝜏 , the combination is decisive
positive, guaranteeing that all possible materializations of this com-
bination will have a correlation of at least 𝜏 . Therefore, all materi-
alizations are inserted in the result. If 𝑈𝐵 < 𝜏 , the combination is
decisive negative – no materialization yields a correlation higher
than the threshold 𝜏 . Therefore, this combination does not need to
be examined further. Finally, when 𝐿𝐵 < 𝜏 and 𝑈𝐵 ≥ 𝜏 , the combi-
nation is indecisive. In this case, the algorithm (lines 7-11) chooses
the cluster 𝐶max with the largest radius, and recursively checks all

combinations where 𝐶max is replaced by one of its sub-clusters. In
the example of Figure 2b, assume that the algorithm examined an
indecisive combination of clusters 𝐶1,𝐶2, 𝐶3, and 𝐶2 is the cluster
with the largest radius. The algorithm will consider the three chil-
dren of 𝐶2, and examine their combinations with 𝐶1 and 𝐶3. The
recursion continues until each combination is decisive. Decisive
combinations are typically found at high levels of the cluster tree,
thereby saving many comparisons.

In the following, we will discuss two different approaches for
deriving 𝐿𝐵 and 𝑈𝐵 for arbitrary correlation patterns. The first
approach (theoretical bounds) has constant complexity in the car-
dinality of the clusters. The second approach (empirical bounds)
extends the theoretical bounds with additional information. It has
a slightly higher cost, but typically leads to much tighter bounds.

3.2.1 Theoretical bounds. We first present a lemma for bounding
the Pearson correlation between only two clusters, which serves as
a stepping stone for multivariate correlations.

Lemma 3.1. Let 𝜌 (x, y) denote the Pearson correlation between two

vectors x and y, and 𝜃x,y the angle formed by these vectors. Consider

four z-normalized vectors u1, u2, v1, and v2, such that𝜃v1,u1 ≤ 𝜃1 and

𝜃v2,u2 ≤ 𝜃2. Then, correlation 𝜌 (u1, u2) can be bounded as follows:

cos(𝜃max
u1,u2) ≤ 𝜌 (u1, u2) ≤ cos(𝜃min

u1,u2)

where

𝜃min
u1,u2 = max

(
0, 𝜃v1,v2 − 𝜃1 − 𝜃2

)
,𝜃max

u1,u2 = min
(
𝜋, 𝜃v1,v2 + 𝜃1 + 𝜃2

)

Proof. All proofs are included in the technical report [18]. �

Lemma 3.1 bounds the correlation between two vectors u1 and
u2 that belong to two clusters with centroids v1 and v2 respectively,
by using: (a) the angle between the two centroids, and, (b) upper
bounds on the angles between u1 and v1, and between u2 and v2.
For instance, in the running example (Fig. 2(b)), we can bound the
correlation between any two vectors from (𝐶1,𝐶2) if we have the
cosine of the two cluster centroids d and e, the cosines of a with d,
and h with e (as h is the furthest point in 𝐶2 from the centroid e).
The bounds are tightened if the maximum angle formed by each
centroid with all cluster vectors is reduced.

We now extend our discussion to cover multivariate correlations,
which involve three or more clusters. We first derive bounds for
mc (Theorem 3.2), and then for mp (Theorem 3.3).

Theorem 3.2 (Bounds for mc). For any pair of clusters 𝐶𝑖 ,𝐶 𝑗 ,

let 𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) denote lower/upper bounds on the pairwise

correlations between the clusters’ materializations, i.e., 𝑙 (𝐶𝑖 ,𝐶 𝑗) ≤

min
x∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) ≥ max
x∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y). Consider the set

of clusters S = {𝐶1,𝐶2, . . . ,𝐶𝑁 }, partitioned into S𝑙 = {𝐶𝑖 }
𝑙max

𝑖=1

and S𝑟 = {𝐶𝑖 }
𝑁
𝑙max+1

. Let 𝐿(S1,S2) =
∑
𝐶𝑖 ∈S1,𝐶 𝑗 ∈S2

𝑙 (𝐶𝑖 ,𝐶 𝑗), and

𝑈 (S1,S2) =
∑
𝐶𝑖 ∈S1,𝐶 𝑗 ∈S2

𝑢 (𝐶𝑖 ,𝐶 𝑗). Then, for any two sets of vec-

tors 𝑋l = {x1, . . . , xlmax
}, 𝑋r = {xlmax+1, . . . , xN} such that xi ∈ 𝐶𝑖 ,

multiple correlation mc(𝑋l, 𝑋r), can be bounded as follows:

(1) if 𝐿(S𝑙 ,S𝑟) ≥ 0:

𝐿(S𝑙 ,S𝑟)√
𝑈 (S𝑙 ,S𝑙)

√
𝑈 (S𝑟 ,S𝑟)

≤ mc(𝑋l, 𝑋r) ≤
𝑈 (S𝑙 ,S𝑟)√

𝐿(S𝑙 ,S𝑙)
√
𝐿(S𝑟 ,S𝑟)

(2) if𝑈 (S𝑙 ,S𝑟) ≤ 0:

𝐿(S𝑙 ,S𝑟)√
𝐿(S𝑙 ,S𝑙)

√
𝐿(S𝑟 ,S𝑟)

≤ mc(𝑋l, 𝑋r) ≤
𝑈 (S𝑙 ,S𝑟)√

𝑈 (S𝑙 ,S𝑙)
√
𝑈 (S𝑟 ,S𝑟)

(3) else:

𝐿(S𝑙 ,S𝑟)√
𝐿(S𝑙 ,S𝑙)

√
𝐿(S𝑟 ,S𝑟)

≤ mc(𝑋l, 𝑋r) ≤
𝑈 (S𝑙 ,S𝑟)√

𝐿(S𝑙 ,S𝑙)
√
𝐿(S𝑟 ,S𝑟)

Combined with Lemma 3.1, Theorem 3.2 enables bounding the
multiple correlation of any cluster combination that satisfies the
correlation pattern, without testing all its possible materializations.
For example, for combination ((𝐶1,𝐶2),𝐶3) from our running exam-
ple, we first use Lemma 3.1 to calculate bounds for all cluster pairs
in 𝑂 (1) per pair, which leads to values for 𝐿(·, ·) and 𝑈 (·, ·). The
bounds on mc((𝐶1,𝐶2),𝐶3) then follow directly from Theorem 3.2.

Also, observe that by tightening the bounds for the pairwise
correlations, we can tighten 𝐿(·, ·) and 𝑈 (·, ·), which will in turn
tighten the bounds formc. This is further exploited in Section 3.2.2.

Theorem 3.3 (Bounds for mp). For any pair of clusters 𝐶𝑖 ,𝐶 𝑗 ,

let 𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) denote lower/upper bounds on the pairwise

correlations between the cluster’s materializations, i.e., 𝑙 (𝐶𝑖 ,𝐶 𝑗) ≤

min
x∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) ≥ max
x∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y). Consider the set

of clusters S =

{
𝐶1,𝐶2, . . . ,𝐶𝑙max

}
. Furthermore, let L and U be sym-

metric matrices with elements 𝑙𝑖 𝑗 = 𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢𝑖 𝑗 = 𝑢 (𝐶𝑖 ,𝐶 𝑗)

∀1 ≤ 𝑖, 𝑗 ≤ 𝑙max. For any set of vectors 𝑋 = {x1, x2, . . . , xlmax
} such

that xi ∈ 𝐶𝑖 , multipole correlation mp(𝑋) can be bounded as follows:

1 − 𝜆𝑚𝑖𝑛 −
1

2
| |U − L| |2 ≤ mp(𝑋) ≤ 1 − 𝜆𝑚𝑖𝑛 +

1

2
| |U − L| |2

where 𝜆𝑚𝑖𝑛 is the smallest eigenvalue of matrix L+U
2 . �

Similar to Theorem 3.2 for mc, the tightness of the bounds from
Theorem 3.3 depend on the tightness of the bounds for the pairwise
correlations between clusters, which can be derivedwith Lemma 3.1.
Proofs for both theorems can be found in [18].

3.2.2 Empirical pairwise bounds. The bounds of Lemma 3.1 –which
determine the bounds of Theorems 3.2 and 3.3 – tend to be pes-
simistic, as they always account for the worst case. In the example
of Fig. 2(c), the theoretical lower bound (resp. upper bound) ac-
counts for the case that hypothetical vectors (depicted in pink) are
located on the clusters’ edges such that they are as far away from
(resp. as close to) each other as possible, given the position of the
cluster centroids (depicted in black) and cluster radii.

The empirical bounds approach builds on the observation that
the pairwise correlations of any pair of vectors xi, xj drawn from a
pair of clusters𝐶𝑖 ,𝐶 𝑗 respectively is typically strongly concentrated
around (𝑙 (𝐶𝑖 ,𝐶 𝑗) + 𝑢 (𝐶𝑖 ,𝐶 𝑗))/2, especially for high-dimensional
vectors. The approach works as follows. At initialization, we com-
pute all pairwise correlations and store these in an upper-triangular
matrix. Note that part of these correlations have already been calcu-
lated during the clustering phase. Then, during execution of Alg. 1,
we lazily compute 𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) as follows: 𝑙 (𝐶𝑖 ,𝐶 𝑗) =

minx∈𝐶𝑖 ,y∈𝐶 𝑗
𝜌 (x, y) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) = maxx∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y), with
𝜌 (x, y) retrieved from the upper-triangular matrix. The computed
𝑙 (𝐶𝑖 ,𝐶 𝑗) and𝑢 (𝐶𝑖 ,𝐶 𝑗) are also cached and reusedwhenever (𝐶𝑖 ,𝐶 𝑗)

is encountered in another cluster combination. It is important to
note that the empirical bounds do not induce errors, since they
trivially satisfy the requirements of Theorems 3.2 and 3.3 that
𝑙 (𝐶𝑖 ,𝐶 𝑗) ≤ min

x∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y) and𝑢 (𝐶𝑖 ,𝐶 𝑗) ≥ max
x∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y). Con-

sequently, bounds on mc and mp derived using empirical bounds
are still correct. Moreover, they are at least as tight as the bounds
of Lemma 3.1, since they account only the vectors that are actually
present in the clusters and not the hypothetical worst case.

There is a clear tradeoff between the cost of computing the em-
pirical pairwise bounds (worst case, quadratic to the number of
vectors), and the performance improvement of CD from the tighter
bounds. Indicatively, in our experiments, the theoretical pairwise
bounds computed from Lemma 3.1 were typically between two to
eight times wider compared to the empirical pairwise bounds. Ex-
ploiting the tighter empirical bounds led to a reduction of the width
of the bounds of Theorem 3.2 by 50% to 90% (for mc(1, 2)), which
empowered CD to reach to decisive combinations faster. As a result,
total execution time of CD with empirical bounds was typically an
order of magnitude less than the time with the theoretical bounds.
Therefore, all reported results will be using the empirical bounds.

3.2.3 Exploiting additional constraints. CD supports both the ir-
reducibility and minimum jump constraints (see Section 2.2). For
irreducibility, the process of identifying whether a simpler com-
bination exists requires testing whether a combination of any of
the subsets of S𝑙 and S𝑟 is already contained in the answers. To
avoid the cost of enumerating all 𝑂 (2 |S𝑙 |+ |S𝑟 |) subsets during the
execution of Alg. 1, only the pairwise correlations between any two
clusters 𝐶𝑙 ∈ S𝑙 and 𝐶𝑟 ∈ S𝑟 are examined (for mp, both 𝐶𝑙 ∈ S𝑙
and 𝐶𝑟 ∈ S𝑙). Precisely, we use 𝑙 (𝐶𝑙 ,𝐶𝑟), which is already com-
puted for Theorems 3.2 and 3.3. If there exist𝐶𝑙 ,𝐶𝑟 s.t. 𝑙 (𝐶𝑙 ,𝐶𝑟) ≥ 𝜏 ,
then any solution that can be derived from further examining the
combination (S𝑙 ,S𝑟) cannot satisfy the irreducibility constraint.
Therefore, (S𝑙 ,S𝑟) can be discarded. The case of minimum jump
is analogous: if any 𝑙 (𝐶𝑙 ,𝐶𝑟) ≥ 𝑈𝐵 − 𝛿 , where UB is calculated as
in line 1 of Alg. 1, then the combination is discarded. However, con-
sidering only the pairwise correlations during the pruning process
may lead to inclusion of answers that do not satisfy the constraints.
Therefore, such combinations are filtered from the query result
before returning it to the user. Since the number of answers is typi-
cally in the order of a few tens to thousands, this final pass takes
negligible time.

3.3 Top-𝜅 queries

When exploring new datasets, it may be difficult to decide on a
threshold 𝜏 . Setting the threshold too high for the dataset may
lead to no answers, whereas a very low 𝜏 can result in millions of
answers, and performance decrease. The top-𝜅 variant addresses
this issue by allowing users to set the desired number of results,
instead of 𝜏 . The answer then includes the𝜅 combinations of vectors
with the highest correlation that satisfy the correlation pattern.

Assuming an oracle that can predict the 𝜏 that would yield 𝜅

results, the top-𝜅 queries could be transformed to threshold queries
and answered with the standard CD algorithm. Since such an or-
acle is impossible, many top-𝜅 algorithms (e.g., Fagin’s threshold

Algorithm 2: Top-𝜅-Query(S𝑙 , S𝑟 , 𝐶𝑜𝑟𝑟 , 𝜏 , 𝜅, 𝛾 , 𝐵)
Input: Sets of clusters S𝑙 and S𝑟 that adhere to the

user-defined correlation pattern. correlation
measure 𝐶𝑜𝑟𝑟 , starting threshold 𝜏 , desired output
set size 𝜅, shrinkfactor 𝛾 , list of buckets 𝐵.

1 (𝐿𝐵,𝑈𝐵𝑠ℎ𝑟𝑢𝑛𝑘) ← CalcBounds(S𝑙 ,S𝑟 ,𝐶𝑜𝑟𝑟,𝛾)

2 if 𝐿𝐵 ≥ 𝜏 then

3 Add the contents of (S𝑙 ,S𝑟) to the result set R

4 R ← SORT(R)[1:𝜅]

5 𝜏 ← 𝑚𝑖𝑛
(𝑋,𝑌) ∈R

𝐶𝑜𝑟𝑟 (𝑋,𝑌)

6 else if 𝑈𝐵𝑠ℎ𝑟𝑢𝑛𝑘 ≥ 𝜏 then

// Replace largest cluster with subclusters and recurse
with Top-𝜅-Query (similar to lines 7-11 of Alg. 1)

12 else

13 𝛾∗ =
𝜏−𝜇
𝑈𝐵−𝜇

14 Assign (S𝑙 ,S𝑟) to bucket �𝛾∗ · |𝐵 |�

// Phase 2 – starts when Phase 1 is completed

15 for 𝑏 ∈ 𝐵 do

16 for (S𝑙 ,S𝑟) ∈b do

17 ThresholdQuery(S𝑙 , S𝑟 , 𝐶𝑜𝑟𝑟 , 𝜏)

18 R ← SORT(R)[1:𝜅]

19 𝜏 ← 𝑚𝑖𝑛
(𝑋,𝑌) ∈R

𝐶𝑜𝑟𝑟 (𝑋,𝑌)

algorithm [8]) start with a low estimate for 𝜏 , and progressively in-
crease it, by observing the intermediate answers. The performance
of these algorithms depends on how fast they can approach the true
value of 𝜏 , thereby filtering candidate solutions more effectively.

The top-𝜅 variant of CD (see Alg. 2) follows the same idea. The
algorithm has the same core as the threshold-based variant, and
relies on two orthogonal techniques to increase 𝜏 quickly. First, at
invocation, input parameter 𝜏 is set to the value of the 𝜅’th highest
pairwise correlation. Since all pairwise correlations are computed
for the empirical bounds, this causes zero additional cost.

The second technique is an optimistic refinement of the upper
bound, aiming to prioritize the combinations with the highest corre-
lations. The algorithm is executed in two phases. In the first phase,
similar to Alg. 1, the algorithm computes the upper and lower bound
per combination. However, it now artificially tightens the bounds
bymoving the upper bound towards the lower bound. This so-called
shrinking is achieved by taking𝑈𝐵shrunk = (1−𝛾) ·𝜇+𝛾 ·𝑈𝐵, where
𝜇 =

𝑈𝐵+𝐿𝐵
2 and 𝛾 ∈ [0, 1] is a shrink factor with a default value of

0. If the lower bound surpasses the current threshold 𝜏 , all solutions
resulting from this candidate combination are added to the set of
answers R, and the 𝜅 solutions from R with the highest correlation
are kept (Alg. 2, lines 3-4). The value of 𝜏 is then set to the minimum
correlation in R (line 5). Otherwise, if 𝑈𝐵shrunk is greater than the
running 𝜏 , we recursively break the cluster to smaller clusters, until
we get decisive bounds, analogous to Alg. 1 (lines 6-11). Finally,
if the shrunk upper bound is less than the running value of 𝜏 but
the true𝑈𝐵 is greater than 𝜏 , we compute the critical shrink factor
𝛾∗ for the cluster (line 13) – the minimum value of 𝛾 for which
𝑈𝐵shrunk would surpass 𝜏 . Intuitively, a small 𝛾∗ means that the
combination is more promising to lead to higher correlation values.

All combinations are placed in 𝐵 equi-width buckets based on their
𝛾∗ values (line 14). At the second phase (lines 15-19), the algorithm
processes the buckets one by one, starting from the first, invoking
the threshold query algorithm on each of its cluster combinations
(Alg. 1) and updating the running 𝜏 after every bucket. Since 𝜏

continuously increases, and the first buckets are likely to contain
the highest correlation values, most combinations after the first
few buckets will be filtered without needing many cluster splits.

3.3.1 Progressive threshold queries. The prioritization technique
of Alg. 2 can also be used as a basis for a progressive threshold
algorithm. Precisely, Alg. 2 can be initialized with a user-chosen
𝜏 and with 𝜅 → ∞. This will prioritize the combinations that
will yield the strongest correlations, and thus also the majority
of correlations larger than 𝜏 . Prioritization is frequently useful in
exploratory data analytics: the user may choose to let the algorithm
run until completion, which will yield results identical to Alg. 1, or
interrupt the algorithm after receiving sufficient answers. We will
evaluate the progressive nature of CD in Section 5.

4 DETECTION OF MULTIVARIATE
CORRELATIONS IN STREAMING DATA

Our streaming algorithm, called CDStream, builds on top of CD
such that it maintains CD’s solution over a sliding window as new
data arrive. Currently, CDStream works with the multiple correla-
tion measure only; efficient support for the multipole measure is
ongoing work.

CDStream relies on two observations to increase the perfor-
mance for streaming data. First, most arrivals do not lead to signifi-
cant updates to the final result. Second, in most real-world scenarios,
each of the streams may have a different update rate. For exam-
ple, in finance, each stock exchange serves updates at different
frequencies. The one-size-fits-all approach of CD that handles all
updates identically, recomputing the full solution from scratch can
be wasteful.

At initialization, CDStream executes CD on the initial data. Then,
the core idea of CDStream is as follows. Assume an update of a
vector v. This vector belongs to a hierarchy of clusters. For example,
vector e in Fig. 2(b) belongs to 𝐶2 and 𝐶7. We denote the set of
these clusters as C(v). The cluster combinations that need to be
checked after the update of v are only the decisive combinations –
either positive or negative – that involve a cluster from C(v). The
final result remains correct if these combinations are still decisive
positive/negative.

To understand how CDStream adds pruning power on top of
CD, observe that even for combinations with three or more clus-
ters, the combination’s bounds are determined by 𝑙 (𝐶𝑖 ,𝐶 𝑗) and
𝑢 (𝐶𝑖 ,𝐶 𝑗), the minimum and maximum pairwise correlations be-
tween all involved clusters. Therefore, any update that does not
change 𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) for all pairs of involved clusters can-
not invalidate the previous bounds, or the previous solution. We
refer to the pairs of vectors from 𝐶𝑖 and 𝐶 𝑗 that are responsible for
𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) as theminimum andmaximum extrema

pair respectively. For example, in Fig. 2(c), the minimum and max-
imum extrema pairs for (𝐶2,𝐶3) are 〈h, g〉 and 〈b, f〉 respectively.
CDStream exploits this observation by: (a) checking if each update

causes a change to any 𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢 (𝐶𝑖 ,𝐶 𝑗), and (b) for the up-
dates that indeed cause a change, updating the extrema pairs, and
recomputing the bounds with Theorem 3.2 and the final solution.

Key to the performance of CDStream is an index that enables the
algorithm to quickly locate the extrema pairs that are potentially
affected by an update. The index maps each vector v to a list of all
decisive combinations (both negative and positive) that involve any
cluster from C(v). Internally, the combinations for v are grouped
in two levels. First, they are grouped by the extrema pairs. For
example, in Fig. 3, the first 5 combinations for vector c are grouped
under extrema pair 〈b, f〉. All combinations with the same extrema
pair are subsequently grouped by the cluster that does not contain
the vector used for indexing (in this case, vector c). In our example,
the first two combinations have 𝐶2 as the second cluster and are
grouped together. We will refer to these clusters for the same
extrema pair as the extrema pair clusters. The described index
is constructed at initialization by iterating over all vectors 𝑉 in a
decisive combination when it is identified (i.e., Alg. 1 lines 3,5), and
storing it in the index on every extrema pairs that a vector v ∈ 𝑉

can violate (see Alg. 5 of [18] for pseudocode).
The index is used to support a triggering functionality, which

allows us to quickly locate and verify the extrema pairs related to
each update. First, the index is used to retrieve the information
related to an updated vector v. The algorithm iterates over the re-
spective extrema pairs to verify that these did not change or move,
despite the update (Alg. 3, lines 2-11)3. Precisely, for each mini-
mum (resp. maximum) extrema pair with correlation 𝜌min (𝜌max),
it verifies that the correlation of v with all points belonging to the
second cluster is still at least 𝜌min (at most 𝜌max) (line 6). If this
is still the case, all decisive combinations are still valid. If, on the
other hand, an extrema pair is invalidated the respective decisive
combinations are checked and their bounds are recomputed and
updated. Combinations are re-indexed in case extrema pairs have
changed. In case a combination becomes indecisive, subcluster com-
binations are checked analogously to Alg. 1 lines 7-11, storing new
combinations through the standard indexing procedure described
earlier. Indecisive combinations are removed from the index in a
lazy manner.

Checking whether 𝜌min (resp. 𝜌max) are still valid requires com-
puting the correlation of v with each of the vectors contained in all
extrema pair clusters. A critical observation is that there always ex-
ists one cluster in the extrema pair clusters that contains all others
– otherwise the other clusters could not contain the same extrema
vector. Therefore, the algorithm considers the extrema pair clusters
in decreasing size. If the largest cluster passes the test, then all
its decisive combinations and all the decisive combinations of all
its sub-clusters are still valid and do not need to be checked (lines
9-11). In the running example, if 〈b, f〉 is still the maximum extrema
pair between clusters 𝐶3 and 𝐶2, and it has the same 𝜌max, then
all combinations under 〈b, f〉 are still decisive. If the largest cluster
does not pass the test, then the bounds for all its decisive combina-
tions are verified. The combinations that are no longer decisive are
updated accordingly, e.g., by breaking one of the involved clusters
to sub-clusters, as described in Section 3.2. Furthermore, the second,

3Alg. 3 describes the process of querying the DCC Index for validating the maximum
extrema pairs. The process of validating the minimum extrema pairs is analogous.

Algorithm 3: QueryIndex(𝑖,I)
Input: A stream index 𝑖 , the DCC Index I
Output: A set of DCCs 𝑂 that need to be checked

1 𝑂 ← {} // Initialize output set

2 for 〈a, b〉 ∈ I[𝑖] do // Iterate over extrema pairs
3 𝑉 ← {} // Vectors violating the extrema

4 𝐶𝑝 ← I[𝑖] [〈a, b〉] [0] // Get largest cluster

5 for v𝑗 ∈ 𝐶𝑝 do // Iterate over cluster content
6 if 𝜌 (v𝑖 , v𝑗)𝑡 > 𝜌 (a, b)𝑡 then

7 𝑉 ← 𝑉 ∪ vj // Add to violations

8 𝑂 ← 𝑂 ∪ I[𝑖] [〈a, b〉] [𝐶𝑝] // Add DCCs

9 for 𝐶 ∈ I[𝑖] [〈a, b〉] [1 :] do // Check sub-clusters
10 if 𝐶 ∩𝑉 ≠ ∅ then // Violating point in 𝐶

11 𝑂 ← 𝑂 ∪ I[𝑖] [〈a, b〉] [𝐶] // Add DCCs

12 return 𝑂

Figure 3: Visualization of the decisive combination index

third, etc. largest extrema pair clusters are tested recursively. The
process stops as soon as one of these clusters passes the test.

This grouping of decisive combinations based on the extrema
pairs and clusters is instrumental in the algorithm’s efficiency, as
each pair of clusters may appear in many decisive combinations.
In the example of Fig. 2(c), assuming that 𝑙max + 𝑟max = 3 with mc

measure, 𝐶2 and 𝐶3 will appear in a combination of size 2 without
𝐶1, and in a combination of size 3, together with 𝐶1. In both cases,
the extrema pairs between 𝐶2 and 𝐶3 will be identical. Therefore,
with a single check, both decisive combinations can be verified.
Typically the number of decisive combinations for each pair and
for each cluster is in the order of a few hundreds for 𝑛 = 1000.

CDStream supports discretization of the stream of updates to
small batches (e.g., of a few seconds, or a few tens or hundreds
of updates) as a method to trade-off throughput and freshness of
results. A larger batch size increases performance and throughput,
but potentially delays the updating of the final results. In Section 5
we will evaluate CDStream with different batch sizes.

4.1 User constraints and top-𝜅 queries

To support the minimum jump and irreducibility constraints, addi-
tional triggering functionalities, further described below, are added
to the index of CDStream.

Irreducibility constraint. Let 𝑋,𝑌,𝑋 ′, 𝑌 ′ denote sets of clus-
ters. Consider combinations (𝑋,𝑌), and (𝑋 ′ ⊆ 𝑋,𝑌 ′ ⊆ 𝑌), with
|𝑋 ∪ 𝑌 | > |𝑋 ′ ∪ 𝑌 ′|, i.e., irreducibility excludes (𝑋,𝑌) from the
results if (𝑋 ′, 𝑌 ′) is in. We need to detect two additional cases: (a)
(𝑋,𝑌) needs to be removed from the result set because (𝑋 ′, 𝑌 ′)

just surpassed 𝜏 , and, (b) (𝑋,𝑌) needs to be added in the result set,

because (𝑋 ′, 𝑌 ′) was just removed from the result set. Both cases
can be triggered by an update of a vector from 𝑋 or 𝑌 .

Without the irreducibility constraint, the index contains the fol-
lowing extrema pairs: (a) for the negative decisive combinations, the
pairs required for upper-bounding the correlation, (b) for the posi-
tive decisive combinations, all pairs required for lower-bounding
the correlation. The irreducibility constraint requires also monitor-
ing of the upper bounds of positive decisive combinations (e.g., for
case (a), when an increase of 𝐶𝑜𝑟𝑟 (𝑋 ′, 𝑌 ′) will cause the following
condition to hold: 𝐶𝑜𝑟𝑟 (𝑋 ′, 𝑌 ′) > 𝜏 which will mean that (𝑋,𝑌)
need to be removed from the result set) and the lower bounds of
negative decisive combinations with any 𝐶𝑜𝑟𝑟 (𝑋 ′, 𝑌 ′) > 𝜏 . These
decisive combinations are also added in the index, under the ex-
trema pairs, and checked accordingly.

Minimum jump constraint. Monitoring for the minimum
jump constraint is analogous to the irreducibility contraint. The fol-
lowing cases need to be considered: (a) (𝑋,𝑌) needs to be removed
from the result set because 𝐶𝑜𝑟𝑟 (𝑋 ′, 𝑌 ′) + 𝛿 > 𝐶𝑜𝑟𝑟 (𝑋,𝑌), and (b)
(𝑋,𝑌) needs to be added in the result set because 𝐶𝑜𝑟𝑟 (𝑋,𝑌) > 𝜏

and 𝐶𝑜𝑟𝑟 (𝑋 ′, 𝑌 ′) + 𝛿 < 𝐶𝑜𝑟𝑟 (𝑋,𝑌). Both cases are identified using
the discussed method for monitoring the irreducibility constraint.

Top-𝜅 queries Recall that CDStream is initialized with the result
of CD. For a top-𝜅 query, CDStream queries CD for a slightly larger
number of results 𝜅 ′ = 𝑏 ∗ 𝜅, where 𝑏 is at least 1. CDStream finds
the minimum correlation in these results, and uses it as a threshold
𝜏 in the streaming algorithm. As long as the size of the result set
is at least 𝜅, the true top-𝜅 results will always have a correlation
higher than 𝜏 and will be contained in the top-𝜅 ′ results maintained
by the algorithm. Therefore, the top-𝜅 out of the detected top-𝜅 ′

correlations are returned to the user.
Scaling factor 𝑏 controls the tradeoff between the robustness of

the streaming algorithm for top-𝜅 queries, and its efficiency. Setting
𝑏 = 1 may lead to the situation that, due to an update, fewer than 𝜅
results exist with correlation greater than or equal to 𝜏 . CDStream
then resorts to CD for computing the correct answer, and updating
its index. Conversely, a large 𝑏 will lead to a larger number of
intermediary results, and to more effort for computing the exact
correlations of these results, which is necessary for retaining the
top-𝜅 results. Our experiments with a variety of datasets have
shown that 𝑏 = 2 is already sufficient to provide good performance
without compromising the robustness of CDStream.

4.2 CDHybrid: combining CD and CDStream

Recall that CDStream handles the stream updates in batches. The
algorithm exhibits high performance when the updates do not
drastically change the results set. In streams where the answer
changes abruptly, it may be more efficient to run the one-shot
algorithm after the completion of each batch and recompute the
solution from scratch, instead of maintaining CDStream’s index and
the result through time. CDHybrid is an algorithm that orchestrates
CD and CDStream, transparently managing the switch between
the two algorithms based on the properties of the input stream.

To decide between CD and CDStream, CDHybrid needs to es-
timate the cost of both approaches for handling a batch. A good
predictor for this is the number of updates in the batch – more up-
dates tend to cause more changes in the result, which takes longer

for CDStream to handle. Therefore, CDHybrid starts with a brief
training period, where it collects statistics on the observed arrival
count and execution time of the two algorithms. Simple linear re-
gression is then used to model the relationship between execution
time and the observed number of updates. Note that the coefficients
of a simple linear regression model can be maintained in constant
time and space. Therefore, the regression model is continuously up-
dated, even after the training phase. Switching from one algorithm
to the other works as follows.

Switching from CDStream to CD. We cache the current re-
sults of CDStream (we will refer to these as RCDStream) and stop
maintaining the index. When a batch is completed, the vectors are
updated (i.e., by progressing the sliding window of the each vector)
and passed to CD for computing the result.

Switching from CD to CDStream. Since the stream index was
not updated for some time, we need to update it before we can use
it again. We compute the symmetric difference Δ of the current
results of CD (denoted as RCD) with the last results of CDStream
RCDStream. Any result 𝑟 contained in Δ ∩ RCDStream is due to a
negative decisive combination, which needs to be added in the
index, whereas any 𝑟 contained in Δ ∩ RCD leads to a new positive
decisive combination.

Notice that the switch from CD to CDStream will not remove
from the index the decisive combinations that were constructed
from CDStream, but are no longer relevant, e.g., because CD split
one of its involved clusters. We use a lazy approach to detect these
combinations in the index: the first timewe access a combination af-
ter the switch, we check if there exists a result 𝑟 ∈ Δ that is included
in the cluster combination. If so, we reconstruct the combination
such that 𝑟 is removed from it. For example if we access (𝐶1,𝐶3),
and decisive combination (𝐶1,𝐶9) is in Δ, we replace (𝐶1𝐶3) with
(𝐶1,𝐶10) and move it to the correct place in the index. If all possible
vector combinations in the combination are in Δ, the combination
is discarded from the index.

5 EXPERIMENTAL EVALUATION

The purpose of our experiments was twofold: (a) to assess the scal-
ability and efficiency of our methods for varying input parameters,
and, (b) to compare them with the state-of-the-art algorithms for
multivariate correlation discovery [1, 2], and an exhaustive search
baseline that iterates over all possible combinations. The practical
significance of multivariate correlations with the two correlation
measures was already extensively demonstrated in different do-
mains, e.g., [1, 2, 15] (see Section 1 for more examples). Since CD
supports the same correlationmeasures (and further generalizations
of them), and guarantees completeness of results, we do not repeat
their use-case studies, but evaluate our methods on the same data
(or data of the same type, where the original data was unavailable).

Hardware and implementations. All experiments were ex-
ecuted on a server equipped with a 24-cores Intel Xeon Platinum
8260 Processor, and 400GB RAM. For CoMEtExtended and CONTRa,
we used the original implementations, which were kindly provided
by the authors [1, 2]. All implementations (including exhaustive
search) cached and reused the pairwise correlation computations
where applicable, which was always beneficial for performance.
The reported execution time for CD and CDStream corresponds to

the total execution cost including the steps of pre-processing, clus-
tering and calculating pairwise correlations. All reported results
correspond to averages after 10 repetitions.

Datasets. We include results for three real-world datasets.4 Re-
sults with other datasets had similar qualitative outcomes (see [18]
for more details).

• Stocks. Prices of 1596 stocks, covering a period from April
1, 2020 to May 12, 2020. Each stock has its own update frequency,
ranging from 1 to 10 minutes. All prices were normalized with
log-return normalization, as is standard in finance. To ensure equal
dimensionality, all time series were resampled to 5 minute inter-
arrival times for CD (leading to 9103 observations), and missing
values were filled with standard interpolation. For CDStream, time
series were kept at the original update frequency. We used interpo-
lation to fill missing values, which was required for synchronizing
the updates. Notice that any algorithm could be used instead for this
process, e.g., forward or backward-filling, or even a more complex
solution that incorporates ML, e.g., a deep neural network [4].

• fMRI. Functional MRI data of a participant watching a movie,
prepared with the recommended steps for voxel-based analytics.
The data was further pre-processed by mean-pooling with kernels
of 2x2x2, 3x3x3, 4x4x4, 6x6x6 and 8x8x8 voxels, each representing
the mean activity level at a cube of voxels in the scan. Subsequently,
constant-value time series were removed. This led to a total of
9700, 3152, 1440, 509 and 237 time series respectively, all of equal
length (5470 observations), covering a period of ~1.5 hours. Unless
otherwise mentioned, the reported results correspond to the 4x4x4
resolution, i.e. 1440 time series.

• SLP. Sea Level Pressure data [24], as preprocessed in [2]. The
dataset contains 171 time series, each with 108 observations.

5.1 CD on static data

5.1.1 Threshold queries. Figs. 4a-b show the effect of threshold 𝜏
on execution time of CD for the fMRI and Stocks dataset respec-
tively. The left Y axis corresponds to query mc(2, 2) with different
constraints, whereas the right Y axis corresponds tomp(4). The plot
does not include a result for mc in the Stocks dataset for 𝜏 = 0.8,
since the query returned more than 10 Million results, and our
implementation automatically switches to the top-𝜅 variant (with
𝜅 = 107) in such cases. Our first observation is that increasing the
threshold consistently leads to higher efficiency. This is expected,
since a higher threshold enables more aggressive pruning of can-
didate comparisons. Furthermore, CD is noticeably faster for mc

compared to mp. This is due to two reasons: (a) the complexity of
the computation of eigenvalues of a matrix (cubic to 𝑙max), which
is required for computing the bounds for mp (Theorem 3.3), and
(b) mp typically results in higher correlation values and to more
answers for the same value of 𝜏 compared to mc.

We found that the individual execution times over the 10 repeti-
tions for each configuration were stable, with a relative standard
deviation typically between 1%-2%, or below 5 seconds in absolute
value. The maximum relative standard deviation for a configuration
observed in all experiments was 4.7% of the mean query time.

4See https://github.com/CorrelationDetective/public for download links, instructions,
and code for reading the data.

(a)mc(2, 2) andmp(4) threshold queries on fMRI (b)mc(2, 2) andmp(4) threshold queries on Stocks (c)mc(2, 2) andmp(4) top-𝜅 queries on fMRI

Figure 4: Effect of constraints, 𝜏 and 𝜅 on performance.

5.1.2 Top-𝜅 queries. Fig. 4c shows the execution time of CD for
different values of 𝜅 with the fMRI dataset – the results with Stocks
were qualitatively very similar. We see that a decrease of 𝜅 typically
leads to increased efficiency. A low value of 𝜅 helps the algorithm to
increase the running threshold 𝜏 faster, leading to more aggressive
pruning when Alg. 1 is invoked. Interestingly, this behavior is not
as prevalent for mp(4) with no constraints. This discrepancy can
be attributed to the correlation values in the result set. Indicatively,
for this query the lowest correlation in the result set only decreases
from 0.917 (top-100) to 0.915 (top-500). In contrast, the same pattern
with a minimum jump constraint of 𝛿 = 0.1 shows a decrease in
this correlation from 0.82 (top-100) to 0.78 (top-500), explaining
why the effect of 𝜅 on performance is more substantial.

5.1.3 Correlation pattern. Table 2 presents the results size and
execution time of CD for different correlation patterns. As expected,
increasing the complexity of the correlation pattern leads to an
increase of the computational time. However, even though the size

of the search space follows 𝑂
((𝑛
𝑙max+𝑟max

))
, execution time of CD

grows at a much slower rate. Indicatively, for the fMRI dataset, the
search space size grows 5 orders of magnitude between mc(1, 2)

and mc(1, 4). Execution time increases by only three orders of
magnitude, indicating efficient pruning of the search space.

5.1.4 Clustering sensitivity. We now analyze the sensitivity of CD
with respect to the hierarchical clustering parameters. Since correct-
ness of CD is not influenced by the clustering, our experiments only
investigate its influence on the efficiency of CD. Table 3 illustrates
the effect of 𝐾 (the number of sub-clusters per cluster) on CD’s
execution time. A very small number of sub-clusters in each split
(𝐾 = 2) hurts efficiency significantly, as it results in extremely large
clusters at the high levels of the hierarchy, and Algorithm 1 needs
to drill deeper into the hierarchy before reaching to decisive com-
binations. Very high 𝐾 values also lead to suboptimal performance.
In that case, the clusters are more compact, leading to decisive
combinations at higher levels, but more cluster combinations exist
(in these higher levels) that need to be considered.

For 𝐾 around 10, CD’s efficiency is reasonably robust. In fact,
setting 𝐾 = 10 led to performance close to the optimal in all cases
– at most 15% worse than the optimal performance for the same
query, or at most 5% if we do not consider absolute differences up
to 10 seconds. The small impact of 𝐾 , as long as it is not close to the
extremes, can be explained by considering how it affects the depth
of the clustering tree: intuitively, under the simplifying assumption

that each cluster contains approximately an equal amount of vec-
tors, the depth of the clustering hierarchy is approximately log𝐾 (𝑛).
This depth does not vary significantly with the value of 𝐾 . Indica-
tively, for 1000 vectors, setting 𝐾 ∈ [10, 30] leads to a hierarchy of
3 to 4 levels. Therefore, as long as we avoid extremely small and
extremely large𝐾 values, the impact of𝐾 to CD’s efficiency is small.
For consistency, for all our remaining experiments we set 𝐾 = 10.

5.1.5 Progressive variant. We also evaluated the progressive na-
ture of CD. We modified our code such that it tracks the number
of discovered results at different time points. Figure 5b plots the
number of results returned by the algorithm on the Stocks dataset,
as a function of time. The results correspond to correlation patterns
mc(1, 4) and mp(4), which take significant time to complete, since
these are the ones that would mostly benefit from a progressive
algorithm. We see that CD retrieves around half of the results in
the first few seconds, and already reaches 80% recall in around 10%
of the total execution time.

5.1.6 Comparison to exhaustive search baseline. Figure 5a plots the
execution time of CD and the exhaustive baseline for processing
fMRI datasets of different sizes, obtained as discussed in Section 5.
The results correspond to correlation patterns mc(1, 3) and mp(3).
We see that execution time of CD for both patterns grows at a
slower rate compared to the exhaustive search method, and the
difference increases with the dataset size. This finding is consistent
with our earlier observation that the runtime of CD grows slower
than the size of the search space (Section 5.1.3), meaning that CD can
handle significantly larger datasets than the exhaustive algorithm
in reasonable time.

5.1.7 Comparison to CoMEtExtended. Our next experiment fo-
cused on comparing CD with CoMEtExtended [2]. The goal of
CoMEtExtended differs slightly from our problem statement. First,
CoMEtExtended is approximate. Even though it does not offer ap-
proximation guarantees, its recall (and efficiency) can be tuned
by parameter 𝜌CE, which takes values between -1 and 1. Values
around 0 offer a reasonable tradeoff between efficiency and recall;
when CoMEtExtended is configured to return the exact result set
(𝜌CE = 1), it degenerates to exhaustive search [2], to which we com-
pared in Section 5.1.6. In contrast, CD always produces complete
answers. Therefore, we consider both execution time and recall rate
in our comparison. Second, CoMEtExtended aims to find only max-

imal sets that exhibit a strongmp correlation, whereas CD finds all
sets (up to a specified cardinality) that are strongly correlated. To

Figure 5: (a) Running time of CD (filled markers) and exhaustive

algorithm (empty markers, dashed lines) for varying resolutions

of the fMRI dataset, with 𝜏 = 0.9 and no constraints. Queries were

interrupted after 20 hours. (b) Number of retrieved results in relation

to runtime, for progressive execution of mc(1, 4) and mp(4) , with

𝜏 = 0.9, 𝛿 = 0.05 on the Stocks dataset.

ensure a fair comparison for CoMEtExtended, we also considered
all subsets of each result returned by CoMEtExtended. When a
subset of a CoMEtExtended answer satisfied the query, we added it
to the results, thereby increasing CoMEtExtended’s recall. This step
was not included in the execution time of CoMETExtended, i.e., it
did not penalize its performance. Conversely, instead of enhancing
the results of CoMETExtended we could filter out the non-maximal
results from CD’s result set. Since both approaches led to a very
similar comparison (recall and execution time), we present only
the results of the first approach. Table 5 presents the number of
results and execution time of CoMEtExtended and CD on the same
dataset (SLP) and parameters used in [2]. We only consider the mp

measure, since CoMEtExtended does not support mc. We see that
CD is consistently faster than CoMEtExtended – at least an order
of magnitude – and often returns substantially more results. Indica-
tively, for mp(4), CoMEtExtended with 𝜌CE = 0 (resp. 𝜌CE = 0.02)
is one to two (resp. two to three) orders of magnitude slower than
CD. Notice that for queries with 𝛿 = 0.1, CoMEtExtended found
281 results with 6 vectors, and one with 7 (𝜌CE = 0.02, 𝜏 = 0.4).
These amount to ∼ 0.3% of the total amount of discovered results.
These were not discovered by CD, as the queries specified 𝑙max = 5

at most, prioritizing the simpler and more interpretable results.
Nevertheless, for these settings, CD still found 25% more results
than COMEtExtended, and in one fourth of the time. Moreover,
the case studies presented in [1, 2], amongst others on this dataset,
demonstrate the usefulness and significance of relatively simple
relationships, involving at most four time series. Other works on
multivariate correlations also emphasize the discovery of relation-
ships that do not contain too many time series [5]. For these cases,
with a fixed 𝑙max, CD is guaranteed to find a superset of COMEtEx-
tended’s result set, at a fraction of the time.

5.1.8 Comparison to CONTRa. We also compared CD to CON-
TRa [1] for discovery of tripoles, i.e., mc(1, 2) correlations. For a
fair comparison, CD was parameterized to find the same results
as CONTRa and to utilize the same hardware, as follows: (a) CD
was executed with 𝜏 = 0, i.e., pruning was solely due the mini-
mum jump constraint, and (b) CD was configured to utilize only
one thread/core, since the implementation of CONTRa was single-
threaded. CONTRa was configured to return the exact results.

The experimental results with the fMRI dataset are shown in
Table 6.5 We see that CD is more efficient than CONTRa for de-
tecting the same results, even with 𝜏 = 0. However, the lack of 𝜏
yields an impractically large amount of results. As such, we also
evaluate CD with 𝜏 = 0.5 (corresponding to the lowest correlation
reported in the case studies of [1]) and 𝜏 = 0.9 (which gives a rea-
sonable amount of results, in the order of a few tens to hundreds).
This further decreases the runtime of CD by one to two orders of
magnitude, while preventing clutter of the result set by returning
only the most strongly correlated triplets.

5.2 Evaluation with streaming data

The second set of experiments was configured to evaluate the perfor-
mance of CDStream. We used the timestamps that are contained in
the three datasets for ordering the data and generating the streams.
Our discussion will focus on the Stocks dataset; results for the other
datasets are shown only when they offer new insights. Unless oth-
erwise mentioned, the following results correspond to a batch size
of 50, a sliding window of 2000, and a dataset size of 1000 stocks.

5.2.1 Comparison to CD. Fig. 6a presents CDStream’s mean pro-
cessing time per batch, for different dataset sizes created by ran-
domly picked stocks. The figure also includes the average time
required for executing CD at the end of each batch. We see that
CDStream is more efficient than CD for small correlation patterns,
requiring a few milliseconds. Note that, even though the number
of comparisons increases at a combinatorial rate with the number
of vectors , the execution time of CDStream grows substantially
slower. This is due to the grouping technique in the index of CD-
Stream, which effectively reduces the work for processing each
update. For more complex patterns, e.g., mc(2, 3), CDStream has
performance comparable to CD.

5.2.2 Effect of query parameters. Table 4 presents the effect of 𝜏
and constraints (minimum jump and irreducibility) on CDStream’s
performance. We see that efficiency of CDStream is robust to con-
straints – a constraint only causes a small difference in the number
of decisive combinations that need to be monitored. In contrast,
an increasing value of 𝜏 leads to better performance, as decisive
combinations are reached earlier, similar to the case of CD.

Figure 6b plots the average processing time per update, for vary-
ing batch sizes and for both fMRI and Stocks. The batch size (X-axis)
is presented as a multiplicative factor on the number of vectors 𝑛 in
each dataset. We see that the batch size enables tuning the tradeoff
between throughput and update rate of the results: increasing the
batch size increases efficiency, but reduces freshness of results. This
happens because both algorithms will process only the latest values
for each vector, ignoring intermediary updates. Also observe that
CD’s efficiency approaches that of CDStream as the batch size in-
creases. For Stocks, processing time for the two algorithms crosses
at a batch size 4 ∗ 𝑛, whereas for fMRI, this crossing happens at
batch size 8 ∗ 𝑛. This discrepancy can be attributed to the prop-
erties of the datasets (the inherent distributions and magnitude
of updates) and exemplifies the importance of CDHybrid. As we
will see shortly (Section 5.2.4), CDHybrid is able to adapt to the

5For this experiment, the minimum jump parameter 𝛿 is defined as in [1], to represent
the minimum difference between the squared correlations.

Table 2: CD with different

correlation patterns.
fMRI Stocks

time (s) #results time (s) #results
mc(1, 2) 1.4 53 2.0 581
mc(1, 3) 26.8 1350 23.3 632
mc(2, 2) 41.5 4239 18.2 1875
mc(1, 4) 6294 42196 6369.9 646
mc(2, 3) 15760 287651 4238.6 2796
mp(3) 2.6 33 4.6 302
mp(4) 560.0 58213 966.4 576

Table 3: Execution times (in seconds) for varying

clustering parameters and queries (𝛿 = 0.05).
fMRI Stocks

𝜏 \𝐾 2 5 10 25 50 2 5 10 25 50
0.8 446 108 121 131 157 722 106 106 142 104

mc(1, 3)
0.9 140 35 40 49 63 281 23 27 48 36
0.8 883 174 188 177 197 715 78 75 92 80

mc(2, 2)
0.9 264 57 64 68 94 179 22 22 35 30
0.8 4799 1037 1014 1061 1149 10547 1366 1369 1809 1424

mp(4)
0.9 2451 592 606 641 706 6808 1020 981 1497 1200

Table 4: Effect of 𝜏 and 𝛿 on CD and

CDStream for streaming data, with Stocks.
CD CDStream

𝛿\𝜏 0.6 0.7 0.8 0.6 0.7 0.8

None 3.12 2.62 0.80 .045 .036 .023
Irred. 3.21 3.26 0.88 .046 .036 .023
0.05 3.87 2.39 0.93 .043 .034 .023
0.10 3.00 2.77 1.13 .044 .033 .023
0.15 3.15 2.49 1.14 .043 .033 .022

(a) Effect of dataset size and correlation
pattern, with 𝛿 = 0.05, 𝜏 = 0.8, Stocks.

(b) Effect of batch size, 𝛿 = 0.05, 𝜏 = 0.8. (c) Effect of 𝜅, with 𝛿 = 0.05, with
Stocks.

(d) Efficiency of CDHybrid over time,
with Stocks.

Figure 6: Effect of query parameters on performance of CDStream.

Table 5: Comparison of CoMEtExtended and Correlation Detective

on SLP: running time (seconds) and number of retrieved results.
CoMEtExtended Correlation Detective

𝜏 , 𝛿
𝜌CE = 0 𝜌CE = 0.01 𝜌CE = 0.02 mp(4) mp(5)

time #res. time #res. time #res. time #res. time #res.
0.4, 0.1 604 62663 1318 67110 3530 70921 11 71083 899 88305
0.4, 0.15 511 7244 1218 7300 3393 7343 9 7559 575 7562
0.4, 0.2 501 2166 1210 2171 3327 2174 7 2183 333 2183
0.5, 0.1 459 30632 1099 33718 2836 36457 7 34592 557 51391
0.5, 0.15 398 3646 1006 3702 2760 3745 6 3961 391 3964
0.5, 0.2 390 1434 1006 1439 2701 1442 6 1451 292 1451
0.6, 0.1 246 7823 598 8892 1592 9859 5 9204 310 17349
0.6, 0.15 223 1569 577 1606 1559 1635 5 1840 245 1843
0.6, 0.2 219 771 568 776 1532 779 5 788 199 788

Table 6: Comparison of CONTRa and CD: running time (seconds)

and number of results for the largest fMRI dataset (𝑛 = 9700).
CONTRa CD (𝜏 = 0) CD (𝜏 = 0.5) CD (𝜏 = 0.9)

𝛿 time results time results time results time results
0.1 >24hrs 22952036 17027 22952036 3602 20527560 458 432
0.15 11162 733018 7168 733018 3151 732908 458 102
0.2 5324 20555 3852 20555 2790 20555 459 24

properties of the dataset, and chooses the best algorithm. In [18] we
also report on the sensitivity of CDStream to the sliding window
size, and consider more values for batch size.

5.2.3 Top-𝜅 queries. Fig. 6c plots the average processing time per
batch for top-𝜅 query mc(1, 2), for different 𝜅 values. We see that
processing time for both algorithms increases with 𝜅 . In CD, execu-
tion time grows almost linearly with 𝜅 (from 200 msec to almost 1.3
second), whereas for CDStream the time increases by only a factor
of two for the same values. The reason for this notable difference
in efficiency is that CDStream only maintains the top-𝜅 solutions,
already having a good estimate for the threshold of the top-𝜅 high-
est correlation from previous runs, whereas CD has to start each
run from scratch to avoid finding less than 𝜅 results.

5.2.4 CDHybrid. For this experiment, we use a time-based batch
size of 1 minute, and simulate stream bursts by speeding up the

updates (reducing the inter-arrival times) around the middle of the
stream, for approximately one third of the stream length. Figure 6d
depicts the processing time per batch (moving average for the
last 5 batches), for processing Stocks with CD, CDStream, and
CDHybrid. Each epoch corresponds to one batch. The figure also
includes the number of arrivals within each batch (right Y axis).
We observe that CDHybrid quickly switches to the best method.
Shortly after a switch from CDStream to CD, the cost of CDHybrid
is slightly higher compared to the optimal cost. This is attributed
to the initialization cost of CD. For the case of switching back to
CDStream (epoch 240), the additional cost for updating the outdated
index is also small, indicating that the process of updating the index
after the switch is not expensive. Also recall that part of this cost
(for removing the expired decisive combinations from the index)
is amortized through a large number of epochs, due to the lazy
updating algorithm discussed in Section 4.2. Particularly, switching
to CDStream has a cumulative cost of 0.109 seconds, amortized
over 60 epochs, amounting to ∼ 3.8% of the total processing time
over these epochs. The cost of CDHybrid to decide between the
two algorithms was negligible in all cases, requiring less than 0.1
msec. This cost is already included in the shown results.

6 CONCLUSIONS

We considered the problem of detecting high multivariate correla-
tions with two correlation measures, and with different constraints.
We proposed three algorithms: (a) CD, optimized for static data,
(b) CDStream, which focuses on streaming data, and (c) CDHybrid
for streaming data, which autonomously chooses between the two
algorithms. The algorithms rely on novel theoretical results, which
enable us to bound multivariate correlations between large sets
of vectors. A thorough experimental evaluation using real-world
datasets showed that our contribution outperforms the state of the
art typically by an order of magnitude.

REFERENCES
[1] Saurabh Agrawal, Gowtham Atluri, Anuj Karpatne, William Haltom, Stefan

Liess, Snigdhansu Chatterjee, and Vipin Kumar. 2017. Tripoles: A New Class of
Relationships in Time Series Data. In Proceedings of the 23rd SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 697–706.

[2] Saurabh Agrawal, Michael Steinbach, Daniel Boley, Snigdhansu Chatterjee,
Gowtham Atluri, Anh The Dang, Stefan Liess, and Vipin Kumar. 2020. Min-
ing Novel Multivariate Relationships in Time Series Data Using Correlation
Networks. IEEE TKDE 32, 9 (2020), 1798–1811.

[3] David Arthur and Sergei Vassilvitskii. 2007. K-Means++: the advantages of
careful seeding. In Proc. 18th Annual Symposium on Discrete Algorithms, SODA,
Nikhil Bansal, Kirk Pruhs, and Clifford Stein (Eds.). SIAM, 1027–1035.

[4] Wei Cao, Dong Wang, Jian Li, Hao Zhou Bytedance, A I Lab, Yitan Li,
Bytedance Ai Lab, and Lei Li. 2018. BRITS: Bidirectional Recurrent Imputa-
tion for Time Series. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada). 6776–6786.

[5] Roger H.L. Chiang, Chua Eng Huang Cecil, and Ee-Peng Lim. 2005. Linear
correlation discovery in databases: a data mining approach. Data & Knowledge
Engineering 53, 3 (2005), 311–337.

[6] Abhimanyu Das and David Kempe. 2008. Algorithms for Subset Selection in
Linear Regression. In Proc. 40th ACM Symposium on Theory of Computing (STOC
’08). ACM, 45–54.

[7] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004.
Locality-Sensitive Hashing Scheme Based on p-Stable Distributions. In Proc.
20th Annual Symposium on Computational Geometry (SCG ’04). ACM, 253–262.

[8] Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal Aggregation Algo-
rithms for Middleware. J. Comput. System Sci. 66 (2001), 614–656.

[9] Simons Foundation. 2021. SPARK for Autism. https://sparkforautism.org/portal/
page/autism-research/. Accessed: 2021-07-30.

[10] Simons Foundation. 2021. SPARK Gene list. https://d2dxtcm9g2oro2.cloudfront.
net/wp-content/uploads/2020/07/13153839/SPARK_gene_list_July2020.pdf. Ac-
cessed: 2021-07-30.

[11] Daniel A. Handwerker, Vinai Roopchansingh, Javier Gonzalez-Castillo, and
Peter A. Bandettini. 2012. Periodic changes in fMRI connectivity. NeuroImage
63, 3 (2012), 1712–1719.

[12] Stephan Heunis, Rolf Lamerichs, Svitlana Zinger, Cesar Caballero-Gaudes, Ja-
cobus F.A. Jansen, Bert Aldenkamp, and Marcel Breeuwer. 2020. Quality and
denoising in real-time functional magnetic resonance imaging neurofeedback: A
methods review. Human Brain Mapping 41, 12 (2020), 3439–3467.

[13] Wolfgang Karl Härdle. 2007. Applied Multivariate Statistical Analysis (2 ed.).
Springer. 321–330 pages.

[14] Silvan Licher, Shahzad Ahmad, Hata Karamujić-Čomić, Trudy Voortman,
Maarten J. G. Leening, M. Arfan Ikram, and M. Kamran Ikram. 2019. Genetic
predisposition, modifiable-risk-factor profile and long-term dementia risk in the
general population. Nature Medicine 25, 9 (2019), 1364–1369.

[15] Stefan Liess, Saurabh Agrawal, Snigdhansu Chatterjee, and Vipin Kumar. 2017. A
Teleconnection between the West Siberian Plain and the ENSO Region. Journal
of Climate 30, 1 (2017), 301 – 315.

[16] Myles E. Mangram. 2013. A Simplified Perspective of the Markowitz Portfolio
Theory. Global Journal of Business Research 7, 1 (2013), 59–70.

[17] Fukuda Megumi, Ayumu Yamashita, Mitsuo Kawato, and Hiroshi Imamizu. 2015.
Functional MRI neurofeedback training on connectivity between two regions

induces long-lasting changes in intrinsic functional network. Frontiers in Human
Neuroscience 9 (2015).

[18] Koen Minartz, Jens d’Hondt, and Odysseas Papapetrou. 2021. Multivariate corre-
lation discovery in static and streaming data. Technical Report. Eindhoven Univer-
sity of Technology. Available in https://github.com/CorrelationDetective/public.

[19] Ileena Mitra, Alinoë Lavillaureix, Erika Yeh, Michela Traglia, Kathryn Tsang,
Carrie E. Bearden, Katherine A. Rauen, and Lauren A. Weiss. 2017. Reverse
Pathway Genetic Approach Identifies Epistasis in Autism Spectrum Disorders.
PLOS Genetics 13, 1 (01 2017), 1–27. https://doi.org/10.1371/journal.pgen.1006516

[20] Abdullah Mueen, Suman Nath, and Jie Liu. 2010. Fast Approximate Correla-
tion for Massive Time-Series Data. In Proc. ACM International Conference on
Management of Data (SIGMOD ’10). ACM, 171–182.

[21] Hoang Vu Nguyen, Emmanuel Müller, Periklis Andritsos, and Klemens Böhm.
2014. Detecting Correlated Columns in Relational Databases with Mixed Data
Types. In Proc. 26th International Conference on Scientific and Statistical Database
Management (SSDBM ’14). ACM, Article 30, 12 pages.

[22] Hoang Vu Nguyen, Emmanuel Müller, Jilles Vreeken, Pavel Efros, and Klemens
Böhm. 2014. Multivariate Maximal Correlation Analysis. In Proc. 31st Interna-
tional Conference on Machine Learning - Volume 32 (ICML’14). 775–783.

[23] Örjan Carlborg and Chris S. Haley. 2004. Epistasis: too often neglected in complex
trait studies? Nature Reviews Genetics 5, 8 (2004), 618–625.

[24] Kistler RE, Eugenia Kalnay, William Collins, Suranjana Saha, G. White, John
Woollen, Muthuvel Chelliah, Wesley Ebisuzaki, Masao Kanamitsu, Vernon
Kousky, Huug Dool, Jenne RL, and Mike Fiorino. 2001. The NCEP/NCAR 50-
year reanalysis: monthly means CD-ROM and documentation. Bulletin of the
American Meteorological Society 82 (2001), 247–268.

[25] Camilo Rostoker, Alan Wagner, and Holger Hoos. 2007. A Parallel Workflow for
Real-time Correlation and Clustering of High-Frequency Stock Market Data. In
Proc. 21th International Parallel and Distributed Processing Symposium. 1–10.

[26] Venu Satuluri and Srinivasan Parthasarathy. 2012. Bayesian Locality Sensitive
Hashing for Fast Similarity Search. Proc. VLDB Endow. 5, 5 (2012), 430–441.

[27] Zhiyuan Tan, Aruna Jamdagni, Xiangjian He, Priyadarsi Nanda, and Ren Ping
Liu. 2014. A system for denial-of-service attack detection based on multivariate
correlation analysis. Trans. Parallel and Distributed Systems (TPDS) 25, 2 (2014),
447–456.

[28] Satosi Watanabe. 1960. Information Theoretical Analysis of Multivariate Corre-
lation. IBM Journal of Research and Development 4, 1 (1960), 66–82.

[29] Yingjun Wu, Jia Yu, Yuanyuan Tian, Richard Sidle, and Ronald Barber. 2019.
Designing Succinct Secondary Indexing Mechanism by Exploiting Column Cor-
relations. In Proc. International Conference on Management of Data (SIGMOD’19).
ACM, 1223–1240.

[30] Xiang Zhang, Feng Pan, Wei Wang, and Andrew Nobel. 2008. Mining non-
redundant high order correlations in binary data. Proc. VLDB Endow. 1, 1 (2008),
1178–1188.

[31] Yunyue Zhu and Dennis Shasha. 2002. StatStream: Statistical Monitoring of
Thousands of Data Streams in Real Time. In Proc. 28th International Conference
on Very Large Data Bases (VLDB ’02). 358–369.

[32] Anna Zilverstand, Bettina Sorger, Jan Zimmermann, Amanda Kaas, and Rainer
Goebel. 2014. Windowed Correlation: A Suitable Tool for Providing Dynamic
fMRI-Based Functional Connectivity Neurofeedback on Task Difficulty. PLOS
ONE 9, 1 (01 2014), 1–13.

Moneyball: Proactive Auto-Scaling in
Microsoft Azure SQL Database Serverless

Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu, and Ajay Kalhan
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA

firstname.lastname@microsoft.com

ABSTRACT

Microsoft Azure SQL Database is among the leading relational
database service providers in the cloud. Serverless compute au-
tomatically scales resources based on workload demand. When a
database becomes idle its resources are reclaimed. When activity
returns, resources are resumed. Customers pay only for resources
they used. However, scaling is currently merely reactive, not proac-
tive, according to customers’ workloads. Therefore, resources may
not be immediately available when a customer comes back online
after a prolonged idle period. In this work, we focus on reducing
this delay in resource availability by predicting the pause/resume
patterns and proactively resuming resources for each database. Fur-
thermore, we avoid taking away resources for short idle periods
to relieve the back-end from ineffective pause/resume workflows.
Results of this study are currently being used worldwide to find the
middle ground between quality of service and cost of operation.

PVLDB Reference Format:

Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu,
and Ajay Kalhan. Moneyball: Proactive Auto-Scaling in Microsoft Azure
SQL Database Serverless. PVLDB, 15(6): 1279-1287, 2022.

doi:10.14778/3514061.3514073

1 INTRODUCTION

Microsoft Azure SQL Databases [5], Google Cloud SQL Databases
[13], and Amazon RDS for SQL Server [3] are the leading relational
database service providers in the cloud. They deploy automatic,
fully managed databases to guarantee high Quality of Service (QoS)
to their customers, while controlling Cost of Goods Sold (COGS).

Azure SQL Database serverless automatically scales resources
based on demand and bills for the amount of resources used per
second [7]. However, resumes and pauses are currently merely reac-
tive, meaning that they do not take typical resource usage patterns
into account. Therefore, serverless compute can introduce delays
in resource availability after idle periods. Consequently, serverless
compute may be less suitable for time-critical applications than
provisioned compute that allocates a fixed amount of resources [6].

In this work, we aim to overcome the reactive nature of serverless
compute by proactively resuming resources based on historical
resume patterns. Furthermore, if pauses are short, the availability
time of resources is too fragmented for effective reuse. Thus, we
aim to relieve the back-end from short pauses.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514073

Challenges. Optimizing Azure SQL Database serverless tier is
a challenging endeavour for the following reasons.

(1) Large search space of tunable parameters. Proactive auto-scale
of resources depends onmany tunable parameters. The search space
is prohibitively expensive to be explored exhaustively. Therefore,
we identify trends of how these parameters influence the results
and choose a reasonable set of parameters. The choice of parame-
ters usually involves a trade-off between QoS and COGS [46]. For
example, resuming resources in advance will guarantee high QoS,
but waste COGS until these resources are used. We will discuss the
trade-offs, while exploring the search space of parameters.

(2) Opposing optimization objectives. We aim to enable proactive
resumes and avoid short pauses. However, these are opposing goals.
Indeed, increasing the number of proactive resumes will also in-
crease the number of wrong resumes, i.e., the customer did not
come online as expected. Wrong resumes will in turn increase the
number of pauses, some of which will be short. Also, reducing the
number of short pauses will reduce the number of resumes, mak-
ing the task of correct proactive resume harder because of fewer
historical resumes. Solving this catch-22 is the goal of this work.

(3) Changed resource usage patterns. Resource usage patterns on
serverless compute changed compared to provisioned compute. For
example, provisioned databases are typically short-lived and often
underutilized [33, 36, 39, 46]. In contrast to that, half of serverless
databases existed over three weeks and half of idle periods are
within a few hours (Figures 6 and 10(a)). At the same time, we ob-
serve certain similarities. For example, only a negligible percentage
of provisioned or serverless databases follow a strict daily or weekly
pattern. Therefore, we need to determine which lessons learned on
provisioned compute can be transferred to serverless compute.

State-of-the-Art Techniques. While there are approaches to
demand-driven auto-scale of resources in the cloud [27–30, 32, 37,
43–45], to the best of our knowledge, none of them addresses all
challenges described above. In particular, they do not focus on
achieving the contradictory goals of enabling proactive resume to
guarantee high QoS, while reducing the number of short pauses
to keep the operational costs low. Some of the existing approaches
studied resource allocation on provisioned compute [26, 33, 36,
39, 40, 46] and we will transfer lessons learned from provisioned
compute to serverless compute, when possible.

Our Proposed Solution. To address the challenges above, we
propose the Moneyball approach that finds the middle ground be-
tween the contradictory goals of enabling proactive resume, while
reducing the number of short pauses.1

1Similarly to the book and the movie “Moneyball” [1, 34], we apply statistical methods
to achieve good results, while minimizing costs. However, we do not borrow statistical
methods from this book.

To guarantee high QoS, we reduce delays in resource availability
on login. To this end, we predict the pause/resume patterns and
make recommendations when to proactively resume resources for
each database. We compare probabilistic and predictive approaches
to proactive resume and tune the key parameters to increase the
number of correct proactive resumes, while reducing the opera-
tional costs due to wrong proactive resumes and the wait time
intervals until the proactively resumed resources are used.

To reduce the back-end workload, we avoid short pauses. We
compare two alternative solutions. One, we restrict the number of
pauses per database and day (called a budget-based solution). Two,
we introduce a wait time interval (called logical pause) before we
scale resources down (called physical pause). We consider greedy
and predictive approaches and compare their results to the optimal
result. We tune the main parameters to reduce the number of short
pauses and the costs due to idle resources during avoided pauses.

Contributions. Cloud service providers have recently evolved
from provisioned to serverless compute [2, 7–9, 11, 14, 15, 17, 22, 23].
All of them face the challenge of provisioning resources only when
needed. We believe that Moneyball generalizes to the cloud model
in any company. Its key contributions are the following.

(1) We define the two-dimensional Moneyball problem space.
We propose a visual way to compare our proposed solutions to the
optimum and their impact on QoS and COGS.

(2) We summarize the main lessons learned during a decade of
analysis of provisioned SQL databases. We transfer this learning
to serverless compute, while solving the Moneyball problem. In
particular, we select features and compare ML models to heuristics
with respect to accuracy and maintenance overhead.

(3) We analyze production telemetry of serverless SQL databases
with respect to their lifespan and typical resource usage patterns
during half a year in tens of Azure regions where tens of thou-
sands of serverless databases are currently deployed. Given the size
and scope of this analysis, we believe that the usage patterns we
observed represent the behaviors of any serverless databases.

(4) We enable proactive resume based on historical resume pat-
terns per database. Up to 80% of resumes are proactive and correct
within several hours for long-lived databases that existed at least 3
weeks. 99% of long-lived databases benefit from proactive resumes.

(5) We avoid short pauses by logically pausing a database that
becomes idle before scaling its resources down. Logical pause is a
simple, effective, and flexible technique that avoids up to half of
pauses. 49% of databases benefit from this workload reduction.

2 MONEYBALL PROBLEM

Provisioned vs Serverless Compute. Resources of Azure SQL
Databases are currently allocated in two ways.

Provisioned compute allocates a fixed amount of resources that
does not change over time unless the customer explicitly requests
a different amount [6]. Resources of a database 𝑠 are resumed dur-
ing the entire life time of 𝑠 (Figure 1(a) and Table 1). However,
rigorous telemetry analysis reveals that these resources are often
underutilized [25, 26, 33, 36, 40, 46]. There are extensive idle periods
during which resources are wasted unless customers manually scale
resources down. This manual resource scaling is labor-intensive,
time-consuming, error-prone, neither scalable, nor durable.

Table 1: Table of notations

Notation Description

𝑆 Set of databases, 𝑠 ∈ 𝑆
𝑑 Weekday (e.g., Wednesday)
𝑊 Set of time windows within a day,𝑤 ∈𝑊
𝜃 Threshold
𝑘 Budget
𝑙 Duration of logical pause in hours
𝐻 (𝑠) Historical data of 𝑠
ℎ(𝑠, 𝑑) Number of 𝑑’s in 𝐻 (𝑠)

𝑟 (𝑠, 𝑑,𝑤)
Number of 𝑑’s on which 𝑠 was resumed during
𝑤 in 𝐻 (𝑠)

𝑝 (𝑠, 𝑑,𝑤) Probability of resume of 𝑠 on 𝑑 during𝑤
𝐻 (𝑠, 𝑑,𝑤) Historical data of 𝑠 on 𝑑 during𝑤
𝑃 (𝑠, 𝑑) Predicted pause/resume pattern of 𝑠 on 𝑑

Predict (𝑠, 𝑑)
Time complexity of predicting the pause/resume
pattern of 𝑠 on 𝑑

cost COGS per vCore per hour in dollars
vcores(𝑠) Maximum vCores of 𝑠

pauses(𝑠)
Total duration of all pauses of 𝑠 in hours without
proactive resume

wait (𝑠)
Total wait time in hours until proactively re-
sumed resources of 𝑠 are used

avoided (𝑠) Total duration of avoided pauses of 𝑠 in hours
allowed (𝑠) Number of pauses of 𝑠 that are longer than 𝑙
idle(𝑠, 𝑙) 𝑠 is idle during 𝑙
create(𝑠) 𝑠 is created
delete(𝑠) 𝑠 is deleted
login(𝑠) Customer logs in to 𝑠
logout (𝑠) Customer logs out of 𝑠
login(𝑠).time Time stamp of login(𝑠)
𝑝.start Start time stamp of a pause 𝑝

To overcome these limitations, serverless compute was recently
introduced [7]. The resources of a database 𝑠 are automatically
scaled based on demand. If the serverless database is online, then
scaling generally occurs with low latency since some resources
remain allocated which helps mitigate the performance impact from
compute warmup. However, if the serverless database is paused,
then more or even all compute resources may be deallocated which
elongates the latency to subsequently resume the database when
workload activity returns. This paper focuses on minimizing the
latency to resume a database since that has the greater performance
impact between these two auto-scaling scenarios.

When the customer logs in, resources are resumed (� in Fig-
ure 1(b)). When the customer logs out, resources are paused for this
database, reclaimed, and possibly assigned to other active databases
(). Customers are billed per second only when resources are re-
sumed for their databases. Thus, serverless compute minimizes both
the waste of resources and the costs for the customers. However,
serverless compute can be further optimized as described below.

Reactive vs Proactive Resume. Transitions between paused
and resumed states are not instantaneous (Figure 1(b)). A resume
workflow assigns resources to a database that becomes active, while

(a) Provisioned compute (b) Reactive auto-scale on serverless compute

Figure 1: Life cycle of a database

a pause workflow takes resources away from a database that be-
comes idle (Figure 2). Currently, resumes are merely reactive, not
proactive. Delays in resource availability may occur after long idle
periods. These delays make serverless compute less suitable for
time-critical applications than provisioned compute [6].

In this work, we aim to reduce these delays by proactively re-
suming resources based on historical resume patterns per database.
For example, if a database is usually resumed during a window𝑤 ,
we can proactively resume resources at the beginning of𝑤 .

Definition 2.1. (Correct ProactiveResume) A proactive resume
of a database 𝑠 within a window 𝑤 is correct if the resources of 𝑠
are used within𝑤 . Otherwise, a proactive resume is wrong.

However, if we proactively resume too far in advance, resources
will stay idle until the customer logs in and uses them. COGS are
wasted during these idle intervals. COGS are also wasted due to
wrong proactive resumes. We aim to enable proactive resume, while
keeping its operational cost low (Definition 4.6).

Figure 2: Reactive vs proactive resume

Effective vs Ineffective Pause. A pause is ineffective for short
idle periods because the availability time of resources is too frag-
mented for effective reuse (Figure 3). We aim to relieve the back-end
from frequent pause/resume workflows.

Definition 2.2. (Ineffective Pause) Given a threshold 𝑙 , a pause
is called ineffective if its duration is within 𝑙 .

However, if we do not pause for long idle intervals, resources
and COGS will be wasted. We aim to avoid up to half of pauses,
while reducing the operational costs (Definitions 5.2 and 5.4).

Figure 3: Effective vs ineffective pause

Moneyball ProblemStatement. In this work, we aim to achieve
the following three goals: (1) Maximize the number of correct proac-
tive resumes, (2) Minimize the number of short pauses, and (3) Min-
imize the operational costs of these two optimization techniques.

3 TRANSFER LEARNING FROM PROVISIONED
TO SERVERLESS COMPUTE

The resource usage patterns of provisioned Azure SQL Databases
have been rigorously studied for over a decade [26, 33, 36, 39, 40, 46].
In this section, we briefly summarize the main lessons learned that
can be helpful to solve the Moneyball problem and transfer this
learning to serverless compute, when possible.

3.1 Features

Provisioned Compute. Historical load is an indicator of the fu-
ture load per database. Some databases have stable load. Others
follow a business pattern. At least three weeks of historical data are
required to make a reliable load prediction [36, 40, 46]. Resource
usage patterns may be different for databases with different editions
(e.g., premium, standard), performance levels (i.e., number of Data-
base Transaction Units (DTU) [6]), and Azure regions [33, 36, 39].
Furthermore, resource usage patterns may change over time.

Serverless Compute. To capture result variation between dif-
ferent regions and weeks, we analyzed half a year of production
telemetry from tens of Azure regions where tens of thousands
serverless databases are currently deployed. We included all fea-
tures that can be useful for the prediction of pause/resume behavior
in our analysis. They are: timestamp in seconds, database identifier,
database state (1 means resumed, -1 means paused), duration of
time intervals during which this database was resumed or paused,
database compute capacity in maximum vCores, database creation
and deletion timestamps, and Azure region.

3.2 ML Models

Provisioned Compute. In our prior research [40, 41], we predicted
the load of provisioned databases using ARIMA [4], Prophet [21],
NimbusML [18], Neural Network [12], Exponential Smoothing [10]
and the Persistent Forecast heuristic that uses the load on a given
day as the prediction of the load on next day per database. ARIMA
and Prophet do not scale to tens of thousands of databases in large
Azure regions. While NimbusML is the most accurate model, the
gain in accuracy is not significant compared to Persistent Forecast
because provisioned databases fall into one of the following ex-
tremes: (1) Most databases are easily predictable even by Persistent
Forecast because their load is stable or follows a pattern (Defini-
tions 3.1 and 3.2). (2) Remaining databases are hard to predict even
by advanced ML models because their load tends to be random.

Serverless Compute. To verify that this conclusion holds for
serverless databases, we classified them by their typical pause/re-
sume patterns into the following groups.

Definition 3.1. (Stable Database) Given historical data𝐻 (𝑠) of a
database 𝑠 and a threshold 𝜃 , 𝑠 is called stable if 𝑠 is either resumed
or paused at least 𝜃% of the time in 𝐻 (𝑠). Otherwise, 𝑠 is unstable.

Definition 3.2. (Pattern) Let 𝑠 be an unstable database, 𝐻 (𝑠) be
the historical data of 𝑠 , 𝑑 be a weekday,𝑤 be a window, and 𝜃 be a
threshold. 𝑠 follows a pattern if at least 𝜃% of its resumes and pauses
happen within the window𝑤 on each weekday 𝑑 in 𝐻 (𝑠).

Definition 3.3. (Predictable Database) A database 𝑠 is called
predictable if 𝑠 is stable or follows a pattern. Otherwise, 𝑠 is called
unpredictable.

(a) Accuracy of ML models (b) Pause duration

Figure 4: Results of ML models

We randomly sampled several thousands of serverless databases
in oneAzure region. Similarly to provisioned databases, most server-
less databases are predictable even under strict constraints. Indeed,
74% of serverless databases are stable at least 90% of the time. 3% fol-
low a pattern within 15 minutes at least 90% of the time. Remaining
23% of databases are unpredictable.

We trained ML models on three weeks of historical data and
predicted the load on the following day per database. Given that
our input data is binary (Section 3.1), we measure hinge loss of
NimbusML [18], Neural Network [12], Exponential Smoothing [10],
ML.NET Binary Classifier [16], and Persistent Forecast for each
class of databases in Figure 4(a). As expected, all models are more
accurate for predictable databases than for unpredictable databases.
Similarly to provisioned compute, NimbusML is the most accurate
among these models for both classes of databases. Thus, we include
NimbusML in our detailed analysis below.

4 PROACTIVE RESUME

In this section, we analyze resume patterns per database over time,
make recommendations when to proactively resume a database,
and evaluate the effectiveness of these recommendations.

4.1 Proactive Resume Algorithms

Example 4.1. The database in Figure 5 is unpredictable by Defini-
tion 3.3. However, a closer look reveals that this database is usually
resumed between 5:40AM and 9:20AM on Wednesdays. These re-
sumes are highlighted by red arrows. Only one expected resume is
missing on 2/17. Next, we describe how to detect such recurring
resumes and make them proactive.

Definition 4.2. (Probability of Resume) Let 𝐻 (𝑠) be the histor-
ical data of a database 𝑠 , ℎ(𝑠, 𝑑) be the number of weekdays 𝑑 in
𝐻 (𝑠), and 𝑟 (𝑠, 𝑑,𝑤) be the number of 𝑑’s on which 𝑠 was resumed
during a window𝑤 in 𝐻 (𝑠) (Table 1). The probability of resume of

𝑠 on 𝑑 during𝑤 is computed as 𝑝 (𝑠, 𝑑,𝑤) = 𝑟 (𝑠,𝑑,𝑤)
ℎ (𝑠,𝑑) [20].

Example 4.3. Given eight weeks of history in Figure 5, the proba-
bility of resume of this database 𝑠 on Wednesday between 5:40 and
9:20 is 𝑝 (𝑠,Wednesday, [5:40, 9:20]) = 7

8
= 0.875.

Definition 4.4. (Probabilistic Resume Recommendation) Gi-
ven a threshold 𝜃 , we recommend to proactively resume a database
𝑠 on a weekday 𝑑 at the beginning of a window𝑤 if 𝑝 (𝑠, 𝑑,𝑤) ≥ 𝜃 .

Figure 5: Recurring resumes

Probabilistic Resume computes resume recommendations 𝑅
on a weekday 𝑑 based on historical data of databases 𝑆 . For each
database 𝑠 ∈ 𝑆 and window𝑤 ∈𝑊 , Algorithm 1 adds a recommen-
dation [𝑠, 𝑑,𝑤] to proactively resume a database 𝑠 on a weekday
𝑑 at the beginning of a window 𝑤 to the set of results 𝑅 if the
probability of resume 𝑝 (𝑠, 𝑑,𝑤) satisfies the threshold 𝜃 .

Complexity. Let |𝑆 | be the number of databases in 𝑆 , |𝑊 | be
the number of windows in𝑊 , and |𝐻 (𝑠, 𝑑,𝑤) | be the number of
tuples in historical data per database, weekday, and window. The
time complexity of Algorithm 1 is 𝑂 (|𝑆 | × |𝑊 | × |𝐻 (𝑠, 𝑑,𝑤) |). Its
space complexity is determined by the number of databases |𝑆 |,
the number of tuples in historical data per database |𝐻 (𝑠) |, and
the number of recommendations per database in 𝑅. The number of
results per database is in tern determined by the number of windows
|𝑊 |. In summary, the space complexity is 𝑂 (|𝑆 | × (|𝐻 (𝑠) | + |𝑊 |)).

Algorithm 1 Probabilistic proactive resume

Input: Historical data of databases 𝑆 , set of windows𝑊 within
one day, probability threshold 𝜃

Output: Set of resume recommendations 𝑅 on a weekday 𝑑
1: for each 𝑠 ∈ 𝑆 do

2: for each𝑤 ∈𝑊 do

3: if 𝑝 (𝑠, 𝑑,𝑤) ≥ 𝜃 then 𝑅 ← 𝑅 ∪ [𝑠, 𝑑,𝑤]

4: return 𝑅

Definition 4.5. (Predictive Resume Recommendation) Given
the predicted pause/resume pattern 𝑃 (𝑠, 𝑑,𝑤) for a database 𝑠 on
a weekday 𝑑 during a window 𝑤 , we recommend to proactively

resume 𝑠 on 𝑑 at the beginning of𝑤 if ∃resume ∈ 𝑃 (𝑠, 𝑑,𝑤).

Predictive Resume algorithm is analogous to Algorithm 1 ex-
cept that it consumes predicted pause/resume patterns and detects
predicted resumes per Definition 4.5. While any ML model can be
plugged into this algorithm to predict pause/resume patterns, we
chose NimbusML since it is the most accurate model in Figure 4(a).

Complexity. Predictive resume introduces the overhead of pre-
dicting the pause/resume pattern per database and day, denoted
Predict (𝑠, 𝑑). Thus, the time complexity is 𝑂 (|S | × (Predict (𝑠, 𝑑)+
|𝑊 | × |𝑃 (𝑠, 𝑑,𝑤) |)). Predictive resume also stores the predicted
pause/resume pattern per database and day, denoted 𝑃 (𝑠, 𝑑). The
space complexity is 𝑂 (|𝑆 | × (|𝐻 (𝑠) | + |𝑃 (𝑠, 𝑑) | + |𝑊 |)).

4.2 Middle Ground between QoS and COGS

While proactive resumes improve QoS, they also shorten pauses
during which resources can be reused and COGS can be saved.
Also, some proactive resumes will be wrong unavoidably. COGS
are wasted due to wrong resumes as well. Definition 4.6 quantifies
the operational cost of proactive resume.

Figure 6: Lifespan

(a) Proactive resumes: Probabilistic re-
sume (P) vs predictive resume (N)

(b) Benefited databases (c) Resume cost index

Figure 7: Varying size of time window

Definition 4.6. (Resume Cost Index) Let pauses(𝑠) be the total
duration of all pauses of a database 𝑠 in hours without proactive
resume. Let vcores(𝑠) be the maximum vCores of 𝑠 and cost be COGS
per vCore per hour in dollars. The total cost savings are:

Total cost savings =
∑
𝑠∈𝑆

pauses(𝑠) × vcores(𝑠) × cost (1)

Let wait (𝑠) be the total wait time in hours until proactively
resumed resources of a database 𝑠 are used. The wasted cost is:

Wasted cost =
∑
𝑠∈𝑆

wait (𝑠) × vcores(𝑠) × cost (2)

Resume cost index corresponds to the ratio of the wasted cost to
the total cost savings.

The cost index depends on several tunable parameters such as
the size of the window and the length of historical data. We now
experimentally find the middle ground between QoS and COGS,
while enabling proactive resume.

In Figure 6, we measure the percentage of databases per their
lifetime in weeks. Half of databases existed at least 3 weeks and
thus have enough history to make a reliable prediction (Section 3).

Definition 4.7. (Long-Lived Database) A database is long-lived
if it exists at least three weeks. Otherwise, it is short-lived.

Setup. In Figures 7–10 and 12, results are shown for several
thousands of randomly sampled serverless long-lived databases in
one Azure region. Unless stated otherwise, the length of historical
(training) data is 3 weeks. The length of validation time interval
is 1 day. Default size of the window is 5 hours. The window slides
every 10 minutes. Default probability threshold is 0.9.

Size of the Window. In Figure 7, we vary the size of the win-
dow from 1 to 9 hours and measure the percentage of correct and
wrong proactive resumes among all resumes (Definition 2.1), the
percentage of database that have correct proactive resumes, and
the resume cost index (Definition 4.6)

The percentages of correct resumes increase from 22 to 56 for
probabilistic resume as the window grows in Figure 7(a). These per-
centages increase from 63 to 80 for predictive resume. Probabilistic
resume benefits 25 to 62% of databases as the window grows in
Figure 7(b). Independently from the size of the window, predictive
resume benefits 99% of databases. The percentages of correct re-
sumes and benefited databases is up to 3X higher for predictive
resume than for probabilistic resume.

Unfortunately, the cost index also grows with the window since
proactively resumed resources stay idle longer. Probabilistic resume
has up to 5X fewer wrong resumes. Therefore, its cost index is up
to 5X lower than the cost index of predictive resume in Figure 7(c).

Length of Historical Data. In Figure 8, we vary the length of
historical data from 3 to 7 weeks. Given 3 weeks of history, 36% of
resumes are proactive and correct, 43% of databases have correct
proactive resumes, 12% of resumes are proactive and wrong, and
the cost index is 4% for probabilistic resume. These percentages
decrease as the length of historical data grows.

There is are no clear trends for the results of predictive resume
across weeks. 70 to 80% of resumes are proactive and correct. 99%
of databases have correct resumes. 18 to 29% of resumes are wrong.
The cost index ranges from 7 to 12%. Similarly to Figure 7, predictive
resume has up to 3X more correct resumes and benefited databases
than probabilistic resume. Predictive resume also has up to 18X
more wrong resumes. Thus, its cost index is up to 10X higher than
the cost index of probabilistic resume.

(a) Proactive resumes: Probabilistic re-
sume (P) vs predictive resume (N)

(b) Resume cost index

Figure 8: Varying length of historical data

Summary. Most resumes are proactive and correct within a few
hours for long-lived databases. Most long-lived databases benefit
from this QoS optimization. Cost index is low for short windows.

5 AVOIDING INEFFECTIVE PAUSES

Pauses are ineffective for short idle periods. Indeed, no COGS are
saved and unnecessary pause/resume workloads are introduced. To
alleviate these workloads from the back-end, we avoid ineffective
pauses by restricting the number of pauses (called budget) and
delaying pauses (called logical pause).

5.1 Budgeting Algorithms

One straightforward idea that comes to mind is to restrict the
number of pauses per database and day and prioritize long pauses.

Definition 5.1. (Budget) Budget 𝑘 is the number of allowed
pauses per database 𝑠 and window𝑤 .

A given budget can be spent in different ways as defined below.
Greedy Budget allows the first 𝑘 pauses and avoids all following

pauses per database and day. Let logout𝑖 (𝑠).time and login𝑖+1 (𝑠).time

be the time stamps of two consecutive logout and login events for
a database 𝑠 . For each database 𝑠 , Algorithm 2 stores the beginning
logout𝑖 (𝑠).time and the end login𝑖+1 (𝑠).time of each avoided pause
in the set of results 𝑅.

Complexity. Given the number of logouts |logout (𝑠, 𝑑) | for a data-
base 𝑠 on a weekday 𝑑 , the time complexity of Algorithm 2 is
𝑂 (|𝑆 | × |logout (𝑠, 𝑑) |). Since avoided pauses are stored in the set of
results 𝑅, the space complexity is 𝑂 (|𝑆 | × (|logout (𝑠, 𝑑) | − 𝑘)).

Algorithm 2 Greedy budget

Input: Login/logout events of databases 𝑆 on weekday 𝑑 , budget 𝑘
Output: Set of avoided pauses 𝑅 on a weekday 𝑑
1: for each 𝑠 ∈ 𝑆 do 𝑛 ← 1

2: for each logout𝑖 (𝑠) do
3: if 𝑛 > 𝑘 then

4: 𝑅 ← 𝑅 ∪ [𝑠, logout𝑖 (𝑠) .time, login𝑖+1 (𝑠) .time]

5: else 𝑛 ← 𝑛 + 1
6: return 𝑅

Algorithm 2 disregards the duration of avoided pauses. In the
worst case, it spends the budget on early short pauses and avoids
later long pauses which makes greedy budget expensive.

Definition 5.2. (Pause Cost Index) Let avoided (𝑠) be the dura-
tion of avoided pauses in hours for a database 𝑠 . Other notations
are summarized in Table 1. Then, the wasted cost is computed as:

Wasted cost =
∑
𝑠∈𝑆

avoided (𝑠) × vcores(𝑠) × cost (3)

The pause cost index is defined as the ratio of the wasted cost
(Equation 3) to the total cost savings (Equation 1).

Predictive Budget prioritizes predicted long pauses over pre-
dicted short pauses, while spending the budget. For each database
𝑠 ∈ 𝑆 , Algorithm 3 consumes the predicted pause/resume pattern
𝑃 (𝑠, 𝑑), extracts the longest 𝑘 predicted pauses, and avoids all ac-
tual pauses that do not start within a given time delta 𝛿 of a long
predicted pause.

Complexity. Predictive budget introduces the overhead of pre-
dicting the pause/resume pattern per database and day Predict (𝑠, 𝑑),
sorting the predicted pauses by duration in𝑂 (|𝑃 (𝑠, 𝑑) | log |𝑃 (𝑠, 𝑑) |)
time, and comparing the beginnings of 𝑘 longest predicted pauses
to the timestamps of actual logouts in 𝑂 (|logout (𝑠, 𝑑) | × 𝑘) time.
The time complexity is𝑂 (|𝑆 |× (Predict (𝑠, 𝑑)+ |𝑃 (𝑠, 𝑑) | log |𝑃 (𝑠, 𝑑) |+
|logout (𝑠, 𝑑) | × 𝑘)). Algorithm 3 stores the historical data, the pre-
dicted pause/resume pattern, and the avoided pauses per database.
Its time complexity is𝑂 (|𝑆 | × (|𝐻 (𝑠) | + |𝑃 (𝑠, 𝑑) | + |logout (𝑠, 𝑑) | −𝑘)).

Algorithm 3 Predictive budget

Input: Login/logout events of databases 𝑆 on weekday 𝑑 , predicted
pause/resume patterns of 𝑆 on 𝑑 , budget 𝑘 , window𝑤 = 2 × 𝛿

Output: Set of avoided pauses 𝑅 on a weekday 𝑑
1: for each 𝑠 ∈ 𝑆 do pauses← getLongPauses(𝑃 (𝑠, 𝑑), 𝑘), 𝑛 ← 1

2: for each logout𝑖 (𝑠) do
3: if 𝑛 > 𝑘 or �𝑝 ∈ 𝑝𝑎𝑢𝑠𝑒𝑠 such that
4: logout𝑖 (𝑠) .time−𝛿 ≤ 𝑝.start ≤ logout𝑖 (𝑠) .time+𝛿 then
5: 𝑅 ← 𝑅 ∪ [𝑠, logout𝑖 (𝑠) .time, login𝑖+1 (𝑠) .time]

6: else 𝑛 ← 𝑛 + 1
7: return 𝑅

Optimal Budget. To evaluate the effectiveness of the greedy
and predictive budgets, we compare them to the optimal budget
that avoids the top 𝑘 shortest pauses per database.

Value of Budget. The percentages of avoided pauses and the
cost index depend on the value of 𝑘 which we vary in Figure 9.
Greedy and optimal budget avoid 56 to 4% of pauses as budget grows
from 1 to 5 in Figure 9(a). 56 to 2% of databases have avoided pauses
for budget 1 to 5. While greedy budget disregards the duration of
avoided pauses, optimal budget avoids the shortest 𝑘 pauses per
database and day. Thus, the cost of optimal budget is one order of
magnitude lower than the cost of greedy budget in Figure 9(b).

Predictive budget delays pausing a database until long predicted
pauses to reduce the time intervals during which resources are
idle and COGS are wasted. However, if the start or duration of
the longest 𝑘 pauses per database and day are predicted wrong,
then the predictive algorithm does not spend the available budget
and avoids up to 5X more pauses than the greedy algorithm in
Figure 9(a). Nevertheless, the cost of the predictive algorithm is up
to 3X lower than the cost of the greedy algorithm for budget 2 to
4 because the predictive algorithm prioritizes long pauses while
spending the budget (Figure 9(b)). Unfortunately, predictive budget
does not guarantee lower cost compared to greedy budget. In fact,
the cost of the predictive algorithm is 55% higher than the cost of
the greedy algorithm for budget 1 in Figure 9(b).

(a) Avoided pauses (b) Pause cost index

Figure 9: Budget

Budget can be defined at different system granularities (e.g., per
database, per tenant ring, per cluster) and for different windows
(e.g., daily, weekly, monthly). However, we observed similar results
to Figure 9. We do not consider global budget because resources
are not shared across clusters in Azure.

Summary. Greedy budget disregards the duration of avoided
pauses. Thus, its cost index is one order of magnitude higher than

the cost index of optimal budget. Predictive budget does not always
spend the available budget and thus does not guarantee lower cost
compared to greedy budget.

5.2 Logical Pause-Based Algorithms

Another simple idea is to wait for the customer to come back online
before taking resources away from her database.

Definition 5.3. (Logical Pause, Physical Pause) Let logout𝑖 (𝑠) .
time and login𝑖+1 (𝑠) .time be the time stamps of two consecutive
logout and login events for 𝑠 . Let 𝑡 be the time stampwhen resources
are taken away from 𝑠 such that logout𝑖 (𝑠).time < 𝑡 < login𝑖+1 (𝑠) .
time. The time interval (logout𝑖 (𝑠) .time, 𝑡) is called logical pause.
The time interval [𝑡, login𝑖+1 (𝑠) .time) is called physical pause.

Greedy Logical Pause logically pauses a database 𝑠 for the time
interval 𝑙 when the customer logs out.

Complexity. The time complexity of Algorithm 4 is the same as
for Algorithm 2. Its space complexity is 𝑂 (|𝑆 | × |logout (𝑠, 𝑑) |).

Algorithm 4 Greedy logical pause

Input: Login/logout events of databases 𝑆 on weekday 𝑑 , duration
of logical pause 𝑙

Output: Set of avoided pauses 𝑅 on a weekday 𝑑
1: for each 𝑠 ∈ 𝑆 do

2: for each logout𝑖 (𝑠) do
3: if logout𝑖 (𝑠) .time + 𝑙 ≤ login𝑖+1 (𝑠).time then

4: 𝑅 ← 𝑅 ∪ [𝑠, logout𝑖 (𝑠) .time, logout𝑖 (𝑠).time + 𝑙]
5: else 𝑅 ← 𝑅 ∪ [𝑠, logout𝑖 (𝑠) .time, login𝑖+1 (𝑠).time]

6: return 𝑅

During logical pause, resources are still available in case the cus-
tomer comes back online. In this way, we reduce delays in resource
availability, while avoiding short pauses. However, resources are
idle during avoided pauses (Line 5). In addition, pauses that are
longer than 𝑙 are shortened by greedy logical pauses (Line 4). This
makes greedy pause expensive.

Definition 5.4. (Greedy Pause Cost Index) Let 𝑙 be the duration
of logical pause in hours, avoided (𝑠) be the duration of avoided
pauses in hours for a database 𝑠 , and allowed (𝑠) be the number of
pauses of 𝑠 that are longer than 𝑙 . Other notations are summarized
in Table 1. Then, the wasted cost is computed as follows:

Wasted cost =
∑
𝑠∈𝑆

(avoided (𝑠) + 𝑙 × allowed (𝑠)) × vcores(𝑠) × cost

The greedy pause cost index is defined as the ratio of the wasted
cost to the total cost savings (Equation 1).

Predictive Logical Pause avoids predicted short pauses without
reducing the duration of predicted long pauses. For each database
𝑠 ∈ 𝑆 , Algorithm 5 consumes the predicted pause/resume pattern
𝑃 (𝑠, 𝑑) and computes the maximal duration of predicted pauses
within the time delta 𝛿 of each logout. If this maximal duration is
shorter than logical pause 𝑙 , then this pause is avoided.

Complexity. Algorithm 5 predicts the pause/resume pattern per
database and day and computes the maximal duration of predicted

pauses that start within the time delta 𝛿 of each logout. Its time
complexity is𝑂 (|𝑆 | × (Predict (𝑠, 𝑑) + |logout (𝑠, 𝑑) | × |𝑃 (𝑠, 𝑑) |)). Al-
gorithm 5 stores the historical data, the predicted pause/resume
pattern, and the avoided pauses per database. Its space complexity
is 𝑂 (|𝑆 | × (|𝐻 (𝑠) | + |𝑃 (𝑠, 𝑑) | + |𝑙𝑜𝑔𝑜𝑢𝑡 (𝑠, 𝑑) |)).

Algorithm 5 Predictive logical pause

Input: Login/logout events of databases 𝑆 on weekday 𝑑 , predicted
pause/resume patterns of 𝑆 on 𝑑 , duration of logical pause 𝑙 ,
window𝑤 = 2 × 𝛿

Output: Set of avoided pauses 𝑅 on a weekday 𝑑
1: for each 𝑠 ∈ 𝑆 do

2: for each logout𝑖 (𝑠) do
3: 𝑤𝑖 ← [logout𝑖 (𝑠).time − 𝛿, logout𝑖 (𝑠) .time + 𝛿]
4: maxDuraiton← getMaxPauseDuration(𝑃 (𝑠, 𝑑),𝑤𝑖)

5: if maxDuration < 𝑙 then
6: 𝑅 ← 𝑅 ∪ [𝑠, logout𝑖 (𝑠) .time, login𝑖+1 (𝑠).time]

7: return 𝑅

Optimal Logical Pause. To evaluate the effectiveness of the
greedy and predictive logical pause, we compare them to the optimal
logical pause that avoids all pauses that are shorter than 𝑙 .

Duration of Logical Pause. The number of avoided pauses and
the cost index depend on the duration of logical pause 𝑙 that we
vary in Figure 10. The greedy and optimal algorithms avoid 26 to
70% of pauses in Figure 10(a) and benefit 33 to 58% of databases
as the duration of logical pause increases from 1 to 11 hours. The
cost index of the greedy algorithm is up to 6X higher than the cost
index of the optimal algorithm in Figure 10(b).

Since predicted pauses tend to be shorter than the actual pauses
(Figure 4(b)), the predictive algorithm avoids up to 19% more pauses
than the greedy algorithm in Figure 10(a). Thus, the cost index of
the predictive algorithm up to 4X higher than the cost index of the
greedy algorithm in Figure 10(b).

(a) Avoided pauses (b) Pause cost index

Figure 10: Logical pause

Summary. Greedy logical pause is a simple, flexible, and effec-
tive technique to avoid short pauses. Most databases benefit from
this optimization technique at relatively low cost.

6 PUTTING IT ALL TOGETHER

In this section, we summarize how proactive resume and logical
pause work together to proactively scale serverless databases. We
also evaluate the impact of these optimization techniques.

Figure 11: Proactive auto-scale on serverless compute

Proactive Auto-Scale on Serverless Compute. Figure 11 for-
malizes the life cycle of a serverless proactively scaled database
(compare to Figure 1). Let 𝑑 be the current weekday and𝑤 be the
current window. Other notations are summarized in Table 1.

The database 𝑠 stays resumed as long as 𝑠 is active or there is
a recommendation to keep 𝑠 proactively resumed on 𝑑 during 𝑤 ,
denoted ∃[𝑠, 𝑑,𝑤] ∈ 𝑅. If there is no such recommendation, then
𝑠 is logically paused once the customer logs out (� in Figure 11).
𝑠 stays logically paused for at most the time interval 𝑙 . During
logical pause, if the customer logs in or there is a recommendation
to proactively resume 𝑠 on 𝑑 during𝑤 , then 𝑠 is resumed (). If 𝑠
stays idle during logical pause 𝑙 and no resume is expected during
on 𝑑 during𝑤 , then 𝑠 is physically paused (
). 𝑠 stays physically
paused until 𝑠 is resumed once the customer logs in or there is a
recommendation to proactively resume 𝑠 on 𝑑 during𝑤 (�).

Impact ofMoneyball. Figure 12 illustrates the two-dimensional
problem space where each dimension corresponds to the optimiza-
tion technique enabled by Moneyball. X-axis represents the percent-
age of correct proactive resumes, while Y-axis depicts the percent-
age of avoided pauses. Rectangles represent alternative solutions
and numbers correspond to their respective cost indexes.

In reactive approach, no resumes are proactive, no pauses are
avoided, and thus no COGS are wasted (i.e., the cost index is 0).
This case is shown as a white rectangle in Figure 12.

Ideally, all resumes are proactive and correct. In addition, up to
half of pauses are avoided and these avoided pauses are the shortest
to reduce resource idleness and wasted COGS. The cost index of
the optimal solution is up to 0.02 (Definition 5.2). The range of
these unrealistic optimal solutions is shown as a black rectangle.
The area between the reactive approach and the optimal solution,
highlighted by blue frame, is the potential room for improvement.

To avoid ineffective pauses, we introduce a wait time interval,
called logical pause, before scaling resources down. Given that
resources are idle during logical pauses, this solution wastes COGS.
The number of avoided pauses and the cost index depend on the
duration of logical pauses (Figure 10). For example, if logical pause
is 4 hours, 53% of pauses are avoided and the cost index is 0.1
(Definition 5.4). The spectrum of logical-pause-based solutions is
shown as a light gray rectangle.

Up to 80% of all resumes are proactive and correct within several
hours for long-lived databases. Due to wrong resumes and wait
time until the proactively resumed resources are used, the cost
index is 0.16 (Definition 4.6). Combining proactive resume with
logical pause makes up to 80% of resumes proactive and correct for
long-lived databases, while still avoiding up to half of pauses. This
combinedMoneyball approach is shown as a dark gray rectangle. Its
cost index is 0.26 which we consider to be reasonable cost for these

Figure 12: Moneyball problem space

optimization techniques. The striped area between the reactive
approach and Moneyball represents the impact of this work.

7 RELATEDWORK

Self-driving databases [19, 38] in general and demand-driven auto-
scale of resources [26–30, 32, 37, 43–45] in particular have become
popular research directions in the recent years. However, some
of these state-of-the-art approaches are merely reactive [26–28].
In contrast, our Moneyball approach is proactive based on typical
resource usage patterns per database (Section 4).

Some approaches avoid andmitigate under-estimation errors [44],
reconfigure databases based on predicted load [45], or benchmark
the efficiency of a cloud service [36]. These mechanisms are orthog-
onal to the Moneyball problem (Section 2).

Other approaches focus on load analysis [25, 32, 35, 42], load
prediction using machine learning and other techniques [24, 29–
31, 33, 36, 39, 40, 43, 46], or learning a relationship between avail-
able resources and performance [37]. We transferred learning from
these approaches to Azure SQL Database serverless to solve the
Moneyball problem (Sections 3–5).

While several state-of-the-art approaches focus on solving the
trade-off between QoS and COGS in the cloud [27, 29, 33, 36, 39, 43,
44, 46], none of them achieves the contradictory goals of enabling
proactive resume to guarantee high QoS and avoiding short pauses
to alleviate this workload, while controlling operational costs at the
same time. This is the key contribution of our Moneyball approach.

8 CONCLUSIONS

The Moneyball approach introduces two optimization techniques
of Microsoft Azure SQL Database serverless. (1) To reduce delays in
resource availability, we predict resume patterns per database over
time and proactively resume resources. (2) To reduce the back-end
workload, we avoid short pauses by logically pausing a database
that becomes idle before scaling its resources down. We compared
several algorithms and tuned their key parameters to keep the
operational cost of these optimization techniques low. Results of
this study are used in production in all Azure regions.

ACKNOWLEDGMENTS

The authors thank Ehi Nosakhare and Karthik Rajendran for their
hard work predicting the load of provisioned SQL databases. Their
findings guided our approach on serverless compute. We also thank
Carlo Curino, Yiwen Zhu, and VLDB reviewers for their feedback.

REFERENCES
[1] 2011. Moneyball (film). Retrieved December 15, 2021 from https://en.wikipedia.

org/wiki/Moneyball_(film)
[2] 2021. Alibaba Cloud Function Compute. Retrieved December 15, 2021 from

https://www.alibabacloud.com/product/function-compute
[3] 2021. Amazon RDS for SQL Server. Retrieved December 15, 2021 from https:

//aws.amazon.com/rds/sqlserver
[4] 2021. ARIMA. Retrieved December 15, 2021 from https://pypi.org/project/

pmdarima
[5] 2021. Azure SQL Database. Retrieved December 15, 2021 from https://azure.

microsoft.com/en-us/products/azure-sql/database
[6] 2021. Azure SQL Database pricing. Retrieved December 15, 2021 from https:

//azure.microsoft.com/en-us/pricing/details/azure-sql-database
[7] 2021. Azure SQL Database serverless. Retrieved December 15, 2021 from https:

//docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
[8] 2021. CockroachDB Serverless. Retrieved December 15, 2021 from https://www.

cockroachlabs.com/lp/serverless/
[9] 2021. Databricks Serverless SQL. Retrieved December 15, 2021 from https:

//databricks.com/blog/2021/08/30/announcing-databricks-serverless-sql.html
[10] 2021. Exponential Smoothing. Retrieved December 15, 2021 from

https://www.statsmodels.org/stable/generated/statsmodels.tsa.holtwinters.
ExponentialSmoothing.html

[11] 2021. Fauna Serverless. Retrieved December 15, 2021 from https://fauna.com/
serverless

[12] 2021. GluonTS. Retrieved December 15, 2021 from https://gluon-ts.mxnet.io/
[13] 2021. Google Cloud SQL. Retrieved December 15, 2021 from https://cloud.google.

com/sql
[14] 2021. Google Serverless Computing. Retrieved December 15, 2021 from https:

//cloud.google.com/serverless
[15] 2021. IBM Cloud Functions. Retrieved December 15, 2021 from https://www.ibm.

com/cloud/functions
[16] 2021. ML.NET Binary Trainer. Retrieved December 15, 2021

from https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.trainers.fasttree.
fastforestbinarytrainer

[17] 2021. MongoDB Serverless. Retrieved December 15, 2021 from https://www.
mongodb.com/cloud/atlas/serverless

[18] 2021. NimbusML. Retrieved December 15, 2021 from https://docs.microsoft.com/
en-us/python/api/nimbusml/nimbusml.timeseries.ssaforecaster

[19] 2021. Oracle Autonomous Database. Retrieved December 15, 2021 from https:
//www.oracle.com/autonomous-database/

[20] 2021. Probability theory. Retrieved December 15, 2021 from https://en.wikipedia.
org/wiki/Event_(probability_theory)

[21] 2021. Prophet. Retrieved December 15, 2021 from https://facebook.github.io/
prophet

[22] 2021. Serverless on AWS. Retrieved December 15, 2021 from https://aws.amazon.
com/serverless/

[23] 2021. Snowflake Serverless. Retrieved December 15, 2021 from https://docs.
snowflake.com/en/user-guide/admin-serverless-billing.html

[24] Rodrigo Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar Buyya. 2014.
Workload Prediction Using ARIMA Model and Its Impact on Cloud Applications’
QoS. IEEE Transactions on Cloud Computing 3 (08 2014), 449–458.

[25] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
SOSP. 153–167.

[26] Sudipto Das, Feng Li, Vivek R. Narasayya, and Arnd Christian König. 2016.
Automated Demand-driven Resource Scaling in Relational Database-as-a-Service.
In SIGMOD. 1923–1924.

[27] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-Efficient
and QoS-Aware Cluster Management. SIGPLAN Not. 49, 4 (2014), 127–144.

[28] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ra-
masamy. 2017. Dhalion: Self-Regulating Stream Processing in Heron. In Proc.
VLDB Endow. 1825–1836.

[29] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. PRESS: PRedictive Elastic
ReSource Scaling for cloud systems. In TNSM. 9–16.

[30] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. 2012. Empirical Prediction
Models for Adaptive Resource Provisioning in the Cloud. Future Generation
Comp. Syst. 28 (01 2012), 155–162.

[31] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. 2012. Workload Char-
acterization and Prediction in the Cloud: A Multiple Time Series Approach. In
IEEE Network Operations and Management Symposium. 1287–1294.

[32] Cinar Kilcioglu, Justin M. Rao, Aadharsh Kannan, and R. Preston McAfee. 2017.
Usage Patterns and the Economics of the Public Cloud. InWWW. 83–91.

[33] Willis Lang, Karthik Ramachandra, David J. DeWitt, Shize Xu, Qun Guo, Ajay
Kalhan, and Peter Carlin. 2016. Not for the Timid: On the Impact of Aggressive
over-Booking in the Cloud. Proc. VLDB Endow. 9, 13 (2016), 1245–1256.

[34] Michael Lewis. 2003. Moneyball: The Art of Winning an Unfair Game. W.W.
Norton and Company.

[35] Asit K. Mishra, Joseph L. Hellerstein, Walfredo Cirne, and Chita R. Das. 2010. To-
wards Characterizing Cloud Backend Workloads: Insights from Google Compute
Clusters. SIGMETRICS Perform. Eval. Rev. 37, 4 (March 2010), 34–41.

[36] Justin Moeller, Zi Ye, Katherine Lin, and Willis Lang. 2021. Toto - Benchmarking
the Efficiency of a Cloud Service. In SIGMOD. 2543–2556.

[37] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal,
Zhikui Wang, Sharad Singhal, and Arif Merchant. 2009. Automated Control of
Multiple Virtualized Resources. In EuroSys. 13–26.

[38] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu,
Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management Systems.
In CIDR.

[39] Jose Picado, Willis Lang, and Edward C. Thayer. 2018. Survivability of Cloud
Databases - Factors and Prediction. In SIGMOD. 811–823.

[40] Olga Poppe, Tayo Amuneke, Dalitso Banda, Aritra De, Ari Green, Manon
Knoertzer, Ehi Nosakhare, Karthik Rajendran, Deepak Shankargouda, Meina
Wang, Alan Au, Carlo Curino, Qun Guo, Alekh Jindal, Ajay Kalhan, Morgan
Oslake, Sonia Parchani, Vijay Ramani, Raj Sellappan, Saikat Sen, Sheetal Shrotri,
Soundararajan Srinivasan, Ping Xia, Shize Xu, Alicia Yang, and Yiwen Zhu.
2020. Seagull: An Infrastructure for Load Prediction and Optimized Resource
Allocation. Proc. VLDB Endow. 14, 2 (2020), 154–162.

[41] Olga Poppe, Alan Au, Aritra De, Raj Sellappan, Saikat Sen, Deepak Shankargouda,
Meina Wang, Tayo Amuneke, Dalitso Banda, Ari Green, Manon Knoertzer, Ehi
Nosakhare, Karthik Rajendran, Vijay Ramani, Soundararajan Srinivasan, Carlo
Curino, Alekh Jindal, Yiwen Zhu, Qun Guo, Ajay Kalhan, Morgan Oslake, Shize
Xu, Sonia Parchani, Sheetal Shrotri, and Ping Xia. 2020. Seagull: An Infrastructure
for Load Prediction and Optimized Resource Allocation. Extended version.

[42] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael A. Kozuch. 2012. Heterogeneity and Dynamicity of Clouds at Scale:
Google Trace Analysis. In SOCC. 1–13.

[43] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. 2011. Efficient Autoscal-
ing in the Cloud Using Predictive Models for Workload Forecasting. In CLOUD.
500–507.

[44] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. Cloud-
Scale: Elastic Resource Scaling for Multi-tenant Cloud Systems. In SOCC. 1–14.

[45] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga,
Michael Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. 2018. P-
Store: An Elastic Database System with Predictive Provisioning. In SIGMOD.
205–219.

[46] Lalitha Viswanathan, Bikash Chandra, Willis Lang, Karthik Ramachandra, Jig-
neshM. Patel, Ajay Kalhan, David J. DeWitt, and Alan Halverson. 2017. Predictive
Provisioning: Efficiently Anticipating Usage in Azure SQL Database. In ICDE.
1111–1116.

PGE: Robust Product Graph Embedding Learning for Error
Detection

Kewei Cheng
viviancheng@cs.ucla.edu

University of California, Los Angeles

Xian Li
xianlee@amazon.com

Amazon.com

Yifan Ethan Xu
xuyifa@amazon.com

Amazon.com

Xin Luna Dong
lunadong@gmail.com

Facebook.com

Yizhou Sun
yzsun@cs.ucla.edu

University of California, Los Angeles

ABSTRACT

Although product graphs (PGs) have gained increasing attentions
in recent years for their successful applications in product search
and recommendations, the extensive power of PGs can be limited
by the inevitable involvement of various kinds of errors. Thus, it is
critical to validate the correctness of triples in PGs to improve their
reliability. Knowledge graph (KG) embedding methods have strong
error detection abilities. Yet, existing KG embedding methods may
not be directly applicable to a PG due to its distinct characteris-
tics: (1) PG contains rich textual signals, which necessitates a joint
exploration of both text information and graph structure; (2) PG
contains a large number of attribute triples, in which attribute val-
ues are represented by free texts. Since free texts are too flexible
to define entities in KGs, traditional way to map entities to their
embeddings using ids is no longer appropriate for attribute value
representation; (3) Noisy triples in a PG mislead the embedding
learning and significantly hurt the performance of error detection.
To address the aforementioned challenges, we propose an end-to-
end noise-tolerant embedding learning framework, PGE, to jointly
leverage both text information and graph structure in PG to learn
embeddings for error detection. Experimental results on real-world
product graph demonstrate the effectiveness of the proposed frame-
work comparing with the state-of-the-art approaches.

PVLDB Reference Format:

Kewei Cheng, Xian Li, Yifan Ethan Xu, Xin Luna Dong, and Yizhou Sun.
PGE: Robust Product Graph Embedding Learning for Error Detection.
PVLDB, 15(6): 1288 - 1296, 2022.

doi:10.14778/3514061.3514074

1 INTRODUCTION

With the rapid growth of the internet, e-commerce websites such as
Amazon, eBay, andWalmart provide important channels to facilitate
online shopping and business transactions. As an effective way to
organize product-related information, product knowledge graphs
(PGs) [14] have attracted increasing attentions in recent years by
empowering many real-world applications, such as product search
and recommendations [2].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514074

Title Category Flavor Ingredient

Brand A Tortilla Chips
Spicy Queso,
6 - 2 oz bags

† chips-and
-crisps

Spicy Queso
Ground Corn, Chipotle

Pepper Powder,
Paprika Extract, Spices

Brand B Bean Chips
Spicy Queso,

High Protein and Fiber,
Gluten Free, Vegan Snack,

5.5 Ounce (Pack of 6)

† chips-and
-crisps

Cheddar

Navy Beans,
Cayenne Pepper,
Paprika Extract,

Dehydrated Spices

Carolina Reaper Spicy
Peanut Brittle

candy
-brittle

Carolina
Reaper Spicy

Peanuts, Sugar,
Carolina Reaper

† We mask the brand of the products to avoid revealing sensitive information.

Product Title

Attribute Value

Correct Link
Noisy Link

Figure 1: An example PG and its corresponding product catalog data.

We underline the incorrect attribute value in the table whose ground

truth value is given in its product title. Attribute values with similar

semantic meanings are filled with the same pattern and gathering

together with a dotted frame.

A PG is a knowledge graph (KG) that describes product attribute
values. It is constructed based on product catalog data (Fig. 1 shows
an example). In a PG, each product is associated with multiple
attributes such as product brand, product category, and other infor-
mation related to product properties such as flavor and ingredient.
Different from traditional KGs, where most triples are in the form
of (head entity, relation, tail entity), the majority of the triples in a
PG have the form of (product, attribute, attribute value), where the
attribute value is a short text, e.g., (“Brand A Tortilla Chips Spicy

Queso, 6 - 2 oz bags”, flavor, “Spicy Queso”). We call such triples
attribute triples.

A vast majority of the product catalog data are provided by indi-
vidual retailers. These self-reported data inevitably contain many
kinds of errors, including conflicting, erroneous, and ambiguous
values. When such errors are ingested by a PG, they lead to unsatis-
fying performance of its downstream applications. Due to the huge

Figure 2: PGE improves over KG embeddingmethodRotatE by 24.7%

and transformer by 4% on PR AUC in transductive setting. It also

shows significant improvement on R@P metric. R@P = 0.7 shows

the recall when the precision is 0.7, etc.

volume of products in a PG, manual validation is not feasible. An
automatic validation method is in urgent need.

Knowledge graph embedding (KGE) methods currently hold
the state-of-the-art in learning effective representations for multi-
relational graph data. It aims to learn the network structure which
triples should comply. KG embedding methods have shown promis-
ing performances in error detection (i.e., determine whether a triple
is correct or not) in KGs [1, 40]. For example, the PG structure in
Fig. 1 indicates a strong correlation between the ingredient “pep-
per” and flavor “spicy” because they are connected through multi-
ple products. By verifying its consistency with the network struc-
ture, the errors like (“Brand B Bean Chips Spicy Queso, High Protein

and Fiber, Gluten Free, Vegan Snack, 5.5 Ounce (Pack of 6)”, flavor,

“Cheddar”) can be easily identified. Unfortunately, the existing KG
embedding methods cannot be directly used to detect errors in a
PG because of the following challenges.

C1: PG contains rich textual information. Products in a PG
are often described by short texts like their titles and descriptions
that contain rich information about their attributes. For example,
the product title “Brand A Tortilla Chips Spicy Queso, 6 - 2 oz bags”
covers multiple attributes, including brand, product category, flavor,
and size. We can easily verify the correctness of these attributes
against the product title. In addition, the attribute values in PG are
free texts. Thus the traditional way of mapping entity ids to their
embeddings is no longer appropriate. As shown in Fig. 1, when the
attribute values “Chipotle Pepper Powder” and “Carolina Reaper”
(a kind of pepper) are modeled as two independent entities using
their ids, the strong conceptual correlation between the ingredi-
ent “pepper“ and the flavor “spicy“ is lost. Although several recent
publications [37, 38] tried to exploit the rich textual information in
KGs, the network structure and text information were not jointly
encoded into a unified representation. For example, text-based rep-
resentation and structure-based representation were learned by
separate loss functions and integrated into one joint representation
by a linear combination [1, 38].

C2: PG contains a large number of unseen attribute val-

ues. The flexibility of textual attribute values also makes handling
“unseen attribute values” challenging. In the example as shown in
Fig. 1, we can learn the representation of “Chipotle Pepper Powder”
during training, but an unobserved attribute value with similar

Table 1: Capabilities of different methods.

Methods
Modeling

graph structure
Modeling
textual data

Noise-aware

Structure based
KG embedding [9, 31, 32, 41]

�

Text and KG
joint embedding [1, 37, 38]

� �

Noise-aware
KG embedding [39]

� �

PGE � � �

semantic meaning, such as “Chipotle Pepper” might be given for
validation. Conventional KG embedding models cannot deal with
this inductive setting because they have no representations for the
entities outside of KGs.

C3: Existing noisy data in PG make it hard to learn a reli-

able embedding model. Getting a reliable embedding model for
error detection in a PG requires clean data for training. However,
noise widely existing in a PG can mislead the embedding model to
learn the wrong structure information, which may severely down-
grade its performance in error detection.

No existing approach is capable of tackling all aforementioned
challenges, as shown in Table 1. Therefore, in this paper, we aim
to answer this challenging research question: how to generate em-

beddings for a text-rich, error-prone knowledge graph to facilitate

error detection? We present a novel embedding learning framework,
robust Product Graph Embedding (PGE), to learn effective embed-
dings for such knowledge graphs. There are two key underlying
ideas for our framework. First, our embeddings seamlessly com-
bine the signals from the textual information of attribute triples,
and the structural information in the knowledge graph. We do this
by applying a CNN encoder to learn text-based representations
for product titles and attribute values, and then integrating these
text-based representations into the triplet structure to capture the
underlying patterns in the knowledge graph. Second, we present a
noise-aware loss function to prevent noisy triples in the PG from
misguiding the embeddings during training. For each positive in-
stance in the training data, our model predicts the correctness of
the triple according to its consistency with the rest of the triples in
the KG, and downweights an instance when the confidence of its
correctness is low. As shown in Table 1, PGE is able to model both
textual evidence and graph structure, and is robust to noise.

Our proposed model is generic and scalable. First, it applies
not only on the product domain, but also excel in other domains
such as on Freebase KG, as we show in our experiments. Second,
through careful choices of the deep learning models, our model
can be trained on KGs with millions of nodes within a few hours,
and are robust to noises and unseen values that are inherent in real
data. In summary, this paper makes the following contributions.

• We propose an end-to-end noise-tolerant embedding learn-
ing framework, PGE, to jointly leverage both text informa-
tion and graph structure in PG to learn embeddings for
error detection.

• We propose a novel noise-aware mechanism to incorporate
triple confidence into PGE model to detect noise while
learning knowledge representations simultaneously.

• We evaluate PGE on a real-world PG w. millions of nodes
generated from public Amazon website and show that we
are able to improve over state-of-the-art methods on aver-
age by 18% on PR AUC in transductive setting as summa-
rized in Figure 2.

2 PRELIMINARIES AND PROBLEM
DEFINITION

We first formally define two important concepts: attribute triples
and product graph.

Definition 1. Attribute triples

An attribute triple can be represented as (𝑡, 𝑎, 𝑣), where its subject
entity 𝑡 is a product sold onAmazon (e.g., a product with title “Brand
A Tortilla Chips Spicy Queso, 6 - 2 oz bags”), its object entity 𝑣 is an
attribute value (e.g., “spicy queso”), and 𝑎 is an attribute to connect
𝑡 and 𝑣 (e.g., flavor). Both 𝑡 and 𝑣 are represented as unstructured
short texts. An attribute triple (𝑡, 𝑎, 𝑣) is incorrect if its attribute
value 𝑣 does not correctly describe the product 𝑡 . For example,
(“Brand B Bean Chips Spicy Queso, High Protein and Fiber, Gluten

Free, Vegan Snack, 5.5 Ounce (Pack of 6)”, flavor, “Cheddar”) in Fig. 1
is an incorrect attribute triple.

Definition 2. Product Graph

A Product graph (PG) is a KG that describes product attribute
values. Formally, we represent a product graph as G = {𝑇,𝐴,𝑉 ,𝑂},
where 𝑇 is a set of product titles, 𝐴 is a set of attributes, 𝑉 is a set
of product attribute values, and 𝑂 is a set of observed triples in the
PG. Note that we have open-world assumption and thus cannot
predetermine the possible values of 𝑉 . Triples in PG are attribute
triples defined in Definition 1. Fig. 1 illustrates an example PG.

We can now formally define the problem of error detection in PG

as follows:
Given: a product graph G = {𝑇,𝑉 ,𝐴,𝑂}.
Identify: incorrect triples {(𝑡, 𝑎, 𝑣)} ⊂ 𝑂 .

3 OUR PROPOSED FRAMEWORK: PGE

In this section, we present PGE that learns the embeddings of PG
entities by incorporating both the text information and the network
structure of a PG to detect erroneous triples. As shown in Fig. 3, the
framework includes three key components: (1) Learn text-based
representations of entities from their raw text values; (2) Leverage
network structure of a PG to guide the final embedding learning for
error detection; (3) Introduce a noise-aware mechanism to diminish
the impact of noisy triples to the representation learning.

3.1 Text-based Representation Learning for
Entities

In a typical KG embedding learning procedure, each entity is given
a unique id which is thenmapped to a learnable embedding. This ap-
proach is not optimal for PG embedding learning, because product
titles (𝑇) and attribute values (𝑉) in a PG are mostly unstructured
text containing rich semantic information, thus learning entity em-
beddings from only their ids not only creates unnecessary degrees
of freedom, but also discards their underlying semantic connections.
For instance, the embeddings of product titles “Brand A Tortilla

Chips Spicy Queso, 6 - 2 oz bags” and “Brand B Bean Chips Spicy
Queso, High Protein and Fiber, Gluten Free, Vegan Snack, 5.5 Ounce
(Pack of 6)” should be close to each other because they are semanti-
cally similar. There are several methods, such as convolutional neu-
ral network (CNN)-based methods and Transformer-based methods
(e.g., BERT), that could be leveraged to learn the representations
of product titles (𝑇) and attribute values (𝑉) in order to capture
their semantic similarities. We present scalability analysis of both
text encoders in Section 4.6. Due to the huge number of products
contained in PGs, we pick the CNN architecture for its good scala-
bility as well as effectiveness on many natural language processing
tasks [28]. As shown in Figure 4, the CNN encoder takes the raw
text of a product title or an attribute value as the input and output
its text-based representation. The first layer in the encoder trans-
forms every word in the sequence into its respective embedding
(initialized with word2vec [25]). The word embeddings then pass
through three 1-d shallow CNNs with different filter sizes, which
create three feature maps. Here we use different filter sizes to cap-
ture local semantic information from different text spans. The final
text-based representation of an entity is the concatenated feature
maps learned by all CNNs.

3.2 Leverage Graph Structure to Guide
Embedding Learning

Manually labeled data are costly to obtain given the huge number
of products in a PG. Fortunately, the rich structure information of a
PG bridges the gap between the difficulties in obtaining labeled data
and the necessity of supervision to detect errors. Although several
recent papers have proposed to combine the text and structure
information for KG representation learning, most of them [1, 38]
learn two independent representations with separate loss functions
and then integrate them with a linear combination. Such solution
cannot generate a desired unified representation. To address this
issue, we propose to learn the embeddings of entities and relations
end to end, encoding the network structure that triples should obey
on top of their text-based representations.

As shown in Fig. 3, we introduce a fully-connected neural net-
work layer to transform a text-based representation into its final
representation to encode the network structure of a PG. Boldfaced
t, a, v denote the final embedding vector of product title 𝑡 , attribute
𝑎, attribute value 𝑣 , respectively. Since the number of attributes in
a PG is small and well-defined comparing to titles and attribute
values, we use randomly initialized learnable vectors to represent
relations instead of CNN encoders. To capture the network struc-
ture of PG, we define the objective function by maximizing the
joint probability of the observed triples given the embeddings of
both entities and relations. In particular, we assume all triples are
conditionally independent given the corresponding embeddings.
Then the joint distribution of all the triples is defined as:

𝑃 (𝑂) =
∏

(𝑡,𝑎,𝑣) ∈𝑂

𝑃
(
(𝑡, 𝑎, 𝑣) |{t}, {a}, {v}

)
. (1)

Since our goal is to detect the incorrect attribute value 𝑣 in a triple
(𝑡, 𝑎, 𝑣), we optimize 𝑃 (𝑣 |𝑡, 𝑎, {t}, {a}, {v}) instead of 𝑃 (𝑡, 𝑎, 𝑣) |{t},
{a}, {v}), which can be formalized as follows:

Text Encoder

FC LayerText Encoder

Attribute ID

Modeling Structure Information

FC Layer

Attribute

Attribute
Value

Product Title

Noise Aware
Triple Loss

Confidence Score
Comply with the global structure?

Product Graph

Remove noise!

Figure 3: Illustration of the end-to-end PGE framework. The embedding vectors in green are text-based entities representations learned from

text descriptions, while the embedding vectors in blue are the final entity embeddings learned under the guidance of the PG network structure.

The arrows in red illustrate how the noise-aware mechanism removes noises in PG.

Description of entity ……

Lookup Table

1D Convolutional Layer
(filter size =)

CNN

Concat

……

CNN Encoder

Pooling

1D Convolutional Layer
(filter size =)

Pooling

1D Convolutional Layer
(filter size =)

Pooling

Figure 4: CNN-based text encoder.

𝑃 (𝑣 |𝑡, 𝑎, {t}, {a}, {v}) =
exp

(
𝑓𝑎 (𝑡, 𝑣)

)

∑
𝑣′ ∈𝑉 exp

(
𝑓𝑎 (𝑡, 𝑣 ′)

) (2)

where 𝑓𝑎 (𝑡, 𝑣) can be defined by any KG embedding scoring func-
tions. For example, in TransE, 𝑓𝑎 (𝑡, 𝑣) = 𝛾 − ‖t + a − v‖21, where

t, a, v ∈ R𝑑 and 𝛾 is a fixed margin. In particular, a higher 𝑓𝑎 (𝑡, 𝑣)
usually indicates that the triple (𝑡, 𝑎, 𝑣) is more plausible. Due to the
large number of attribute values |𝑉 | involved in a PG, it is impracti-
cal to directly compute the softmax functions. Therefore, we adopt
negative sampling [26] as computationally efficient approximation
instead and reformulate the objective function as follows:

∑

(𝑡,𝑎,𝑣) ∈𝑂

[
− log𝜎

(
𝑓𝑎 (𝑡, 𝑣)

)

−
1

|N (𝑡, 𝑎, 𝑣) |

∑

(𝑡,𝑎,𝑣′) ∈N(𝑡,𝑎,𝑣)

log𝜎
(
− 𝑓𝑎 (𝑡, 𝑣

′)
)] (3)

where 𝜎 is the standard sigmoid function,𝑂 represents the observed
facts in PG, N(𝑡, 𝑎, 𝑣) is a set of negative samples for an attribute
triple (𝑡, 𝑎, 𝑣). More specifically, for each observed triple (𝑡, 𝑎, 𝑣) we
sample a set of negative samples N(𝑡, 𝑎, 𝑣) ⊂ {(𝑡, 𝑎, 𝑣 ′) |𝑣 ′ ∈ 𝑉 } by
replacing the attribute value 𝑣 with a random value from 𝑉 .

3.3 Noise-aware Mechanism

The objective function in Eq. (3) indiscriminately minimizes the
scores of all facts in PG without taking their trustworthiness into
consideration. As a result, noisy facts can mislead the embedding
model to learn wrong structure information, thus harm the perfor-
mance of embeddings in error detection.

To address this issue, we propose a novel noise-awaremechanism
to reduce the impact of noisy triples on the representation learning
process. Knowledge representations are learned to ensure global
consistency with all triples in PG. Correct triples are inherently
consistent, which can jointly represent the global network structure
of PG; noisy triples usually conflict with these global network
structures. Consequently, by forcing consistency between correct
triples and noises, performance is unnecessarily sacrificed. The
main idea of the noise-aware mechanism is to explicitly allow the
model to identify and “markdown” a small set of incorrect triples
during training and reduce their impact on the loss function.

More specifically, we introduce a binary learnable confidence
score,𝐶 (𝑡, 𝑎, 𝑣), for every triple (𝑡, 𝑎, 𝑣) in a PG to indicate whether
the fact is true or false. 𝐶 (𝑡, 𝑎, 𝑣) = 1 indicates the triple is correct
and 0 otherwise. Associating confidence scores with triples in a
PG actively downweight potential noises in the PG. The objective
function of the noise-aware PGE model is defined as follows.

L =
∑

(𝑡,𝑎,𝑣) ∈𝑂

𝐶 (𝑡, 𝑎, 𝑣)
[
− log𝜎

(
𝑓𝑎 (𝑡, 𝑣)

)

−
1

|N (𝑡, 𝑎, 𝑣) |

∑

(𝑡,𝑎,𝑣′) ∈N(𝑡,𝑎,𝑣)

log𝜎
(
− 𝑓𝑎 (𝑡, 𝑣

′)
)]

+ 𝛼
∑

(𝑡,𝑎,𝑣) ∈𝑂

(
1 −𝐶 (𝑡, 𝑎, 𝑣)

)

𝑠 .𝑡 .,𝐶 (𝑡, 𝑎, 𝑣) ∈ {0, 1}

(4)

where 𝐶 (𝑡, 𝑎, 𝑣) is the binary confidence score assigned to a triple

(𝑡, 𝑎, 𝑣) in a PG, and 𝛼
∑
(𝑡,𝑎,𝑣) ∈𝑂

(
1 −𝐶 (𝑡, 𝑎, 𝑣)

)
is a regularization

term imposed on confidence scores to control their sparsity. The
problem in Eq.(4) is difficult to solve due to the boolean constraint
on 𝐶 (𝑡, 𝑎, 𝑣). Following the common relaxation technique in [34],

the boolean constraint on 𝐶 (𝑡, 𝑎, 𝑣) can be relaxed as:

𝐶 (𝑡, 𝑎, 𝑣)2 +
(
1 −𝐶 (𝑡, 𝑎, 𝑣)

)2
= 1, (5)

since minimizing 1−𝐶 (𝑡, 𝑎, 𝑣)2−
(
1−𝐶 (𝑡, 𝑎, 𝑣)

)2
polarizes𝐶 (𝑡, 𝑎, 𝑣).

Therefore, we rewrite the Eq. (4) as:

L =
∑

(𝑡,𝑎,𝑣) ∈𝑂

𝐶 (𝑡, 𝑎, 𝑣)
[
− log𝜎

(
𝑓𝑎 (𝑡, 𝑣)

)

−
1

|N (𝑡, 𝑎, 𝑣) |

∑

(𝑡,𝑎,𝑣′) ∈N(𝑡,𝑎,𝑣)

log𝜎
(
− 𝑓𝑎 (𝑡, 𝑣

′)
)]

+ 𝛼
∑

(𝑡,𝑎,𝑣) ∈𝑂

(
1 −𝐶 (𝑡, 𝑎, 𝑣)

)

+ 𝛽
∑

(𝑡,𝑎,𝑣) ∈𝑂

(
1 −𝐶 (𝑡, 𝑎, 𝑣)2 −

(
1 −𝐶 (𝑡, 𝑎, 𝑣)

)2)
.

(6)

4 EXPERIMENTS

4.1 Dataset

We evaluate our PGE on two datasets: one real-world e-commerce
dataset collected from publicly available Amazon webpages, and
one widely used benchmark dataset FB15K-237. Table 2 summarizes
the statistics of both datasets.

Amazon Dataset: To evaluate PGE on real-world e-commerce
dataset, we construct a product graph with the product data ob-
tained from public Amazon website. Each product in the Amazon
dataset is associated with multiple attributes, such as product ti-
tle, brand and flavor, whose values are short texts. As shown in
Table 2, the Amazon dataset contains 750,000 products associated
with 27 structured attributes and 5 million triples. To avoid bias,
we sampled products from 325 product categories across different
domains, such as food, beauty and drug. To prepare labeled test
data, we asked Amazon Mechanical Turk (MTurk) workers to man-
ually label the correctness of two attributes, including flavor and
scent, based on corresponding product profiles. Each data point is
annotated by three Amazon Mechanical Turk workers and the final
label is decided by majority voting. Among 5,782 test triples, 2,930
are labeled as incorrect and 3,304 are labeled as correct.

FB15K-237: The FB15K dataset is the most commonly used
benchmark knowledge graph dataset [9]. It contains knowledge
graph relation triples and textual mentions of Freebase entity pairs.
FB15K-237 is a variant of FB15K dataset where inverse relations
are removed to avoid information leakage problem in test dataset.
The FB15K-237 datasets benefit from human curation that results
in highly reliable facts. We add 10% noisy triples to the data set by
randomly sample 10% triples and substituting the original head or
tail entity with a randomly selected entity.

4.2 Experimental Setting

Our goal is to identify incorrect attribute values of a product, which
can be formally defined as a triple classification problem in PG.
We choose a threshold 𝜃 based on the best classification accuracies
on the validation dataset, then classify a triple (𝑡, 𝑎, 𝑣) as correct
if its score 𝑓𝑎 (𝑡, 𝑣) > 𝜃 , otherwise incorrect. We apply the same
settings to all baseline methods to ensure a fair comparison. We

evaluate two versions of our model by incorporating TransE [9]
and RotatE [31] as the score function, respectively.

Evaluation Metric. We adopt the area under the Precision-
Recall curve (PR AUC) and Recall at Precision=X (R@P=X) to eval-
uate the performance of the models. To be more specific, PR AUC
is defined as the area under the precision-recall curve, which is
widely used to evaluate the ranked retrieval results. R@P is defined
as the recall value at a given precision, which aims to evaluate the
model performance when a specific precision requirement needs
to be satisfied. For example, R@R = 0.7 shows the recall when the
precision is 0.7.

Compared Methods. We evaluate PGE against state-of-the-
art (SOTA) algorithms, including (1) NLP-based method (LSTM,
Transformer [33]); (2) structure based KG embedding (TransE [9],
DistMult [41], ComplEx [32], RotatE [31]); (3) text and KG joint
embedding (e.g., DKRL [38], SSP [37]); and (4) noise-aware KG
embedding (CKRL [39]). We choose CNN and BERT as the text
encoders of PGE. Since BERT cannot handle Amazon dataset due
to scalability issues, only the results of CNN is reported in Sec-
tion 4.3 and Section 4.4. We present scalability analysis of both
text encoders in Section 4.6. We also include the approach “Union
of Transformer and PGE” to show how PGE complement Trans-
former. To combine Transformer and PGE for error detection, the
approach “Union of Transformer and PGE” re-ranks the test triples
by jointly considering the ranking given by the Transformer and
PGE. For example, given a test triple (ℎ, 𝑟, 𝑡), suppose Transformer
rank it as i while PGE rank it as j. Then the average ranking of

triple (ℎ, 𝑟, 𝑡) is 𝑅 (ℎ,𝑟,𝑡)𝑎𝑣𝑔 = (1/𝑖 + 1/ 𝑗)/2. Based on 𝑅 (ℎ,𝑟,𝑡)𝑎𝑣𝑔 , “Union

of Transformer and PGE” re-ranks the test triples. Smaller 𝑅 (ℎ,𝑟,𝑡)𝑎𝑣𝑔

results in higher ranking assigned by “Union of Transformer and
PGE”. In addition to “Union of Transformer and PGE”, we also in-
clude a strong ensemble method - RotatE+ to enrich knowledge
graph with information extraction technique. In particular, RotatE+
first applies OpenTag [20, 43], the SOTA information extraction
toolkit developed by Amazon Product Graph Team, to extract all
relevant attributes from product title and product description to
enrich the PG, then applies KG embedding method RotatE on the
enriched KG to detect the error.

Setup Details. In data preprocessing, we remove all stop words
from raw texts and map words to 300-dimensional word2vec vec-
tors trained with GoogleNews. We adopt the Adam [23] optimizer
with learning rate among {0.0001, 0.0002, 0.0005} following [31],
and margin 𝛾 among {12.0, 24.0}. For the CNN encoder, we try
different filter sizes among {1, 2, 3, 4} for different CNNs. To fairly
compare with different baseline methods, we set the parameters
for all baseline methods by a grid search strategy. The best results
of baseline methods are used to compare with PGE.

4.3 Transductive Setting

Transductive setting focuses on the situation where all attribute
values in the test triples have been observed in the training stage.
To compare different algorithms on the triple classification task,
we require each method to predict the correctness of triples in the
test dataset. Table 3 shows the comparison results. Here are sev-
eral interesting observations: (1) PGE consistently outperforms KG
embedding models as well as CKRL in all cases with significant

Table 2: Data statistics

Dataset #Relations #Entities #Products #Attributed values #Train #Valid #Test
Amazon Dataset 27 1,017,374 750,000 267,374 4,989,375 6,924 5,782

FB15K-237 234 13,714 - - 67,894 2,750 3,042

performance gain (improving by 24% - 30% on PR AUC), which
ascribes to the utilization of textual information associated with
entities; (2) PGE also obtains better performance than NLP-based
approaches as they cannot leverage graph structure information
in KGs. In particular, NLP-based methods show the worst perfor-
mance on the FB15k-237 dataset while the second best performance
on Amazon dataset. The major reason is that FB15k-237 contains
much richer graph information compared to the Amazon dataset
(i.e., there are 27 attributes in Amazon dataset while 234 relations
in FB15k-237). Therefore, graph structure plays a more critical role
in error detection task in FB15k-237; (3) PGE shows better per-
formance compared to DKRL and SSP. The major reason is that
DKRL and SSP learn the structural representations and the textual
representations by separate functions.

4.4 Inductive Setting

Inductive setting focuses on the situation where attribute values
in the test triples are not presented in a PG, which is a common
scenario for PG error detection. Existing KG embedding models
are not effective in dealing with this situation because they cannot
generate representations for the entities outside of KGs due to
missing ids. Therefore, we do not include them as baselines in this
subsection. Unlike the KG embedding methods, which map entities
to their embeddings using ids, our proposed PGE learns embeddings
of entities based on their text-based representations and thus can
naturally handle the inductive setting.

To prepare an inductive setting, we filter the training set by ex-
cluding any triples that share entities with the selected test triples,
so that the training and the testing use disjoint sets of entities. We
report the results on R@P=0.6, R@P=0.7, R@P=0.8 in Table 4. We
observe that: (1) All methods perform worse in the inductive setting
without exception, which indicates that inductive setting is indeed
more challenging; (2) NLP-based methods perform the best among
all methods. The major reason is that language naturally has strong
transferring ability while PGE still relies on the graph structure to
make the prediction. Although text encode can transferring infor-
mation among entities, it doesn’t help to predict a never seen graph
structure; (3) Although NLP-based methods perform better than
PGE on the Amazon dataset, the best results are given by the union
of Transformer and PGE (improving by 9% on R@P=0.9 compared
with Transformer), showing that PGE can learn the undetected
error by Transformer ; (4) Although PGE cannot leverage textual
information as well as Transformer (because CNN is less powerful
compared with Transformer in capturing the semantic information.
Not to mention we employ shallow CNN as text encode due to
scalability issues), it still achieves comparable result on the Amazon
dataset. Moreover, they achieve the SOTA on FB15k-237, which fur-
ther validates the strong ability of PGE in detecting errors in a KG
with rich textual information; (5) DKRL and SSP perform the worst
among all methods, which again demonstrates their weakness.

4.5 Validity of Noise-aware Mechanism

Validity of Confidence Scores with Different Injected Noises.

To evaluate the benefit of including confidence scores 𝐶 (𝑡, 𝑎, 𝑣)
in the noise-aware mechanism, shown in Eq. (6) , we evaluate
PGE(CNN)-RotatE on the Amazon dataset with two different kinds
of injected noises. First, we inject human-labeled correct triples
and incorrect triples into the training data. Confidence scores are
learned to determine the correctness of these injected labeled triples.
The distribution of confidence scores are shown in Fig. 5 (a). Sec-
ond, we inject artificial noises into the training data. We substitute
attribute values of existing triples in the Amazon dataset with a
random value to generate these artificial noises. Confidence scores
are learned to distinguish artificial noises from the original triples.
Fig. 5 (b) shows the distribution of confidence scores. The red bars
represent the distribution of confidence scores for human-labeled
incorrect triples (or injected artificial noises) while the blue bars
represent the distribution of confidence scores for human-labeled
correct triples (or triples in the original Amazon dataset). We ob-
serve that real-world noises are more difficult to identify compared
to artificial noises. Despite the difficulty in detecting the real-world
error, confidence scores of human-labeled correct triples are mainly
over 0.5, validating the promising capability of the confidence scores
to distinguish noises in PG. In addition, we observe that 1% triples
in the original Amazon dataset have also been identified as noises
in Fig. 5 (b). We have verified that most of these triples are indeed
noisy triples in the original Amazon dataset.

Overall Impact of Noise-aware Mechanism. To further vali-
date the overall benefits brought by noise-aware mechanism, we
also evaluate PGE(CNN)-RotatE without noise-aware mechanism
on Amazon dataset used in Section 4.3. Figure 6 presents the com-
parison results. We observe that the noise-aware mechanism brings
significant performance gain: PGE(CNN)-RotatE with noise-aware
mechanism increases the PR AUC of PGE(CNN)-RotatE without
noise-aware mechanism from 0.734 to 0.747 and increases R@P=0.9
from 0.289 to 0.325.

4.6 Scalability Analysis
To demonstrate the scalability of PGE, we present the training time
of PGE on Amazon dataset of different sizes in Table 5. We vary
the sample ratio among {0.1, 0.3, 0.5, 0.7, 1} to select only a portion
of triples in Amazon dataset to construct PG of different sizes.
Two text encoders, CNN-based text encoder and BERT-based text
encoder, are leveraged to learn entity representations. In particular,
BERT-based text encoder takes the raw text of product titles or
attribute values as input. The first token of input is always a special
classification token ([CLS]). The final hidden state corresponding
to this token is used as the text-based representation of entities.
We observe that PGE(BERT)-RotatE cannot be applied to Amazon
dataset due to the scalability issue. It takes near 2 days for 10% data
and over 3 days for 30% data. Therefore, we focus on CNN in this

Table 3: Results of error detection under the transductive setting. The numbers in bold represent the best performance among all methods

while the numbers underlined represent the second best. Evaluation of PGE on the Amazon dataset shows that PGE is able to improve over the

SOTA methods on average by 18% on PR AUC.

Categories Method
Amazon Dataset FB15k-237

PR AUC R@P=0.7 R@P=0.8 R@P=0.9 Time (hours) PR AUC R@P=0.7 R@P=0.8 R@P=0.9 Time (hours)

NLP-based methods
LSTM 0.704 0.572 0.416 0.159 16.32 0.626 0.595 0.445 0.239 0.43

Transformer [33] 0.719 0.601 0.427 0.194 79.46 0.648 0.649 0.503 0.245 12.82

Structured based KG embedding

TransE [9] 0.584 0.390 0.308 0.213 20.57 0.772 0.793 0.737 0.685 0.58
DistMult [41] 0.573 0.362 0.291 0.197 32.86 0.819 0.872 0.813 0.751 4.12
ComplEx [32] 0.579 0.373 0.310 0.207 36.31 0.781 0.814 0.759 0.712 5.16
RotatE [31] 0.597 0.405 0.336 0.239 35.11 0.824 0.875 0.823 0.766 5.33
RotatE+‡ 0.611 0.423 0.369 0.221 36.79 - - - - -

Text and KG joint embedding
DKRL [38] 0.693 0.552 0.408 0.246 45.38 0.909 0.945 0.901 0.868 7.25
SSP [37]† - - - - - 0.927 0.951 0.915 0.882 -

Noise-aware KG embedding CKRL [39] 0.586 0.392 0.304 0.217 21.16 0.768 0.725 0.672 0.627 0.62

Our Proposed model
PGE(CNN)-TransE 0.738 0.690 0.436 0.267 23.12 0.990 0.997 0.995 0.986 0.67
PGE(CNN)-RotatE 0.745 0.729 0.516 0.325 39.41 0.990 0.997 0.993 0.983 5.71

Union of Transformer and PGE(CNN)-RotatE 0.751 0.747 0.509 0.349 - 0.938 0.958 0.911 0.893 -
† Since SSP cannot handle Amazon dataset due to scalability issues, only the results on the FB15K-237 is reported.
‡ RotatE+ first applies OpenTag [20, 43], an information extraction toolkit developed by Amazon Product Graph Team, to extract all relevant attributes from product title and product description to enrich the product graph, then apply
RotatE [31] on the enriched KG to detect the error.

Table 4: Results of error detection under the inductive setting. The bold numbers represent the best performances among all methods while

the underlined numbers represent the second best. We observe that PGE achieves the SOTA on the structure-rich FB15k-237 data set. The best

results on the Amazon dataset are given by the union of the Transformer model and PGE, showing that although PGE does not perform as well

as NLP-based methods on the Amazon dataset, it complements Transformer for its strong ability in capturing graph structure.

Categories Method
Amazon Dataset FB15k-237

PR AUC R@P=0.6 R@P=0.7 R@P=0.8 PR AUC R@P=0.6 R@P=0.7 R@P=0.8

NLP-based methods
LSTM 0.626 0.756 0.476 0.340 0.581 0.717 0.436 0.204

Transformer [33] 0.643 0.771 0.495 0.354 0.603 0.748 0.453 0.238

Text and KG joint embedding
DKRL [38] 0.552 0.593 0.252 0.068 0.698 0.790 0.638 0.415
SSP [37]† - - - - 0.716 0.807 0.654 0.419

Our Proposed model
PGE(CNN)-TransE 0.585 0.730 0.412 0.197 0.787 0.871 0.724 0.674
PGE(CNN)-RotatE 0.596 0.741 0.437 0.228 0.836 0.919 0.845 0.753

Union of Transformer and PGE(CNN)-RotatE 0.649 0.779 0.512 0.386 0.833 0.923 0.837 0.743
† Since SSP cannot handle Amazon dataset due to scalability issues, only the results on the FB15K-237 is reported.

Figure 5: Distribution of confidence scores learned by PGE(CNN)-RotatE on the Amazon

dataset with different injected noises.

Figure 6: PGE(CNN)-RotatE with v.s. with-

out noise-awaremechanism on noisy Amazon

dataset.

paper. We observe that PGE(CNN)-RotatE scales up to large datasets
with similar scalability compared to KGE model.

4.7 Case Study

Previous experiments have shown the promising performance of
PGE in both transductive setting and inductive setting. To further
demonstrate the capability of PGE in detecting real-world errors

in PG, we conduct case study to give examples of identified errors
in the Amazon dataset as shown in Table 6. We use PGE(CNN)-
RotatE to evaluate if a triple is a correct fact. Threshold 𝜎 is chosen
based on the best classification accuracies on the validation dataset
in order to classify triples. We observe that most attribute values
of identified errors violate the global graph structure of PG and
thus can be classified as errors. For example, product 2,3, and 4 in
Table 6 are not groceries thus should not have the attribute “flavor”.

Table 5: Training Time (hours) of different methods on Amazon

dataset.

Models
Percentage of Sampled Triples

0.1 0.3 0.5 0.7 1
RotatE 3.22 10.77 17.63 24.86 35.11

PGE(CNN)-RotatE 4.07 11.95 19.44 27.62 39.41
PGE(BERT)-RotatE 45.21 > 3 day > 3 day > 3 day > 3 day

Table 6: Identified errors on Amazon dataset.

Product Attribute Attribute Value

Pure Mint Shampoo and
Hair Conditioner for Women

and Men - 10 oz
scent

mint shampoo
and conditioner set

Brand A Foot Brush
and Pumice (Pack of 4)

† flavor bamboo

Brand B Sweet BBQ Rub 11.2 oz† flavor sweet

Hassle Free Storage Pop-Up
Mesh Laundry Hamper (Aqua)

flavor octopus

Brand C Organics Conditioner,
Tea Tree Oil & Blue Cypress,

12 Ounce (Pack of 3)

† scent
conditioner
tea tree oil

and blue cypress
† We mask the brand of the products to avoid revealing sensitive information.

Although the attribute values of product 1 and 5 include commonly
observed phrases to describe the scent, the word “conditioner” in
the attribute values makes them no longer correct attribute values
of “scent”. This observation shows that PGE not only leverages the
graph structure of PG to detect noise (e.g., example 2,3,4) but also
show sensitivity to subtle differences of language.

5 RELATEDWORK

Error Detection in Knowledge Graph. Most KG noise detection
process is carried out when constructing KGs, such as Freebase,
Google Knowledge Graph, Walmart product graph, YAGO, NELL,
and Wikipedia [3, 8, 19, 27, 30]. Despite the efforts during KG con-
structions, errors are widely observed in existing KGs. A recent
open IE model on the benchmark achieves only 24% precision when
the recall is 67% [29] and the estimated precision of NELL is only
74% [10]. To detect errors for an existing KG, most existing meth-
ods explore additional rules [5–7, 11, 12, 15–18, 22]. Considering all
kinds of errors that could be made in the real world, it is unrealistic
to identify all required rules to cover all possible cases. In contrast,
our proposed method employs KG embedding model to automati-
cally learn the correlation of entities, which could be considered as
fuzzy rules to guide value cleaning in KGs. More recently, detecting
noises while learning knowledge representations simultaneously
becomes a hot topic. A confidence-aware framework CKRL [39]
is proposed to incorporate triple confidence into KG embedding
models to learn noise-aware KG representations. However, the con-
fidence of triples are easily affected by model bias (i.e., improper
order of triples in training sets may even amplify the impact of
noises). In addition, it ignores the rich semantic information in KGs,
which is strong evidence to judge triple quality. In this paper, we
propose a noise-aware KG embedding learning method, which can

utilize rich semantic information to identify noises, which conflict
with the global network structures.

Knowledge Graph Embedding. Knowledge Graph Embedding
(KGE) aims to capture the similarity of entities by projecting entities
and relations into continuous low-dimensional vectors. Scoring
functions, which measure the plausibility of triples in KGs, are
the crux of KGE models. Representative KGE algorithms include
TransE [9], TransH [36], TransR [24], DistMult [41], ComplEx [32],
SimplE [21] and RotatE [31], which differ from each other with
different scoring functions.

Text and Knowledge Graph Joint Embeddings. In recent
years, several attempts have been made to improve the knowledge
representation by exploiting entity descriptions as additional in-
formation [1, 37, 40]. However, the combination of the structural
and textual representations is not well studied in these methods,
in which two representations are learned by separate loss function
or aligned only on the word-level. As one of the most representa-
tive works, DKRL [38] separates the objective function into two
energy functions (i.e. one for structure and one for description)
and integrates these two representations into a joint one by a lin-
ear combination. Works proposed in [36] and [44] align the entity
name with its Wikipedia anchor on word level, which may lose
some semantic information on the phrase or sentence level. SSP [37]
requires the topic model to learn pre-trained semantic vector of
entities separately. Due to the rapid growth of pre-trained language
representation models (PLM), several works are proposed to encode
textual entity descriptions with a PLM as their embeddings. For ex-
ample, KEPLER [35] proposes to encode textual entity descriptions
with BERT as their embeddings, and then jointly optimize the KGE
and language modeling objectives. BLP [13] trains PLM and KG
in an end-to-end manner. Since the language modeling objective
of PLM suffer from high computational cost and require a large
corpus for training, it is time consuming to apply these methods to
large scale KGs. In this paper, we propose an end-to-end method to
jointly leverage both text information and graph structure for KG
embedding learning in an efficient way.

6 CONCLUSION

In this paper, we propose a novel end-to-end noise-aware embed-
ding learning framework, PGE, to learn embeddings on top of
text-based representations of entities for error detection in PG.
Experiment results on a real-world product graph show that PGE
improves over state-of-the-art methods on average by 18% on PR
AUC in transductive setting. Although this paper focuses on the
product domain, we also show in our experiments that, the same
techniques excel in other domains with textual information and
noises. As the next step, we would investigate more efficient Trans-
former architecture to improve text encoder strength and efficiency
of PGE. BERT-based text encoder is difficult to scale to large KG
due to its full attention mechanism. To reduce the computation
complexity of BERT-based text encoder, we can to extend the ideas
of [4, 42] to allow sparse self-attention to tokens. In addition, we
can leverage additional information to improve the learned entity
representations. For example, we could better capture the similarity
among products by leveraging the hierarchical structure of product
data or by leveraging the user behavior data.

REFERENCES
[1] Bo An, Bo Chen, Xianpei Han, and Le Sun. 2018. Accurate text-enhanced knowl-

edge graph representation learning. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). 745–755.

[2] Vito Walter Anelli, Pierpaolo Basile, Derek Bridge, Tommaso Di Noia, Pasquale
Lops, Cataldo Musto, Fedelucio Narducci, and Markus Zanker. 2018. Knowledge-
aware and conversational recommender systems. In Proceedings of the 12th ACM
Conference on Recommender Systems. 521–522.

[3] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In The
semantic web. Springer, 722–735.

[4] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150 (2020).

[5] George Beskales, Ihab F Ilyas, and Lukasz Golab. 2010. Sampling the repairs
of functional dependency violations under hard constraints. Proceedings of the
VLDB Endowment 3, 1-2 (2010), 197–207.

[6] George Beskales, Ihab F Ilyas, Lukasz Golab, and Artur Galiullin. 2013. On the
relative trust between inconsistent data and inaccurate constraints. In 2013 IEEE
29th International Conference on Data Engineering (ICDE). IEEE, 541–552.

[7] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-
etsidis. 2007. Conditional functional dependencies for data cleaning. In 2007 IEEE
23rd international conference on data engineering. IEEE, 746–755.

[8] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data. ACM, 1247–1250.

[9] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In Advances in neural information processing systems. 2787–2795.

[10] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam Hruschka,
and Tom Mitchell. 2010. Toward an architecture for never-ending language
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 24.

[11] Xu Chu, Ihab F Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting viola-
tions into context. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE). IEEE, 458–469.

[12] Alvaro Cortés-Calabuig and Jan Paredaens. 2012. Semantics of Constraints in
RDFS.. In AMW. Citeseer, 75–90.

[13] Daniel Daza, Michael Cochez, and Paul Groth. 2021. Inductive Entity Represen-
tations from Text via Link Prediction. In Proceedings of the Web Conference 2021.
798–808.

[14] Xin Luna Dong, Xiang He, Andrey Kan, Xian Li, Yan Liang, Jun Ma, Yifan Ethan
Xu, Chenwei Zhang, Tong Zhao, Gabriel Blanco Saldana, et al. 2020. Auto-
Know: Self-Driving Knowledge Collection for Products of Thousands of Types.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2724–2734.

[15] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Con-
ditional functional dependencies for capturing data inconsistencies. ACM Trans-
actions on Database Systems (TODS) 33, 2 (2008), 1–48.

[16] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional dependencies for
graphs. In Proceedings of the 2016 International Conference on Management of
Data. 1843–1857.

[17] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2013.
The LLUNATIC data-cleaning framework. Proceedings of the VLDB Endowment
6, 9 (2013), 625–636.

[18] Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and Theodoros Rekatsinas. 2019.
Holodetect: Few-shot learning for error detection. In Proceedings of the 2019
International Conference on Management of Data. 829–846.

[19] Stefan Heindorf, Martin Potthast, Benno Stein, and Gregor Engels. 2016. Van-
dalism detection in wikidata. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management. 327–336.

[20] Giannis Karamanolakis, Jun Ma, and Xin Luna Dong. 2020. Txtract: Taxonomy-
aware knowledge extraction for thousands of product categories. arXiv preprint
arXiv:2004.13852 (2020).

[21] Seyed Mehran Kazemi and David Poole. 2018. Simple embedding for link predic-
tion in knowledge graphs. In Advances in Neural Information Processing Systems.
4284–4295.

[22] Zuhair Khayyat, Ihab F Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouzzani,
Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. 2015. Bigdans-
ing: A system for big data cleansing. In Proceedings of the 2015 ACM SIGMOD
international conference on management of data. 1215–1230.

[23] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[24] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion. In Twenty-ninth
AAAI conference on artificial intelligence.

[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[27] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semantic web 8, 3 (2017), 489–508.

[28] A Rakhlin. 2016. Convolutional Neural Networks for Sentence Classification.
GitHub (2016).

[29] Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer, and Ido Dagan. 2018. Su-
pervised open information extraction. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). 885–895.

[30] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. YAGO: a core
of semantic knowledge. In Proceedings of the 16th international conference on
World Wide Web. ACM, 697–706.

[31] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-
edge graph embedding by relational rotation in complex space. arXiv preprint
arXiv:1902.10197 (2019).

[32] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In International
Conference on Machine Learning. 2071–2080.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[34] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and
computing 17, 4 (2007), 395–416.

[35] X Wang, T Gao, Z Zhu, Z Liu, J Li, and J Tang. [n.d.]. KEPLER: A Unified Model
for Knowledge Embedding and Pre-trained Language Representation. arXiv 2019.
arXiv preprint arXiv:1911.06136 ([n. d.]).

[36] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In Twenty-Eighth AAAI confer-
ence on artificial intelligence.

[37] Han Xiao, Minlie Huang, Lian Meng, and Xiaoyan Zhu. 2017. SSP: semantic space
projection for knowledge graph embedding with text descriptions. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 31.

[38] Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. 2016. Repre-
sentation learning of knowledge graphs with entity descriptions. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 30.

[39] Ruobing Xie, Zhiyuan Liu, Fen Lin, and Leyu Lin. 2018. DoesWilliam Shakespeare
really write Hamlet? knowledge representation learning with confidence. In
Thirty-Second AAAI Conference on Artificial Intelligence.

[40] Jiacheng Xu, Kan Chen, Xipeng Qiu, and Xuanjing Huang. 2016. Knowledge
graph representation with jointly structural and textual encoding. arXiv preprint
arXiv:1611.08661 (2016).

[41] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
bedding entities and relations for learning and inference in knowledge bases.
arXiv preprint arXiv:1412.6575 (2014).

[42] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
et al. 2020. Big Bird: Transformers for Longer Sequences.. In NeurIPS.

[43] Guineng Zheng, Subhabrata Mukherjee, Xin Luna Dong, and Feifei Li. 2018.
Opentag: Open attribute value extraction from product profiles. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1049–1058.

[44] Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan, and Zheng Chen. 2015.
Aligning knowledge and text embeddings by entity descriptions. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing.
267–272.

CHEX: Multiversion Replay with Ordered Checkpoints

Naga Nithin Manne∗

Argonne National Lab.
Lemont, IL, USA

nithinmanne@gmail.com

Shilvi Satpati
DePaul University
Chicago, IL, USA

ssatpati@depaul.edu

Tanu Malik
DePaul University
Chicago, IL, USA

tanu.malik@depaul.edu

Amitabha Bagchi
IIT, Delhi
Delhi, India

bagchi@cse.iitd.ac.in

Ashish Gehani
SRI

Menlo Park, CA, USA
ashish.gehani@sri.com

Amitabh Chaudhary
The University of Chicago

Chicago, IL, USA
amitabh@uchicago.edu

ABSTRACT

In scientific computing and data science disciplines, it is often nec-
essary to share application workflows and repeat results. Current
tools containerize application workflows, and share the resulting
container for repeating results. These tools, due to containeriza-
tion, do improve sharing of results. However, they do not improve
the efficiency of replay. In this paper, we present the multiver-
sion replay problem, which arises when multiple versions of an
application are containerized, and each version must be replayed
to repeat results. To avoid executing each version separately, we
develop CHEX, which checkpoints program state and determines
when it is permissible to reuse program state across versions. It
does so using system call-based execution lineage. Our capability
to identify common computations across versions enables us to
consider optimizing replay using an in-memory cache, based on
a checkpoint-restore-switch system. We show the multiversion
replay problem is NP-hard, and propose efficient heuristics for it.
CHEX reduces overall replay time by sharing common computations
but avoids storing a large number of checkpoints. We demonstrate
that CHEXmaintains lightweight package sharing, and improves the
total time of multiversion replay by 50% on average.

PVLDB Reference Format:

Naga Nithin Manne, Shilvi Satpati, Tanu Malik, Amitabha Bagchi, Ashish
Gehani, and Amitabh Chaudhary. CHEX: Multiversion Replay with
Ordered Checkpoints. PVLDB, 15(6): 1297-1310, 2022.

doi:10.14778/3514061.3514075

PVLDB Artifact Availability:

The source code, data, and/or other artifacts are available at https://github.

com/depaul-dice/CHEX.

1 INTRODUCTION

Suppose that Alice is researching different image classification
pipelines. She has a large labeled set of images and progressively
tries different combinations of preprocessing steps and neural net-
work architectures. For example, she may replace an entire step

∗Work done as part of a summer internship at DePaul.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514075

with one that is more sophisticated but slower, or vice-versa. As she
makes changes, she keeps a copy of the previous versions in sepa-
rate Jupyter notebooks. We call these her different program versions;

they are similar to different experiments in scientific computing.
Once done, Alice would like to share her different program versions
with Bob so that he can independently repeat and regenerate the
results and verify Alice’s work. We say Bob faces the multiversion

replay problem: executing all the versions given to him by Alice as
efficiently as possible where (i) many versions repeat some of the
same preprocessing steps, but (ii) without reusing any of Alice’s
own computation. In this paper, we address this problem.

Collaborative scenarios such as the one above arise routinely in
scientific computing and data science, where sharing, repeating,
and verifying results is common. Several tools have been recently
proposed for sharing and reproducing such scenarios [1, 8, 22, 41–
44, 57]. These tools audit the execution of a program, and create
a container-like package consisting of all files referenced by the
program during its execution. This package can then be used to
repeat results in different environments. These tools have much
to offer; they do not, however, exploit the efficiency possible by
solving the multiversion replay problem. As the reproduction of
results becomes increasingly time consuming [53], addressing such
problems is critical.

One of the above tools is the Sciunit system [1, 55], developed
by some of the co-authors. It allows multiple versions of a program
to be included in the same package and shared for repetition. We
noted that having two or more versions in the same package sets
up a natural opportunity for reusing computations that are often
common across versions—i.e., a number of versions may perform
the same computations for quite some time before they branch
out as the researcher tries out different options. But, in order to
accurately identify computations that can be reused across versions,
we need to be able to determine the point to which the execution
of two versions can be treated as equivalent and from which point
the execution branches. We develop a methodology to identify
common computations in program code fragments or cells of the
versions. This methodology depends on lineage audited during
program execution [38, 42, 43]. For repetition, at Bob’s end, we share
computational state across versions in the form of checkpoints.
Let us now see with an example how sharing computational state
across versions via checkpoints creates an opportunity to optimize
computational time when repeating multiple versions.

Suppose that Alice has shared with Bob a package with three
versions. Assume Alice has developed her code using a notebook,

and her first version is divided into two cells that take time 1 minute
and 10 minutes, respectively (Figure 1 left). Her second version has
the same first two cells but she adds a third cell. Her last version,
which processes the dataset, has the same first cell, but diverges
after that, and cells 2 and 3 now takes 11 and 2 minutes, respectively.
Now, during repetition, if Bob checkpoints cell 𝑏 while computing
𝑣1 and then restores that checkpoint for 𝑣2, he can complete 𝑣2
in just 1 unit of time (saving 11 units in 𝑣2). This checkpoint is,
however, not useful for 𝑣3 since cell 𝑏 has been changed to 𝑑 in this
version. Observe, that although 𝑎 is common across all three ver-
sions, checkpointing 𝑎, instead of 𝑏, is not optimal. In the example
on the right, on the other hand, checkpointing 𝑎 is the better option
since the bulk of the computation takes place in 𝑎. The example

b

a1

10 b

a

c1

d

a

e

11

Tb = (1+10)+(1)+(1+11+2) = 26
Ta = (1+10)+(10+1)+(11+2) = 35
Checkpointing location ‘b’ is better

2

b

a

1

10

b

a

c1

d

a

e

2

1

Ta = (10+1)+(1+1)+(1+1)= 15
Tb: (10+1)+(1)+(10+1+1) = 24
Checkpointing location a is better

Store 1 checkpoint
v1 v2 v3 v1 v2 v3

Figure 1: Deciding checkpoint location depends on cost and

size estimates of the cells.

above leads to the question:Why doesn’t Bob just checkpoint both

𝑎 and 𝑏? Storage is cheap after all! Indiscriminate caching, how-
ever, is not a practical solution: In machine learning examples, e.g.,
checkpointing all cells across versions (as our experiments indicate)
can lead to a memory requirement in the range of 50-550GB, for
even moderately-sized multiversion programs. Thus, we consider a
limited in-memory space as this avoids additional I/O costs from
checkpointing. Limited space leads to an optimization problem:
As we will show, given limited space and multiple versions with
different cost and size estimates of cells, deciding checkpoint loca-
tions for efficient replay of all versions is an NP-hard problem. We
present efficient heuristics to solve this problem.

The CHEX system. We present CHEX, a system for efficient multi-
version replay that uses recorded lineage shared in container-like
auditing systems to (i) determine when the program state is identi-
cal across versions, and (ii) decides which common computations
to save in an in-memory, limited-size cache, and where to con-
tinue recomputing. Effectively, CHEX computes an efficient plan
for Bob to use his cache to repeat Alice’s multiversion program
with minimum computation cost. Subsequently CHEX repeats the
computation according to this plan.

To execute the multiversion program, we first need a plan for
sharing and reusing computational state across versions. A pos-
sible approach would be to reuse program elements such as the
output of functions, expressions, or jobs. Such reuse approaches
were examined in [16–18]. However, these methods make assump-
tions about the programs—they are limited to programs with no
side-effects and apply to specific (functional or interpreted) pro-
gramming languages. Such assumptions are too restrictive in a
sharing scenario.

Our approach is program-agnostic and we, instead, use check-
points. A checkpoint saves the computational state at a specific
program location so that the same program can be restored from
the location at a later time. To share computations, we extend
checkpoint-restore to checkpoint-restore-switch, in which a system
checkpoints a common computational state and and restores it later
to resume a different version of the program.

The challenge of checkpoint-restore-switch, however, is deter-
mining locations at which to checkpoint, since ideally programs
may be checkpointed after each instruction. Even if we decide at a
fixed number of program locations, before reusing a checkpoint we
must verify that two versions share the same computational state at
a given program location. In this paper we solve this dual challenge

by showing that when a program is divided into cells, computational

state can be shared across versions by using fine-grained execution

lineage. Dividing a program into cells is used in read-evaluate-print
(REPL) programming environments, which are increasingly pop-
ular [26]. However, CHEX does not necessitate that a user employ
REPL style; it transparently divides a program into REPL-style cells.
This paper contributes the following:
Maintains lightweight package sharing. CHEX does not require
users like Alice to share checkpoints as part of the shared pack-
age. Instead, CHEX audits the execution of each version to record
execution details. We note that in reproducibility settings, it is not
desirable to allow Alice to share her checkpoints since that defeats
the purpose of reproducibility.
Merging versions based on lineage. CHEX compares fine-grained
lineage to check if the program state is common across cell versions.
It combines versions into an execution tree.
Deciding checkpoint location.Given that themultiversion replay
problem under space constraints is computationally intractable, we
rely on depth-first-search (DFS) traversals of the execution tree to
help us identify a subset of possible checkpointing decisions for the
execution units of the program. We call the members of this subset
DFS-based replay sequences.We propose two heuristic algorithms
for deciding which cell state to checkpoint such that the multiple
versions can be replayed in a minimum amount of time.
Experiments on real and synthetic datasets. We experimented
with real machine learning and scientific computing notebooks as
well as synthetic datasets, showing that CHEX improves the total
time of multiversion replay by 50%, or correspondingly replays
twice the number of versions in a given amount of time. We show
that the overheads of creating execution trees is significantly lower
than the gain from replay efficiency.
Working prototype system:We have developed a prototype CHEX
system, which given an execution tree performs multiversion re-
play. CHEX currently uses standard auditing methods, developed by
us [1, 55], to build execution trees and determine cell reuse. For
multiversion replay, we extended these methods to work with in-
teractive Jupyter notebooks, as well as, transform regular programs
to REPL-style computation via code-style paragraphs.

2 BACKGROUND

We briefly describe the REPL environment under which CHEX oper-
ates. CHEX is not limited to the REPL environment but this is easy
to illustrate visually so we adopt this for ease of exposition. We
discuss generalization to other environments in Section 9.

Figure 2: An illustration of REPL programs. The left program

𝐿1 trains a machine learning model (resnet18) on a training

dataset and evaluates its accuracy on a test dataset. The right

program 𝐿2 is the same, except that it adds a preprocessing

step to the training dataset. 𝐿1 has 5 cells, 𝐿2 has 6 cells.

REPL or Read-Evaluate-Print-Loop is a programming environ-
ment. A popular example is the Jupyter notebook. As shown in
Figure 2, it contains code partitioned into cells. Developers typically
use a separate cell for each “step" of the program: preprocessing the
dataset, training the model, etc. This allows them to interactively
test each step before writing the next. One restriction is that control
flow constructs, such as if-blocks, loops, cannot be split across cells.
We denote a REPL program by an ordered list of cells, e.g., the left
program in Figure 2 is denoted 𝐿1 = [𝑥1, 𝑥2, . . . , 𝑥5], and the right
program as 𝐿2 = [𝑦1, 𝑦2, . . . , 𝑦6].

In a typical REPL execution, cells are executed in sequence from
the first to last. While the Jupyter notebook allows out-of-order
cell execution, we do not consider such execution. (We elaborate
on this constraint further in Section 9.) The state of the program at
the end or beginning of each cell is termed the program state. The
program state at any point of execution consists of the values of all
variables and objects used by the program at that point — intuitively,
it is all the contents of the memory associated with the program.
So, e.g., for the program 𝐿 = [𝑥1, 𝑥2, . . . , 𝑥5], the corresponding
program states are [𝑝𝑠0, 𝑝𝑠1, . . . , 𝑝𝑠5], in which 𝑝𝑠𝑖−1 denotes the
program state just before cell 𝑥𝑖 is executed. The state 𝑝𝑠0, which
is just before the first cell is executed, includes the value of the
environment and any initial input.

CHEX works in combination with an auditing system which mon-
itors executions and provides the following details about each pro-
gram state, 𝑝𝑠𝑖 :

• computation time, 𝛿𝑖 , the time to reach the program state 𝑝𝑠𝑖
from its predecessor 𝑝𝑠𝑖−1,

• size, 𝑠𝑧𝑖 , size of the program state 𝑝𝑠𝑖 ,
• code hash, ℎ𝑖 , computed by hashing code in cell 𝑖 , and
• lineage, 𝑔𝑖 , which is determined by combining the predecessor

cell’s lineage with the sequence of system events that are trig-
gered by program instructions in the cell 𝑖 and the hashes of the
associated external data dependencies. Thus, 𝑔𝑖 = (𝑔𝑖−1, ℎ𝑖 , 𝐸𝑖),

where 𝐸𝑖 is the ordered set of system events in cell along with
the hash of the content accessed by the event. Initially, 𝑔0 = {}.

To see why 𝑔𝑖 is defined so, we note that the execution of the
program code in cell 𝑖 (and the code in previous cells) resulted in
𝑝𝑠𝑖 . Therefore, 𝑝𝑠𝑖 at the end of a cell’s execution depends on its (i)
initial environment, (ii) code that is run, and (iii) external input data.
The environment is determined by the execution state at the start
of the cell. Thus, (i) and (ii) are captured via 𝑔𝑖−1 and ℎ𝑖 . Further,
every external input data file 𝑓 is accessed via a system call event.
For each such event, we record a hash of its contents of 𝑓 in 𝐸𝑖 .

Figure 3 shows the audited information for the two programs,
𝐿1 and 𝐿2. The ordered set of system events for the third cells of
the two programs are shown in the shaded box below.

Figure 3: Auditing of programs 𝐿1 and 𝐿2 in terms of 𝛿 , 𝑠𝑧, ℎ, 𝑔.
Events in 𝐸3 show a forked process, open of an external file

along, and read of data content, denoted by its hash value.

We determine how to check if 𝐸3 across versions is equal in
Section 6.

3 CHEX OVERVIEW

As we see in Figure 2, the two programs behave the same till the
end of the third cell (𝑥3 in 𝐿1, 𝑦3 in 𝐿2) and then diverge. If the
audited lineage, as shown in Figure 3, is established to be the same,
then the program state at the end of 𝑥3 can be used before 𝑦4. i.e,
we can skip executing cells 𝑦1 to 𝑦3. CHEX uses recorded lineage to
determine when the program state is identical across versions, and
decides which common computations to save. We now present a
high-level block diagram of CHEX in Figure 4.

CHEX has two modes: audit and replay. It is used in audit mode
to audit details of executions on Alice’s side. Details of multiple
executions, i.e. the 𝛿 , 𝑠𝑧, ℎ and 𝑔 of each cell across versions are
represented in the form of a data structure called the Execution

Tree. We discuss the execution tree and how it is created in detail
in Section 6. CHEX creates a package of all Alice’s versions and their
data, binary, and code dependencies, along with the execution tree.
This package can now be shared with Bob.

ALICE BOB

Audited
Execution

𝛿i, szi, gi, hi Execution Tree

Package
Files

Replay
Order

Replay

Cache

cache
size

Shared Package

Figure 4: CHEX Overview.

CHEX is used in replay mode on Bob’s side. It first determines an
efficient replay sequence or replay order, i.e., a plan for execution
that includes checkpoint caching decisions. To do so CHEX inputs
a cache size bound, 𝐵, and then executes a heuristic algorithm on
the execution tree received from Alice to determine the most cost
efficient replay sequence for that cache size. Computing a cost-
optimal replay sequence for multiple versions of a program with a
cache bound is an NP-hard problem as we show in Section 4 and
so we describe some efficient heuristics for this purpose (Section 5).
Finally, once the replay sequence is computed, CHEX uses this replay
sequence to compute, checkpoint, restore-switch REPL program cells
or evict stored checkpoints from cache.

Our assumptions. Our basic assumption is that Bob wishes to
independently verify the results from Alice’s versions but is time
constrained to repeat all her versions. We do not make any assump-
tions on the types of edits that differentiates one version from the
next. Thus, Alice can change values of parameters, specifications of
datasets, models, or learning algorithms. She can also add or delete
entire cells. We illustrate possible changes via red boxes (Figure 2)
across program versions. We only assume that edits result in valid
executions, which do not terminate in an error, and, each version
is executed in the natural order, top to bottom.

4 THE MULTIVERSION REPLAY PROBLEM

We now describe the multiversion replay problem. Figure 6 sum-
marizes the symbols used in Section 2. In the replay mode, CHEX
inputs an execution tree, 𝑇 , and a fixed cache size, 𝐵, to solve the
multiversion replay problem. We define the execution tree as:

Definition 1. (Execution Tree) An execution tree 𝑇 = (𝑉 , 𝐸) is
a tree in which each program state is mapped to a node and equal

program states across the different versions are mapped to the same

node. Each root to leaf path in 𝑇 corresponds to a distinct version 𝐿𝑖 .

Example. Figure 5 shows the execution tree created from five ver-
sions. In this tree, each root to leaf path corresponds to version 𝐿𝑖 .
In 𝐿1 there is an edit to settings of the program at cell 𝑏, resulting in
𝐿2 and a branch at 𝑎, the last common node across 𝐿1 and 𝐿2. Simi-
larly, in 𝐿3 there is a dataset change to 𝐿2 at cell 𝑒 , resulting in 𝐿3
and a branch at 𝑐 , the last common node across 𝐿2 and 𝐿3. The com-
mon nodes till a branch in the tree correspond to the subsequence
of cells that are equal across versions. The tree branches at a cell
node, subsequent to which cells are not reusable. CHEX computes
cell equality using execution lineages. We will discuss how this is
done via system calls in detail in Section 6. Intuitively, establishing
cell equality makes program states reusable across versions.

Figure 5: The enhanced specifications of versions (without

lineages for simplicity) represented as a tree. The cell 𝑖 ap-
pears similar to ℎ but has a changed program state due to

edited 𝑓 . Both𝑚 and 𝑛 proceed from 𝑖’s state.

The multiversion replay problem is an optimization problem that
arises when multiple versions of a program, each previously exe-
cuted, are replayed as a collection. Once the multiversion program
is represented as an execution tree it is clear that there is some
advantage in not replaying the common prefixes of this tree.
Example. If we replay the five versions of Figure 5 sequentially we
incur total cost of 129. On the other hand, assuming a cache size
of 25, if we store the checkpoint at common prefixes, restore-switch
the checkpoint later to avoid computing the common prefix for
the next version, and evict the previous checkpoint to store a new
one, the replay cost is reduced to 114 as shown in the first replay
sequence of Figure 7. In the second figure we see that a different
set of checkpointing decisions can improve the cost even when
the cache size remains the same. Finally we see that increasing the
space to 50 further improves replay costs to 95.

Under these operations, and given an execution tree and a fixed
amount of space for storing checkpoints, the multiversion replay
problem aims to determine a replay sequence that has the minimum
replay costs. We define a general replay sequence as follows:

Definition 2 (Replay seqence). Given execution tree 𝑇 =
(𝑉 , 𝐸) and a cache of size 𝐵, a replay sequence 𝑅 consists of𝑚 steps

such that step 𝑡 specifies the operation𝑂𝑡 performed and the resulting

state of the checkpoint cache 𝑆𝑡 , i.e.,

𝑅 = [(𝑂𝑡 , 𝑆𝑡) : 0 ≤ 𝑡 ≤ 𝑚]

We will use the term replay order interchangeably with the term

replay sequence.

At the initial step 𝑆0 is empty and the root of the tree is computed.
At any given step 𝑡 , 𝑂𝑡 is of one of the following four types. Here,
𝑢 𝑗 and 𝑢𝑘 are nodes in 𝑉 , the vertices of 𝑇 .

• Compute 𝐶𝑇 (𝑢 𝑗): computes 𝑢 𝑗 ;

• Checkpoint 𝐶𝑃 (𝑢 𝑗): checkpoints 𝑢 𝑗 into the cache;

• Restore 𝑅𝑆 (𝑢 𝑗 , 𝑢𝑘): restores a previous checkpointed 𝑢 𝑗 in
cache and switches to 𝑢𝑘 where 𝑢 𝑗 = 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢𝑘); and

• Evict 𝐸𝑉 (𝑢 𝑗): evicts a previous checkpoint 𝑢 𝑗 from cache;

𝐿𝑗 REPL program version
𝑥𝑖 Cell in 𝐿𝑗

ℎ𝑖 Hash of source code in 𝑥𝑖
𝑔𝑖 Cumulative hash of source code and ext. dependencies till 𝑥𝑖
𝑝𝑠𝑖 Program state at end of 𝑥𝑖
𝑠𝑧𝑖 Size of 𝑝𝑠𝑖
𝛿𝑖 Computation time to reach 𝑝𝑠𝑖 from 𝑝𝑠𝑖−1
𝑇 Execution tree combining overlapping 𝐿𝑗 ’s
𝐵 Fixed cache size
𝑅 Replay sequence for𝑇
𝑂𝑡 Operation at step 𝑡 in 𝑅
𝑆𝑡 Set of program states in cache after step 𝑡 in 𝑅
𝛿 (𝑅) Computation time for 𝑅

Figure 6: Notation used in Section 2 and Section 4

The cache size can never exceed 𝐵, i.e. |𝑆𝑡 | ≤ 𝐵 for 0 ≤ 𝑡 ≤ 𝑚.
Further, an operation 𝑂𝑡 at step 𝑡 can only be performed on 𝑢 𝑗 , 𝑢𝑘
under the following constraints:

• Checkpoint from working memory: A node in the execution
tree is checkpointed only if it was computed in some previ-
ous step, after which there are only some evictions (to make
space), if at all, i.e., if 𝑂𝑡 = 𝐶𝑃 (𝑢 𝑗) =⇒ 𝑆𝑡 = 𝑆𝑡−1 ∪ {𝑢 𝑗 }
and 𝑂𝑡−𝑖 = 𝐶𝑇 (𝑢 𝑗), for some 1 ≤ 𝑖 ≤ 𝑡 , and 𝑂𝑡 ′ = 𝐸𝑉 (𝑢𝑡 ′)
for 𝑡 − 𝑖 < 𝑡 ′ < 𝑡 .

• Restore from cache and switch to child: A node is restored
only if it was in cache in a previous step, and without alter-
ing cache state, switches to one of its children in the exe-
cution tree, which is computed next i.e., if 𝑂𝑡 = 𝑅𝑆 (𝑢 𝑗 , 𝑢𝑘)
=⇒ 𝑢 𝑗 ∈ 𝑆𝑡−1, 𝑆𝑡 = 𝑆𝑡−1, 𝑂𝑡+1 = 𝐶𝑇 (𝑢𝑘).

• Evict from cache: A node is evicted from cache and alters its
state, i.e., if 𝑂𝑡 = 𝐸𝑉 (𝑢 𝑗) =⇒ 𝑢 𝑗 ∈ 𝑆𝑡−1, 𝑆𝑡 = 𝑆𝑡−1 − {𝑢 𝑗 }.

• Continue computation: Continue computing a node if its
parent was being computed or if its parent was restored, i.e.,
if 𝑂𝑡 = 𝐶𝑇 (𝑢 𝑗) =⇒ 𝑂𝑡−1 = 𝐶𝑇 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢 𝑗)) or 𝑂𝑡−1 =
𝑅𝑆 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢 𝑗), 𝑢 𝑗) and 𝑆𝑡 = 𝑆𝑡−1 or t= 1 and 𝑢 𝑗=root of
the tree 𝑇 .

We assume the operations generate complete and minimal se-
quences. A replay sequence is complete if all leaf nodes of the tree𝑇
appear in 𝑅, and is minimal if no 𝑢 𝑗 that is in cache is recomputed.

Problem 1 (The Multiversion Replay Problem (MVR-P)).

Given tree 𝑇 (𝑉 , 𝐸), the multiversion replay problem is to find a com-

plete replay sequence 𝑅 that minimizes

𝛿 (𝑅) =
|𝑅 |=𝑚∑
𝑖=0

𝛿𝑂𝑡 ,

in which 𝛿𝑂𝑡 = 𝛿 𝑗 , when 𝑂𝑡 = 𝐶𝑇 (𝑢 𝑗), and 𝛿𝑂𝑡 = 0 otherwise.

In MVR-P, we assume the cost of checkpoint, restore-switch, and
evict operations to be negligible. Thus, the only cost considered
is the cost of computing the cells. Determining the minimum cost
replay order leads to a natural trade-off between computational cost
of cells and fixed-size cache storage occupied by the checkpointed
state of the cells. Thus, to optimally utilize a given amount of
storage we must determine for each cell whether its next cell be
recomputed, or some other cell be recomputed by checkpointing
the state of the current cell. We state that determining the replay
order is computationally hard.

a b d k cg le

a

h f i m

a
Cache
State

Replay
Order

 B = 25, Replay cost = 115

c

i

f

n j

f f

a a cCache
State

Replay
Order

B= 50, Replay cost = 95

c i

n j

f ff

i f i

a aCache
State

Replay
Order

B = 25, Replay cost = 99

c

n

i i

o

a c f j

L1

a b d kg

a b d kg

c le h

c le h

L2 L3 L4
L5

L1 L2 L3 L4 L5

L1 L2 L3 L4 L5

f i m

f i m

RS(u,v):CT(u): uCP(u):u
v

u

EV(u): u

a c

a c

a c

φ

φ

φ

φ

c

c

p

o

o p

p

Figure 7: Replay sequences for the execution tree in Figure 5

showing use of operations and the state of the cache.

Theorem 1. MVR-P is NP-hard.

We show that the decision version of MVR-Pis NP-hard. Given
an execution tree 𝑇 , a cache size parameter 𝐵 > 0 and a total cost
parameter Δ > 0, define 𝑅𝑃 (𝑇, 𝐵,Δ) to be the decision problem
with answer YES if there is a replay sequence of𝑇 with cost at most
Δ and size of cache at most 𝐵, and with answer NO otherwise.

The proof is by reduction from the decision version of bin pack-
ing. In outline, the proof works by constructing an execution tree
whose depth 1 nodes have checkpoint sizes corresponding to the
size of the items to be packed into bins in the bin packing problem.
The 𝐵 of 𝑅𝑃 (𝑇, 𝐵,Δ) is set to the size of the bins. In order to force
caching, we keep Δ small and add nodes below the depth 1 nodes
so that each of the level one nodes has to be cached when first
computed. We are able to show that by carefully adding subtrees
below the depth 1 nodes we are able to prove a tight relationship
between the two problems, i.e., the bin packing decision problem
gives a Yes answer iff 𝑅𝑃 (𝑇, 𝐵,Δ) gives a yes answer.

We omit the proof due to space restrictions, referring the reader
to the full version of this paper available at [34].

5 HEURISTIC SOLUTIONS

From Theorem 1 we know that it is unlikely we will find polyno-
mial time solution to MVR-P. Accordingly, we present two efficient
heuristics for this problem. Both heuristics restrict our exploration
of the search space to solutions in which the execution order of
the nodes of the execution tree corresponds to a DFS traversal of
the tree—a natural, simple order in which to approach the replay
of the tree. In order to formalize this notion we present some defi-
nitions. In the following, for sake of brevity, we specify only the
compute 𝐶𝑇 (𝑢 𝑗) type operations in replay sequences. The other
operations (checkpoint, restore, evict) are separately specified. In
this briefer format, each step of a replay sequence is of the form
(𝑢𝑡 , 𝑆𝑡) specifying that at step 𝑡 , 𝑢𝑡 is computed, and the resulting
cache is 𝑆𝑡 .

Definition 3 (Ex-Ancestor replay seqence). Suppose 𝑇 =
(𝑉 , 𝐸) is an execution tree. Given any replay sequence 𝑅 = {(𝑢𝑡 , 𝑆𝑡) :
1 ≤ 𝑡 ≤ 𝑇 } we define its first appearance order to be 𝑖1 < 𝑖2 < · · · <
𝑖 |𝑉 | such that𝑢𝑖 𝑗 is the first appearance of a node 𝑣 𝑗 of T in 𝑅. We call

the indices 𝑖1, . . . , 𝑖 |𝑉 | as first appearances and all other indices as

repeat appearances. For a replay sequence 𝑅, for each 𝑗 ∈ {2, . . . , |𝑉 |}
the sequence of cells 𝑢𝑖 𝑗−1+1 . . . 𝑢𝑖 𝑗−1 is called the helper sequence for
𝑣 𝑗 . If the helper sequence for 𝑣 𝑗 forms a path from an ancestor of 𝑣 𝑗
to 𝑣 𝑗 for each 𝑗 then 𝑅 is called an ex-ancestor replay sequence.

We observe that in an ex-ancestor replay sequence if the helper
sequence of 𝑣 𝑗 is non-empty then it either begins with the root of
𝑇 or with a node whose parent is in 𝑆𝑖 𝑗−1 .

We illustrate this definition with an example. Consider the tree
in Figure 5. Assume for now that cache size 𝐵 = 0 and consider the
following replay sequence:

𝑎, 𝑏, 𝑑, 𝑔, 𝑘, 𝑜, a, 𝑐, 𝑒, ℎ, 𝑙, a, c, 𝑓 , 𝑖,𝑚, a, c, f, i, 𝑛, 𝑝, a, c, f, 𝑗

where bold font indicates repeat appearance nodes. Here the indices
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 21, 22, and 26 are first appearances
and all others are repeat appearances. Let’s take the example of
node 𝑛. It’s first appearance index is 21. Its helper sequence extends
from indices 17 to 20 and contains a, c, f, i. This is a simple path in
the tree beginning from the node containing 𝑎 which is an ancestor
of 𝑛. In fact it is easy to verify that this sequence is an ex-ancestor
replay sequence.

The question arises: Are there meaningful replay sequences that
are not ex-ancestor replay sequences? For example, would it make
sense tomodify𝑛’s helper sequence andmake it a, c, 𝑒, f, i. It appears
that the extra computation of 𝑒 is superfluous and so a priori it is
not obvious that such replay sequences are meaningful from the
point of view of efficient replay. Therefore we focus on ex-ancestor
replay sequences. We conjecture that an optimal solution to MVR-P
will be such a sequence.

Definition 4 (DFS-based replay seqence). Suppose𝑇 = (𝑉 , 𝐸)
is an execution tree for a collection of traces C. We say a complete

and minimal replay sequence 𝑅 is a DFS-based replay sequence if
𝑅 is an ex-ancestor sequence and the first appearance order of 𝑅 is a

DFS-traversal order of 𝑇 .

Note that first appearance sequence of the example discussed
below Definition 3 gives us a DFS-traversal of 𝑇 . Hence this is a
DFS-based replay sequence for the tree of Figure 5.

Now assume a cache size 𝐵 = 25 and the caching decisions made
according to the first replay sequence in Figure 7.1 The correspond-
ing replay sequence is similarly: 𝑎, 𝑏, 𝑑, 𝑔, 𝑘, 𝑜, 𝑐, 𝑒, ℎ, 𝑙, 𝑓 , 𝑖,𝑚, i, 𝑛, 𝑝, 𝑗 .
Since 𝑎, 𝑐, and 𝑓 are cached at appropriate junctures, the only node
with a non-empty helper sequence is 𝑛 and the length of this se-
quence is just one, i.e., there is only one cell that has to be recom-
puted apart from its first appearance computation. For the second
and third sequence in Figure 7 the number of recomputations are
similarly three (a, c, f) and zero respectively.

We are able to explicitly bound the number of DFS-based replay
sequences.

Proposition 1. Suppose 𝑇 = (𝑉 , 𝐸) is an execution tree for a

collection of traces C such that |𝑉 | = 𝑛 and the height of 𝑇 is ℎ. Let
𝑏𝑢 be the number of children of node 𝑢 ∈ 𝑉 and let

𝑏 :=
1

𝑛

∑
𝑢∈𝑉

𝑏𝑢 log𝑏𝑢 .

Then, the number of DFS-based replay sequences of𝑇 is𝑂 (2𝑛 (ℎ+logℎ+𝑏)).
1All three replay sequences in Figure 7 are DFS-based.

Proof. Let us fix a DFS traversal order. The helper sequence
preceding (and including) each node can be at most ℎ in length and
hence the length of a replay sequence can be no longer than ℎ𝑛.
Since each helper sequence is an ex ancestor path to a node of the
tree, we can have at most ℎ choices of a helper sequence at each
node. Therefore there are at most ℎ𝑛 different sequences that can
qualify to be DFS-based replay sequences. Note that at each point
of one of these sequences of cells we can decide to either cache the
cell that we have just computed (this may require the eviction of
something previously cached) or to not cache it. Hence there are at
most 2𝑛ℎ replay sequences associated with each of the ℎ𝑛 different
sequences that we got for a single DFS traversal order. This gives
us an upper bound.

To compute the number of DFS traversal we simply permute the
children visited by DFS at each step to get

∏
𝑢∈𝑉 𝑏𝑢 ! which can be

rewritten as 2𝑛𝑏 by using Stirling’s approximation. Multiplying we
get the result. �

Since ℎ is Ω(log𝑛) from Proposition 1 it appears that the space
of possible solution is superexponential. In order to control the
complexity of our solutions we restrict the solution space in two
different ways and define two heuristics.

5.1 Persistent Root Policy Greedy Algorithm

Within the space of DFS-based replay sequences, for our first heuris-
tic, we propose the following caching policy: A cell can be cached

only when it is first computed. Once cached the cell remains in the

cache till every leaf of the subtree rooted at the node containing cell is

computed. We call this the DFS Persistent Root policy.
Given a DFS traversal order this policy reduces the size of the

solution space to 𝑂 (2𝑛) which is still exponential in the size of the
tree. We present a greedy algorithm called Persistent Root Policy

Greedy (PRP) that helps find a good solution in polynomial time.
We present the listing of PRP as Alg. 1. The algorithm begins with
the baseline cost (stored in min) of a DFS-based replay sequence in
which no node is cached and seeks out the node of the tree whose
addition to the list 𝑆 achieves the maximum improvement over the
baseline. This process continues incrementally while it is possible
to include another node in the list. The process will stop when the
subroutine DFSCost tells us that there is no node remaining in𝑉 \ 𝑆
that can be included in 𝑆 . Typically this will happen because for
every node 𝑢 remaining in 𝑉 \ 𝑆 , the cache will be full when it
is encountered in the DFS order. In such a situation DFSCost will
return∞. This algorithm takes 𝜃 (𝑛2) time to find each candidate to
include in the list of nodes to be cached, and there are potentially
𝑂 (𝑛) such nodes. Therefore the time complexity of this algorithm
is 𝑂 (𝑛3). However there is no guarantee of optimality.

PRP is a greedy algorithm that seeks, at each iteration, to pick
for caching the vertex of the execution tree that minimizes the
cost. However, it can be easily modified to choose a vertex that
minimizes the cost incurred per unit of cache memory consumed.

Normalizing by size is a common measure for object caches [7,
32]. We experimentally study both these variants in Section 7. We
will refer to the cost-minimizing version as PRP-v1 and the ratio
minimizing version as PRP-v2.

Algorithm 1 A greedy algorithm that takes as input execution
tree𝑇, and a cache size parameter 𝐵. It outputs list 𝑆 of nodes to be
cached under the DFS Persistent Root policy.

1: function PRP(𝑇, 𝐵)
2: 𝑆 ← ∅
3: 𝑓 ← True ⊲ 𝑓 is True while greedy is able to extend its solution

4: 𝑟 ← root(𝑇)
5: Set min← DFSCost(𝑟, 𝑆, 𝐵, 0) ⊲ The function gives us the cost of a DFS-

based replay sequence for𝑇 given a list of nodes 𝑆 that must be cached when first computed.

6: while 𝑓 is True and 𝑆 ≠ 𝑉 do

7: 𝑓 ← False
8: for each 𝑢 ∈ 𝑉 \ 𝑆 do

9: if DFSCost(𝑟, 𝑆 ∪ {𝑢}, 𝐵, 0) < min then

10: 𝑓 ← True ⊲ We can extend the solution

11: 𝑢∗ ← 𝑢 ⊲ 𝑢∗ is the current best candidate

12: if 𝑓 is True then
13: 𝑆 ← 𝑆 ∪ {𝑢∗}
14: min← DFSCost(𝑟, 𝑆, 𝐵, 0)

15: return 𝑆

1: function DFSCost(𝑢, 𝑆, 𝐵, 𝑏) ⊲ 𝑢 is a node of𝑇 ; 𝑏 is the cache budget used by

the path from the root of𝑇 to𝑢 . Called with𝑢 = root(𝑇) and 𝑏 = 0 this returns the cost of

computing the entire tree.

2: if 𝑢 ∈ 𝑆 and 𝑏 + 𝑠𝑧𝑢 > 𝐵 then

3: return∞ ⊲ Cache size infeasibility detected

4: 𝑐𝑢 ← cost of computing 𝑢 from nearest ancestor in 𝑆
5: if 𝑢 has no children then

6: return 𝑐𝑢
7: sum← 0

8: for each 𝑣 that is a child of 𝑢 do

9: if 𝑢 ∈ 𝑆 then

10: sum← DFSCost(𝑣, 𝑆, 𝐵, 𝑏 + 𝑠𝑧𝑢)
11: else

12: sum← DFSCost(𝑣, 𝑆, 𝐵, 𝑏) + 𝑐𝑢 ⊲ 𝑢 is not cached so must be

recomputed for each child

13: if 𝑢 ∈ 𝑆 then

14: sum← sum + 𝑐𝑢 ⊲ 𝑢 must be computed once

15: return sum

5.2 Parent Choice Algorithm

Wenow present a second heuristic that, while still not being optimal,
searches a superset of the portion of the solution space searched
by PRP. For each 𝑢 ∈ 𝑉 it seeks to partition the children of 𝑢
into two sets: 𝑃𝑢 of nodes for which it is better to cache 𝑢 for the
computation of the corresponding child subtrees, and 𝑃𝑢 for which
it is not. As in Persistent Greedy, caching choices once made persist
here as well.

The listing of the essential recursive Parent Choice is presented
as Alg. 2. When called with (𝑢, 𝑆) we explore the situation in which
we are given the set 𝑆 of ancestors of 𝑢 that will be in cache while
the subtree rooted at 𝑢 is computed. In case 𝑢 happens to be a leaf,
no further decisions are needed, and we simply return the cost of
computing 𝑢 given cache 𝑆 (Lines 2-4). Else, we need to determine
what is best for each child 𝑢𝑖 of 𝑢: Should the subtree rooted at
𝑢𝑖 be computed with 𝑆 as is, or is it better to augment the cache
with 𝑢 (denoted 𝑆+𝑢). In the former the subtree may be forced to

Algorithm 2 A recursive algorithm the computes for a tree rooted
at 𝑢 the lowest DFS-based replay cost for a given cache 𝑆 . The child
subtrees of 𝑢 are allowed to choose between executing with 𝑆 or in
addition caching 𝑢.

1: function ParentChoice(𝑢, 𝑆)
2: if 𝑢 is a leaf then
3: 𝑎 ← nearest ancestor of 𝑢 in 𝑆
4: return cost of computing 𝑢 from 𝑎
5: ⊲ If 𝑎 doesn’t exist, return cost of computing𝑢 from scratch.

6: 𝑆+𝑢 ← 𝑆 ∪ {𝑢} ⊲ 𝑆+𝑢 is cache that also includes𝑢 .

7: if size of cache 𝑆+𝑢 > 𝐵 then

8: ⊲ Caching𝑢 is not a option; process its children with 𝑆 .

9: 𝑃𝑢 ← ∅; 𝑃𝑢 ← 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑢).
10: return

∑
𝑢𝑖 ∈𝑃𝑢

ParentChoice(𝑢𝑖 , 𝑆)

11: 𝑃𝑢 ← ∅, 𝑃𝑢 ← ∅
12: ⊲ 𝑃𝑢 will collect the nodes for which caching parent𝑢 is cheaper.

13: for each 𝑢𝑖 ∈ 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑢) do
14: cost(𝑢𝑖 , 𝑆+𝑢) ← ParentChoice(𝑢𝑖 , 𝑆+𝑢)
15: cost(𝑢𝑖 , 𝑆) ← ParentChoice(𝑢𝑖 , 𝑆)
16: if cost(𝑢𝑖 , 𝑆+𝑢) ≤ cost(𝑢𝑖 , 𝑆) then
17: 𝑃𝑢 ← 𝑃𝑢 ∪ {𝑢𝑖 }
18: else

19: 𝑃𝑢 ← 𝑃𝑢 ∪ {𝑢𝑖 }

20: return
∑
𝑢𝑖 ∈𝑃𝑢 cost(𝑢𝑖 , 𝑆+𝑢) +

∑
𝑢𝑖 ∈𝑃𝑢

cost(𝑢𝑖 , 𝑆)

recompute 𝑢 multiple times, in the latter cache space which may
be more useful down the subtree is used up. The two costs are
computed recursively (Lines 14-15), and the child is assigned to
the set 𝑃𝑢 or 𝑃𝑢 corresponding to the lower cost (Lines 16-19)).
Note that when adding 𝑢 to the cache is infeasible, i.e. |𝑆+𝑢 | > 𝐵,
we make the first choice for each node, i.e. assign them all to 𝑃𝑢 .
(Lines 7-10). Finally, we return the cost value up the recursion stack
(Line 20).2

The essential recursive algorithm PC needs to be implemented
using standard dynamic programming memoization and backpoint-
ers (see, e.g., [11]). Once a call with input (𝑢, 𝑆) is complete, the
corresponding return cost value and the two sets 𝑃𝑢 and 𝑃𝑢 are
recorded. The initial call is with (root(𝑇), ∅). This returns the cost of
the optimal replay sequence for the entire𝑇 . To construct the replay
sequence itself, “follow the backpointers”: Start with 𝑢 = root(𝑇)
and 𝑆 = ∅. If for the corresponding call, 𝑃𝑢 is not empty, compute
𝑢 (possibly by restoring the closest ancestor in the current cache)
and checkpoint it. Update 𝑆 to include 𝑢. Then recursively compute
the subtrees rooted at the nodes in 𝑃𝑢 . Next update 𝑆 to remove
𝑢. Following this, recursively compute the subtrees rooted at the
nodes in 𝑃𝑢 , if any.

The above implementation takes time and space proportional to
the total number of child nodes encountered over all recursive calls.
For each 𝑢 ∈ 𝑉 , at most one recursive call is made for each possible
set of ancestors in the cache. The number of different ancestor sets
is at most 2ℎ . Thus the total time taken is 𝑂 (2ℎ

∑
𝑢∈𝑉 𝑏𝑢).

2We do not explicitly show the cost of computing 𝑢 in order to cache it for 𝑃𝑢 . This

cost is offset by the same cost incurred by the first child subtree in 𝑃𝑢 , as shown, but

not actually paid since 𝑢 is already in cache when it is executed. The case of 𝑃𝑢 = ∅
has a further optimization that is possible; see the full version of this paper [34].

6 EXECUTION TREE

We now discuss how CHEX constructs the execution tree at Alice’s
end. As per Definition 1, an execution tree merges equal program
states of different versions into a single node in the tree. Given
the per cell values of state computation time 𝛿𝑖 and size 𝑠𝑧𝑖 , state
lineage 𝑔𝑖 , and state code hash ℎ𝑖 , we use the following conditions
to identify equal program states:

Definition 5 (State eqality). Given two program versions 𝐿1
and 𝐿2, state 𝑝𝑠𝑖 in 𝐿1 is equal to state 𝑝𝑠 𝑗 in 𝐿2, denoted 𝑝𝑠𝑖 = 𝑝𝑠 𝑗 , if
and only if (i) ℎ𝑖 = ℎ 𝑗 , (ii) 𝑔𝑖 = 𝑔 𝑗 , and (iii) 𝛿 and 𝑠𝑧 costs are similar.

In other words we say that two states are equal if they are
reusable i.e., they are (i) equal at code syntactic level, (ii) after
cell execution, result in the same state lineage (note state lineage
of 𝑖𝑡ℎ cell depends on state lineage of previous cell), and (iii) have
roughly similar execution costs. Program state does not remain
equal when cell code is edited, which changes the hash value of
that cell and any subsequent cell. Similar states across versions
also do not remain equal if costs change drastically, i.e., computed
on different hardwares (viz. GPU vs CPU). Equating state lineage
depends on the granularity at which the system events are audited.
Since in CHEX, lineage is audited at the level of system calls, there
are some pre-processing steps that are necessary to establish equal-
ity, such as accounting for partial orders, abstracting real process
identifiers, and accounting for hardware interrupts. We describe
these issues below.

Lineage equality implies that at end of cell 𝑖 of version 𝐿1, 𝑔𝑖 is
the same as that at end of cell 𝑖 of version 𝐿2. This is true if and only
if the sequence of system call events (and their parameters)—till 𝑖 in
𝐿1 and 𝑖 in 𝐿2—exactly match. But if a cell, e.g., forks a child process,
which itself issues system calls, then each version’s sequence will
contain the parent calls and the child process calls interleaved in
possibly different orders.

In Figure 3 the parent process forks a child and then issues
a ‘mem’ memory call, and the child process itself issues ‘exec’,
‘open’, and ‘read’ calls. As the figure shows, it is possible that in the
sequence for version 𝐿1 the ‘mem’ access is before the ‘read’, while
for 𝐿2 it is after. If we want to correctly determine that the state in
𝐿1 is identical to that in 𝐿2 at this point, we need to recognize that
the sequence of system calls is an arbitrary total order imposed
on an underlying partial order. The partial order for 𝐿1 and 𝐿2 is
identical, while the total order can differ.

In our implementation, we reconstruct the underlying partial
order when we detect asynchronous computation, and match it
to identify equality of program states in different versions. This is
achieved by separating the events into PID-specific sequences and
then comparing corresponding sequences. The above comparison
is established by abstracting process identifiers to their logical
values. Memory accesses cannot be abstracted and we just count
the number of accesses in a cell. Comparison must also account
for external inputs in addition to system events. As Figure 3 shows
the hash of external dataset file ‘new_fashion’ is changed from
‘b2e1772’ to ‘6789b34. Thus, the two cells cannot be equated even
though the order of system call sequence in 𝐸 is the same.

A related nuance is due to hardware interrupts. If 𝑃1 experiences
a hardware interrupt and 𝑃2 does not, we make the safe choice:

assume the program states are not equal. (It is easy to make the
opposite choice, by simply ignoring hardware interrupts.)

7 EXPERIMENTAL EVALUATION

We now describe CHEX’s implementation and present an extensive
evaluation of CHEX for multiversion replay.

Implementation. CHEX is implemented in C and Python. CHEX
relies on Sciunit [1] for monitoring the application on Alice’s side
and it relies on Checkpoint/Restore in Userspace (CRIU) [10] to
checkpoint/restore program states. CHEX maintains a ramfs cache
to maintain checkpoints. These checkpoints are of the process
corresponding to the REPL program and not of the container that
Sciunit creates.

We use CRIU as a checkpointing mechanism. This is precisely
to enable checkpoint of a process independent of its programming
language3. CRIU does not freeze the state of the container but
just the application process. Currently, CHEX is integrated with the
IPython kernel. In future, we plan to integrate CHEX with Xeus [9],
which will help us extend CHEX to C programs as well. For the
purposes of reproducibility we have made available the code for
the audit and replay mode of CHEX at [40].

We used a combination of real-world applications and synthetic
datasets for evaluation. We ran all our experiments on a 2.2GHz
Intel Xeon CPU E5-2430 server with 64GB of memory, running
64-bit Red Hat Enterprise Linux 6.5. The heuristics were developed
in Python 3.4.

Real-world Applications. We searched GitHub and identified
compute- and data-intensive notebooks, i.e., the programmer had al-
ready divided the code into cells. Most of these notebooks were pub-
lished as artifacts in specific domain conferences (pre-established
to be reproducible), and they were described as compute- and data-
intensive.

We used four neural network machine learning applications
(ML) and two scientific computing (SC) applications. Table 1 de-
scribes the characteristics of these notebooks. For the majority of
the applications, the number of versions was determined in consulta-
tion with the notebook authors, by identifying meaningful changes
to parameter values. Other notebooks were changed similarly. Total
replay cost is the time to run all the versions with no cache. Total
checkpoint size is the space required if each corresponding cell of the
execution tree is checkpointed. Cell compute range and Cell check-

point size represents the range of cell compute time and checkpoint
size ranges, respectively. The changed parameter row mentions
application parameters that were changed to create versions. The
only way we created versions was by changing parameters. We did
not modify any other part of the programs.

The case of the parameter epochs in ML notebooks is special. In
our case, theML notebooks embed deep neural networks, in which
typically the compute-intensive part is the back propagation during
the training phase. Back propagation is usually implemented as
an iterative for-loop, whose upper bound is defined by the epochs
parameter. Changing epochswill change the training length and the
number of iterations in the for-loop. Such a change to create a new
version, however, will also re-run the entire training phase again,

3Native serializations, viz. Pickle, provide only a slight performance benefit (1-2%).

Table 1: Six Real-world Applications

Dataset: ML1 ML2 ML3 ML4 SC1 SC2

Description

Neural
Networks
[49, 50]

Stock
Prediction
[27, 28]

Image
Classification

[33]

Time-Series
Forecast [13]

Gas Market
Analysis

[2]

Spatial
Analysis
[45, 46]

Changed parameter models, hyperparameters, test metrics, datasets, epochs datasets and input parameters

Number of versions 25 24 32 36 12 23

Version Length 9 - 13 9 7 - 8 17 18 33

Total (no-cache) replay cost (s) 33390 298 2127 10696 7126 10826

Cell compute range (s) 0.0005 - 1073 0.0003 - 8.5 0.008 - 50 0.01 - 240 0.0003 - 926 0.0002 - 224

Total checkpoint size (GB) 57 37 106 566 13 14

Cell checkpoint size (GB) 0.2 - 1.8 0.2 - 0.38 0.4 - 2 1.3 - 11 0.077 - 0.100 0.040 - 0.050

(a) ML1 (b) ML2 (c) ML3

(d) ML4 (e) SC1 (f) SC2

Figure 8: Performance of DFS algorithms on 6 real-world applications. 𝑋 denotes the size of the largest checkpoint cell as

specified in the last row of Table 1. The 𝑦-axis is truncated to show finer performance variations between algorithms.

Table 2: Three Synthetic Datasets

Dataset: CI DI AN

Max. Branch-out Factor 4 4 4

Max. Version Length 6 6 6

Number of versions 20 20 20

Total (no-cache) replay cost (s) ∼20000 ∼5000 ∼20000

Cell compute range (s) 100 - 600 100 100 - 600

Total storage size (GB) ∼22 ∼18 ∼18

Cell checkpoint size (GB) 0.5 0.1 - 0.6 0.1 - 0.6

which will include the training iterations performed in the previous
version. Therefore to create a version when the change is to epochs,
we do not modify the value in-place. Instead we add a new cell.
This cell consists of the author-provided training loop but with
a incremental range of epochs starting from the last epoch value
of the previous cell. This way of modifying the epoch parameter
introduces no change to the code and corresponds to incremental
training, which is often used in ML to take advantage of previous
computations.

Synthetic. To test the sensitivity of our heuristics we randomly
generated synthetic execution trees with different costs and sizes.
We controlled the tree structure using the following parameters:
max. branch out factor: The maximum number of branches possible
at a node. Each branch is constructed with a 50% probability. This
leads to trees in which many nodes have a single child. This is what
we have observed in real notebooks.
max. version length: The number of cells in each version. In general,
the length for each version is different because of the randomization
described above.
max. number of versions: The number of leaves in the execution tree
generated by using max. branch out factor and max. version length.
Using the above parameters, we generate three synthetic datasets:

• Compute intensive (CI): In the CI tree, the compute cost (𝛿) of
cells is high and the checkpoint cost (𝑠𝑧) is modest.

• Data intensive (DI): In the DI tree, the checkpoint cost (𝑠𝑧) of
cells is high and compute cost (𝛿) is modest.

• Analytic (AN): In the AN tree, compute and checkpoint costs
i.e., 𝛿 and 𝑠𝑧 increase with version length.

Table 2 presents the total compute time and total storage size as
well as the compute and storage ranges per cell.

Baselines. IncPy [17, 18] avoids recomputing a function with the
same inputs when it is called repeatedly or across program versions.
Despite our best attempts we could not get IncPy to run with our
real datasets. IncPy is not longer actively maintained and is Python
2.7 based which creates conflicts with more recent notebooks. We
simulated the Vizier system, by taking one notebook version at
a time [6], and using the simple caching policy that is used for
Vizier: Least Frequently used (LFU), which is a standard caching
algorithm. We adapt LFU to our case by checkpointing every cell
of the first version of a notebook till the cache space fills up. As
subsequent versions arrive, the cache eviction policy is decided
by the measure 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × # 𝑜 𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑠𝑢𝑏𝑡𝑟𝑒𝑒/𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒 , i.e.,
retaining cells which are used frequently and are responsible for
larger subtree, normalized by their size. Least recently used, another
standard caching algorithm, is not relevant in our case due to the
depth-first replay order.

7.1 Experiments

We first evaluate the benefit different algorithms provide in terms
of reduction in replay time. We then evaluate the overhead of oper-
ating CHEX.

7.1.1 Comparing decrease in replay cost via different algo-

rithms. Persistent Root Policy (PRP) and Parent Choice (PC) make
different choices with respect to cells that must be retained in cache
for recomputation. In this experiment, we evaluate how those deci-
sions compare with the (LFU) baseline. Recall that PRP has two
versions: PRP-v1, in which we cache checkpoints greedily based
on contribution to reduction in cost, and PRP-v2, in which we
normalize the cost reduction by the checkpoint size.

To compare algorithmic performance, we choose a cache size
that is equal to the largest checkpoint size in a notebook and com-
pute total replay time. The 𝑦-axis is initialized with a non-zero
value to show finer comparisons between algorithms. For both PC

and PRP algorithms on real-world applications, as is expected, Fig-
ures 8(a)-(f), show decreasing compute times (𝑦-axis) as the cache
size is increased (𝑥-axis). We also see PRP and PC always perform
substantially better than LFU, and PC reduces total compute cost
more than either of the PRP versions.

Both these result trends are not exhibited in Figure 8(e) (SC1)
and, to an extent, in Figure 8(d) ML4. In (e), as we observe, none
of the algorithms, including the baseline LFU, show any benefit of
caching. This is because in this notebook only the last cell of each
version is compute-intensive, and none of the intermediate cells
are cache-worthy. In (d), similarly, most computation is towards
the later cells; PRP and PC still find some ways to optimize which
LFU cannot find. The effect of reuse of intermediate results is well-
demonstrated when comparingML4 and SC2which exhibit similar
total replay costs. However, there is a much greater reduction in
total replay cost in SC2 (from 100% to 18%) as there are several
compute-intensive pre-processing steps in the earlier cells of the
notebook, where as in ML4 most computation occurs towards the
later cells.

Analyzing deeper we also observe these trends: (i) Sometimes,
initially, PRP performs better, and this happens due to small cache
size effect, since PC becomes a clear win with some additional cache
space; (ii) PRP-v1 performs better than PRP-v2 indicating that
eviction on a cost/size measure leads to more greedy eviction policy
where checkpoints are evicted which need to recomputed later; and
finally (iii)ML1,ML3 and SC2 are compute-intensive notebooks.
Using the PC algorithm, these notebooks show a reduction of 60-
65% in their compute time at a size of the cache which is at most
double the size of the largest checkpoint cell in the notebook. This
indicates that smart algorithms can provide significant benefits
even with small cache sizes. We obtain similar results for synthetic
datasets, and, for lack of space, only include the figures for synthetic
results in the extended version of the paper [34].

7.1.2 Determining number of versions replayed with fixed

cache size. We also examine the direct benefit of a system like
CHEX for users. For most users CHEX will be configured with a given
amount of cache space. Users, however, have time constraints. Thus
we determine, for given cache sizes, number of versions that can be
replayed with CHEX in a given amount of time, on the AN dataset.
Figure 9(a) presents the result (number of versions (𝑦-axis) for the
amount of time it takes to replay them (𝑥-axis)) for a given cache
size, the value being either: no cache, 0.25GB, 0.5GB, and 1GB. The
Figure shows that a user can run 50% more number of versions
by doubling the space for the same fixed amount of time. To be
able to run larger number of runs for the same amount of time
has implications for scaleable collaborative sharing and artifact
evaluation use cases.

Figure 9: (a) For given cache sizes, number of versions that

can be replayed with CHEX in a given amount of time, on the

AN dataset. (b) The overhead of auditing 𝛿, 𝑠𝑧, 𝑔 and ℎ in real

world applications with > 5 minutes of replay cost.

7.1.3 Time and space required to run CHEX. We first determine the
cost of auditing an application in CHEX.

Cost of Auditing. CHEX performs auditing of state for each version
of an application in terms of computation time 𝛿 , state size 𝑠𝑧, state
code hash ℎ, and state lineage 𝑔. We report both normal execution
and audited execution as a percentage of the total time of using
CHEX on a real application.

Amongst these audited quantities, the primary overhead is the
additional time required to audit the application for state lineage,
i.e., 𝑔. We further divide time to audit for 𝑔 into time required
to (i) monitor and log system events in the application, and (ii)
the time required to compute the hash of any external content

(a) (b) (c)

Figure 10: Algorithm complexity of AN workloads: (a) running time, (b) storage size for PC, and (c) number of

checkpoints/restore-switch for PC

that is referenced. As Figure 9(b) shows, a 15-25% of total auditing
overhead is added across all applications. We are reporting 5 out of
six applications asML2 has relatively insignificant running time
to begin with.

Also the time to perform cell equality and construct the execution
tree is negligible. Alice shares a package with the execution tree,
the size of which is less than 1KB.

Cost of computing cache eviction decisions.We have shown
the multiversion replay problem to be NP-hard; PRP and PC are
heuristic algorithms, and thus have some time and space cost of
making the cache eviction decisions. In this experiment, we mea-
sure the cost of using PRP and PC algorithms in comparison to
LFU in terms of running time, space used, and number of times
checkpoint/restore call was made. We experimented with the AN
synthetic dataset.

The variability in running time of the algorithms with cache
size is negligible (∼[0.05%]). Therefore, we fix the cache size to
1GB and show the variation with respect to two other parameters,
the number of nodes in the tree, i.e., tree size and the different
algorithms. Figure 10 (a) shows that PC is better than PRP in terms
on run-time overhead, but in terms of space, it does incur a cost.

PRP has negligible state maintenance as it uses the execution
tree to determine the order. However, PC takes storage, because
it has to store all possible combinations of execution orders for
different cache eviction sizes to get the most optimal one. Figure 10
(b) shows the increase in storage for different tree sizes as cache
size is increased. Despite these differences, we highlight that the
runtime and memory overheads of both algorithms is much lower
(0.5-2%) than the overall compute time and storage of multiversion
execution of any given real dataset.

The above experiment measures decision-making time and space.
In practice to implement the decisions we must account for in-
memory checkpoints and restore (C/R) time. In general, time to
C/R are proportional to the size of the checkpointed state and
are negligible. So we measured the number of times C/R were
performed to check if small C/R costs adds to the overall latency
of multiversion execution (Figure 10 (c)). As we see C/R costs are
negligible, and decision making accounts for the primary cost.

Apart from the experiments reported above, we attempted a
comparison between PC and an optimal algorithm,using the AN
dataset for comparison. For optimal, we wrote our problem, the
MVR-P, as an Integer Linear Program (ILP) and attempted to solve
it with the Couenne optimizer [30]. The Couenne timeout was set
as ten minutes. For tree size of 2-6 nodes, Couenne finished finding

a solution in less than 10 seconds, but after that the time starts
increasing exponentially. At 12 versions and an execution tree of
20 nodes, the optimal solution could not be found within the set
time out. On increasing the number of versions, it took more time
to find the optimal solution than naive replay (without cache). On
the other hand, as we show in Figure 10(a) we took milliseconds to
find a solution for more than a tree-size of 30.

Since we only found optimal solution for small trees, in terms of
the quality of the solution, we found the replay cost of PC similar
to optimal. For larger tree sizes, it may give better cost estimates,
but given the large running time of optimal for larger and complex
instances, we assess, it is not worth it. Finally, the overhead of
implementing the decisions in CHEX is too small to be measured
and often smaller than the variance between multiple runs.

8 RELATEDWORK

Tools and hubs for sharing and reuse. Sharing and replaying
is essential for verifying, and reproducing complex applications.
Several user-space virtualization based tools have recently been
proposed to enable sharing and repeating computations [8, 19, 22,
41, 43, 55]. These tools do not address multiversion replay. In a
virtualization package, code and data remain separate as files or
databases [43]. Computational notebooks, which combine code and
data, have received wide attention recently for sharing and use [26].
Notebook sharing, like package sharing, is easy but (re-)execution
across versions remains sequential. Nodebooks [58] and Vizier [6]
are specialized notebook clients that support and store notebook
versions at a cell level. Neither, however, compute deltas between
versions or trade computation for storage. Our work complements
specialized notebook systems used for interactive development [24],
and given lineage from these systems [31], replay can be enabled.
Execution lineage. There are several provenance models for cap-
turing execution lineage [52]. In this paper, we adopt the system-
event trace analysis process that is also used in other whole system
provenance tracking methods [3, 15, 51].
Data caching. Data management systems have a rich history of
employing object caches that tradeoff space for time to improve
performance of applications. Semantic caching allows caching of
query results [12, 48], web-object caching allows caching of web ob-
jects [7, 23], and query-based object caching allows database object
caching based on queries [32]. In all of these works, the workload
sequence is not known. In the multi-query scenarios [48] the work-
load is presented as set of queries and hence there is the possibility
of caching the results of common sub-expressions and reusing them

across queries. However, efficient reuse in the multi-query setting
primarily involves searching through the space of query answering
plans to identify plans that could potentially lead to optimal reuse.
In certain cases not finding the optimal plan and blindly reusing
common subexpressions may blow up the computation time be-
cause a large join may be required. Our scenario appears similar
but we do not have the wiggle room provided by the semantics of
a query, nor the potential pitfalls associated with blind reuse.
State management for recomputation. [54] provides an excel-
lent survey of state management for computation. State can be
recomputed from lineage or state can be stored ‘as-is’. In SciInc [56]
state is recomputed from lineage that is versioned. Versioned lin-
eage or causality-based versioning [36, 56] leads to correct compu-
tation of state for incremental replay. In this work, on the contrary,
we are concerned with state that is stored ‘as-is’. Several works
store ‘as-is’ state—this state is state of a variable, query, program,
or configuration [54]. Similar to [20, 21, 25, 39], in this work, our
operator is program state. However, in these works the purpose is
fault-tolerance, and so the system periodically checkpoints but does
not consider space limitations. We determine a limited number of
checkpoints of program state to save in-memory space, and using
lineage, choose to simply recompute when efficient. To reduce space
an alternative would be to incrementally checkpoint as explored
in differential flows [35, 37] and query re-optimization [29]. These
approaches are not extendable to checkpoints of program state,
which is an in-memory map. Very recently checkpointing was used
to improve efficiency, but the checkpoint frequency is periodic [14].
Checkpoint location. Deciding when to checkpoint has received
attention in HPC scheduling [5, 47]. A primary objective is to mini-
mize the amount of computation that needs to be redone in case
the system fails. In HPC workflows, the checkpoint also has an
overhead. We consider machine learning and scientific computing
programs in which the checkpoint overhead is nearly zero.

Closer in spirit to our work is the DataHubs [4] system that
seeks to maintain multiple versions of large data sets without fully
replicating them. In this system some versions are stored fully
materialized and others are stored only as deltas linked to other
versions. The problem is to trade off total storage required versus
time taken to recreate a version. At a glance, it is possible to think
that the program states of the cells of our multiversion program can
be aligned with the data sets considered in DataHubs. However, the
fundamental difference is that DataHubs assumes each version of a
data set has already been created the first time. Thus, they assume
that at least one version of the data set is stored in its entirety. In
CHEX, the equivalent thing would be for Alice to share some of the
program states generated in her execution with Bob. This defeats
the entire purpose of independent repetition by Bob.

9 DISCUSSION

We now discuss any assumptions that CHEX makes and our results.
We assumed that CHEXworks with REPL cells, but, in general, we do
not constrain users like Alice to program with REPL interfaces. If
the code is not developed via a REPL interface, CHEX preprocesses it
into cells, akin to a program developed via a REPL interface, before
monitoring. This preprocessing takes care to not split functions
or control flows into separate cells. Thus every input program is

automatically transformed into an equivalent REPL program and
then entered into the CHEX.

We have assumed multiple versions for a given program. We
make no assumptions on the types of edits that constitutes a ver-
sion on Alice’s side. Thus, Alice can change values of parameters,
specifications of datasets, models, or learning algorithms. She can
also add or delete entire cells. In practice we have found such ver-
sions to not correspond to development versions but as separate
branches in version-control repositories. In workflow systems they
also correspond to independent, but related, experiments.

We have only demonstrated a scenario in which Alice shares
notebooks with Bob for multiversion replay. A more evolved back-
and-forth sharing of packages, one that accounts for any previous
multiversion replay decisions to be persisted, will require further
changes both to the system and the algorithm. In such a scenario, if
the caches persist, some intermediate results are available for free
and the algorithm needs to accommodate for that accordingly. This
scenario is part of our future work.

Finally, our experiments show that CHEX significantly decreases
the replay time for notebooks and allows a user to execute a far
higher number of versions in a given amount of time. The benefit
arises particularly for notebooks where pre-processing or training
steps are compute and data-intensive. In particular, if all computa-
tion is conducted in the last cell, then opportunities for optimization
on intermediate results reduce drastically. In this case, one option
is to encourage the developer to further divide the last cell, which
creates further opportunities of optimization. If the cell cannot be
divided, then one may employ a hybrid approach of using function-
based caching within this cell. This may, however, require some
analysis of the program in the last cell.

10 CONCLUSION

In this work we have highlighted the need for improving the ef-
ficiency of multiversion replay. Our work shows that execution
lineage can be used to establish cell equality and reuse shared pro-
gram state to optimize replaying of multiversions. We show that
optimizing is not trivial and, given a fixed cache size, MVR-P is
NP-hard and present two efficient heuristics for reducing the total
computation time. We develop novel checkpoint-based caching sup-
port for replaying versions and show that CHEX is able to reduce the
compute time of several machine learning and scientific computing
notebooks using a cache size that is smaller than the checkpoint
size of a notebook.

In the future, we wish to extend CHEX for queries and the stan-
dard database provenance model. This problem seems akin to how
we previously extended provenance-based application virtualiza-
tion [42] to database virtualization [43]. We also wish to explore
how CHEX can incorporate program restructuring, which happens
during interactive notebook development leveraging recent prove-
nance models developed in this area [6, 24, 31] and developing
corresponding online algorithms.

ACKNOWLEDGMENTS

This work is supported by National Science Foundation under
grants CNS-1846418, NSF ICER-1639759, ICER-1661918 and a De-
partment of Energy Fellowship.

REFERENCES
[1] 2017. Sciunit. https://sciunit.run/. [Online; accessed 10-Sep-2021].
[2] Bahuisman. 2018. Natural-Gas-Model. https://github.com/bahuisman/

NatGasModel. [Online; accessed 10-Dec-2021].
[3] Nikilesh Balakrishnan, Thomas Bytheway, Ripduman Sohan, and Andy Hopper.

2013. OPUS: A Lightweight System for Observational Provenance in User Space.
In 5th USENIX Workshop on the Theory and Practice of Provenance (TaPP 13). 1–4.

[4] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya
Parameswaran. 2015. Principles of dataset versioning: exploring the recre-
ation/storage tradeoff. Proceedings of the VLDB Endowment 8, 12 (2015), 1346–
1357.

[5] Mohamed-Slim Bouguerra, Denis Trystram, and Frédéric Wagner. 2012. Com-
plexity analysis of checkpoint scheduling with variable costs. IEEE Trans. Comput.
62, 6 (2012), 1269–1275.

[6] Michael Brachmann,William Spoth, Oliver Kennedy, Boris Glavic, HeikoMueller,
Sonia Castelo, Carlos Bautista, and Juliana Friere. 2020. Your notebook is not
crumby enough, REPLace it. In Conference on Innovative Data Systems Research
(CIDR).

[7] Pei Cao and Sandy Irani. 1997. Cost-aware www proxy caching algorithms.. In
USENIX Symposium on Internet Technologies and Systems. 193–206.

[8] Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire. 2016. Re-
proZip: Computational Reproducibility With Ease. In SIGMOD’16. 2085–2088.

[9] Jupyter Community. 2016. C++ implementation of the Jupyter Kernel protocol.
https://github.com/jupyter-xeus/xeus.

[10] The CRIU Community. 2019. Checkpoint/Restore In Userspace. https://criu.org/.
[Online; accessed 8-Jan-2019].

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press, Chap-
ter 15.

[12] Shaul Dar, Michael J Franklin, Björn Þór Jónsson, Divesh Srivastava, and Michael
Tan. 1996. Semantic Data Caching and Replacement. In Proceedings of the 22th
International Conference on Very Large Data Bases. 330–341.

[13] Joseph Eddy. 2019. Time-Series Forecasting. https://github.com/JEddy92/
TimeSeries_Seq2Seq. [Online; accessed 10-Dec-2021].

[14] Rolando Garcia, Eric Liu, Vikram Sreekanti, Bobby Yan, Anusha Dandamudi,
Joseph E Gonzalez, Joseph M Hellerstein, and Koushik Sen. 2020. Hindsight
logging for model training. Proceedings of the VLDB Endowment 14, 4 (2020),
682–693.

[15] Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for Provenance Audit-
ing in Distributed Environments. In Proceedings of the 13th International Middle-
ware Conference (Middleware ’12). 101–120.

[16] Pradeep Kumar Gunda, Lenin Ravindranath, Chandu Thekkath, Yuan Yu, and
Li Zhuang. 2010. Nectar: Automatic Management of Data and Computation in
Datacenters. In Proceedings of the 9th Symposium on Operating Systems Design
and Implementation (OSDI). 75–88.

[17] Philip Guo and Dawson Engler. 2011. Using Automatic Persistent Memoization
to Facilitate Data Analysis Scripting. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (ISSTA ’11). ACM, 287–297.

[18] Philip J. Guo and Dawson Engler. 2010. Towards Practical Incremental Recompu-
tation for Scientists: An Implementation for the Python Language. In Proceedings
of the 2nd Workshop on the Theory and Practice of Provenance (TAPP’10). 6–6.

[19] Philip J. Guo and Dawson Engler. 2011. CDE: Using System Call Interposition
to Automatically Create Portable Software Packages. In 2011 USENIX Annual
Technical Conference (USENIX ATC 11). 21–21.

[20] Doug Hakkarinen and Zizhong Chen. 2012. Multilevel diskless checkpointing.
IEEE Trans. Comput. 62, 4 (2012), 772–783.

[21] Jeong-Hyon Hwang, Ying Xing, Ugur Cetintemel, and Stan Zdonik. 2007. A
cooperative, self-configuring high-availability solution for stream processing. In
2007 IEEE 23rd International Conference on Data Engineering. IEEE, 176–185.

[22] Yves Janin, Cédric Vincent, and Rémi Duraffort. 2014. CARE, the Comprehensive
Archiver for Reproducible Execution. In Proceedings of the 1st ACM SIGPLAN
Workshop on Reproducible Research Methodologies and New Publication Models in
Computer Engineering (TRUST ’14). 1–7.

[23] Shudong Jin and Azer Bestavros. 2000. Popularity-aware greedy dual-size web
proxy caching algorithms. In Proceedings 20th IEEE International Conference on
Distributed Computing Systems. IEEE, 254–261.

[24] David Koop and Jay Patel. 2017. Dataflow notebooks: encoding and tracking
dependencies of cells. In 9th USENIX Workshop on the Theory and Practice of
Provenance (TaPP 2017). 17–17.

[25] YongChul Kwon, Magdalena Balazinska, and Albert Greenberg. 2008. Fault-
tolerant stream processing using a distributed, replicated file system. Proceedings
of the VLDB Endowment 1, 1 (2008), 574–585.

[26] Sam Lau, Ian Drosos, Julia MMarkel, and Philip J Guo. 2020. The Design Space of
Computational Notebooks: An Analysis of 60 Systems in Academia and Industry.
In 2020 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 1–11.

[27] Xinyi Li. 2020. Stock Prediction Using Financial News. https:
//github.com/AI4Finance-LLC/Financial-News-for-Stock-Prediction-using-
DP-LSTM-NIPS-2019. [Online; accessed 5-Dec-2021].

[28] Xinyi Li, Yinchuan Li, Hongyang Yang, Liuqing Yang, and Xiao-Yang Liu. 2019.
DP-LSTM: Differential privacy-inspired LSTM for stock prediction using finan-
cial news. 33rd Conference on Neural Information Processing Systems (NeurIPS
2019) Workshop on Robust AI in Financial Services: Data, Fairness, Explainability,
Trustworthiness, and Privacy (2019).

[29] Mengmeng Liu, Zachary G Ives, and Boon Thau Loo. 2016. Enabling incremental
query re-optimization. In Proceedings of the 2016 International Conference on
Management of Data. 1705–1720.

[30] Robin Lougee-Heimer. 2003. Convex Over and Under ENvelopes for Nonlinear
Estimation. https://www.coin-or.org/Couenne/. [Online; accessed 21-July-2021].

[31] Stephen Macke, Hongpu Gong, Doris Jung-Lin Lee, Andrew Head, Doris Xin, and
Aditya Parameswaran. 2021. Fine-grained lineage for safer notebook interactions.
Proceedings of the VLDB Endowment 14, 6 (2021), 1093–1101.

[32] Tanu Malik, Randal Burns, and Amitabh Chaudhary. 2005. Bypass caching: Mak-
ing scientific databases good network citizens. In 21st International Conference
on Data Engineering (ICDE’05). IEEE, 94–105.

[33] NithinManne. 2020. Image Classification. https://www.kaggle.com/nithinmanne/
fashionmnist. [Online; accessed 10-Dec-2021].

[34] Naga Nithin Manne, Shilvi Satpati, Tanu Malik, Amitabha Bagchi, Ashish Gehani,
and Amitabh Chaudhary. 2022. CHEX: Multiversion Replay with Ordered Check-
points. arXiv:2202.08429 [cs.DB]

[35] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.
Differential Dataflow. In CIDR.

[36] Kiran-Kumar Muniswamy-Reddy and David A. Holland. 2009. Causality-based
Versioning. Transactions of Storage 5, 4 (Dec. 2009), 1–28.

[37] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. 439–455.

[38] Yuta Nakamura, Tanu Malik, and Ashish Gehani. 2020. Efficient Provenance
Alignment in Reproduced Executions. In 12th International Workshop on Theory
and Practice of Provenance (TaPP 2020). 6–12.

[39] Bogdan Nicolae and Franck Cappello. 2013. AI-Ckpt: leveraging memory access
patterns for adaptive asynchronous incremental checkpointing. In Proceedings
of the 22nd international symposium on High-performance parallel and distributed
computing. 155–166.

[40] Tanu Malik Nithin Naga Manne. 2021. The CHEX System. https://bitbucket.org/
depauldbgroup/storagevscompute/src/optimal/.

[41] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and
Nimrod Partush. 2017. Engineering record and replay for deployability. In 2017
USENIX Annual Technical Conference. 377–389.

[42] Quan Pham, TanuMalik, and Ian Foster. 2013. Using Provenance for Repeatability.
In USENIX Theory and Practice of Provenance (TaPP’13). Article 2, 2:1–2:4 pages.

[43] Quan Pham, Tanu Malik, Boris Glavic, and Ian Foster. 2015. LDV: Light-weight
database virtualization. In 2015 IEEE 31st International Conference on Data Engi-
neering. IEEE, 1179–1190.

[44] Quan Pham, Severin Thaler, Tanu Malik, Ian Foster, and Boris Glavic. 2015.
Sharing and Reproducing Database Applications. Proc. VLDB Endow. 8, 12 (Aug.
2015), 1988–1991. https://doi.org/10.14778/2824032.2824118

[45] Michael Rilee. 2020. STARE Cookbooks: STARE+Dask-Demo. https://bit.ly/
37dlK4B. [Online; accessed 10-Dec-2021].

[46] Michael Rilee, Niklas Griessbaum, Kwo-Sen Kuo, James Frew Frew, and Robert
Wolfe. 2020. STARE-based Integrative Analysis of Diverse Data Using Dask Par-
allel Programming. Proceedings of ACM SIGSPATIAL conference (SIGSPATIAL’20)
(2020), 417–420.

[47] Yves Robert, Frédéric Vivien, and Dounia Zaidouni. 2012. On the complexity of
scheduling checkpoints for computational workflows. In IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN 2012). IEEE,
1–6.

[48] Prasan Roy, Srinivasan Seshadri, S Sudarshan, and Siddhesh Bhobe. 2000. Efficient
and extensible algorithms for multi query optimization. In Proceedings of the
2000 ACM SIGMOD international conference on Management of data. 249–260.

[49] Hojjat Salehinejad. 2020. EPruning (EDropout). https://github.com/sparsifai/
epruning. [Online; accessed 10-Dec-2021].

[50] Hojjat Salehinejad and Shahrokh Valaee. 2020. EDropout: Energy-Based Dropout
and Pruning of Deep Neural Networks. arXiv preprint arXiv:2006.04270 (2020),
arXiv–2006.

[51] Manolis Stamatogiannakis, Paul Groth, and Herbert Bos. 2014. Looking inside
the black-box: capturing data provenance using dynamic instrumentation. In
International Provenance and Annotation Workshop. Springer, 155–167.

[52] Manolis Stamatogiannakis, Hasanat Kazmi, Hashim Sharif, Remco Vermeulen,
Ashish Gehani, Herbert Bos, and Paul Groth. 2016. Trade-Offs in Automatic
Provenance Capture (IPAW 2016). Springer-Verlag, 29–41.

[53] Victoria Stodden, Matthew S Krafczyk, and Adhithya Bhaskar. 2018. Enabling the
Verification of Computational Results: An Empirical Evaluation of Computational
Reproducibility. In Proceedings of the First International Workshop on Practical

Reproducible Evaluation of Computer Systems. ACM, 3.
[54] Quoc-Cuong To, Juan Soto, and Volker Markl. 2018. A survey of state manage-

ment in big data processing systems. The VLDB Journal 27, 6 (2018), 847–872.
[55] Dai Hai Ton That, Gabriel Fils, Zhihao Yuan, and Tanu Malik. 2017. Sciunits:

Reusable Research Objects. In IEEE eScience. 374–383.
[56] Andrew Youngdahl, Dai Hai Ton That, and Tanu Malik. 2019. SciInc: A Container

Runtime for Incremental Recomputation. In IEEE eScience. IEEE, 291–300.

[57] Zhihao Yuan, Dai Hai Ton That, Siddhant Kothari, Gabriel Fils, and Tanu Malik.
2018. Utilizing Provenance in Reusable Research Objects. Informatics 5, 1 (2018),
14. https://doi.org/10.3390/informatics5010014

[58] K Zielnicki. 2017. Nodebook. https://multithreaded.stitchfix.com/blog/2017/07/
26/nodebook/ [Online; accessed 10-July-2021].

